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ABSTRACT

Large Vision-Language Models (LVLMs) exhibit impressive multimodal reasoning
capabilities but remain highly susceptible to object hallucination, where models
generate responses that are not factually aligned with the visual content. Recent
works attribute this issue to an inherent bias of LVLMs where vision token attention
map has spurious focus on certain positions, and propose to mitigate this issue by
reordering visual tokens. However, we find that different LVLMs exhibit different
correlations between attention and spatial position, which makes the existing static
solution difficult to generalize to other LVLMs. To begin with, we investigate
the attention bias introduced by image tokens through a toy experiment, in which
a blank image is fed into the model to capture its position-dependent bias. We
then remove this bias from the original attention map, which already leads to a
substantial reduction in hallucinations. This proof of concept validates the core
intuition behind attention calibration. Building upon this insight, we propose Dy-
namic Attention Calibration (DAC)—a lightweight, plug-and-play module that
leverages contrastive learning to dynamically enforce positional invariance. Un-
like static baselines, DAC adapts to different models and inputs in a robust and
learnable manner, offering a generalizable solution to mitigate attention-related
hallucinations in LVLMs. Comprehensive experiments across multiple benchmarks
demonstrate that DAC significantly reduces object hallucination while improving
general multimodal alignment. Our method achieves state-of-the-art performance
across diverse LVLM architectures on various metrics.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) Liu et al. (2024d); Bai et al. (2023); Dai et al. (2024); Zhu
et al. (2023); Ye et al. (2024) have garnered significant attention in the AI research community for
their remarkable ability to comprehend the visual world and engage in conversational interactions
with humans. Despite these advances, LVLMs continue to face critical challenges, particularly in the
form of object hallucination Li et al. (2023b); Rohrbach et al. (2018); Cui et al. (2023), a phenomenon
where models generate responses that are not factually aligned with the visual content. This issue
undermines the reliability of LVLMs, posing a significant barrier to their deployment in real-world
applications.

A variety of approaches have been proposed to mitigate object hallucination in LVLMs. One common
strategy involves post-hoc correction using revisor models Yin et al. (2023); Zhou et al. (2024); Lee
et al. (2023), which aim to reduce hallucinated responses by refining outputs. Another approach
improves supervised fine-tuning through diversified instruction tuning data Liu et al. (2024a); Yu et al.
(2024) or aligns model responses with human preferences Sun et al. (2023). Recently, several studies
have explored training-free methods for mitigating object hallucination by addressing issues in the
autoregressive decoding process of LVLMs Leng et al. (2023); Huo et al. (2024); Huang et al. (2023).

A recent study Xing et al. (2024) reveals that LVLMs’ perception varies with object positions due to
the inherent processing order in autoregressive models. As 2D vision tokens are concatenated with
text tokens and flattened into a raster-scan sequence (top-to-bottom, left-to-right), the model develops
a bias, prioritizing tokens in the bottom-right region closer to the instruction tokens (Figure 1a),
termed as Spatial Perception Bias (SPB). This spatial bias skews perception capabilities. To mitigate
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(a) LLaVA-1.5 (b) mPLUG-Owl2 (c) LLaVA-NeXT (d) Calibrated LLaVA-1.5

Figure 1: Spatial Position Bias influences how LVLMs perceive objects based on their position within
an image. The visualization above illustrates vision token attention weights from the final token
before output generation, during the decoding process for different models on a blank white image in
response to the open-ended prompt: “Please describe this image in detail.” (a) shows LLaVA-1.5,
which exhibits an increasing trend in attention distribution following a raster scan order, as identified
by Xing et al. (2024). (b-c) represent other models, displaying arbitrary attention distributions. (d)
depicts the calibrated vision token attention map of LLaVA-1.5 after Dynamic Attention Calibration.

this, Xing et al. (2024) propose a position alignment technique that reorders the perception sequence,
reducing spatial bias.

However, this approach has two major limitations. First, the method is based on the assumption
that the model assigns greater attention to tokens that are relatively nearby. As demonstrated in
Figure 1(a-c), our analysis reveals that the attention distributions of vision tokens vary significantly
across different LVLM models and unexpectedly high attentions are assigned to arbitrary locations.
This observation challenges the generalization of the heuristic reordering strategy proposed by Xing
et al. (2024), highlighting the need for a more dynamic and adaptable solution. Second, the proposed
technique requires retraining the entire network, which is computationally expensive and often
impractical for large-scale LVLMs, underscoring the necessity of developing a lightweight alternative.

Building on this analysis, we propose to mitigate object hallucination by calibrating the SPB in
attention maps. As a proof of concept, Uniform Attention Calibration (UAC) subtracts a static
bias extracted from the attention map of a blank image input and confirms that reducing SPB
lowers hallucination. Motivated by this evidence, we further relax the assumption in UAC and
introduce Dynamic Attention Calibration (DAC) to fine-tune LVLMs for better generalization.
Specifically, DAC consists of a learnable plug-and-play module integrated into the self-attention
mechanism. With a simple yet effective data augmentation technique, the module is then fine-tuned
via contrastive learning to encourage consistent outputs with different object positions in the image,
which dynamically adjusts vision token attention map to tackle object hallucination.

