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ABSTRACT

Off-policy evaluation (OPE) methods estimate the value of a new reinforcement
learning (RL) policy prior to deployment. Recent advances have shown that lever-
aging auxiliary datasets, such as those synthesized by generative models, can
improve the accuracy of OPE. Unfortunately, such auxiliary datasets may also
be biased, and existing methods for using data augmentation within OPE in RL
lack principled uncertainty quantification. In high stakes settings like healthcare,
reliable uncertainty estimates are important for ensuring safe and informed deploy-
ment. In this work, we propose two methods to construct valid confidence intervals
for OPE when using data augmentation. The first provides a confidence interval
over V π(s), the policy performance conditioned on an initial state s. To do so we
introduce a new conformal prediction method suitable for Markov Decision Pro-
cesses (MDPs) with high-dimensional state spaces. Second, we consider the more
common task of estimating the average policy performance over many initial states,
V π; we introduce a method that draws on ideas from doubly robust estimation
and prediction powered inference. Across simulators spanning robotics, healthcare
and inventory management, and a real healthcare dataset from MIMIC-IV, we find
that our methods can effectively leverage auxiliary data and consistently produce
confidence intervals that cover the ground truth policy values, unlike previously
proposed methods. Our work enables a future in which OPE can provide rigorous
uncertainty estimates for high-stakes domains.

1 INTRODUCTION

Off-policy evaluation (OPE) (Precup et al., 2000; Sutton & Barto, 2018) is used to estimate the value
of a new reinforcement learning (RL) policy prior to deployment using a historical dataset from a
distinct behavior policy. This strategy is especially important in high-stakes domains (Gottesman
et al., 2020; Mandel et al., 2014; Fu et al., 2020), where directly deploying new policies without
prior evaluation can be costly or even harmful to participants. However, standard OPE methods
frequently struggle when the target policy is very different than the behavior policy, due to limited
dataset coverage (Jiang & Li, 2016). To address this, several recent works have proposed using
synthetic auxiliary data to improve the coverage of the dataset and subsequently the accuracy of OPE
methods (Tang & Wiens, 2023; Gao et al., 2024; Mandyam et al., 2024). Such approaches have either
focused on the contextual bandit setting, or focused on promising empirical success in sequential
settings but lack formal assurances on the quality of the proposed estimates.

However, in high stakes, multi-step domains, it is often of key importance to have confidence intervals
(CIs) over the proposed policy estimates. Such intervals support safer, more informed policy selection
and deployment. Therefore, we argue that principled uncertainty quantification is needed for OPE
in RL in the emerging regime where both real and synthetic trajectories are used. While there is a
notable body of prior work that developed CIs using only real data for OPE in RL (Thomas et al.,
2015a;b; Taufiq et al., 2022; Foffano et al., 2023), to our knowledge, none provides guarantees in
settings that combine offline and synthetic trajectories. In this paper we takes steps towards addressing
this gap.

We formalize uncertainty quantification for OPE with mixed (real and synthetic) behavior data and
identify two settings that require uncertainty-aware OPE. First, in domains like healthcare, it is
common for stakeholders to deliberate between decision policies to use for individuals that start in
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the same state: for example, a clinician may use the same treatment policy on all patients in the same
stage of a disease. Estimating CIs for state-conditioned policy performance is thus an important
task that can substantially benefit from data augmentation. Our first method, CP-Gen, provides
conformal prediction intervals for such state-conditioned values. Second, we address evaluation of the
target policy’s expected value averaged over the distribution of initial states. We introduce a second
method DR-PPI, which leverages techniques from doubly robust estimation and prediction-powered
inference (Angelopoulos et al., 2023) to correct biases from generated trajectories and produce valid
CIs.

Our empirical studies across inventory control, sepsis treatment, robotic control, and MIMIC-IV
show that our methods, which can leverage synthetic data, can match or improve over state-of-the-art
baselines that provide correct CIs using only real data. Our contributions follow.

1. We formalize the problem of uncertainty quantification for OPE in MDPs that leverage
auxiliary data and introduce CP-Gen and DR-PPI (Section 3) for two natural settings
where CIs are important.

2. We prove that both methods yield valid CIs and achieve the desired coverage probability
either asymptotically or within a margin of error for finite sample sizes (Section 4).

3. We empirically evaluate the estimators in four domains including a real-world healthcare
dataset, showing that our estimates which leverage auxiliary data produce CIs with the
correct coverage that match or are tighter than baselines with valid coverage that do not use
the auxiliary data. (Section 5).

