

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ATTENTION CALIBRATION FOR REDUCING HALLUCINATION IN LARGE VISION-LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Vision-Language Models (LVLMs) exhibit impressive multimodal reasoning capabilities but remain highly susceptible to object hallucination, where models generate responses that are not factually aligned with the visual content. Recent works attribute this issue to an inherent bias of LVLMs where vision token attention map has spurious focus on certain positions, and propose to mitigate this issue by reordering visual tokens. However, we find that different LVLMs exhibit different correlations between attention and spatial position, which makes the existing static solution difficult to generalize to other LVLMs. To begin with, we investigate the attention bias introduced by image tokens through a toy experiment, in which a blank image is fed into the model to capture its position-dependent bias. We then remove this bias from the original attention map, which already leads to a substantial reduction in hallucinations. This proof of concept validates the core intuition behind attention calibration. Building upon this insight, we propose Dynamic Attention Calibration (DAC)—a lightweight, plug-and-play module that leverages contrastive learning to dynamically enforce positional invariance. Unlike static baselines, DAC adapts to different models and inputs in a robust and learnable manner, offering a generalizable solution to mitigate attention-related hallucinations in LVLMs. Comprehensive experiments across multiple benchmarks demonstrate that DAC significantly reduces object hallucination while improving general multimodal alignment. Our method achieves state-of-the-art performance across diverse LVLM architectures on various metrics.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) Liu et al. (2024d); Bai et al. (2023); Dai et al. (2024); Zhu et al. (2023); Ye et al. (2024) have garnered significant attention in the AI research community for their remarkable ability to comprehend the visual world and engage in conversational interactions with humans. Despite these advances, LVLMs continue to face critical challenges, particularly in the form of object hallucination Li et al. (2023b); Rohrbach et al. (2018); Cui et al. (2023), a phenomenon where models generate responses that are not factually aligned with the visual content. This issue undermines the reliability of LVLMs, posing a significant barrier to their deployment in real-world applications.

A variety of approaches have been proposed to mitigate object hallucination in LVLMs. One common strategy involves post-hoc correction using revisor models Yin et al. (2023); Zhou et al. (2024); Lee et al. (2023), which aim to reduce hallucinated responses by refining outputs. Another approach improves supervised fine-tuning through diversified instruction tuning data Liu et al. (2024a); Yu et al. (2024) or aligns model responses with human preferences Sun et al. (2023). Recently, several studies have explored training-free methods for mitigating object hallucination by addressing issues in the autoregressive decoding process of LVLMs Leng et al. (2023); Huo et al. (2024); Huang et al. (2023).

A recent study Xing et al. (2024) reveals that LVLMs’ perception varies with object positions due to the inherent processing order in autoregressive models. As 2D vision tokens are concatenated with text tokens and flattened into a raster-scan sequence (top-to-bottom, left-to-right), the model develops a bias, prioritizing tokens in the bottom-right region closer to the instruction tokens (Figure 1a), termed as Spatial Perception Bias (SPB). This spatial bias skews perception capabilities. To mitigate

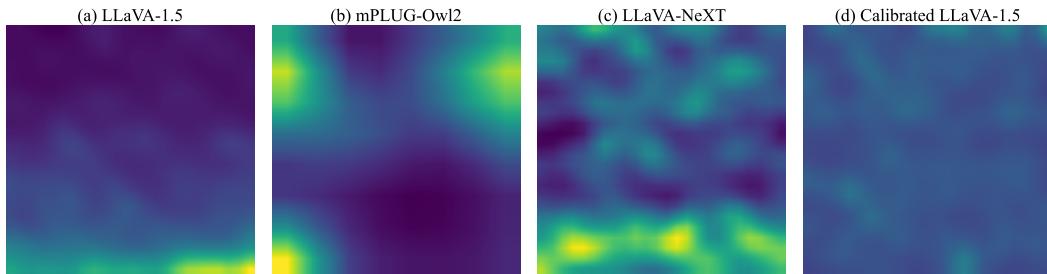


Figure 1: Spatial Position Bias influences how LVLMs perceive objects based on their position within an image. The visualization above illustrates vision token attention weights from the final token before output generation, during the decoding process for different models on a blank white image in response to the open-ended prompt: “Please describe this image in detail.” (a) shows LLaVA-1.5, which exhibits an increasing trend in attention distribution following a raster scan order, as identified by Xing et al. (2024). (b-c) represent other models, displaying arbitrary attention distributions. (d) depicts the calibrated vision token attention map of LLaVA-1.5 after Dynamic Attention Calibration.

this, Xing et al. (2024) propose a position alignment technique that reorders the perception sequence, reducing spatial bias.

However, this approach has two major limitations. First, the method is based on the assumption that the model assigns greater attention to tokens that are relatively nearby. As demonstrated in Figure 1(a-c), our analysis reveals that the attention distributions of vision tokens vary significantly across different LVLM models and unexpectedly high attentions are assigned to arbitrary locations. This observation challenges the generalization of the heuristic reordering strategy proposed by Xing et al. (2024), highlighting the need for a more dynamic and adaptable solution. Second, the proposed technique requires retraining the entire network, which is computationally expensive and often impractical for large-scale LVLMs, underscoring the necessity of developing a lightweight alternative.

Building on this analysis, we propose to mitigate object hallucination by calibrating the SPB in attention maps. As a proof of concept, Uniform Attention Calibration (UAC) subtracts a static bias extracted from the attention map of a blank image input and confirms that reducing SPB lowers hallucination. Motivated by this evidence, we further relax the assumption in UAC and introduce Dynamic Attention Calibration (DAC) to fine-tune LVLMs for better generalization. Specifically, DAC consists of a learnable plug-and-play module integrated into the self-attention mechanism. With a simple yet effective data augmentation technique, the module is then fine-tuned via contrastive learning to encourage consistent outputs with different object positions in the image, which dynamically adjusts vision token attention map to tackle object hallucination.

Comprehensive experiments confirm the effectiveness of DAC, revealing substantial improvements across multiple object hallucination benchmarks for a range of LVLMs, including LLaVA-1.5 Liu et al. (2024d), mPLUG-Owl2 Ye et al. (2024), and LLaVA-NeXT Liu et al. (2024c). Additionally, our approach strengthens the overall perception capabilities of LVLMs, as demonstrated by strong performance on MME Fu et al. (2024) and LLaVA-Bench Liu et al. (2024d). In summary, our main contributions are as follows:

1. We systematically investigate Spatial Perception Bias (SPB) in the attention mechanism of various LVLMs, revealing its strong correlation with object hallucination and its unpredictable nature across different models.
2. We propose Dynamic Attention Calibration (DAC), a lightweight, learnable, and plug-and-play module that dynamically adjusts vision token attention to robustly mitigate SPB.
3. Extensive experiments confirm that DAC significantly reduces object hallucination and enhances overall perception, achieving notable improvements across multiple LVLMs and benchmarks.

108
109

2 RELATED WORK

110
111

2.1 VISUAL-LANGUAGE MODELS

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014

162 **Self-Attention Mechanism** The self-attention mechanism computes token relevance by projecting
 163 the output of previous layer into query Q , key K , and value V with linear transformations W_Q , W_K ,
 164 W_V . The self attention output is computed as

$$166 \quad \text{SA}(Q, K, V) = \text{softmax}(\mathbf{A} + M) \cdot V, \quad \mathbf{A} = \frac{Q \cdot K^T}{\sqrt{d_l}}, \quad (2)$$

168 where $\mathbf{A} \in \mathbb{R}^{B \times H \times (n+m) \times (n+m)}$ denotes attention weight matrix, B and H represent the batch size,
 169 and number of attention heads, respectively. M denotes the causal mask, and d_l is the dimensionality
 170 of Q , K , and V . We denote \mathbf{A}^i as the attention matrix after i -th layer of LVLM, In this paper, we
 171 denote vision token attention $\mathbf{A}_{\text{img}} \in \mathbb{R}^{B \times H \times n}$ as the slice of the attention weights corresponding to
 172 the query from the last input token (the token immediately preceding the generated output) and the
 173 keys of all vision tokens v .