Comprehensive experiments confirm the effectiveness of DAC, revealing substantial improvements
across multiple object hallucination benchmarks for a range of LVLMs, including LLaVA-1.5 Liu
et al. (2024d), mPLUG-Owl2 Ye et al. (2024), and LLaVA-NeXT Liu et al. (2024c). Additionally,
our approach strength- ens the overall perception capabilities of LVLMs, as demonstrated by strong
performance on MME Fu et al. (2024) and LLaVA-Bench Liu et al. (2024d). In summary, our main
contributions are as follows:

1. We systematically investigate Spatial Perception Bias (SPB) in the attention mechanism
of various LVLMs, revealing its strong correlation with object hallucination and its unpre-
dictable nature across different models.

2. We propose Dynamic Attention Calibration (DAC), a lightweight, learnable, and plug-and-
play module that dynamically adjusts vision token attention to robustly mitigate SPB.

3. Extensive experiments confirm that DAC significantly reduces object hallucination and
enhances overall perception, achieving notable improvements across multiple LVLMs and
benchmarks.
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2 RELATED WORK

2.1 VISUAL-LANGUAGE MODELS

Large Vision-Language Models (LVLMs) have evolved from early BERT-based architectures Devlin
et al. (2018); Lu et al. (2019); Chen et al. (2019) to models that integrate Large Language Models
(LLMs) Bai et al. (2023); Brown et al. (2020); Gilardi et al. (2023); Raffel et al. (2020); Taori et al.
(2023). Early vision-language models, such as ViLBERT Lu et al. (2019) and LXMERT Tan & Bansal
(2019), fused visual and textual features through transformer-based architectures. The introduction
of LLMs enabled contrastive learning approaches like CLIP Radford et al. (2021) and ALIGN Jia
et al. (2021), improving multimodal adaptability. Recent LVLMs, such as LLaVA Liu et al. (2024d)
and InstructBLIP Dai et al. (2024), leverage visual instruction tuning for improved context-aware
generation. Advances have further enabled referential dialogues Chen et al. (2023a); You et al.
(2023); Zhang et al. (2023a), interleaved image-text processing Alayrac et al. (2022); Awadalla et al.
(2023), and visual prompts Peng et al. (2023); Zhang et al. (2023b); Chen et al. (2023b), broadening
LVLM applications in interactive AI systems. These developments highlight a growing shift toward
task-specific fine-tuning and multimodal interaction.

2.2 HALLUCINATION IN VLMS

Object hallucination arises when Large Vision-Language Models (LVLMs) generate textual descrip-
tions containing objects or attributes not present in the accompanying image Cui et al. (2023); Liu
et al. (2024b); Guan et al. (2023); Li et al. (2023a); Wang et al. (2024); Nie et al. (2024). This
phenomenon is frequently observed in tasks such as image captioning and visual question answering,
where maintaining an accurate alignment between visual and textual content is critical. A range
of methods has been proposed to address hallucination, from post-hoc correction using external or
self-correcting models Yin et al. (2023); Zhou et al. (2024); Lee et al. (2023) to enhanced instruction
tuning that diversifies training data or aligns outputs with human feedback Liu et al. (2024a); Yu et al.
(2024); Sun et al. (2023). Recently, training-free approaches that rely on model-based distribution
comparisons were proposed Leng et al. (2023); Huo et al. (2024); Huang et al. (2023). As LVLMs
grow more sophisticated and versatile, understanding and mitigating object hallucination remains a
key focus in multimodal learning research. From a unique perspective, our design is rooted in the
correlation between vision token attention and object hallucination.

3 PRELIMINARY

In this section, we provide a brief overview of the widely adopted LVLMs architecture and explain
how vision tokens are involved in the self attention module. Additionally, we review the how
LVLMs exhibit spatial perception bias problem, highlighting systematic biases that affect LVLM
hallucination.

3.1 LVLMS: GENERATION AND ATTENTION MECHANISM

Vision and Language Inputs LVLMs process both image v and text t inputs. Raw images
are divided into patches and encoded by a visual encoder, followed by a cross-modal projection
module that maps visual features into the token space. This yields a sequence of vision tokens
v = {vi | i = 1, 2, . . . , n}, where n is the number of vision tokens. Text inputs are tokenized and
embedded into text tokens t = {tj | j = 1, 2, . . . ,m}, where m is the number of text tokens. The
vision and text tokens are then concatenated into a unified input sequence x = {v, t}1, ensuring a
shared multimodal representation space, with vi, tj ∈ Rd, where d denotes the feature dimensionality.