2 BACKGROUND

2.1 PROBLEM SETTING

We consider a decision-making setting defined by the MDP M = (S,A, P,R, d0, γ,H). S,A denote
the possibly infinite state and action spaces respectively. P : S ×A → ∆(S) represents the transition
dynamics, R : S ×A → ∆(R) is the reward function, and d0 ∈ ∆(S) is the initial state distribution.
γ is the discount factor and H is the fixed horizon. A trajectory is defined as τ : {st, at, rt}Ht=1
where st, at, rt are the corresponding state, action, and instantaneous reward observed at timestep
t. The return of the trajectory τ is J(τ) =

∑H
t=1 γ

t−1rt where π is the policy used to generate the
trajectory. The value of the policy V π = Eτ∼π[J(τ)] is calculated as an expectation over the possible
trajectories that could arise from π. The value of a policy conditioned on an initial starting state s is
V π(s) = Eτ∼π[J(τ)|s0 = s].

2.2 OFF-POLICY EVALUATION (OPE)

The goal of OPE is to estimate the value of a target policy πe given a dataset of behavior trajectories
Dπb

that arise from a distinct behavior policy πb. There are several standard approaches for OPE,
including importance sampling (Precup et al., 2000), direct method (DM) (Li et al., 2010; Beygelzimer
& Langford, 2009; van Seijen et al., 2009; Harutyunyan et al., 2016; Le et al., 2019; Voloshin et al.,
2021), and doubly robust (DR) approaches (Farajtabar et al., 2018; Dudik et al., 2011; Jiang & Li,
2016). IS-based estimators re-weigh each trajectory in the Dπb

using an inverse propensity score
(IPS) ρ(τ) =

∏H
t=1

πe(st,at)
πb(st,at)

. DM estimators learn a reward model using the behavior trajectories
to directly estimate the value of the target policy. DR methods combine the advantages of IS and
DM estimators and provide favorable guarantees when either the IPS ratio or the reward model is
inaccurate.

2.3 RELATED LITERATURE

OPE with data augmentation. As discussed in Section 1, standard OPE methods suffer when
the behavior dataset has limited coverage. Because OPE methods typically assume finite sample
sizes, OPE estimates can be either biased or have high variance (Precup et al., 2000; Jiang & Li,
2016; Thomas & Brunskill, 2016). To address this concern, several works have proposed using
auxiliary information to enhance OPE estimators, using data augmentation either from a secondary

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

dataset (Tang & Wiens, 2023; Mandyam et al., 2024) or by generating synthetic trajectories based on
historical data (Gao et al., 2024; Sun et al., 2023; Gao et al., 2023). These works find that leveraging
auxiliary data can substantially improve OPE estimates in some domains such as robotic control.
However, these approaches may introduce additional bias due to errors in the auxiliary data, and lack
theoretical guarantees or rigorous uncertainty quantification for the MDP setting.

Conformal prediction for OPE. Conformal prediction is a strategy to produce statistically valid
prediction regions for any point prediction that arises from a machine learning (ML) model. Tibshirani
et al. (2020) relaxed a limiting exchangeability assumption, and Taufiq et al. (2022) applied conformal
prediction to the OPE setting for contextual bandits through reweighting. Foffano et al. (2023) later
extended this work to create conformal intervals for OPE in MDPs. Crucially, their approximation
relies on an integral that is difficult to compute and implement in continuous high-dimensional
state spaces. Our CP-Gen, is inspired by the last approach, but uses a new way to compute the
weights needed for the conformal prediction, allowing us to tackle settings with continuous and
high-dimensional state spaces. In addition, this prior work did not consider data augmentation. Our
new approach achieves tighter CIs through careful use of auxiliary datasets.

Prediction-powered inference. There are several challenges when applying ML methods to settings
in which data is expensive to obtain. In these settings, it is useful to use ML models to gener-
ate predictions for unlabeled samples. Prediction-powered inference (PPI) allows us to calculate
CIs on downstream task performance given both an original dataset and predictions from an ML
model (Angelopoulos et al., 2023). PPI produces accurate CIs across a variety of ML tasks and
dataset domains. PPI also has strong overlap with doubly robust estimation techniques typically
used for OPE. However, the problem setup in PPI is distinct from ours. PPI assumes that we have
access to a large dataset of observations that are unlabeled; the role of the ML model is to label the
observations. In contrast, in our setting, we must both generate synthetic samples (i.e., trajectories)
and their corresponding labels (i.e., returns); this necessitates a distinct methodology.

3 METHODS

In general, trajectories produced by generative models may be biased or drawn from a distribution
distinct from that of the offline behavior policy, which can introduce error and/or variance into the
resulting OPE estimate for sequential decision processes. We now describe two new methods for
computing CIs for OPE in RL that use both offline and synthetically generated data for two common
settings where CIs would be beneficial.

