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Abstract

Context modeling plays a significant role in001
building multi-turn dialogue systems. In or-002
der to make full use of context information,003
systems can use Incomplete Utterance Rewrit-004
ing(IUR) methods to simplify the multi-turn005
dialogue into single-turn by merging current006
utterance and context information into a self-007
contained utterance. However, previous ap-008
proaches ignore the intent consistency be-009
tween the original query and rewritten query.010
The detection of omitted or coreferred loca-011
tions in the original query can be further im-012
proved. In this paper, we introduce con-013
trastive learning and multi-task learning to014
jointly model the problem. Our method bene-015
fits from carefully designed self-supervised ob-016
jectives, which act as auxiliary tasks to capture017
semantics at both sentence-level and token-018
level. The experiments show that our pro-019
posed model achieves state-of-the-art perfor-020
mance on several public datasets.021

1 Introduction022

With the development of single-turn dialogue mod-023

eling, remarkable progress has been achieved024

(Zhang and Zhao, 2021) in both question answering025

and open-domain response generation. However,026

in daily dialogues, users tend to omit or refer back027

to avoid repetitions. Research (Su et al., 2019) has028

shown that coreference and omission phenomenon029

exist in 33.5% and 52.7% of utterances, respec-030

tively, in pro-drop languages such as Chinese. Be-031

cause users are capable of completing the simpli-032

fied utterance by remembering the conversational033

history. Similarly, to equip the dialogue system034

with conversational memory, we would track the035

important history information through Dialogue036

States Tracking (DST). However, DST has three037

main problems: a) The volume of stored informa-038

tion is limited in long conversations. b) The stored039

information is pruned to avoid the redundancy of040

information. c) Other modules can rarely utilize041

the stored information in dialogue systems. Thus, 042

To avoid problems of DST and boost the perfor- 043

mance of dialogue understanding, recent researches 044

propose simplifying multi-turn dialogue modeling 045

into a single-turn problem by Incomplete Utterance 046

Rerewring (IUR) (Kumar and Joshi, 2016; Pan 047

et al., 2019; Su et al., 2019; Elgohary et al., 2019; 048

Zhou et al., 2019; Liu et al., 2020; Zhou et al., 2019; 049

Liu et al., 2020). Specifically, IUR is expected to 050

recovering coreferred and omitted mentions in an 051

incomplete utterance. 052

The examples from Table 1 correspond to the 053

phenomena of coreference and omission respec- 054

tively. "他"(he) from User_query is a coreference 055

to "周杰伦"(Jay-Chou) in the first example and 056

User_query from the second example omits the 057

subject "上海"(Shanghai). In the two examples 058

from Table 1, each User_query will be rewritten to 059

User_query* by IUR. The dialogue system could 060

modeling rewritten utterances more precisely with- 061

out considering previous utterances. Besides, IUR 062

is an extensible module that could be effortlessly in- 063

tegrated into different stages of a dialogue system, 064

such as intent recognition or question answering 065

tasks. 066

Previous work normally designs models in a two- 067

stage way(Yin et al., 2018) including detecting the 068

omitted or coreferred words and conducting the 069

resolution task. However, it will introduce an accu- 070

mulated error, i.e., a false detection leads to a false 071

resolution. Recently, more and more researchers 072

are focusing on designing end-to-end model ar- 073

chitectures to solve IUR (Pan et al., 2019), (Su 074

et al., 2019), as end-to-end models could avoid the 075

problems of error accumulation and achieve better 076

performance and speed. However, previous end- 077

to-end models fail to explore the key traits of IUR 078

task fully. For example, the natural assumption of 079

IUR that the completed utterance should be seman- 080

tically equivalent to the original dialogue is often 081

neglected, while this trait could naturally be mod- 082
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Turn Utterance(Translation)

User_context: 你喜欢周杰伦吗
Do you like Jay-Chou

System_context: 我喜欢周杰伦
I like Jay-Chou

User_query: 你喜欢他哪首歌
Which song of him do you like

User_query*: 你喜欢周杰伦哪首歌
Which song of Jay Chou do you like

User_context: 上海今天下雨吗
Does it rain in Shanghai today

System_context: 上海今天下雨
It rains today in Shanghai

User_query: 为什么最近总是下雨
Why does it always rain recently

User_query*: 为什么上海最近总是下雨
Why does it always rain recently in Shanghai

Table 1: Some examples of coreference and omission in daily life.