174 3.2 SPATIAL PERCEPTION BIAS

176 When given a blank white image and the open-ended prompt “*Please describe this image in detail*”,
 177 LVLMs are expected to distribute attention uniformly across the entire image. However, as shown in
 178 Figure 1a, the self-attention module assigns varying levels of attention to different spatial regions. For
 179 instance, LLaVA-1.5 places greater attention on later visual tokens, particularly near the bottom-right.
 180 This systematic attention bias reflects position-dependent sensitivity to visual features. We define this
 181 phenomenon as Spatial Perception Bias(SPB)—a systematic error in the self-attention module that
 182 skews attention weights toward specific spatial regions, leading to perception inconsistencies.

183 Xing et al. (2024) were the first to identify a similar issue, attributing it to the long-term decay effect
 184 of position encoding. Specifically, LVLMs tend to assign lower attention to tokens corresponding
 185 to the top-left region of an image compared to those in the bottom-right region. This asymmetric
 186 attention makes LVLMs more susceptible to object hallucination in the top-left region, where visual
 187 grounding is weaker. To mitigate this, they proposed reordering the visual token sequence to achieve
 188 a more balanced attention distribution. However, when comparing Figure 1(a–c), we find that SPB
 189 varies significantly across models and can result in unexpectedly high attention to arbitrary locations.
 190 Consequently, a predefined token reordering strategy cannot generalize well to LVLMs beyond
 191 LLaVA-1.5.

192 4 METHOD

193 4.1 UNIFORM ATTENTION CALIBRATION

197 To understand the core issue of spatial position bias, we can consider a simplified scenario. We
 198 hypothesize that an ideal model, when presented with a meaningless image (e.g., a blank white
 199 image), should distribute its attention uniformly across all visual tokens. Any deviation from this
 200 uniformity can be interpreted as a form of inherent model bias.

201 This leads to a straightforward calibration strategy we term Uniform Attention Calibration (UAC).
 202 The core idea is to first measure the model’s vision token attention, $\tilde{\mathbf{A}}_{\text{img}}$, on a meaningless input (we
 203 use a blank white image by default). From this, we compute a static calibration matrix, \mathbf{W} , designed
 204 to counteract the observed bias:

$$205 \quad \mathbf{W} = \frac{\text{avg}(\tilde{\mathbf{A}}_{\text{img}})}{\tilde{\mathbf{A}}_{\text{img}}} \quad (3)$$

207 where $\text{avg}(\cdot)$ denotes the average value over all elements of the matrix. During inference, this
 208 pre-computed matrix is applied as an affine transformation to the attention map of any given input
 209 image, \mathbf{A}_{img} , via an element-wise product:

$$210 \quad \mathbf{A}'_{\text{img}} = \mathbf{W} \circ \mathbf{A}_{\text{img}} \quad (4)$$

211 By default, UAC is applied to a single self-attention layer in the decoder.

213 Despite its simplicity, this approach serves as a valuable proof of concept. As shown in Table 1, we
 214 observe that attention calibration effectively alleviates hallucination by mitigating SPB, particularly
 215 in the adversarial setting. This result supports our hypothesis that attention calibration is a promising
 direction. More results are provided in the Appendix.

216 However, the fundamental limitation of UAC remains
 217 its static, “one-size-fits-all” nature. Relying on a
 218 single bias profile is unlikely to work for diverse,
 219 content-rich inputs. Furthermore, such brute-force ad-
 220 justments to the attention mechanism risk degrading
 221 the LVLM’s general performance on other tasks. This
 222 motivates the need for a more robust and adaptive
 223 solutions.

224 4.2 DYNAMIC ATTENTION CALIBRATION

225 To this end, we introduce Dynamic Attention Calibration (DAC). Instead of relying on a static
 226 calibration, DAC is a trainable, plug-and-play module designed to learn input-specific attention
 227 adjustments. It moves beyond a predefined rule by utilizing a contrastive learning framework Wu et al.
 228 (2018); Chen et al. (2020) to ensure the model produces consistent outputs regardless of an object’s
 229 spatial position, thereby learning to mitigate SPB in a more effective and generalizable manner.

230 **DAC Design** Motivated by the superior calibration performance of affine transformation in the
 231 field of uncertainty calibration Platt (1999), we introduce a lightweight trainable transformation f
 232 to calibrate unreliable vision token attention weights before SoftMax function as $\mathbf{A}'_{\text{img}} = f(\mathbf{A}_{\text{img}})$,
 233 where \mathbf{A}'_{img} denotes the calibrated vision token attention weights. Specifically, the transformation
 234 f operates within the self-attention mechanism of the transformer decoder layers and consists of a
 235 small stack of linear transformations with ReLU activations. The details about building blocks can be
 236 found in the Appendix. The forward pass of DAC module can be defined as

$$237 \mathbf{A}'_{\text{img}} = f(\mathbf{A}_{\text{img}}) = \mathbf{g}_{L-1} \mathbf{W}_L + \mathbf{b}_L, \quad (5)$$

$$238 \mathbf{g}_i = \text{ReLU}(\mathbf{g}_{i-1} \mathbf{W}_i + \mathbf{b}_i), \text{ for } i \in \{1, \dots, N-1\},$$

239 where L denotes the layer number in DAC module, $\mathbf{W}_i \in \mathbb{R}^{D_i \times D_i}$ denotes the weight matrix of
 240 layer i , $\mathbf{b}_i \in \mathbb{R}^{D_i}$ denotes the bias vector, \mathbf{g}_i represents the output of the i -th layer, and $\mathbf{g}_0 = \mathbf{A}_{\text{img}}$.
 241 The DAC module can be applied to any layer of the language model decoder, targeting the layers
 242 responsible for vision tokens processing.

243 **DAC Optimization** With the DAC module in Eq. 5, a much stronger constraint can be imposed on
 244 vision token attention weights of LVLMs to alleviate the bias. Instead of the uniform constraint in
 245 UAC, we further propose to force the consistent outputs wherever the object locates in the image. The
 246 key idea is to ensure that the model maintains the same capability of identifying an object regardless
 247 of its position within the image. However, to impose such a constraint, it could be challenging to
 248 obtain sufficient training data variants with different object positions. Thus, we introduce a simple
 249 yet effective data augmentation technique inspired by the concept of instant discrimination Wu et al.
 250 (2018); Chen et al. (2020).

251 Formally, we randomly select 100 images from MSCOCO as our validation set, denoted as \mathcal{D}_{val} . Each
 252 image $V \in \mathcal{D}_{\text{val}}$ is paired with ground-truth annotations and their corresponding bounding boxes.
 253 The validation set \mathcal{D}_{val} undergoes an augmentation process to produce the augmented calibration
 254 dataset \mathcal{D}_{cal} . Specifically, we crop the ground truth objects from the images using the annotations
 255 and bounding boxes provided, then apply random resizing and paste the cropped objects onto a pure
 256 white background as V_{crop} . For each V_{crop} , we generate balanced positive and negative query-label
 257 pairs, ensuring a well-balanced dataset. Additionally, we include annotations for the cropped images
 258 V_{crop} to be utilized in instance discrimination tasks, as discussed later in the paper. The detailed
 259 augmentation process is summarized in the Appendix.