3.1 CP-GEN : CONFIDENCE INTERVALS FOR OPE FROM A STARTING STATE

Estimating state-conditioned policy values has been slightly understudied in the OPE for RL literature,
which tends to focus on estimators that averaging performance over the full population of initial
states. The task of estimating state-conditioned policy values can benefit substantially from data
augmentation, since data from individual starting states is sparse, and yet obtaining valid CIs is
of particular importance for high-stakes domains. To address this, we propose CP-Gen, a new
conformal prediction method for OPE estimation for initial-state dependent policy value estimates.

Given an initial state s, we estimate V πe(s) as follows:

V πe(s) =
∑

τ∼pπe |s0=s

pπe(τ)R(τ)

=
∑

τ̃∼p̃πe |s0=s

p̃πe(τ̃)R(τ̃) +

 ∑
τ∼pπe |s0=s

pπe(τ)R(τ)−
∑

τ̃∼p̃πe |s0=s

p̃πe(τ̃)R(τ̃)


≈

∑
τ̃∼p̃πe |s0=s

p̃πe(τ̃)R(τ̃) +
1

n

n∑
i=1

R(τi|s0 = s)− 1

nM

nM∑
j=1

R(τ̃j |s0 = s)

=
∑

τ̃∼p̃πe |s0=s

p̃πe(τ̃)R(τ̃) +
1

nM

n∑
i=1

M∑
j=1

(R(τi|s0 = s)−R(τ̃ij |s0 = s)),

3
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where p̃ is the dynamics distribution induced by the generative model, n/M is the number of
behavior/synthetic trajectories, and R(τ |s0 = s) is the return of trajectory τ given initial state s.

Inspired by conformal prediction for regression, our goal is to produce an interval Ĉn(s) such that
the return difference between any offline trajectory and its corresponding generated trajectory that
starts from the same initial state s lies in this band with high probability i.e.,

Pπe

(
R(τ |s0 = s)−R(τ̃ |s0 = s) ∈ Ĉn(s)

)
≥ α, (1)

where Pπe is the probability measure induced by the target policy πe and α is the confidence level.
Given this goal, the final conformal prediction interval for the value of the initial state s, V πe(s), is∑

τ̃∼p̃πe ,s0=s

p̃πe(τ̃)R(τ̃) + Ĉn(s). (2)

If we set α appropriately (i.e., depending on the reward distribution), the band will cover the expected
value of R(τi|s0 = s)−R(τ̃ij |s0 = s). This enables the final interval to cover V πe(s).

Algorithm 1 CP-Gen
Require: Offline dataset Dπb , behavior policy πb, target policy πe, initial state x.
1: Split Dπb (size K) into Dtr (K/2) and Dcal (K/2)
2: Fit a generative model T using Dtr .
3: For each trajectory τi ∈ Dtr , generate M trajectories {τ̃i,m}Mm=1 under πb with the same initial state as τi,

record the pairs as {(τi, τ̃i,m)}Mm=1.
4: For each trajectory τj ∈ Dcal, generate N trajectories {τ̃j,n}Nn=1 under πb with the same initial state as τj ,

record the pairs as {(τj , τ̃j,n)}Nn=1.
5: For each (τj , τ̃j,n), calculate the weight ŵϵ(xj , R(τj)−R(τ̃j,n)) using (τi, τ̃i,m) (Eqn (5)).
6: Given an initial state x, calculate pŵj,n(x, y) and pŵKN

2
+1

using Eqn (8).

7: For each (τj , τ̃j,n), calculate the score Vj,n = R(τj)−R(τ̃j,n).
8: Calculate F (x,y) using Eqn (7).
9: Calculate confidence interval Ĉn,α over the value of trajectories starting in initial state x using Eqn (6).

10: Rollout trajectories under πe from T and get the first term in Eqn (2).

To simplify notation, let S be the initial state and ∆rr′ be the return difference of a pair of trajectories
(one from the original behavior dataset, and one generated). Unlike standard conformal prediction, we
must tackle the distribution shift induced by the difference between the behavior and target policies.
To do so, prior work (Foffano et al., 2023), which builds on related work (Tibshirani et al., 2020;
Taufiq et al., 2022), proposed CP methods for MDPs that weigh the calibration scores using estimates
of the likelihood ratio.

However, this prior work does not consider the use of generated trajectories. Therefore we introduce a
new sample reweighting technique that accounts for the distribution shift (from behavior to evaluation
policies) in both the real and generated trajectories (see full derivation in Appendix F):

w(s, δrr′) := Pπe

(S,∆rr′ )
(s, δrr′)/Pπb

(S,∆rr′ )
(s, δrr′) (3)

= Eτ∼pπb ,τ̃∼p̃πb

[∏H
t=1 πe(at|st)πe(ãt|s̃t)∏H
t=1 πb(at|st)πb(ãt|s̃t)

|s0 = s, δR(τ)R(τ̃) = δrr′

]
. (4)

This weight is an expectation of the IPS ratio over all observations that share the same input (s) and
score (δrr′ ). However, calculating this will become intractable as the size of the MDP increases.