eled via a contrastive learning paradigm to boost083

the performance of IUR. Furthermore, we can still084

take advantage of two-stage methods while not be-085

ing harmed by error accumulation with contrastive086

learning. In this work, we propose three simple087

yet effective designs to improve the performance088

of current IUR models. Our contributions are as089

follows:090

1. As far as we know, we are the first to introduce091

contrastive learning into IUR.092

2. We explore the key traits of IUR and modeling093

them in a multi-task learning paradigm.094

3. Maintaining a fast inference speed, our ap-095

proach achieves state-of-the-art performance096

on several Chinese datasets across different097

domains.098

2 Related Work099

Previous researches treat IUR as coreference100

resolution problem, adopting two-stage models101

to construct a detection-resolution pipeline (Yin102

et al., 2017, 2018). However, these methods103

often assume available golden syntactic parse104

trees, which are rare in real datasets. Recently,105

people have paid more attention to end-to-end106

models. The main-stream architectures could107

be classified into three categories: autoregres- 108

sive(generation), semi-autoregressive and and non- 109

autoregressive(sequence tagging). Most previous 110

work model the problem as a standard autoregres- 111

sive text generation task (Su et al., 2019; Quan 112

et al., 2019; Elgohary et al., 2019). They adopt 113

sequence-to-sequence models with copy mecha- 114

nism to tackle the problem. 115

Besides, there are also work tackling IUR in a 116

sequence-tagging paradigm RUN (Liu et al., 2020), 117

RAST (Hao et al., 2020). RUN designs the model 118

similarly to semantic segmentation in the com- 119

puter vision domain, while RAST predicts target 120

rewritten span for each token in the original query. 121

These works are achieving the best performance on 122

public datasets, as they further reduce the search 123

space. In the meantime, avoiding the generation 124

process means that these models have fast inference 125

speed as they do not need beam search. Naturally, 126

semi-auto-regressive model architectures are also 127

explored by SARG(Huang et al., 2020). 128

Previous works also try to improve performance 129

by designing specific tasks to utilize the traits of 130

IUR. Through the review of previous work, we 131

conclude the specific tasks into five perspectives: 132

Pretraining, Keywords Detection, Search Space 133

Reduction, Intent Consistency Constraint and Sen- 134

tence Fluidity Supervision. 135

Since the utterance structure changes little in 136

2



IUR, one can get abundant weak label training data137

by deleting the informative common span between138

a query and its context in a large raw dialogue cor-139

pus. Pretrained from these weak data is proved140

efficient by Teresa(Liu et al., 2021), Few-shot gen-141

erative QA query rewriting(Yu et al., 2020) and142

many other work. PAC(Pan et al., 2019) seeks to143

get additional gain in performance by imitating144

previous two-stage methods. The idea is to de-145

tect keywords first and then append those words146

to the context. However, the error accumulation147

is not avoided in PAC. SRL(Xu et al., 2020) train148

a model of semantic role labeling to highlight the149

core meaning of keywords in dialogue as a kind150

of prior knowledge for the model. Teresa uses a151

rank algorithm to calculate the importance of each152

token and pass it to following steps. (Su et al.,153

2019; Hao et al., 2020; Liu et al., 2020) design154

their models in different architectures while shar-155

ing the same advantage of reduced search space and156

achieve good performance. One important feature157

of IUR is that the rewritten query must be com-158

plete and semantically equal to previous context159

and incomplete query. Thus, a natural idea is to add160