260 With sufficient augmented data from \mathcal{D}_{cal} , we propose leveraging contrastive learning to encourage
 261 LVLMs to focus on objects themselves rather than their absolute positions in the image. This approach
 262 ensures consistent outputs regardless of object position. By reducing reliance on positional cues, the
 263 model learns to robustly identify objects despite spatial transformations. Specifically, contrastive
 264 learning is formulated to increase the similarity between embeddings of the same object at different
 265 spatial locations while pushing apart the embeddings of different objects. We begin with an \mathcal{D}_{cal}
 266 dataset and randomly sample a minibatch of B examples. Each example then undergoes an additional
 267 augmentation process, resulting in a total of $2B$ augmented data points. Following the approach of

Method	<i>Rnd</i> ↑	<i>Pop</i> ↑	<i>Adv</i> ↑
Baseline	89.4	86.8	81.7
VCD	87.8	85.2	80.4
OPERA	90.0	86.9	81.8
SID	89.1	85.9	81.5
CCA	89.1	86.0	83.8
UAC	90.2	88.9	84.4

Table 1: POPE F1 scores on MSCOCO for LLaVA-1.5. “Rnd”, “Pop” and “Adv” denote Random, Popular and Adversarial settings.

270 **Algorithm 1** DAC’s Main Learning Algorithm

271 **Input:** Batch size B , constant τ , frozen backbone networks $f(\cdot)$ and projection head $g(\cdot)$, aug-
 272mentation distribution \mathcal{T} , augmented set $\mathcal{D}_{\text{aug}} = \{(T_{\text{aug}}, V_{\text{crop}}, Y_{\text{aug}})\}$
 273 **for** sampled minibatch $\{(t_k, v_k, y_k)\}_{k=1}^B \in \mathcal{D}_{\text{aug}}$ **do**
 274 **for** all $k \in \{1, \dots, B\}$ **do**
 275 Draw one augmentation function $t \sim \mathcal{T}$
 276 $\tilde{v}_{2k-1} = v_k$; $z_{2k-1} = f(\tilde{v}_{2k-1})$; $\tilde{y}_{2k-1} = g(z_{2k-1})$; $y_{2k-1} = y_k$
 277 $\tilde{v}_{2k} = t(v_k)$; $z_{2k} = f(\tilde{v}_{2k})$; $\tilde{y}_{2k} = g(z_{2k})$; $y_{2k} = y_k$
 278 **end for**
 279 **for** all $i \in \{1, \dots, 2B\}$ and $j \in \{1, \dots, 2B\}$ **do**
 280 $s_{i,j} = z_i^\top z_j / (\|z_i\| \|z_j\|)$ # Pairwise similarity
 281 **end for**
 282 Compute the losses using: $\mathcal{L} = \mathcal{L}_{\text{CE}} + \lambda \cdot \mathcal{L}_{\text{CL}}$
 283 Update DAC parameters to minimize \mathcal{L}
 284 **end for**
 285 **Return:** Fine-tuned DAC

286
 287 Wu et al. (2018), for each positive pair, we consider the remaining $2(B - 1)$ augmented examples
 288 within the minibatch as negative examples. Given the embeddings z_i and z_j of the positive augmented
 289 pair \tilde{v}_i and \tilde{v}_j , the contrastive loss can be expressed as:
 290

$$\ell_{\text{CL}}(i, j) = -\log \frac{\exp(\text{sim}(\mathbf{z}_i, \mathbf{z}_j) / \tau)}{\sum_{k=1}^{2B} \mathbf{1}[k \neq i] \exp(\text{sim}(\mathbf{z}_i, \mathbf{z}_k) / \tau)}, \quad (6)$$

291 where B denotes the number of examples in a minibatch, $\text{sim}(\cdot, \cdot)$ represents the cosine similarity,
 292 $\mathbf{1}_{[k \neq i]}$ is an indicator function, and τ is the temperature parameter. Combined with a cross-entropy
 293 (CE) loss, the final loss function is formulated as

$$\mathcal{L} = \mathcal{L}_{\text{CE}}(F(T_{\text{crop}}, V_{\text{crop}}), Y_{\text{crop}}) + \lambda \mathcal{L}_{\text{CL}}, \quad (7)$$

294 where F represents the model, T_{crop} and V_{crop} are the query and cropped image, Y_{crop} is the corre-
 295 sponding label, and λ is a hyperparameter balancing the two losses. We optimize our DAC using
 296 Eq. 7 alongside instruction tuning, while keeping all other components frozen. The overall training
 297 process is summarized in Algorithm 1.

303 **5 EXPERIMENT**305 **5.1 SETUP**

306 **Models and Baselines** We implement three representative LVLMs for evaluation: LLaVA-1.5
 307 Shang et al. (2024), mPLUG-Owl2 Ye et al. (2024), and LLaVA-NeXT Liu et al. (2024c) at the 7B
 308 scale. Our methods are compared against five methods. Baseline responses are generated using the
 309 original LVLMs, while other techniques such as Visual Contrastive Decoding (VCD) Leng et al.
 310 (2023), OPERA Huang et al. (2023), Self-Introspective Decoding (SID) Huo et al. (2024), and
 311 Concentric Causal Attention (CCA) Xing et al. (2024) are included for comparative analysis. We
 312 adopt the default settings for OPERA, VCD, and SID. For CCA, we directly use the provided weights.
 313 For each compared method, except OPERA, which uses beam search (beam size 5), we use greedy
 314 decoding for polling-based tasks (POPE and MME), and nucleus sampling ($p = 1$) for open-ended
 315 generation tasks (CHAIR and LLaVA-Bench).

316
 317 **Experiment Settings** Unless otherwise specified, we integrate the DAC module into two consecu-
 318 tive layers of the language model decoder. For all tasks, we use a fixed validation set D_{val} , composed
 319 of 100 randomly selected MSCOCO images disjoint from any test set. For each image, we select up
 320 to three ground truth objects; if an image contains fewer than three objects, all available objects are
 321 included. Using these ground truth objects, we generate 10 cropped images per object, resulting in a
 322 dataset of approximately 5.4K (T, V, Y) pairs. By default, the contrastive loss strength λ is set to
 323 0.01. To configure the DAC layer, we define 2–4 candidate layer buckets and select the setting when

324 validation on D_{val} is applicable; otherwise, we adopt the same setting as used in the POPE MSCOCO
 325 Random.

326 For LLaVA-1.5, we fine-tune the DAC module on the D_{cal} dataset using a learning rate of 3×10^{-6} ,
 327 a batch size of 8, and gradient accumulation steps of 4. The training takes approximately 40 minutes
 328 on two NVIDIA RTX 4090 GPUs. We apply attention calibration to the vision token attention \mathbf{A}_{img} ,
 329 computed with the last input token as the query. Additional experimental details can be found in the
 330 Appendix.

331

332 **5.2 EVALUATION RESULTS**

333 **POPE** Polling-based Object Probing Evaluation (POPE) Li et al. (2023b) is a method designed to
 334 assess object hallucination in LVLMs. It evaluates model performance by querying the presence of
 335 specific objects in images using yes-or-no questions. POPE employs three strategies for sampling
 336 negative objects: Random, Popular, and Adversarial (refer to Li et al. (2023b) for details). Our
 337 evaluation utilizes two datasets: MSCOCO Lin et al. (2014) and A-OKVQA Schwenk et al. (2022).
 338 For each evaluation setup, every subset includes 3,000 questions across 500 images, resulting in a
 339 total of 18,000 yes-or-no questions. The evaluation pivots on two key metrics: Accuracy and the F1
 340 score. DAC achieves the highest accuracy and F1 scores across most datasets and sampling setups,
 341 as shown in Table 2. Specifically, DAC delivers an average improvement of 1.01% in accuracy and
 342 0.74% in F1 score for Random sampling, 2.19% in accuracy and 1.49% in F1 score for Popular
 343 sampling, and 2.41% in accuracy and 1.13% in F1 score for Adversarial sampling, compared to the
 344 next best existing approach. Notably, DAC achieves the largest accuracy gain in the more challenging
 345 Adversarial setting by effectively suppressing spurious visual cues that are unrelated to the target
 346 object.