To mitigate this, and allow us to compute valid conformal prediction intervals in continuous state and
action spaces, we use ϵ−approximation to estimate the weight for a given sample:

wϵ(s, δrr′) = Eτ∼pπb ,τ̃∼p̃πb

[∏H
t=1 πe(at|st)πe(ãt|s̃t)∏H
t=1 πb(at|st)πb(ãt|s̃t)

|s0 ∈ B(s, ϵs), δR(τ)R(τ̃) ∈ B(δrr′ , ϵr)

]
,

(5)
where B(s, ϵs) and B(δrr′ , ϵr) represent a ball around the input s of radius ϵs and a ball around the
output δrr′ of radius ϵr. In this way, the weight wϵ(s, δrr′) is estimated using trajectories that are
ϵs-close in the initial state and ϵr close in the trajectory return (Algorithm 1). This approach allows
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us to calculate valid conformal prediction intervals, at the cost of a slight reduction in coverage. We
will discuss this further in our theoretical analysis.

Using these weights, the CI band is as follows:

Ĉn,α(s) = {δrr′ : Q(
α

2
, F (s,δrr′ )

n ) ≤ V
(s,δrr′ )
n+1 ≤ Q(1− α

2
, F (s,δrr′ )

n )}, (6)

where

F (s,δrr′ )
n =

n∑
i=1

pwi (s, δrr′)δVi
+ pwn+1(s, δrr′)δ∞, (7)

pwi (s, δrr′) =


w(Si,∆rr′,i)∑n

j=1 w(Sj ,∆rr′,j)+w(s,δrr′ )
if i ≤ n,

w(s,δrr′ )∑n
j=1 w(Sj ,∆rr′,j)+w(s,δrr′ )

if i = n+ 1,
(8)

and Vi = s(Si,∆rr′,i) = ∆rr′,i. Typical conformal prediction methods do not provide coverage
guarantees for individual samples. In our setting, however, the target of interest is V π(s), which is
itself an expectation, so marginal coverage is sufficient.

Algorithm 2 DR-PPI
Require: Offline dataset Dπb , behavior policy πb, target policy πe.
1: Split Dπb (size n) into D1 and D2 (each with size n

2
).

2: Fit a generative model f1 using D1.
3: Use f1 to generate Nf rollouts {τ̃i}

Nf

i=1 from πe.
4: For each τj ∈ D2, use f1 to generate M rollouts {τ̃m,j}Mm=1 with the same initial state s0,j .
5: Estimate V̂DR-PPI:1 using Eqn (9).
6: Fit a generative model using D2, and estimate V̂DR-PPI:2 in the same way.
7: Estimate V̂ πe using Eqn (18).
8: Estimate the variance of V̂ πe using Eqn (19).
9: Provide confidence interval Ĉα using Eqn (10).

3.2 DR-PPI: CONFIDENCE INTERVALS FOR UNCONDITIONAL OPE VALUE ESTIMATION

A more common task for OPE in RL is to estimate the value of the target policy averaged over initial
states. This is relevant in settings where a single policy may be selected for the whole population,
and a stakeholder wants to choose among different policies. Aggregating over the CP-Gen estimates
using a union bound over initial states would make the CI estimates impractically wide. Instead we
introduce a second estimator specifically for this setting, DR-PPI, which builds on prior literature
in doubly robust estimation and prediction-powered inference. Here, our goal is to construct an
estimator of V πe = Es0 [V

πe(s0)] with which we can calculate CIs.

First, we assume that the initial-state distribution d0 is known (though our results extend to settings
in which d0 must be estimated). Now, we construct a cross-fitted, doubly-robust estimate of the
policy value V πe as follows. First, we split the behavior dataset Dπb

into two equal parts, which
we refer to as D1 and D2. We first use D1 to fit a generative model f1; this procedure is agnostic
to the generative model used, and reasonable approaches include a diffusion model or a variational
auto-encoder (VAE). Then, we use f1 to generate Nf rollouts {τ̃i}

Nf

i=1 where each rollout uses actions
as sampled from the target policy πe. The rollouts are used to calculate the model-based return;
however since we expect this return to be biased, we add an IS-based correction using the trajectories
observed in D2 as follows:

V̂ πe
DR-PPI:1 =

1

Nf

Nf∑
i=1

R(τ̃i) +
1

n/2

∑
j∈D2

(
R̃(τj) − 1

M

M∑
m=1

R(τ̃m,j | s0,j)
)
, (9)

where n is the number original behavior trajectories, and R̃(τi) is the re-weighted return of the
behavior trajectory τi. We note that there are several possible ways to perform this re-weighting:
IS, weighted IS (WIS), and per-decision IS (PDIS). Regardless of the re-weighting technique, our
asymptotic theoretical results hold.
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The importance-sampling based correction relies on the generation of an additional set of trajectories
{τ̃m,j}Mm=1, which all begin in the same initial state as the corresponding behavior trajectory j but
are generated from the target policy. The correction over M generated trajectories does not need to be
re-weighted because the trajectories are generated using f1 from the target policy. To ensure that the
data is used efficiently, we use cross-fitting (Chernozhukov et al., 2018) with two splits of the data.
V̂DR-PPI:1 uses D1 to fit the generative model f1 and uses D2 to provide the correction. Similarly,
we fit the generative model on D2 to produce f2 and correct the estimator using D1, which yields
V̂DR-PPI:2. The final estimate (Algorithm 2) is the average of V̂DR-PPI:1 and V̂DR-PPI:2.

The variance can then be calculated by combining plug-in estimates of the variance of the model-
based term and the IS-term for each dataset split (details in Appendix E). Using this variance, an
approximate CI for a given choice of (1− α) is

Ĉα = V̂ πe
DR-PPI ± z1−α/2

√
V
[
V̂ πe
DR-PPI

]
. (10)

Before analyzing the theoretical guarantees of the two estimators, we first compare their constructions.
When all trajectories in an environment begin from the same initial state, the point estimates of
both methods are identical, differing only in their confidence intervals. The re-weighting schemes,
however, are distinct: DR-PPI re-weights only the real behavior trajectories, whereas CP-Gen uses
a product of IPS ratios averaged across a set of trajectories. Finally, the return differences used
to compute the CI in CP-Gen may exhibit higher variance than subtracting the mean of a set of
trajectories from the return of a single trajectory in DR-PPI. However, this effect depends on the
stochasticity of the generated trajectories and may vary across domains.

3.3 PRACTICAL CONSIDERATIONS

There are several practical considerations to enable OPE in environments with large state and action
spaces as well as settings in which πb and πe differ substantially. First, it is occasionally necessary
to clip the largest IPS ratios to avoid extremely large intervals. Ionides (2008) shows that using a
clip constant set to n1/2 where n is the number of dataset samples, provides an optimal first order
rate in the resulting mean-squared error of the OPE estimator, balancing the bias introduced by the
clipping with the variance reduction. This clipping constant also ensures the resulting estimate is still
consistent. Following this, we set the clipping constant at a rate of n1/2.

Additionally, in Algorithm 2, we propose splitting the behavior dataset into two portions and aggre-
gating the OPE estimate calculated using each portion. If a pre-trained generative model is available,
we use the full dataset to construct the CI, and no data splitting for generative model training is
necessary. However, if no pre-trained model exists, we divide the data: one half is used to train
the generative model, and the other half is used to compute the CI. Because these two subsets are
independent, this preserves the exchangeability criterion for conformal prediction and the validity of
DR-PPI. However, in practice, it may not possible to split the behavior dataset due to its size. For
these settings, we choose not to perform cross-fitting, and instead report results without sub-dividing
the dataset. As discussed in Section 5, this can still result in valid, but higher variance CIs.

Finally, for CP-Gen, we must set ϵs and ϵr depending on the environment. We view ϵs and ϵr as
hyperparameters that needs to be tuned, possibly via cross-validation.

4 THEORETICAL RESULTS

Now, we discuss the theoretical guarantees of our approaches. As is standard in prior OPE literature,
we assume that the target and behavior policies share common support, and that the instantaneous
rewards and IPS ratios are bounded (Farajtabar et al., 2018; Thomas & Brunskill, 2016).

4.1 CP-GEN PRODUCES VALID CONFORMAL PREDICTION INTERVALS

We make a few additional assumptions to analyze CP-Gen. These assumptions balance theoretical
rigor with practical relevance, allowing us to derive meaningful guarantees in high-dimensional,
structured settings. Importantly, they still encompass a broad class of real-world MDPs.

6
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Assumption 1 (Lipschitz Continuity of the Policy). There exist constants Lπ, Lπ,s, Lπ,a such that
for π ∈ {πb, πe} and all s, s1 ∈ S, a, a1 ∈ A,

TV (π(·|s), π(·|s1)) ≤ Lπ||s− s1|| (11)

|π(a|s)− π(a1|s1)| ≤ Lπ,s||s− s1||+ Lπ,a||a− a1||. (12)
Assumption 2 (Lipschitz Transition Dynamics). For all s, s1 ∈ S, a, a1 ∈ A,

TV (p(·|s, a), p(·|s1, a1)) ≤ Lp,s∥s− s1∥+ Lp,a∥a− a1∥. (13)