Language Model Generation LVLMs are typically built on pre-trained LLMs such as Vicuna
Chiang et al. (2023) or LLaMA Touvron et al. (2023), parameterized by θ. The model takes a input x
and predicts the next token probability p(yi) at time step i in an autoregressive manner:

p(yi | x, y<i) = softmax(logitθ(yi | x, y<i)) (1)
1We omit the system tokens for simplicity.
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Self-Attention Mechanism The self-attention mechanism computes token relevance by projecting
the output of previous layer into query Q, key K, and value V with linear transformations WQ, WK ,
WV . The self attention output is computed as

SA(Q,K, V ) = softmax(A+M) · V, A =
Q ·KT

√
dl

, (2)

where A ∈ RB×H×(n+m)×(n+m) denotes attention weight matrix, B and H represent the batch size,
and number of attention heads, respectively. M denotes the causal mask, and dl is the dimensionality
of Q, K, and V . We denote Ai as the attention matrix after i-th layer of LVLM, In this paper, we
denote vision token attention Aimg ∈ RB×H×n as the slice of the attention weights corresponding to
the query from the last input token (the token immediately preceding the generated output) and the
keys of all vision tokens v.

3.2 SPATIAL PERCEPTION BIAS

When given a blank white image and the open-ended prompt “Please describe this image in detail”,
LVLMs are expected to distribute attention uniformly across the entire image. However, as shown in
Figure 1a, the self-attention module assigns varying levels of attention to different spatial regions. For
instance, LLaVA-1.5 places greater attention on later visual tokens, particularly near the bottom-right.
This systematic attention bias reflects position-dependent sensitivity to visual features. We define this
phenomenon as Spatial Perception Bias(SPB)—a systematic error in the self-attention module that
skews attention weights toward specific spatial regions, leading to perception inconsistencies.

Xing et al. (2024) were the first to identify a similar issue, attributing it to the long-term decay effect
of position encoding. Specifically, LVLMs tend to assign lower attention to tokens corresponding
to the top-left region of an image compared to those in the bottom-right region. This asymmetric
attention makes LVLMs more susceptible to object hallucination in the top-left region, where visual
grounding is weaker. To mitigate this, they proposed reordering the visual token sequence to achieve
a more balanced attention distribution. However, when comparing Figure 1(a–c), we find that SPB
varies significantly across models and can result in unexpectedly high attention to arbitrary locations.
Consequently, a predefined token reordering strategy cannot generalize well to LVLMs beyond
LLaVA-1.5.

4 METHOD

4.1 UNIFORM ATTENTION CALIBRATION

To understand the core issue of spatial position bias, we can consider a simplified scenario. We
hypothesize that an ideal model, when presented with a meaningless image (e.g., a blank white
image), should distribute its attention uniformly across all visual tokens. Any deviation from this
uniformity can be interpreted as a form of inherent model bias.

This leads to a straightforward calibration strategy we term Uniform Attention Calibration (UAC).
The core idea is to first measure the model’s vision token attention, Ãimg, on a meaningless input (we
use a blank white image by default). From this, we compute a static calibration matrix, W, designed
to counteract the observed bias:

W =
avg(Ãimg)

Ãimg
(3)

where avg(·) denotes the average value over all elements of the matrix. During inference, this
pre-computed matrix is applied as an affine transformation to the attention map of any given input
image, Aimg, via an element-wise product:

A′
img = W ◦Aimg (4)

By default, UAC is applied to a single self-attention layer in the decoder.

Despite its simplicity, this approach serves as a valuable proof of concept. As shown in Table 1, we
observe that attention calibration effectively alleviates hallucination by mitigating SPB, particularly
in the adversarial setting. This result supports our hypothesis that attention calibration is a promising
direction. More results are provided in the Appendix.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Method Rnd↑ Pop↑ Adv↑
Baseline 89.4 86.8 81.7
VCD 87.8 85.2 80.4
OPERA 90.0 86.9 81.8
SID 89.1 85.9 81.5
CCA 89.1 86.0 83.8
UAC 90.2 88.9 84.4

Table 1: POPE F1 scores on MSCOCO for
LLaVA-1.5. “Rnd”, “Pop” and “Adv” denote Ran-
dom, Popular and Adversarial settings.

However, the fundamental limitation of UAC remains
its static, “one-size-fits-all” nature. Relying on a
single bias profile is unlikely to work for diverse,
content-rich inputs. Furthermore, such brute-force ad-
justments to the attention mechanism risk degrading
the LVLM’s general performance on other tasks. This
motivates the need for a more robust and adaptive
solutions.

4.2 DYNAMIC ATTENTION CALIBRATION

To this end, we introduce Dynamic Attention Calibration (DAC). Instead of relying on a static
calibration, DAC is a trainable, plug-and-play module designed to learn input-specific attention
adjustments. It moves beyond a predefined rule by utilizing a contrastive learning framework Wu et al.
(2018); Chen et al. (2020) to ensure the model produces consistent outputs regardless of an object’s
spatial position, thereby learning to mitigate SPB in a more effective and generalizable manner.