347

348 **CHAIR** The Caption Hallucination Assessment with Image Relevance (CHAIR) metric Rohrbach
 349 et al. (2018) is specifically designed to assess object hallucinations in image captioning tasks. CHAIR
 350 quantifies the degree of hallucinations in a generated image caption by calculating the proportion of
 351 objects mentioned in the caption that are not present in the ground truth label pool. Two common
 352 variants of CHAIR are defined: C_S and C_I , which measure hallucination at the instance and sentence
 353 levels, respectively. These metrics are formulated as follows:

$$354 \quad C_S = \frac{|\text{hallucinated objects}|}{|\text{all mentioned objects}|}, \quad C_I = \frac{|\text{captions with hallucinated objects}|}{|\text{all captions}|}$$

355 Lower values of C_S and C_I indicate better performances. Following Huang et al. (2023); Huo
 356 et al. (2024), we randomly select 500 images from MSCOCO validation set and query LVLMs
 357 using the prompt: *“Please describe this image in detail.”* To ensure a fair evaluation, we limit the
 358 maximum number of new tokens to 512 when generating descriptions. As shown in Table 3, our
 359 method demonstrates effective improvements. Notably, on C_S , DAC achieves a significant 38.14%
 360 improvement across models compared to the next best approach. The superior performance of our
 361 method on CHAIR metrics highlights its effectiveness in mitigating hallucinations in open-ended
 362 generation settings.

363

364 **MME** The MME benchmark Fu et al. (2024) provides a comprehensive framework for evaluating
 365 LVLMs across multiple dimensions. It includes ten perception-related subtasks and four cognition-
 366 focused tasks. Following Leng et al. (2023); Yin et al. (2023), we evaluate four perception subtasks
 367 that assess object-level and attribute-level hallucinations, specifically measuring object existence,
 368 count, position, and color. Table 4 presents the performance of our method, DAC, on the MME hallu-
 369 cination subset using LLaVA-1.5. DAC achieves a notable improvement of 16.16% over the baseline
 370 and 2.34% over the current state-of-the-art hallucination mitigation approaches, demonstrating its
 371 effectiveness in enhancing the general perception capabilities of LVLMs.

372

373 **GPT4V-Aided Evaluation** We evaluate our approach on LLaVA-Bench Liu et al. (2024d), a
 374 benchmark comprising 30 images paired with a total of 90 questions. LLaVA-Bench is designed
 375 to assess the ability of models to generate coherent and contextually accurate responses for vision-
 376 language tasks. It categorizes questions into three types: conversation, detailed description, and
 377 complex reasoning. Following prior works Liu et al. (2024d); Huang et al. (2023), we prompt these
 378 models to generate responses and use the text-only GPT-4 Achiam et al. (2023) as the judge to rate

Dataset			MSCOCO		A-OKVQA	
Model	Setting	Method	Accuracy↑	F1 Score↑	Accuracy↑	F1 Score↑
LLaVA-1.5	Random	Baseline	89.63	89.74	87.30	88.49
		VCD	87.53	87.81	85.00	86.49
		OPERA	89.87	89.95	87.27	88.50
		SID	89.43	89.08	87.30	88.00
		CCA	89.77	89.05	90.00	90.11
		DAC	90.83	90.60	89.70	90.33
LLaVA-1.5	Popular	Baseline	86.23	86.82	80.30	83.2
		VCD	84.43	85.20	77.50	81.07
		OPERA	86.30	86.88	80.47	83.38
		SID	85.93	85.94	82.00	83.80
		CCA	89.77	89.05	85.45	85.01
		DAC	89.50	89.10	83.96	85.52
LLaVA-1.5	Adversarial	Baseline	79.70	81.71	69.33	76.10
		VCD	78.13	80.38	67.90	75.01
		OPERA	79.77	81.77	69.20	76.09
		SID	80.43	81.47	72.93	77.48
		CCA	83.97	83.82	74.77	78.32
		DAC	84.12	84.42	75.42	79.21
mPLUG-Owl2	Random	Baseline	86.27	86.88	81.57	83.89
		VCD	84.40	84.79	82.53	84.16
		OPERA	86.23	86.84	81.53	83.86
		SID	86.30	86.86	83.53	85.28
		DAC	87.71	87.57	86.56	87.24
		Baseline	80.73	82.52	75.97	79.98
mPLUG-Owl2	Popular	VCD	81.00	81.12	75.70	79.21
		OPERA	80.70	82.48	75.93	79.94
		SID	81.27	82.82	77.47	80.89
		DAC	87.57	84.96	82.83	83.47
		Baseline	76.17	77.69	67.37	74.63
		VCD	77.10	77.00	68.80	74.85
LLaVA-NeXT	Adversarial	OPERA	76.87	78.01	67.30	74.58
		SID	77.27	79.89	68.93	75.43
		DAC	82.58	82.32	75.88	77.78
		Baseline	91.27	90.76	91.80	92.07
		VCD	91.30	90.80	91.80	92.07
		OPERA	91.36	90.80	91.77	92.03
LLaVA-NeXT	Random	SID	91.20	90.73	91.73	92.01
		DAC	91.63	91.32	92.37	92.47
		Baseline	88.60	88.27	87.17	88.13
		VCD	88.63	88.31	87.20	88.15
		OPERA	88.65	88.60	87.20	88.15
		SID	88.60	88.30	86.87	87.88
LLaVA-NeXT	Popular	DAC	89.27	89.14	89.13	89.62
		Baseline	85.50	85.54	77.47	80.87
		VCD	85.53	85.58	77.53	80.90
		OPERA	85.10	85.75	77.21	80.62
		SID	85.87	85.89	77.33	80.77
		DAC	86.00	85.71	78.80	81.56

Table 2: POPE results. All results use greedy decoding, except OPERA (beam search), and are either reported from prior work or re-implemented using official code. Best performance in each setting is shown in **bold**.

these responses. The results on LLaVA-1.5 are presented in Table 5. Our method demonstrates strong performance across all question type. These results highlight the effectiveness of our approach at preserving language understanding and generation capabilities while significantly mitigating object hallucination.

Setting	LLaVA-1.5		LLaVA-NeXT	
	$C_S \downarrow$	$C_I \downarrow$	$C_S \downarrow$	$C_I \downarrow$
Baseline	51.3	16.8	42.6	14.1
VCD	48.0	14.3	41.3	12.9
OPERA	45.2	12.7	39.4	11.8
SID	45.0	11.7	38.4	11.4
CCA	48.6	13.4	—	—
DAC	30.6	12.3	21.4	10.2

Table 3: CHAIR on 500 MSCOCO images (max seq len 512). All results use nucleus sampling ($p=1$), except OPERA (beam search).

Method	Complex \uparrow	Details \uparrow	Conv \uparrow	Average \uparrow
Baseline	66.3	46.7	68.7	60.6
VCD	69.6	51.6	57.3	61.6
OPERA	66.4	56.9	44.0	61.3
SID	66.7	51.3	66.3	60.4
CCA	66.1	53.9	69.4	64.3
DAC	70.3	50.0	72.7	64.3

Table 5: LLaVA-Bench results. The results are re-implemented using the official code and evaluated with the latest available text-only GPT-4 API. Scores are normalized by the total possible score. The best performances within each setting are highlighted in **bold**.