Assumption 3 (Score Smoothness). The map (s, δrr′) 7→ w(s, δrr′) is Lr-Lipschitz in its second
argument: |w(s, δrr′)− w(s, δ′rr′)| ≤ Lr|δrr′ − δ′rr′ |.
We consider Assumptions 1 and 2 mild. Because policy probabilities lie in [0,1], Assumption 1 holds
with a sufficiently large Lipschitz constant; in practice, these constants are small when similar states
are assigned similar actions, a condition often justified in domains like healthcare, where similar
patients receive similar treatments. A comparable assumption has been studied in prior work (Liu
et al., 2022). Similarly, Assumption 2 is a smoothness assumption on the transition dynamics which
has been used in prior work (Asadi et al., 2018). For example, in healthcare, patients with comparable
clinical profiles often respond similarly to similar treatments; small changes in dosage or patient
characteristics typically produce gradual, not abrupt, differences in outcomes. Assumption 3 is
perhaps the strongest and requires that the return differences between trajectories are smooth in
their expected IPS ratios. These assumptions are used to account for potential errors introduced by
ϵ-approximation, used in large or continuous state spaces and ensure that the resulting averaging error
is bounded.

Under the stated assumptions, we now demonstrate that CP-Gen produces valid conformal prediction
intervals within a small margin of error (Theorem 1, proof in Appendix F).
Theorem 1 (Valid Conformal Prediction Interval). Under Assumptions 1 to 3, suppose that
Eπb

[|ŵϵ(S,∆rr′)|k] ≤ d2k for some k ≥ 2 and finite d. Then, define the estimation error
∆w = 1

2Eπb |ŵϵ(S,∆rr′)− w(S,∆rr′)|. We bound ∆w as follows:

∆w = Õ(n−1/2ϵ−3ds/2
s ϵ−3/2

r + ϵs + ϵr), (14)

where ds is the dimension of S.

The coverage is then bounded as

Pπe(∆rr′ ∈ Ĉn,α(S)) ≥ 1− α−∆w. (15)

In addition, if the non-conformity scores {Vi}ni=1 have no ties almost surely, then

Pπe(∆rr′ ∈ Ĉn,α(S)) ≤ 1− α−∆w + cn1/k−1 (16)

for some positive constant c depending on d and k only.

Theorem 1 shows that ϵ-approximation results in a loss of coverage specified by ∆w, which depends
primarily on ϵs and ϵr. In environments where these constants are small, or there are a large number
of samples, or ϵs, ϵr are optimally selected, we can get a smaller loss of coverage. We also note that
the guarantee is similar in form to prior conformal intervals for MDPs (Foffano et al., 2023), but our
construction has significant benefits over prior work: it can leverage synthetic data and allows us to
compute CIs for high-dimensional, continuous states with our approximation of w.

4.2 DR-PPI PRODUCES ASYMPTOTICALLY VALID CONFIDNECE INTERVALS

In Section 3.2, we mention several choices for the importance-sampling correction including IS, WIS,
and PDIS. Regardless of the correction style, we achieve asymptotically valid CIs (Theorem 2, proof
in Appendix F).

Theorem 2 (Asymptotically Valid CI). For all possible corrections R̃IS, R̃WIS and R̃PDIS,

lim inf
n,M,Nf→∞

P (V πe ∈ Ĉα) ≥ 1− α. (17)
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5 EMPIRICAL RESULTS

Our theoretical results demonstrated that CP-Gen and DR-PPI can calculate valid CIs under mild
assumptions. To complement this analysis, we seek to answer the following questions using empirical
results: 1) Does the ϵ-approximation used in CP-Gen cause the estimated interval to be biased? 2)
Do DR-PPI and CP-Gen produce intervals that cover the ground truth policy value? 3) Under what
conditions do the DR-PPI estimates outperform baseline approaches?

5.1 DATASETS

To answer our empirical questions, we use the following domains.

Inventory Control (Foffano et al., 2023): We adapt this simulator to accommodate a continuous
state and reward space.
Sepsis (Oberst & Sontag, 2019): In this popular sepsis simulator, the goal is to successfully discharge
a simulated patient. We approximate the dynamics using a feed-forward network.
D4RL HalfCheetah (Fu et al., 2020): The HalfCheetah environment is a Mujoco task in the D4RL
suite where the goal is to get the cheetah to move forward. Here, we approximate the dynamics using
a variational auto-encoder (VAE) (Gao et al., 2023).
MIMIC-IV (Johnson et al., 2020; Goldberger et al., 2000): We consider a subset of patients from
MIMIC-IV that receive potassium repletion. To emulate a setting in which we have access to both
a behavior and target cohort, we construct two sub-cohorts. The behavior sub-cohort consists of
patients who receive lower dosages (<20 mEq/L), and the target sub-cohort consists of patients who
receive higher dosages (>= 20mEq/L). We use a VAE to generate synthetic trajectories. Our goal is
to learn the value of the target policy (i.e., repletion strategy in the higher-dosage cohort).