additional task to push the model to follow this trait.161

CREAD(Tseng et al., 2021) adopts a binary classi-162

fication task to decide whether the original query163

intent is complete or not. Teresa performs an KL-164

Divergence loss between the original and rewritten165

query to force their intent to be same. Lastly, al-166

though sequence-tagging model architectures are167

achieving best performance these days, they face168

the problem of readability as they do not have a169

large vocabulary. RUN adds additional connection170

words into the context. RAST uses reinforcement171

learning to supervise the sentence fluidity of pre-172

dictions.173

As mentioned before, our method fully explores174

two critical traits of IUR: keywords detection and175

intent consistency constraint. We utilize contrastive176

learning and multi-task learning to avoid accumu-177

lated errors in words detection. Besides, we argue178

that intent consistency constraint is not fully uti-179

lized yet and models can gain more from intent180

consistency constraint by modeling this trait in a181

contrastive learning way.182

3 Methodology183

3.1 Task Definition184

Here we give the formal definition of IUR. Given185

the dialogue history and current utterance as186

(H,Un), H = (U1, U2, ..., Un) is the history utter- 187

ances of the dialogue. The target of IUR is to learn 188

a function to rewrite Un to R: f(H,Un)→ R. We 189

need to notice that R and (H,Un) are semantically 190

equivalent and R is self-contained, i.e. R could be 191

understood without context. 192

3.2 Baseline 193

Our baseline is based on the current state-of-the-art 194

model RUN (Liu et al., 2020), so we first give a 195

brief introduction to RUN. The main modules of 196

RUN are shown in purple cells in Figure 1. The 197

model is defined as: 198

Pmat = f(CQ) (1) 199

Specifically, CQ is the input that denotes concate- 200

nated history context C and current utterance Q. 201

The model learns a mapping function f to predict 202

from CQ to the word-level edit operation matrix 203

Pmat ∈ RM×N . 204

The objective function is defined as: 205

Lmat =
1

M ×N

M×N∑
i=0

CE(P i
mat, Y

i
mat) (2) 206

where Y i
mat is the target edit operation of pixel- 207

level sample i. CE is the notation of cross-entropy 208

loss. 209

3.3 Words Detection 210

Our first additional task is keywords detection. This 211

task is inspired by two-stage methods of equipping 212

the encoder with the capability of detecting core- 213

ferred words while not introducing accumulated 214

error. 215

As shown in Figure 2, we add a Words Detection 216

module (WD) on top of the encoder, which per- 217

forms a binary classification task for each token. 218

WD is composed of a one-layer feed-forward neu- 219

ral network and takes the hidden states of joint 220

encoded CQ ∈ R(M+N)×H as input. The out- 221

put is a binary probability distribution Pdetect ∈ 222

R(M+N)×2. This is a sequence tagging problem in 223

essence and the loss function of the word detector 224

is as follows: 225

Ldet =
1

M +N

M+N∑
i=0

CE(P i
det, Y

i
det) (3) 226

Y i
det is the golden keywords label of sample i. The 227

target of word detector is to minimize the average 228
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CLS QueryContext CLS Pos Rewrite

Encoder Encoder

CLS Neg Rewrite

Encoder

Intent 
contrastive learning

Words Detection Similarity & Segmentation

probability
contrastive learning

supervised
learning

Share Share

probability
contrastive learning

Figure 1: The framework of our proposed model. Purple cells are main modules of baseline model (RUN) and
other cells are our constructed multi-tasks.

Words Detection

Binary Classification Probability
 Distribution for each token

Cross Entropy Loss

   I         like        Jay    Chou      's   YAN YUAN  ...   Is    not     his    song  