DAC Design Motivated by the superior calibration performance of affine transformation in the
field of uncertainty calibration Platt (1999), we introduce a lightweight trainable transformation f
to calibrate unreliable vision token attention weights before SoftMax function as A′

img = f(Aimg),

where A′
img denotes the calibrated vision token attention weights. Specifically, the transformation

f operates within the self-attention mechanism of the transformer decoder layers and consists of a
small stack of linear transformations with ReLU activations. The details about building blocks can be
found in the Appendix. The forward pass of DAC module can be defined as

A′
img = f(Aimg) = gL−1WL + bL,

gi = ReLU(gi−1Wi + bi), for i ∈ {1, . . . , N − 1},
(5)

where L denotes the layer number in DAC module, Wi ∈ RDi×Di denotes the weight matrix of
layer i, bi ∈ RDi denotes the bias vector, gi represents the output of the i-th layer, and g0 = Aimg.
The DAC module can be applied to any layer of the language model decoder, targeting the layers
responsible for vision tokens processing.

DAC Optimization With the DAC module in Eq. 5, a much stronger constraint can be imposed on
vison token attention weights of LVLMs to alleviate the bias. Instead of the uniform constraint in
UAC, we further propose to force the consistent outputs wherever the object locates in the image. The
key idea is to ensure that the model maintains the same capability of identifying an object regardless
of its position within the image. However, to impose such a constraint, it could be challenging to
obtain sufficient training data variants with different object positions. Thus, we introduce a simple
yet effective data augmentation technique inspired by the concept of instant discrimination Wu et al.
(2018); Chen et al. (2020).

Formally, we randomly select 100 images from MSCOCO as our validation set, denoted as Dval. Each
image V ∈ Dval is paired with ground-truth annotations and their corresponding bounding boxes.
The validation set Dval undergoes an augmentation process to produce the augmented calibration
dataset Dcal. Specifically, we crop the ground truth objects from the images using the annotations
and bounding boxes provided, then apply random resizing and paste the cropped objects onto a pure
white background as Vcrop. For each Vcrop, we generate balanced positive and negative query-label
pairs, ensuring a well-balanced dataset. Additionally, we include annotations for the cropped images
Vcrop to be utilized in instance discrimination tasks, as discussed later in the paper. The detailed
augmentation process is summarized in the Appendix.

With sufficient augmented data from Dcal, we propose leveraging contrastive learning to encourage
LVLMs to focus on objects themselves rather than their absolute positions in the image. This approach
ensures consistent outputs regardless of object position. By reducing reliance on positional cues, the
model learns to robustly identify objects despite spatial transformations. Specifically, contrastive
learning is formulated to increase the similarity between embeddings of the same object at different
spatial locations while pushing apart the embeddings of different objects. We begin with an Dcal
dataset and randomly sample a minibatch of B examples. Each example then undergoes an additional
augmentation process, resulting in a total of 2B augmented data points. Following the approach of
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Algorithm 1 DAC’s Main Learning Algorithm

Input: Batch size B, constant τ , frozen backbone networks f(·) and projection head g(·), aug-
mentation distribution T , augmented set Daug = {(Taug, Vcrop, Yaug)}
for sampled minibatch {(tk, vk, yk)}Bk=1 ∈ Daug do

for all k ∈ {1, . . . , B} do
Draw one augmentation function t ∼ T
ṽ2k−1 = vk; z2k−1 = f(ṽ2k−1); ỹ2k−1 = g(z2k−1); y2k−1 = yk
ṽ2k = t(vk); z2k = f(ṽ2k); ỹ2k = g(z2k); y2k = yk

end for
for all i ∈ {1, . . . , 2B} and j ∈ {1, . . . , 2B} do
si,j = z⊤i zj/(∥zi∥∥zj∥) # Pairwise similarity

end for
Compute the losses using: L = LCE + λ · LCL
Update DAC parameters to minimize L

end for
Return: Fine-tuned DAC

Wu et al. (2018), for each positive pair, we consider the remaining 2(B − 1) augmented examples
within the minibatch as negative examples. Given the embeddings zi and zj of the positive augmented
pair ṽi and ṽj , the contrastive loss can be expressed as:

ℓCL(i, j) = − log
exp (sim(zi, zj)/τ)∑2B

k=1 1[k ̸= i] exp (sim(zi, zk)/τ)
, (6)

where B denotes the number of examples in a minibatch, sim(·, ·) represents the cosine similarity,
1[k ̸=i] is an indicator function, and τ is the temperature parameter. Combined with a cross-entropy
(CE) loss, the final loss function is formulated as

L = LCE(F (Tcrop, Vcrop), Ycrop) + λLCL, (7)

where F represents the model, Tcrop and Vcrop are the query and cropped image, Ycrop is the corre-
sponding label, and λ is a hyperparameter balancing the two losses. We optimize our DAC using
Eq. 7 alongside instruction tuning, while keeping all other components frozen. The overall training
process is summarized in Algorithm 1.

5 EXPERIMENT

5.1 SETUP

Models and Baselines We implement three representative LVLMs for evaluation: LLaVA-1.5
Shang et al. (2024), mPLUG-Owl2 Ye et al. (2024), and LLaVA-NeXT Liu et al. (2024c) at the 7B
scale. Our methods are compared against five methods. Baseline responses are generated using the
original LVLMs, while other techniques such as Visual Contrastive Decoding (VCD) Leng et al.
(2023), OPERA Huang et al. (2023), Self-Introspective Decoding (SID) Huo et al. (2024), and
Concentric Causal Attention (CCA) Xing et al. (2024) are included for comparative analysis. We
adopt the default settings for OPERA, VCD, and SID. For CCA, we directly use the provided weights.
For each compared method, except OPERA, which uses beam search (beam size 5), we use greedy
decoding for polling-based tasks (POPE and MME), and nucleus sampling (p = 1) for open-ended
generation tasks (CHAIR and LLaVA-Bench).