5.2 BASELINES

In addition to the baseline proposed in Foffano et al. (2023), we compare to the following approaches:
Importance Sampling (IS): We use standard IS, deriving a bound using central limit theorem (CLT)
or bootstrapping.
Augmented Importance Sampling (AugIS): We use both the original dataset and a set of synthetic
trajectories to calculate an IS estimate, with bounds estimated using either CLT or boostrapping.
Direct Method (DM): We use rollouts from the learned model and calculate the expectation of the
trajectory returns. DM estimates do not produce CIs.
Doubly Robust (DR): Here, we compute a DR estimated using DQL to learn the reward model.
Augmented Doubly Robust (AugDR): Here, we use both offline trajectories and synthetic trajectories
to learn a Deep Q-learning (DQL) reward model and then compute a DR estimate.
Q-Bootstrap: Here, we fit a Q-function using the behavior dataset and use it to learn a bootstrapped
estimate of V πe(s).

Setting Vπe (s) DM Foffano et al. Q-bootstrap CP-Gen
Interval Covers? Interval Covers? Interval Covers?

Inventory -412.85 -120.57 (-6040,
2510) ✓

(-1566.32,
-1045.68) ✗

(-4449.27,
1082.33) ✓

Sepsis -0.40 -0.12 (-1,0) ✓
(-0.01,
0.01) ✗

(-1.36,
0.54) ✓

D4RL Half Cheetah 1990.39 1393.98 (1750,
1940) ✓

(1820,
1880) ✗

(1964.35,
2004.42) ✓

MIMIC-IV 1 0.689 (0,1) ✓
(-1.28,
0.92) ✓

(0.977,
1.1012) ✓

Table 1: CP-Gen outperforms baselines across domains with continuous state-spaces, producing
conformal prediction intervals that cover the true policy value, V πe(s). For methods that produce an
interval, we report the interval for α = 0.05 and whether the interval covers the true policy value.
The method with the smallest interval length that covers the ground truth policy value is bolded.

5.3 RESULTS

CP-Gen produces valid CP intervals. As discussed in Section 3, to scale prior conformal prediction
approaches to large MDPs, we use an ϵ-approximation strategy. Despite this approximation, we
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Setting Vπe
IS

(CLT)
IS

(Bootstrap)
AugIS
(CLT)

AugIS
(Bootstrap)

DR
(CLT)

AugDR
(CLT) DM DR-PPI

Inventory -428.51 (-2139.27,
-209.57)

(-2209.73,
-227.59)

(-808.47,
-753.81)

(-806.41,
-756.73)

(-1804.16,
940.30)

(-914.72,
-807.50) -100.53 (-2106.27,

-187.89)

Sepsis -0.56 (-1.68,
-0.10)

(-1.73,
-0.25)

(-0.002,
0.006)

(-0.001,
0.006)

(-1.67,
-0.44)

(-2.92e+10,
9.8e+10) -0.4 (-1.45,

-0.26)
D4RL Half

Cheetah 1975.75 (1814.37,
2096.25)

(1802.37,
2074.04)

(970.46,
1122.39)

(973.22,
1115.36)

(-1.320e+32,
4.194e+31)

(-3.59e+31,
7.58e+30) 1423.57 (1820.79,

2102.60)

MIMIC-IV 0.746 (0.31,
1.50)

(0.56,
1.65)

(0.711,
0.719)

(0.711,
0.718)

(-5.874e+21,
1.892e+21)

(0.719,
0.730) 0.69 (0.29,

1.48)

Table 2: DR-PPI produces valid confidence intervals across all domains. We report all CIs, and
bold the interval with the smallest size that also covers the ground truth policy value V πe .

find that CP-Gen still results in conformal prediction intervals that cover V πe(s) with the specified
confidence level, often with a smaller interval size than baseline approaches (Table 1). We compare to
a DM-style baseline where we average the return of synthetic trajectories that start in the given initial
state. We find that the DM baseline can produce a biased result with a poor generative model (e.g., in
D4RL, MIMIC-IV). We also evaluate the baseline reported in Foffano et al. (2023). This baseline
covers the ground truth value but produces wider intervals than our approach in all environments with
continuous state spaces. These results suggest that CP-Gen newly enables conformal prediction for
OPE in MDP settings with large state and action spaces.

Additionally, we discuss empirical coverage rates for the Inventory and Sepsis settings in Appendix
A. We also note that in some experiments, we use behavior cloning to approximate πb, and despite
this approximation, find that our methods still produce valid CIs. This suggests that our approach can
be practically robust to moderate misspecification of πb. Finally, we study the effect of the number
of synthetic trajectories and the quality of the synthetic trajectories on our proposed estimators in
the Inventory and Sepsis settings. We find that our estimators improve as the number of generated
trajectories increase and are robust to moderately noisy synthetic trajectories. Further details are in
Appendix A.