我 喜 欢 周 杰 伦 的 演 员 ... 不 是 他 的 歌

0 0 0 1 1 1 0 1 1 ... 1 0 1 0 0

Joint Encoded

Figure 2: Word Detector

cross-entropy between predictions and labels. Due229

to the nature of modeling IUR as a sequence tag-230

ging problem (predicting edit operations for each231

token), we can easily assign the detection label for232

each token which requires no additional labeling233

resources. An example is shown in Figure 2, "演234

员"(YAN YUAN) and "周杰伦"(Jay Chou) from235

context are keywords as they are the omitted and236

the coreferred nouns. "不"(Is) and "他"(his) from237

current utterance are keywords as they represent the238

positions where omission and coreference occur.239

3.4 Intent Consistency Constraint via240

Contrastive Learning241

Intent Consistency Constraint (ICC)(Liu et al.,242

2021) is important in IUR as the rewritten query243

is supposed to be consistent with the contextual244

query in the intent space. In the meantime, con-245

trastive learning aims to learn effective represen-246

tation by pulling semantically close neighbors to-247

gether and pushing apart non-neighbors (Hadsell248

et al., 2006). We observe that the definition of ICC249

is naturally aligned with the purpose of contrastive250

learning. Thus, we introduce Contrastive Learning251

based Intent Consistency Constraint(CLICC) to 252

the model. The objective of CLICC is to pull close 253

the intent of joint CQ and gold rewrite R but push 254

apart the intent of joint CQ and incomplete queries. 255

The steps are as follows: 256

Anchor As shown in Figure 1, we insert a “[CLS]" 257

token before the concatenated context and query. 258

The hidden states of “[CLS]" token represents the 259

intent of joint CQ. 260

Positive Instance According to the prior assump- 261

tion of IUR, a gold rewrite R is supposed to be 262

consistent with the contextual query in intent di- 263

mension, so we use R as positive instance. We first 264

insert a “[CLS]" token before the gold rewrite R 265

and then feed R into the same encoder to get the 266

encoded hidden states of “[CLS]" in R. 267

[CLS] 我 喜 欢 周 杰 伦 的 演 员 ... 不 是 他 的 歌

[CLS] 演 员 不 是 周 杰 伦 的 歌

[CLS]    I         like        Jay    Chou      's   YAN YUAN  ...   Is    not     his    song  

[CLS] YAN YUAN is    not       Jay  Chou      's   song

[CLS] 不 是 他 的

[CLS]   is    not         his

Target Rewrite

Context & Query

Deleted Query

Postive Pair

Negative Pair

Figure 3: An example of query needs rewriting. When
the intent of original query is not complete, the deletion
could further corrupt the query into a more incomplete
one.

Hard Negative Instances For the construction of 268

hard negative instances, we adopt a simple yet 269

effective strategy: Random Token Deletion. We 270

randomly delete 20% tokens in the original query 271

for each sample. Then we insert a “[CLS]" token 272

before the deleted query and feed it through the 273
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[CLS] 我 喜 欢 周 杰 伦 的 演 员 ... 演 员 不 是 周 杰 伦 的 歌

[CLS] 演 员 不 是 周 杰 伦 的 歌

[CLS]    I         like        Jay    Chou      's   YAN YUAN  ... YAN YUAN  is    not       Jay  Chou      's   song

[CLS] YAN YUAN is    not       Jay  Chou      's   song

[CLS] 不 是 周 的 歌

[CLS]   is    not    Jay    's  song

Target Rewrite

Context & Query

Deleted Query

Postive Pair

Negative Pair

Figure 4: An example of query does not need rewriting.
When the intent of original query is complete, the dele-
tion could corrupt the query into an incomplete one.

same encoder to get the intent representation of the274

deleted query. Because of similar sentence struc-275

ture, these instances are hard to be distinguished276

from the original query. This strategy is effective277

in three ways:278

(a) Token deletion ensures a complex negative279

instance for each sample even if the original280

queries are complete.281

(b) Token deletion for incomplete original queries282

lowers the learning difficulty for the model283

in beginning epochs, as this strategy creates284

a more severely incomplete query, which is285

farther from the complete query.286

(c) Random token deletion enriches the negative287

instances as the deleted queries for a certain288

sample i are different between epochs.289

As shown in Figure 3, the original query is in-290

complete and random token deletion further cor-291

rupts the query. As shown in Figure 4, random292

token deletion converts the complete query into an293

incomplete one.294

Easy Negative Instances We also fill the negative295

sample space with abundant, accessible negative296

instances. For a certain sample i in one batch, other297

positive and hard negative instances will be treated298

as negative pairs for sample i, as their intent is299

naturally different.300

Loss function Following (Chen et al., 2020), we301

adopt the normalized temperature-scaled cross-302

entropy loss (NT-Xent) as the contrastive objective303

for CLICC. Suppose we have N randomly sam-304

pled dialogues from the training set as a mini-batch305

during each training step. There are N representa-306

tions for all positive instances, negative instances307

and anchors in the batch. The objective function308

is slightly modified to train each anchor to find309

its counterpart among 3N − 2 in-batch negative 310

samples: 311

Licon = −log
exp(sim(ri, r

+
i )/τ)