Experiment Settings Unless otherwise specified, we integrate the DAC module into two consecu-
tive layers of the language model decoder. For all tasks, we use a fixed validation set Dval, composed
of 100 randomly selected MSCOCO images disjoint from any test set. For each image, we select up
to three ground truth objects; if an image contains fewer than three objects, all available objects are
included. Using these ground truth objects, we generate 10 cropped images per object, resulting in a
dataset of approximately 5.4K (T, V, Y ) pairs. By default, the contrastive loss strength λ is set to
0.01. To configure the DAC layer, we define 2–4 candidate layer buckets and select the setting when
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validation on Dval is applicable; otherwise, we adopt the same setting as used in the POPE MSCOCO
Random.

For LLaVA-1.5, we fine-tune the DAC module on the Dcal dataset using a learning rate of 3× 10−6,
a batch size of 8, and gradient accumulation steps of 4. The training takes approximately 40 minutes
on two NVIDIA RTX 4090 GPUs. We apply attention calibration to the vision token attention Aimg,
computed with the last input token as the query. Additional experimental details can be found in the
Appendix.

5.2 EVALUATION RESULTS

POPE Polling-based Object Probing Evaluation (POPE) Li et al. (2023b) is a method designed to
assess object hallucination in LVLMs. It evaluates model performance by querying the presence of
specific objects in images using yes-or-no questions. POPE employs three strategies for sampling
negative objects: Random, Popular, and Adversarial (refer to Li et al. (2023b) for details). Our
evaluation utilizes two datasets: MSCOCO Lin et al. (2014) and A-OKVQA Schwenk et al. (2022).
For each evaluation setup, every subset includes 3,000 questions across 500 images, resulting in a
total of 18,000 yes-or-no questions. The evaluation pivots on two key metrics: Accuracy and the F1
score. DAC achieves the highest accuracy and F1 scores across most datasets and sampling setups,
as shown in Table 2. Specifically, DAC delivers an average improvement of 1.01% in accuracy and
0.74% in F1 score for Random sampling, 2.19% in accuracy and 1.49% in F1 score for Popular
sampling, and 2.41% in accuracy and 1.13% in F1 score for Adversarial sampling, compared to the
next best existing approach. Notably, DAC achieves the largest accuracy gain in the more challenging
Adversarial setting by effectively suppressing spurious visual cues that are unrelated to the target
object.

CHAIR The Caption Hallucination Assessment with Image Relevance (CHAIR) metric Rohrbach
et al. (2018) is specifically designed to assess object hallucinations in image captioning tasks. CHAIR
quantifies the degree of hallucinations in a generated image caption by calculating the proportion of
objects mentioned in the caption that are not present in the ground truth label pool. Two common
variants of CHAIR are defined: CS and CI , which measure hallucination at the instance and sentence
levels, respectively. These metrics are formulated as follows:

CS = |hallucinated objects|
|all mentioned objects| , CI = |captions with hallucinated objects|

|all captions|

Lower values of CS and CI indicate better performances. Following Huang et al. (2023); Huo
et al. (2024), we randomly select 500 images from MSCOCO validation set and query LVLMs
using the prompt: “Please describe this image in detail.” To ensure a fair evaluation, we limit the
maximum number of new tokens to 512 when generating descriptions. As shown in Table 3, our
method demonstrates effective improvements. Notably, on CS , DAC achieves a significant 38.14%
improvement across models compared to the next best approach. The superior performance of our
method on CHAIR metrics highlights its effectiveness in mitigating hallucinations in open-ended
generation settings.

MME The MME benchmark Fu et al. (2024) provides a comprehensive framework for evaluating
LVLMs across multiple dimensions. It includes ten perception-related subtasks and four cognition-
focused tasks. Following Leng et al. (2023); Yin et al. (2023), we evaluate four perception subtasks
that assess object-level and attribute-level hallucinations, specifically measuring object existence,
count, position, and color. Table 4 presents the performance of our method, DAC, on the MME hallu-
cination subset using LLaVA-1.5. DAC achieves a notable improvement of 16.16% over the baseline
and 2.34% over the current state-of-the-art hallucination mitigation approaches, demonstrating its
effectiveness in enhancing the general perception capabilities of LVLMs.