5.3 ABLATION STUDY

Hyperparameter We analyzed two key hyperparameters: the contrastive loss strength λ and the decoder layers N_{DAC} to which DAC is applied. As shown in Figure 2, DAC consistently outperforms the baseline across most settings.

The contrastive learning component is critical for achieving performance gains. Our ablation study clearly demonstrates this: when the component is removed entirely by setting $\lambda = 0$, the model is fine-tuned only on the CE loss and yields the lowest performance among all tested settings. While excessively high values can degrade generative capabilities, performance is stable across a range of settings near the optimum. Our experiments indicate that $\lambda = 0.01$ achieves the best performance, with negligible differences for nearby values. For consistency, we adopt $\lambda = 0.01$ for all experiments.

Our method offers flexibility in choosing the decoder layers for applying the contrastive loss. Our results show that there is a wide range of effective choices. In practice, we follow a standard procedure: we identify 2–4 candidate pairs of consecutive decoder layers (e.g., layers 4–5 or 20–21) as brackets and select the best setting based on validation performance on D_{val} , if applicable.

6 CONCLUSION AND LIMITATION

This paper investigates object hallucination in LLMs and identifies SPB as a key contributor, characterized by an imbalance in vision token attention that causes unequal focus across spatial regions and varies across models. This bias distorts object perception, amplifies sensitivity to misleading visual cues, and increases the risk of hallucination, compromising reliability in real-world settings. A straightforward UAC experiment confirms that mitigating SPB effectively reduces hallucination. Building on this, we introduce DAC, a learnable module that dynamically refines attention weights within the self-attention mechanism. Extensive evaluation confirms that DAC reduces hallucinations and enhances perception, highlighting attention calibration as a promising mitigation strategy.

Setting	Object-level		Attribute-level		Total \uparrow
	$exist.\uparrow$	$count\uparrow$	$pos.\uparrow$	$color\uparrow$	
Baseline	175.67	124.67	114.00	151.00	565.33
VCD	184.66	138.33	128.67	153.00	604.66
OPERA	180.67	133.33	123.33	155.00	592.33
SID	190.00	148.33	128.33	175.00	641.66
CCA	190.00	148.33	128.33	175.00	641.66
DAC	195.00	158.33	133.33	170.00	656.67

Table 4: MME hallucination subset (greedy decoding; OPERA uses beam search).

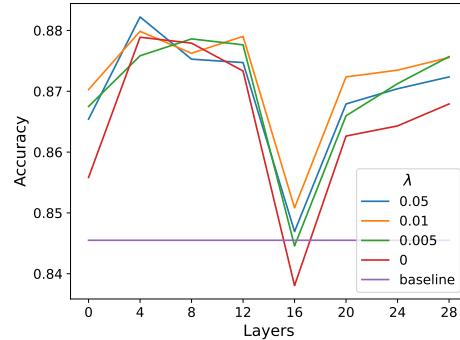


Figure 2: Performance of DAC under different settings of λ and N_{DAC} .

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
489 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
490 *arXiv preprint arXiv:2303.08774*, 2023.

491 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
492 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: A visual language
493 model for few-shot learning. *Advances in Neural Information Processing Systems*, 35:23716–
494 23736, 2022.

495 Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe,
496 Yonatan Bitton, Samir Gadre, Shiori Sagawa, et al. Openflamingo: An open-source framework for
497 training large autoregressive vision-language models. *arXiv preprint arXiv:2308.01390*, 2023.

498 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
499 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

500 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal,
501 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
502 few-shot learners. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 33,
503 pp. 1877–1901, 2020.

504 Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng Zhu, and Rui Zhao. Shikra: Unleashing
505 multimodal llm’s referential dialogue magic. *arXiv preprint arXiv:2306.15195*, 2023a.

506 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
507 contrastive learning of visual representations. In *International Conference on Machine Learning*,
508 pp. 1597–1607. PMLR, 2020.

509 Wei-Ge Chen, Irina Spiridonova, Jianwei Yang, Jianfeng Gao, and Chunyuan Li. Llava-interactive:
510 An all-in-one demo for image chat, segmentation, generation and editing. *arXiv preprint
arXiv:2311.00571*, 2023b.

511 Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng,
512 and Jingjing Liu. Uniter: Learning universal image-text representations. *arXiv preprint
arXiv:1909.11740*, 2019.

513 Wei-Lin Chiang, Zhuohan Li, and et al. Vicuna: An open-source chatbot impressing gpt-4 with 90%
514 chatgpt quality, 2023. See <https://vicuna.lmsys.org> (accessed 14 April 2023).

515 Chenhang Cui, Yiyang Zhou, Xinyu Yang, Shirley Wu, Linjun Zhang, James Zou, and Huaxiu Yao.
516 Holistic analysis of hallucination in gpt-4v (ision): Bias and interference challenges. *arXiv preprint
arXiv:2311.03287*, 2023.

517 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
518 Boyang Li, Pascale N. Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-
519 language models with instruction tuning. *Advances in Neural Information Processing Systems*, 36,
520 2024.

521 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
522 Bidirectional Transformers for Language Understanding. *arXiv preprint arXiv:1810.04805*, 2018.

523 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
524 Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation
525 benchmark for multimodal large language models, 2024. URL <https://arxiv.org/abs/2306.13394>.

526 Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. Chatgpt outperforms crowd-workers for
527 text-annotation tasks. *arXiv preprint arXiv:2303.15056*, 2023.

528 Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang
529 Chen, Furong Huang, Yaser Yacoob, et al. Hallusionbench: An advanced diagnostic suite for
530 entangled language hallucination & visual illusion in large vision-language models. *arXiv preprint
arXiv:2310.14566*, 2023.

540 Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin, Weiming
 541 Zhang, and Nenghai Yu. Opera: Alleviating hallucination in multi-modal large language models
 542 via over-trust penalty and retrospection-allocation. *arXiv preprint*, arXiv:2311.17911, 2023.

543

544 Fangzhou Huo, Wenjie Xu, Zhiqi Zhang, Hao Wang, Zhi Chen, and Peilin Zhao. Self-
 545 introspective decoding: Alleviating hallucinations for large vision-language models. *arXiv preprint*,
 546 arXiv:2408.02032, 2024.

547

548 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
 549 Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with
 550 noisy text supervision. In *International Conference on Machine Learning (ICML)*, pp. 4904–4916.
 551 PMLR, 2021.

552

553 Seongyun Lee, Sue Hyun Park, Yongrae Jo, and Minjoon Seo. Volcano: Mitigating multimodal
 554 hallucination through self-feedback guided revision. *arXiv preprint arXiv:2311.07362*, 2023.

555

556 Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong
 557 Bing. Mitigating object hallucinations in large vision-language models through visual contrastive
 558 decoding. *arXiv preprint*, arXiv:2311.16922, 2023.

559

560 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
 561 hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023a.

562

563 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
 564 hallucination in large vision-language models. *arXiv preprint*, arXiv:2305.10355, 2023b.

565

566 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 567 Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer
 568 Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014,
 569 Proceedings, Part V*, volume 8693 of *Lecture Notes in Computer Science*, pp. 740–755. Springer,
 570 2014.

571

572 Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang. Mitigating
 573 hallucination in large multi-modal models via robust instruction tuning. In *The Twelfth International
 574 Conference on Learning Representations*, 2024a.

575

576 Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen, Xutian Zhao, Ke Wang, Liping Hou,
 577 Rongjun Li, and Wei Peng. A survey on hallucination in large vision-language models. *arXiv
 578 preprint arXiv:2402.00253*, 2024b.