Anchor + Pos+Neg
(4) 312

Anchor =

N∑
j=1

I[j 6=i]exp(sim(ri, rj)/τ) (5) 313

Pos =
N∑
j=1

I[j 6=i]exp(sim(ri, r
+
j )/τ) (6) 314

Neg =
N∑
j=1

exp(sim(ri, r
−
j )/τ) (7) 315

where sim(·) is defined as the cosine similarity 316

function, τ in temperature parameter and I is the 317

indicator function. icon is the short notation of 318

Intent Contrastive. 319

3.5 Probability Space Contrastive Learning 320

Inspired by the effective result of CLICC, we in- 321

troduce Probability Contrastive Learning (PCL) 322

modules on top of both words detection and seman- 323

tic segmentation modules to help the optimization 324

in learning. This target target is to make the pre- 325

dicted probability distribution closer for a positive 326

pair. The steps are as follows: 327

Positive Instances One way to effectively create 328

positive instances in NLP tasks is through data 329

augmentation such as word reordering, deletion, 330

repeating and substitution(Feng et al., 2021). How- 331

ever, these augmentation are not suitable for the 332

PCL module in IUR in two aspects: a) we may 333

unconsciously delete or repeat the keywords in con- 334

text and queries. b) We could potentially change 335

the original intent of dialogues. These two risks 336

both lead to a false predicted distribution. Thus, in- 337

stead of above data augmentation techniques, simi- 338

lar to ideas in SimCSE (Gao et al., 2021), we use 339

Dropout(Srivastava et al., 2014) to safely acquire 340

the positive instances. Specifically, we feed the 341

same dialogue utterances to the encoder and em- 342

bedder twice to get two different dropped context 343

and query CQ1,CQ2. We use CQ1 as the anchor 344

and CQ2 and the positive instance. 345

Loss function As shown in Figure 5 and Figure 346

6, we constrain the predicted distributions of WD 347

and word-level edit matrix of a positive pair to be 348

close by minimizing the bidirectional Kullback- 349

Leibler(Bi-KL) divergence loss between predicted 350
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distributions as follows:351

Lpcon =
1

2
(Ldet + Lmat) (8)352

where pcon is notation of probability, Ldet and353

Lmat denote Bi-KL divergence loss of words de-354

tection and edit matrix respectively:355

Ldet = KL(PCQ1

det ||P
CQ2

det ) +KL(PCQ2

det ||P
CQ1

det )
(9)

356

Lmat = KL(PCQ1
mat ||P

CQ2
mat ) +KL(PCQ2

mat ||P
CQ1
mat )
(10)

357

where det and mat are the notation of detection358

and matrix respectively. KL is Bi-KL divergence359

loss.360

Negative Instances We do not need negative in-361

stances in PCL as we are not being exposed to362

the risk of model collapse compared to represen-363

tation contrastive learning. Model collapse is the364

extreme opposite of Uniformity explained in (Wang365

and Isola, 2020), which means all representations366

of data are centering to one point in the hyper-367

sphere. This is avoided in PCL because though368

bidirectional KL is pulling two distributions closer369

because the original supervised target ensures the370

correct optimization direction.371

Words Detection

Encoder Encoder 

Bidirectional KL Divergence Loss

Binary Classification Probability Distrition for Dropout1 Binary Classification Probability Distrition for Dropout2

[CLS] 我 喜 欢 周 杰 伦 的 演 员 ... 不 是 他 的 歌

[CLS]    I         like         Jay    Chou       's   YAN YUAN ...   Is    not     his    song  

Dropout1 Dropout2

Shared weights

Different masks

Words DetectionShared weights

Figure 5: PCL on word detection probability distribu-
tion.

3.6 Final Learning objectives372

Finally, we combine all tasks together and train373

them simultaneously by taking the weighted sum-374

mation of all loss functions and the final loss func-375

tion is shown as Equation 11376

Lforward = LCQ1
mat + LCQ2

mat + α(LCQ1

det + LCQ2

det )

Lfinal = Lforward + β(Licon) + γ(Lpcon)

(11)
377

q1 q2 q3 q4 q5 q6 q7

c1
c2
c3
c4
c5
c6
c7
c8
c9
cm

q1 q2 q3 q4 q5 q6 q7

c1
c2
c3
c4
c5
c6
c7
c8
c9
cm

Word Edit Operation Classification Probability Distribution 1 Word Edit Operation Classification Probability Distribution 2

Bidirectional KL Divergence Loss

Encoder Encoder 

[CLS] 我 喜 欢 周 杰 伦 的 演 员 ... 不 是 他 的 歌

[CLS]    I         like         Jay    Chou       's   YAN YUAN ...   Is    not     his    song  