GPT4V-Aided Evaluation We evaluate our approach on LLaVA-Bench Liu et al. (2024d), a
benchmark comprising 30 images paired with a total of 90 questions. LLaVA-Bench is designed
to assess the ability of models to generate coherent and contextually accurate responses for vision-
language tasks. It categorizes questions into three types: conversation, detailed description, and
complex reasoning. Following prior works Liu et al. (2024d); Huang et al. (2023), we prompt these
models to generate responses and use the text-only GPT-4 Achiam et al. (2023) as the judge to rate
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Dataset MSCOCO A-OKVQA
Model Setting Method Accuracy↑ F1 Score↑ Accuracy↑ F1 Score↑

LLaVA-1.5

Random

Baseline 89.63 89.74 87.30 88.49
VCD 87.53 87.81 85.00 86.49
OPERA 89.87 89.95 87.27 88.50
SID 89.43 89.08 87.30 88.00
CCA 89.77 89.05 90.00 90.11
DAC 90.83 90.60 89.70 90.33

Popular

Baseline 86.23 86.82 80.30 83.2
VCD 84.43 85.20 77.50 81.07
OPERA 86.30 86.88 80.47 83.38
SID 85.93 85.94 82.00 83.80
CCA 89.77 89.05 85.45 85.01
DAC 89.50 89.10 83.96 85.52

Adversarial

Baseline 79.70 81.71 69.33 76.10
VCD 78.13 80.38 67.90 75.01
OPERA 79.77 81.77 69.20 76.09
SID 80.43 81.47 72.93 77.48
CCA 83.97 83.82 74.77 78.32
DAC 84.12 84.42 75.42 79.21

mPLUG-Owl2

Random

Baseline 86.27 86.88 81.57 83.89
VCD 84.40 84.79 82.53 84.16
OPERA 86.23 86.84 81.53 83.86
SID 86.30 86.86 83.53 85.28
DAC 87.71 87.57 86.56 87.24

Popular

Baseline 80.73 82.52 75.97 79.98
VCD 81.00 81.12 75.70 79.21
OPERA 80.70 82.48 75.93 79.94
SID 81.27 82.82 77.47 80.89
DAC 87.57 84.96 82.83 83.47

Adversarial

Baseline 76.17 77.69 67.37 74.63
VCD 77.10 77.00 68.80 74.85
OPERA 76.87 78.01 67.30 74.58
SID 77.27 79.89 68.93 75.43
DAC 82.58 82.32 75.88 77.78

LLaVA-NeXT

Random

Baseline 91.27 90.76 91.80 92.07
VCD 91.30 90.80 91.80 92.07
OPERA 91.36 90.80 91.77 92.03
SID 91.20 90.73 91.73 92.01
DAC 91.63 91.32 92.37 92.47

Popular

Baseline 88.60 88.27 87.17 88.13
VCD 88.63 88.31 87.20 88.15
OPERA 88.65 88.60 87.20 88.15
SID 88.60 88.30 86.87 87.88
DAC 89.27 89.14 89.13 89.62

Adversarial

Baseline 85.50 85.54 77.47 80.87
VCD 85.53 85.58 77.53 80.90
OPERA 85.10 85.75 77.21 80.62
SID 85.87 85.89 77.33 80.77
DAC 86.00 85.71 78.80 81.56

Table 2: POPE results. All results use greedy decoding, except OPERA (beam search), and are either
reported from prior work or re-implemented using official code. Best performance in each setting is
shown in bold.

these responses. The results on LLaVA-1.5 are presented in Table 5. Our method demonstrates strong
performance across all question type. These results highlight the effectiveness of our approach at
preserving language understanding and generation capabilities while significantly mitigating object
hallucination.
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Setting LLaVA-1.5 LLaVA-NeXT
CS↓ CI↓ CS↓ CI↓

Baseline 51.3 16.8 42.6 14.1
VCD 48.0 14.3 41.3 12.9
OPERA 45.2 12.7 39.4 11.8
SID 45.0 11.7 38.4 11.4
CCA 48.6 13.4 – –
DAC 30.6 12.3 21.4 10.2

Table 3: CHAIR on 500 MSCOCO images
(max seq len 512). All results use nucleus sam-
pling (p=1), except OPERA (beam search).

Setting Object-level Attribute-level Total↑
exist.↑ count↑ pos.↑ color↑

Baseline 175.67 124.67 114.00 151.00 565.33
VCD 184.66 138.33 128.67 153.00 604.66
OPERA 180.67 133.33 123.33 155.00 592.33
SID 190.00 148.33 128.33 175.00 641.66
CCA 190.00 148.33 128.33 175.00 641.66
DAC 195.00 158.33 133.33 170.00 656.67

Table 4: MME hallucination subset (greedy de-
coding; OPERA uses beam search).

Method Complex↑ Details↑ Conv↑ Average↑
Baseline 66.3 46.7 68.7 60.6
VCD 69.6 51.6 57.3 61.6
OPERA 66.4 56.9 44.0 61.3
SID 66.7 51.3 66.3 60.4
CCA 66.1 53.9 69.4 64.3
DAC 70.3 50.0 72.7 64.3

Table 5: LLaVA-Bench results. The results
are re-implemented using the official code and
evaluated with the latest available text-only
GPT-4 API. Scores are normalized by the total
possible score. The best performances within
each setting are highlighted in bold.
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Figure 2: Performance of DAC under different set-
tings of λ and NDAC.

5.3 ABLATION STUDY

Hyperparameter We analyzed two key hyperparameters: the contrastive loss strength λ and the
decoder layers NDAC to which DAC is applied. As shown in Figure 2, DAC consistently outperforms
the baseline across most settings.