579

580 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 581 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024c. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.

582

583 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in
 584 Neural Information Processing Systems*, 36, 2024d.

585

586 Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic
 587 representations for vision-and-language tasks. In *Advances in Neural Information Processing
 588 Systems (NeurIPS)*, volume 32, 2019.

589

590 Jiahao Nie, Gongjie Zhang, Wenbin An, Yap-Peng Tan, Alex C. Kot, and Shijian Lu. Mmrel: A
 591 relation understanding dataset and benchmark in the mllm era. *arXiv preprint arXiv:2406.09121*,
 592 2024.

593

594 Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu
 595 Wei. Kosmos-2: Grounding multimodal large language models to the world. *arXiv preprint
 596 arXiv:2306.14824*, 2023.

597

598 J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood
 599 methods. In *Advances in Large Margin Classifiers*, pp. 61–74. MIT Press, 1999.

594 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 595 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 596 Learning transferable visual models from natural language supervision. In *Proceedings of the*
 597 *International Conference on Machine Learning*, pp. 8748–8763. PMLR, July 2021.

598

599 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 600 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
 601 transformer. *The Journal of Machine Learning Research*, 21(1):5485–5551, 2020.

602

603 Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object
 604 hallucination in image captioning. In *Proceedings of the 2018 Conference on Empirical Methods*
 605 *in Natural Language Processing (EMNLP)*, pp. 4035–4045, 2018.

606

607 Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi.
 608 A-okvqa: A benchmark for visual question answering using world knowledge. In *European*
 609 *Conference on Computer Vision*, pp. 146–162. Springer, 2022.

610

611 Yuzhang Shang, Mu Cai, et al. Llava-prumerge: Adaptive token reduction for efficient large
 612 multimodal models. *arXiv preprint arXiv:2403.15388*, 2024.

613

614 Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan,
 615 LiangYan Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with
 616 factually augmented rlhf. *arXiv preprint arXiv:2309.14525*, 2023.

617

618 Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder representations from trans-
 619 formers. *arXiv preprint arXiv:1908.07490*, 2019.

620

621 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 622 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.
 623 https://github.com/tatsu-lab/stanford_alpaca.

624

625 Hugo Touvron, Louis Martin, and et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv*
 626 *preprint arXiv:2307.09288*, 2023.

627

628 Xiyao Wang, Yuhang Zhou, Xiaoyu Liu, Hongjin Lu, Yuancheng Xu, Feihong He, Jaehong Yoon,
 629 Taixi Lu, Gedas Bertasius, Mohit Bansal, et al. Mementos: A comprehensive benchmark for multi-
 630 modal large language model reasoning over image sequences. *arXiv preprint arXiv:2401.10529*,
 631 2024.

632

633 Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin. Unsupervised feature learning via
 634 non-parametric instance discrimination. In *Proceedings of the IEEE Conference on Computer*
 635 *Vision and Pattern Recognition*, pp. 3733–3742, 2018.

636

637 Yuchao Xing, Yixin Li, Ivan Laptev, and Shijian Lu. Mitigating object hallucination via concentric
 638 causal attention. *arXiv preprint arXiv:2410.15926*, 2024.

639

640 Qiang Ye, Hao Xu, Jianfeng Ye, Ming Yan, Aobo Hu, Hao Liu, et al. Mplug-owl2: Revolutionizing
 641 multi-modal large language model with modality collaboration. In *Proceedings of the IEEE/CVF*
 642 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 13040–13051, 2024.

643

644 Shukang Yin, Chaoyou Fu, Sirui Zhao, Tong Xu, Hao Wang, Dianbo Sui, Yunhang Shen, Ke Li, Xing
 645 Sun, and Enhong Chen. Woodpecker: Hallucination correction for multimodal large language
 646 models. *arXiv preprint arXiv:2310.16045*, 2023.

647

648 Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du, Bowen Zhang, Zirui Wang, Liangliang Cao,
 649 Shih-Fu Chang, and Yinfei Yang. Ferret: Refer and ground anything anywhere at any granularity.
 650 *arXiv preprint arXiv:2310.07704*, 2023.

651

652 Q. Yu, J. Li, L. Wei, L. Pang, W. Ye, B. Qin, and Y. Zhuang. Hallucidocor: Mitigating hallucinatory
 653 toxicity in visual instruction data. In *Proceedings of the IEEE/CVF Conference on Computer*
 654 *Vision and Pattern Recognition*, pp. 12944–12953, 2024.

648 Shilong Zhang, Peize Sun, Shoufa Chen, Min Xiao, Wenqi Shao, Wenwei Zhang, Kai Chen, and
649 Ping Luo. Gpt4roi: Instruction tuning large language model on region-of-interest. *arXiv preprint*
650 *arXiv:2307.03601*, 2023a.

651 Yuechen Zhang, Shengju Qian, Bohao Peng, Shu Liu, and Jiaya Jia. Prompt highlighter: Interactive
652 control for multi-modal llms. *arXiv preprint arXiv:2312.04302*, 2023b.

653 Yiyang Zhou, Chenhang Cui, Jaehong Yoon, Linjun Zhang, Zhun Deng, Chelsea Finn, Mohit Bansal,
654 and Huaxiu Yao. Analyzing and mitigating object hallucination in large vision-language models.
655 In *The Twelfth International Conference on Learning Representations*, 2024.

656 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
657 hancing vision-language understanding with advanced large language models. *arXiv preprint*
658 *arXiv:2304.10592*, 2023.

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A THE USE OF LARGE LANGUAGE MODELS**
703704 In preparing this manuscript, we used a Large Language Model (LLM) as a writing tool to enhance
705 the clarity and presentation of the text. Its role was focused on linguistic improvements. In particular,
706 the LLM was applied to:
707708

- 709 • Refine sentences and paragraphs for improved readability and conciseness.
- 710 • Correct grammar, spelling, and punctuation.
- 711 • Strengthen the logical flow and transitions across sentences.

712 **B ADDITIONAL UAC RESULTS**
713714
715

Setting	POPE MSCOCO			CHAIR		MME \uparrow
	Rnd \uparrow	Pop \uparrow	Adv \uparrow	C _S \downarrow	C _i \downarrow	
Baseline	89.7	86.8	81.7	51.3	16.8	565.3
VCD	87.8	85.2	80.4	48.0	14.3	604.7
OPERA	90.0	86.9	81.8	45.2	12.7	592.3
SID	89.1	85.9	81.5	45.0	11.7	641.7
CCA	89.1	86.0	83.8	48.6	13.4	641.7
UAC	90.2	87.6	83.7	49.0	14.9	638.3
DAC	90.6	89.1	84.4	30.8	12.7	656.7