Dropout1 Dropout2

Shared weights

Different masks

Segmentation SegmentationShared weights

Figure 6: PCL on word edit operation probability dis-
tribution

where α, β, γ are coefficients for three introduced 378

addition learning tasks, WD, CLICC and PCL. 379

4 Experiments 380

In this section, we conduct thorough experiments 381

to demonstrate the effectiveness of our approach. 382

4.1 Datasets 383

We conduct experiments on two Chinese public 384

datasets in open-domain dialogues: MULTI (Pan 385

et al., 2019) and REWRITE (Su et al., 2019). We 386

use the same data split method for these datasets 387

as their original paper. We display the statistics of 388

two datasets in Table 2. 389

MULTI REWRITE

Train 194K 18K
Dev 5K 2K
Test 5K N/A

Avg. C len 25.5 17.7
Avg. Q len 8.6 6.5
Avg. R len 12.4 10.5

Table 2: Statistics of the datasets. NA means the we use
development set as test set. "Avg" is short for average,
"C" for context, "Q" for current query, "R" for rewritten
query.

4.2 Baselines 390

To prove the effectiveness of our approach, we take 391

the State-of-the-art models as strong baselines in- 392

cluding SRL(Xu et al., 2020), SARG(Huang et al., 393
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2020), PAC(Pan et al., 2019), RAST(Hao et al.,394

2020), T-Ptr-λ (Su et al., 2019) and RUN(Liu et al.,395

2020).396

4.3 Evaluation Metrics397

We take automatic metrics to evaluate our approach.398

Following (Pan et al., 2019), we employ the widely399

used automatic metrics BLEU(Papineni et al.,400

2002), ROUGE(Lin, 2004), Exact-Match(EM) and401

Rewriting F-score(Pan et al., 2019). (i) BLEUn402

(Bn) evaluates how similar the rewritten utterances403

are to the golden ones via the cumulative n-gram404

BLEU score. (ii) ROUGEn (Rn) measures the405

n-gram overlapping between the rewritten utter-406

ances and the golden ones, while ROUGEL (RL)407

measures the longest matching sequence between408

them. (iii) EM stands for the exact match ac-409

curacy, which is the strictest evaluation metric.410

(iv) Rewriting Precisionn, Recalln and F-scoren411

(Pn, Rn, Fn) emphasize more on how well we re-412

cover the correferred words.413

4.4 Implementation Details414

Our approach is developed based on the model ar-415

chitecture of RUN. We follow the original settings416

in RUN: The weighted cross-entropy loss is used;417

We used Adam(Kingma and Ba, 2017) to optimize418

the model and set the learning rate 1e-3, except419

for BERT(Devlin et al., 2019) as 1e-5; The em-420

bedding size and hidden size are 200 respectively.421

Specifically, BERT aforementioned is BERTbase.422

4.5 Results423

Our results on MULTI(Pan et al., 2019) and424

REWRITE (Su et al., 2019) are shown in Table425

3 and Table 4 respectively. On both datasets, our426

model equipped with one extra module (WD) al-427

ready surpasses the existing best model on all met-428

rics. The full model equipped with all three mod-429

ules largely improve the overall performance on430

each metric.431

Observing from the ablation results of three mod-432

ules, the F-score performance would drop a bit433

while BLEU and ROUGE are better after adding434

CLICC. Through manually analyzing the predicted435

utterance before and after adding CLICC, we find436

that CLICC helps reduce the repetition of keywords437

in generated utterances. This could improve the438

fluidity and correctness of the sentence while re-439

straining the ability of WD module, which causes440

the drop of F-score. However, we argue that this441

feature is useful as we can adjust the importance of442

two modules for different tasks. For example, the 443

downstream tasks such as FAQ in the dialogue sys- 444

tem pay more attention to the recovered keywords 445

would benefit more from WD. In the meantime, 446

if we would show the rewritten queries to users, 447

a more fluent and correct utterance may fit better. 448

Finally, adding PCL boosts the performance again. 449

4.6 Influence of Temperature 450

The temperature τ in NT-Xent loss Equation 4 is 451

used to control the smoothness of the distribution 452

normalized by softmax operation. A large temper- 453

ature smooths the distribution while a small tem- 454

perature sharpens the distribution. A smoother dis- 455

tribution is easier to learn while risking being not 456

discriminative enough. We explore the influence 457

of temperature in Figure 7. The performance is 458

sensitive to the temperature. A unsuitable temper- 459

ature will degrade the model performance. The 460

optimal temperature is obtained around 0.5. This 461

phenomenon demonstrates that, as most negative 462

sentences are far to each other (naturally seman- 463

tically different), a small temperature may make 464

this task too hard to learn since the model should 465

learn a more general difference rather than detailed 466

differences between anchor and negative samples. 467

A too large temperature is also inappropriate as it 468

may hide the general differences among samples. 469

Figure 7: The relation between temperature and F3. We
get best F3 when temperature is 0.5.