The contrastive learning component is critical for achieving performance gains. Our ablation study
clearly demonstrates this: when the component is removed entirely by setting λ = 0, the model is
fine-tuned only on the CE loss and yields the lowest performance among all tested settings. While
excessively high values can degrade generative capabilities, performance is stable across a range of
settings near the optimum. Our experiments indicate that λ = 0.01 achieves the best performance,
with negligible differences for nearby values. For consistency, we adopt λ = 0.01 for all experiments.

Our method offers flexibility in choosing the decoder layers for applying the contrastive loss. Our
results show that there is a wide range of effective choices. In practice, we follow a standard procedure:
we identify 2–4 candidate pairs of consecutive decoder layers (e.g., layers 4–5 or 20–21) as brackets
and select the best setting based on validation performance on Dval, if applicable.

6 CONCLUSION AND LIMITATION

This paper investigates object hallucination in LVLMs and identifies SPB as a key contributor,
characterized by an imbalance in vision token attention that causes unequal focus across spatial
regions and varies across models. This bias distorts object perception, amplifies sensitivity to
misleading visual cues, and increases the risk of hallucination, compromising reliability in real-
world settings. A straightforward UAC experiment confirms that mitigating SPB effectively reduces
hallucination. Building on this, we introduce DAC, a learnable module that dynamically refines
attention weights within the self-attention mechanism. Extensive evaluation confirms that DAC
reduces hallucinations and enhances perception, highlighting attention calibration as a promising
mitigation strategy.
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A THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we used a Large Language Model (LLM) as a writing tool to enhance
the clarity and presentation of the text. Its role was focused on linguistic improvements. In particular,
the LLM was applied to:

• Refine sentences and paragraphs for improved readability and conciseness.
• Correct grammar, spelling, and punctuation.
• Strengthen the logical flow and transitions across sentences.

B ADDITIONAL UAC RESULTS

Setting POPE MSCOCO CHAIR MME↑
Rnd↑ Pop↑ Adv↑ CS↓ Ci↓

Baseline 89.7 86.8 81.7 51.3 16.8 565.3
VCD 87.8 85.2 80.4 48.0 14.3 604.7
OPERA 90.0 86.9 81.8 45.2 12.7 592.3
SID 89.1 85.9 81.5 45.0 11.7 641.7
CCA 89.1 86.0 83.8 48.6 13.4 641.7
UAC 90.2 87.6 83.7 49.0 14.9 638.3
DAC 90.6 89.1 84.4 30.8 12.7 656.7

Table 6: Results on POPE MSCOCO, CHAIR, and MME hallucination subsets. “Rnd” “Pop” and
“Adv” represent the Random, Popular, and Adversarial settings, respectively. On POPE MSCOCO,
results are reported as F1 scores. The best performances within each settings are highlighted in bold.

To address the SPB inherent in LVLMs, we propose a toy example method Uniform Attention
Calibration (UAC). UAC recalibrates biased attention by estimating SPB from a meaningless input.
We evaluate this method using LLaVA-1.5 on the POPE MSCOCO, CHAIR, and MME benchmarks,
following the same experimental setup as in our other comparisons. As summarized in tab:pope-wrap,
UAC achieves the best overall performance on POPE MSCOCO compared to current state-of-the-art
methods, surpassing other training-free approaches by a substantial margin. On the MME dataset,
UAC attains competitive results. However, on the open-ended generation benchmark CHAIR, UAC
falls short of the top performers. We attribute this to its reliance on a single meaningless image
bias for calibration, which, while effective for structured tasks, may degrade generation quality in
open-ended settings by limiting the model’s ability to adapt to diverse contextual variations.

C DAC ARCHITECTURE

Detailed Dynamic Attention Calibration(DAC) applied to each layer of vision token attention is
shown in Figure 3.

D DETAILED EXPERIMENTAL SETTINGS

Following the setup described in the main paper, we fix the contrastive–loss weight at λ = 0.01. The
learning rates are set to 3× 10−6 for LLaVA–1.5, 4× 10−5 for MPLUG–Owl2, and 8× 10−7 for
LLaVA–Next. Implementation details for NDAC on POPE are provided in Table 7, while those for
CHAIR, MME, and LLaVA-Bench are listed in Table 8.

The application of DAC varies across models. For LLaVA-1.5 and LLaVA-NeXT, DAC is applied
to the last token before prediction. For mPLUG-Owl2, DAC is applied to all tokens except system
tokens, i.e., after the image starting position. For LLaVA-1.5 and LLaVA-NeXT, DAC consists of
two layers with a hidden dimension of 576, which matches both the input and output dimensions.
For mPLUG-Owl2, DAC is set to three layers with a hidden dimension of 576 to maintain a similar
capacity.
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Figure 3: The Dynamic Attention Calibration (DAC) architecture consists of a small stack of linear
transformations with ReLU activation, operating within the self-attention mechanism of transformer
decoder layers to calibrate vision tokens attention.