725 Table 6: Results on POPE MSCOCO, CHAIR, and MME hallucination subsets. “Rnd” “Pop” and
726 “Adv” represent the Random, Popular, and Adversarial settings, respectively. On POPE MSCOCO,
727 results are reported as F1 scores. The best performances within each settings are highlighted in **bold**.
728729 To address the SPB inherent in LVLMs, we propose a toy example method Uniform Attention
730 Calibration (UAC). UAC recalibrates biased attention by estimating SPB from a meaningless input.
731 We evaluate this method using LLaVA-1.5 on the POPE MSCOCO, CHAIR, and MME benchmarks,
732 following the same experimental setup as in our other comparisons. As summarized in tab:pope-wrap,
733 UAC achieves the best overall performance on POPE MSCOCO compared to current state-of-the-art
734 methods, surpassing other training-free approaches by a substantial margin. On the MME dataset,
735 UAC attains competitive results. However, on the open-ended generation benchmark CHAIR, UAC
736 falls short of the top performers. We attribute this to its reliance on a single meaningless image
737 bias for calibration, which, while effective for structured tasks, may degrade generation quality in
738 open-ended settings by limiting the model’s ability to adapt to diverse contextual variations.
739740 **C DAC ARCHITECTURE**
741742 Detailed Dynamic Attention Calibration(DAC) applied to each layer of vision token attention is
743 shown in Figure 3.
744745 **D DETAILED EXPERIMENTAL SETTINGS**
746747 Following the setup described in the main paper, we fix the contrastive-loss weight at $\lambda = 0.01$. The
748 learning rates are set to 3×10^{-6} for LLaVA-1.5, 4×10^{-5} for MPLUG-Owl2, and 8×10^{-7} for
749 LLaVA-Next. Implementation details for N_{DAC} on POPE are provided in Table 7, while those for
750 CHAIR, MME, and LLaVA-Bench are listed in Table 8.
751752 The application of DAC varies across models. For LLaVA-1.5 and LLaVA-NeXT, DAC is applied
753 to the last token before prediction. For mPLUG-Owl2, DAC is applied to all tokens except system
754 tokens, i.e., after the image starting position. For LLaVA-1.5 and LLaVA-NeXT, DAC consists of
755 two layers with a hidden dimension of 576, which matches both the input and output dimensions.
For mPLUG-Owl2, DAC is set to three layers with a hidden dimension of 576 to maintain a similar
capacity.
756

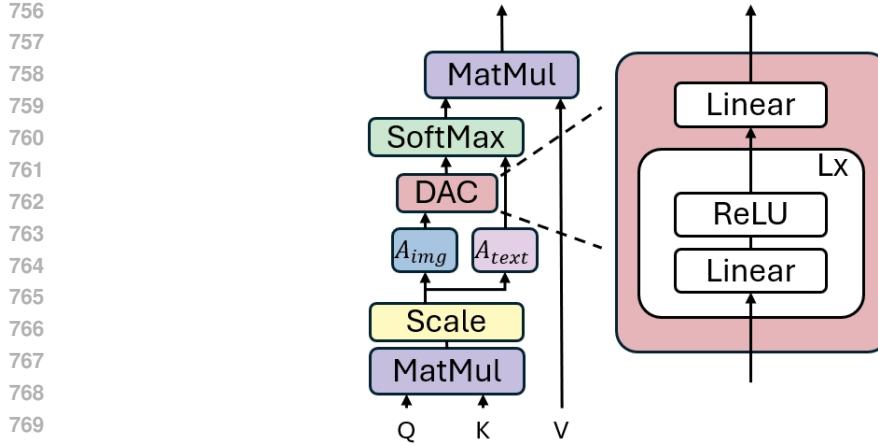


Figure 3: The Dynamic Attention Calibration (DAC) architecture consists of a small stack of linear transformations with ReLU activation, operating within the self-attention mechanism of transformer decoder layers to calibrate vision tokens attention.

Model	Parameters	POPE		
		Rnd	Pop	Adv
LLaVA-1.5	MSCOCO	20, 21	4, 5	4, 5
	AOKVQA	20, 21	4, 5	4, 5
MPLUG-Owl2	MSCOCO	12, 13	12, 13	12, 13
	AOKVQA	12, 13	12, 13	12, 13
LLaVA-NeXT	MSCOCO	16, 17	16, 17	16, 17
	AOKVQA	28, 29	28, 29	28, 29

Table 7: Optimal settings of DAC applied layers N_{DAC} on POPE evaluation. “Rnd”, “Pop” and “Adv” represent the Random, Popular, and Adversarial settings, respectively.

E DIFFERENT SAMPLING STRATEGIES

Table 9 presents an ablation study on various sampling strategies conducted on the POPE-Random dataset using LLaVA-1.5. In addition to the greedy decoding baseline discussed in the main paper, the study evaluates five alternative strategies: Top-P sampling ($p = 0.9$ and $p = 1$), Top-K sampling ($k = 50$), Top-K sampling with temperature scaling ($k = 50$, temperature = 0.7), and direct sampling (temperature = 1). The results show that applying DAC consistently reduces hallucination and enhances overall model performance across all decoding methods, underscoring the robustness and generalizability of DAC in mitigating hallucinations under diverse sampling conditions.

The augmentation process consists of the following steps:

- For each annotated object in V :
 - Crop the region defined by its bounding box.
 - Randomly resize the cropped object to a minimum size of $(H/14) \times (W/14)$ pixels (the typical size of an image patch) and a maximum size of $(H/2) \times (W/2)$, where H and W are the height and width of the original image V .
 - Replace the background of the cropped object with pure white, resulting in V_{crop}
- For each cropped object V_{crop} :
 - Generate a corresponding positive query T_{pos} that describes the cropped object and assign the label $Y_{pos} = \text{yes}$. Obtaining positive query-label pair: $(T_{pos}, V_{crop}, Y_{pos})$
 - Generate a ground-truth negative query T_{neg} , which refers to an object not present in the image, and assign the label $Y_{neg} = \text{no}$. Obtaining negative query-label pair: $(T_{neg}, V_{crop}, Y_{neg})$

Model	CHAIR	MME	LLaVA-Bench
LLaVA-1.5	5, 6	20, 21	20, 21

Table 8: Optimal settings of DAC applied layers N_{DAC} on CHAIR, MME, and LLaVA-Bench using LLaVA-1.5.

Setting	Baseline		VCD		DAC	
	Acc↑	F1↑	Acc↑	F1↑	Acc↑	F1↑
Top- $p = 0.9$	84.91	83.05	87.82	87.31	88.60	88.18
Top- $p = 1.0$	84.77	82.28	86.84	86.83	87.77	87.50
Top- $k = 50$	83.04	81.05	87.49	86.92	87.57	87.19
Top- k , $t=0.7$	85.17	83.38	85.13	85.94	89.47	89.23
Sample, $t=1$	83.29	81.33	87.73	87.16	88.17	87.86

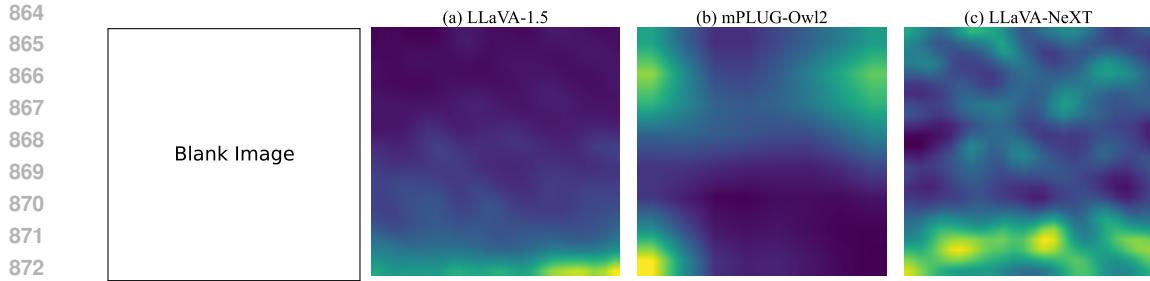
Table 9: Various sampling strategies conducted on the POPE-Random dataset using LLaVA-1.5.

- Each cropped image V_{crop} results in one positive query-label pair and one negative query-label pair, ensuring a balanced augmented set.