4.7 Different negative strategies 470

How to construct hard semantically negative sam- 471

ples is critical for CLICC. One can naturally come 472

up with two ideas: a) Since anchor is semantically 473

complete, we can use original incomplete query as 474

the negative sample. b) Erasing the longest infor- 475

mative common span between context and current 476

query, which could corrupt the query into a incom- 477
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Model F1 F2 F3 B1 B2 R1 R2

SRL NA NA NA 85.8 82.9 89.6 83.1
T-Ptr-λ (n_beam=5) 51.0 40.4 33.3 90.3 87.7 90.1 83.0

PAC(n_beam=5) 63.7 49.7 40.4 89.9 86.3 91.6 82.8
SARG(n_beam=5) 62.3 52.5 46.4 91.4 88.9 91.9 85.7

RAST NA NA NA 89.7 88.9 90.9 84.0
RUN 69.0 57.1 48.8 90.7 87.7 92.0 85.1
+WD 70.8 58.2 49.6 91.1 88.1 92.1 85.2

+CLICC 70.2 57.8 49.3 91.5 88.6 92.3 85.7
+PCL 71.1 59.1 51.1 92.1 89.4 92.6 86.2

Table 3: Reuslts on Restoration-200k. All models except T-Ptr-λ are initalized from pretrained Bert-base-Chinese
model. All results are extracted from the original papers except RUN. For RUN, we reproduce the results from
released code to ensure a fair comparison as we are adding modules onr RUN. The final line is the result of our
complete model equipped with all three modules.

Model F1 F2 F3 EM B1 B2 B4 R1 R2 RL

SRL NA NA NA 60.5 89.7 86.8 77.8 91.8 85.9 90.5
RAST NA NA NA 63.0 89.2 88.8 86.9 93.5 88.2 90.7
RUN 89.3 81.9 76.5 67.7 93.5 91.1 86.1 95.3 90.4 94.3
+WD 90.5 82.8 77.2 68.1 94.5 92.0 86.9 95.8 90.9 94.5

+CLICC 90.1 82.7 77.3 68.2 94.1 91.7 86.8 95.7 90.8 94.5
+PCL 89.8 83.2 78.2 69.0 93.7 91.5 87.0 95.6 91.0 94.6

Table 4: Results on Rewrite-20k. All models are initialized from pretrained Bert-base-Chinese model. All results
are extracted from the original papers except RUN. For RUN, we reproduce the results from released code to ensure
a fair comparison as we are adding modules on RUN. The final line is the result of our complete model equipped
with all three modules.

plete or more incomplete one. These two strategies478

are natural as they follow the intention of CLICC479

which is to force the intent consistency. However,480

a common disadvantage of these two methods is481

that they are consistent through the training, i.e. the482

content of hard semantically negative samples for483

a certain data i would not change in the training484

process. This results in a relatively stagnation in485

local optimal for the representation of intent. Thus,486

we adopt the random deletion as our final strategy.487

The comparison of performance on Rewrite dataset488

is shown in Table 5.489

5 Conclusion490

In this work, we explore the key traits of utterance491

rewriting. We adopt contrastive learning method492

to model the intent consistency at sentence level493

and probability consistence in probability space.494

With the help of carefully designed combination of495

multi-tasks, our approach achieves the best perfor-496

mance on several public datasets. In the future, we497

will explore modeling more effective positive and498

Strategies F3 EM B4 RL

ORIGIN 76.7 67.0 86.8 94.3
SE 76.4 68.0 86.7 94.0
RD 77.3 69.0 87.0 94.6

Table 5: Reuslts on Rewrite-20k with different nega-
tive strategies. ORIGIN means we use original incom-
plete query as negative samples. SE represents Span
Erase, which means we erase the commmon span bet-
twen context and current query. RD means random
deletion which is explained in section about CLICC.

negative samples in contrastive learning to improve 499

the utterance rewriting. 500
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