Model Parameters
POPE

Rnd Pop Adv

LLaVA-1.5 MSCOCO 20, 21 4, 5 4, 5
AOKVQA 20, 21 4, 5 4, 5

MPLUG-Owl2 MSCOCO 12, 13 12, 13 12, 13
AOKVQA 12, 13 12, 13 12, 13

LLaVA-NeXT MSCOCO 16, 17 16, 17 16, 17
AOKVQA 28, 29 28, 29 28, 29

Table 7: Optimal settings of DAC applied layers NDAC on POPE evaluation. “Rnd”, “Pop” and
“Adv” represent the Random, Popular, and Adversarial settings, respectively.

E DIFFERENT SAMPLING STRATEGIES

Table 9 presents an ablation study on various sampling strategies conducted on the POPE-Random
dataset using LLaVA-1.5. In addition to the greedy decoding baseline discussed in the main paper,
the study evaluates five alternative strategies: Top-P sampling (p = 0.9 and p = 1), Top-K sampling (k
= 50), Top-K sampling with temperature scaling (k = 50, temperature = 0.7), and direct sampling
(temperature = 1). The results show that applying DAC consistently reduces hallucination and
enhances overall model performance across all decoding methods, underscoring the robustness and
generalizability of DAC in mitigating hallucinations under diverse sampling conditions.

The augmentation process consists of the following steps:

• For each annotated object in V :
– Crop the region defined by its bounding box.
– Randomly resize the cropped object to a minimum size of (H/14)× (W/14) pixels

(the typical size of an image patch) and a maximum size of (H/2)× (W/2), where H
and W are the height and width of the original image V .

– Replace the background of the cropped object with pure white, resulting in Vcrop

• For each cropped object Vcrop:
– Generate a corresponding positive query Tpos that describes the cropped object and

assign the label Ypos = yes. Obtaining positive query-label pair: (Tpos, Vcrop, Ypos)

– Generate a ground-truth negative query Tneg, which refers to an object not present
in the image, and assign the label Yneg = no. Obtaining negative query-label pair:
(Tneg, Vcrop, Yneg)
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Model CHAIR MME LLaVA-Bench

LLaVA-1.5 5, 6 20, 21 20, 21

Table 8: Optimal settings of DAC applied layers NDAC on CHAIR, MME, and LLaVA-Bench using
LLaVA-1.5.

Setting Baseline VCD DAC
Acc↑ F1↑ Acc↑ F1↑ Acc↑ F1↑

Top-p = 0.9 84.91 83.05 87.82 87.31 88.60 88.18
Top-p = 1.0 84.77 82.28 86.84 86.83 87.77 87.50
Top-k = 50 83.04 81.05 87.49 86.92 87.57 87.19
Top-k, t=0.7 85.17 83.38 85.13 85.94 89.47 89.23
Sample, t=1 83.29 81.33 87.73 87.16 88.17 87.86

Table 9: Various sampling strategies conducted on the POPE-Random dataset using LLaVA-1.5.

– Each cropped image Vcrop results in one positive query-label pair and one negative
query-label pair, ensuring a balanced augmented set.

Let I represent the number of original images in the calibration set Dcal, J represent the average
number of annotated ground-truth objects per image V , and K represent the number of crops
generated per object. The total size of the augmented dataset is: Total size of Daug = I · J ·K · 2

F SPB ON OTHER BLANK IMAGES

Additional case studies of SPB under different vision and prompt inputs using LLaVA-1.5 are
presented in Figures 4–10.
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Blank Image

(a) LLaVA-1.5 (b) mPLUG-Owl2 (c) LLaVA-NeXT

Figure 4: Vision tokens attention weights during the decoding process for different models on a blank
white image in response to the polling prompt: “Is there a bear in the image?”

(a) LLaVA-1.5 (b) mPLUG-Owl2 (c) LLaVA-NeXT

Figure 5: Vision tokens attention weights during the decoding process for different models on a blank
black image in response to the polling prompt: “Is there a bear in the image?”

(a) LLaVA-1.5 (b) mPLUG-Owl2 (c) LLaVA-NeXT

Figure 6: Vision tokens attention weights during the decoding process for different models on a blank
noise image in response to the polling prompt: “Is there a bear in the image?”

(a) LLaVA-1.5 (b) mPLUG-Owl2 (c) LLaVA-NeXT

Figure 7: Vision tokens attention weights during the decoding process for different models on an
actual image in response to the polling prompt: “Is there a bear in the image?”
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(a) LLaVA-1.5 (b) mPLUG-Owl2 (c) LLaVA-NeXT

Figure 8: Vision tokens attention weights during the decoding process for different models on a blank
black image in response to the open-ended prompt: “Please describe this image in detail.”

(a) LLaVA-1.5 (b) mPLUG-Owl2 (c) LLaVA-NeXT

Figure 9: Vision tokens attention weights during the decoding process for different models on a blank
noise image in response to the open-ended prompt: “Please describe this image in detail.”

(a) LLaVA-1.5 (b) mPLUG-Owl2 (c) LLaVA-NeXT

Figure 10: Vision tokens attention weights during the decoding process for different models on an
actual image in response to the open-ended prompt: “Please describe this image in detail.”
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