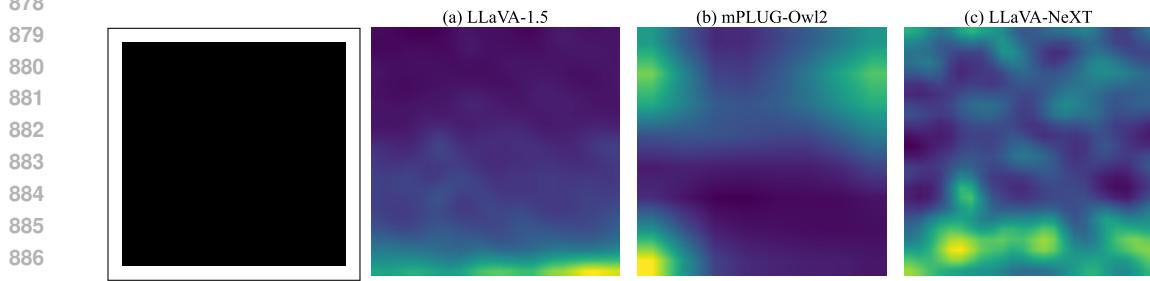
Let I represent the number of original images in the calibration set \mathcal{D}_{cal} , J represent the average number of annotated ground-truth objects per image V , and K represent the number of crops generated per object. The total size of the augmented dataset is: Total size of $\mathcal{D}_{aug} = I \cdot J \cdot K \cdot 2$

F SPB ON OTHER BLANK IMAGES

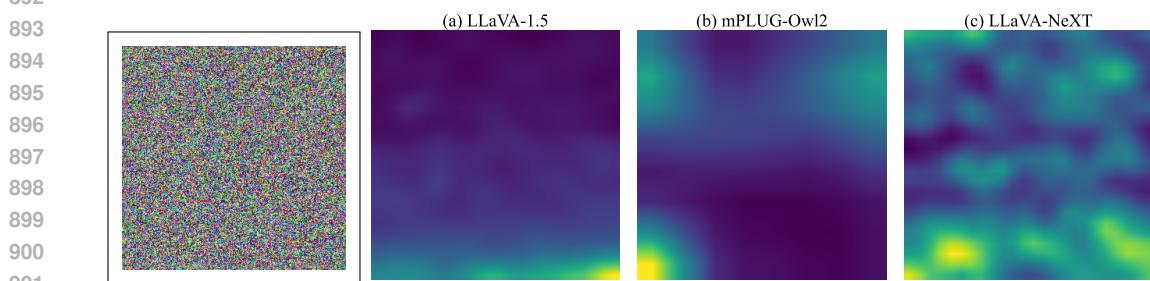
Additional case studies of SPB under different vision and prompt inputs using LLaVA-1.5 are presented in Figures 4–10.



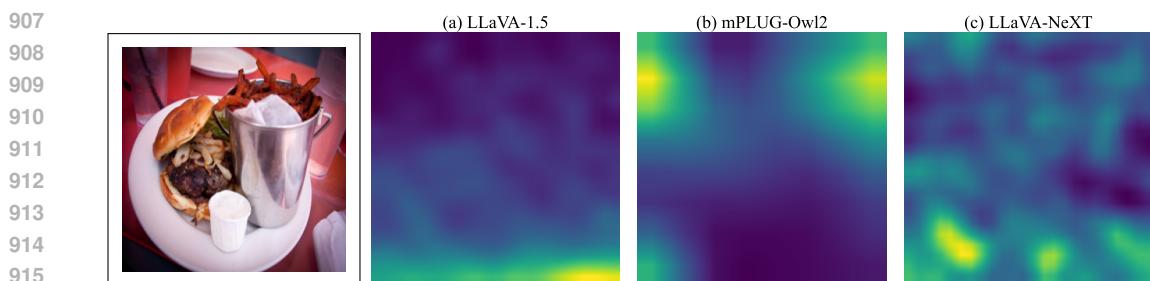
874 Figure 4: Vision tokens attention weights during the decoding process for different models on a blank
875 white image in response to the polling prompt: “Is there a bear in the image?”



888 Figure 5: Vision tokens attention weights during the decoding process for different models on a blank
889 black image in response to the polling prompt: “Is there a bear in the image?”

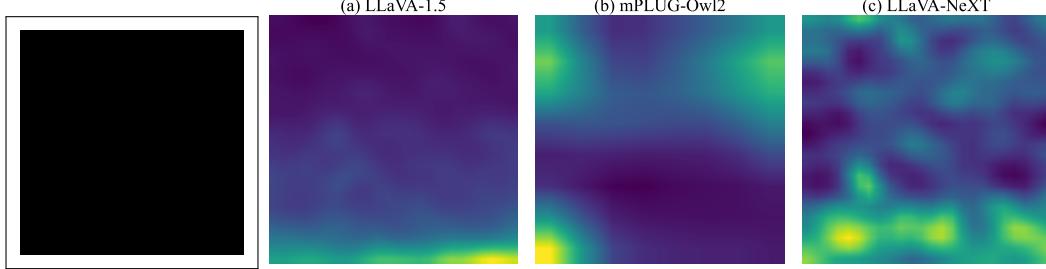


902 Figure 6: Vision tokens attention weights during the decoding process for different models on a blank
903 noise image in response to the polling prompt: “Is there a bear in the image?”



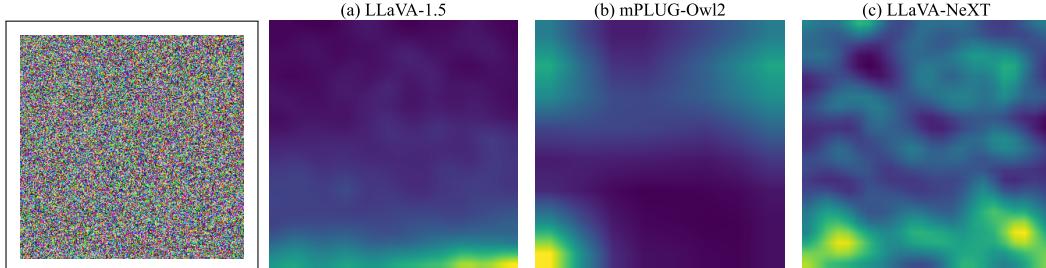
916 Figure 7: Vision tokens attention weights during the decoding process for different models on an
917 actual image in response to the polling prompt: “Is there a bear in the image?”

918
919
920
921
922
923
924
925
926
927



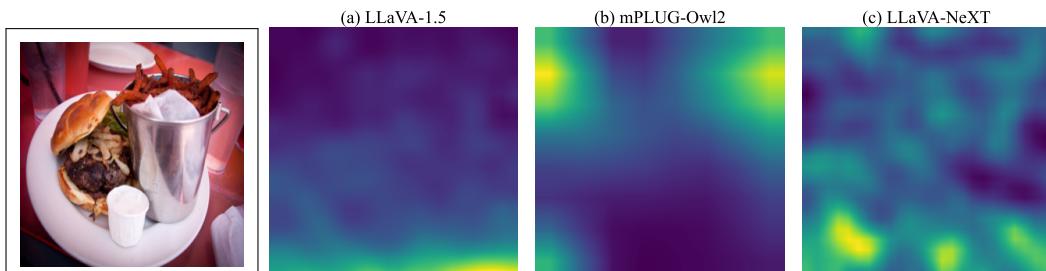
928 Figure 8: Vision tokens attention weights during the decoding process for different models on a blank
929 black image in response to the open-ended prompt: “Please describe this image in detail.”

930
931
932
933
934
935
936
937
938
939
940



941 Figure 9: Vision tokens attention weights during the decoding process for different models on a blank
942 noise image in response to the open-ended prompt: “Please describe this image in detail.”

943
944
945
946
947
948
949
950
951
952
953



954 Figure 10: Vision tokens attention weights during the decoding process for different models on an
955 actual image in response to the open-ended prompt: “Please describe this image in detail.”

956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971