DR-PPI identifies valid confidence intervals that cover V πe across all domains. Across all
domains, DR-PPI produces valid CIs that cover V πe , as our theoretical results suggest (Table 2). In
contrast, most baseline approaches either have wide CIs or have intervals that do not cover V πe . In
fact, any baseline approach that uses generated trajectories (e.g., AugIS, AugDR) produces a biased
interval, which suggests that naively incorporating auxiliary datasets results in a biased estimator.
Furthermore, we find that in the D4RL and MIMIC-IV settings, DQL is unable to identify an accurate
Q-learning function; as a result, the CIs become exponentially large.

DR-PPI performs best in stochastic domains with high quality generative models. Finally, we
clarify the settings in which DR-PPI outperforms baselines. When the environment is deterministic
(e.g., D4RL HalfCheetah), or the generative model is of poor quality (e.g., D4RL HalfCheetah,
MIMIC-IV) DR-PPI performs similarly to the IS baselines. In such settings we do not get a favorable
variance reduction from the synthetic trajectories. In contrast, in settings where the environment is
stochastic and our learned generative model is good (e.g., Inventory, Sepsis), DR-PPI has tighter CIs.
Given that both IS with bootstrapping and DR-PPI produce valid CIs, we recommend a simple rule:
use the estimator with the narrower interval. We defer a rigorous selection criterion to future work.

6 CONCLUSION

Here, we take steps toward uncertainty-aware OPE in settings that combine real and synthetic
trajectories. We present two complementary approaches, CP-Gen and DR-PPI, that use auxiliary
data to construct CIs for OPE. CP-Gen calculates state-conditioned policy values, while DR-PPI
estimates unconditional policy values. We provide theoretical guarantees (Section 4) and examine
behavior across four domains, including a real-world EHR dataset (Section 5). Our results illustrate
the feasibility of obtaining valid CIs with auxiliary data and highlight practical trade-offs to consider.

Limitations and future work. We work with two classes of generative models, VAEs and neural
networks. Future work could explore alternatives such as diffusion models, develop principled
procedures for setting ϵs and ϵr, and investigate strategies to mitigate the impact of poor-quality
generated trajectories. More broadly, we see value in analyzing these approaches under distribution
shift and partial observability.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility statement. The code to reproduce all experiments is anonymized here and will be
released upon publication.
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sentations with applications to educational games. 13th International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2014, 2:1077–1084, 01 2014.

Aishwarya Mandyam, Shengpu Tang, Jiayu Yao, Jenna Wiens, and Barbara E. Engelhardt. Candor:
Counterfactual annotated doubly robust off-policy evaluation, 2024. URL https://arxiv.
org/abs/2412.08052.

Gergely Neu, András György, Csaba Szepesvári, and András Antos. Online markov decision
processes under bandit feedback. In Proceedings of the 24th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’10, pp. 1804–1812, Red Hook, NY, USA, 2010.
Curran Associates Inc.

Michael Oberst and David Sontag. Counterfactual off-policy evaluation with gumbel-max structural
causal models, 2019. URL https://arxiv.org/abs/1905.05824.

Michael JD Powell and J Swann. Weighted uniform sampling—a monte carlo technique for reducing
variance. IMA Journal of Applied Mathematics, 2(3):228–236, 1966.

Doina Precup, Richard Sutton, and Satinder Singh. Eligibility traces for off-policy policy evaluation.
Computer Science Department Faculty Publication Series, 06 2000.

Wei Qian and Yuhong Yang. Kernel estimation and model combination in a bandit problem with
covariates. Journal of Machine Learning Research, 17(149):1–37, 2016. URL http://jmlr.
org/papers/v17/13-210.html.

J. Sun, Y. Jiang, J. Qiu, P. Nobel, M. Kochenderfer, and M. Schwager. Conformal prediction for
uncertainty-aware planning with diffusion dynamics model. Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduction. Adaptive
computation and machine learning series. The MIT Press, second edition edition, 2018. ISBN
9780262039246.

Shengpu Tang and Jenna Wiens. Counterfactual-augmented importance sampling for semi-offline
policy evaluation. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=dsH244r9fA.

Muhammad Faaiz Taufiq, Jean-Francois Ton, Rob Cornish, Yee Whye Teh, and Arnaud Doucet.
Conformal off-policy prediction in contextual bandits, 2022. URL https://arxiv.org/
abs/2206.04405.

Philip Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High-confidence off-policy
evaluation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015a.

Philip Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High confidence policy
improvement. In International Conference on Machine Learning, pp. 2380–2388. PMLR, 2015b.

11

https://arxiv.org/abs/2004.14990
https://arxiv.org/abs/2004.14990
https://arxiv.org/abs/1903.08738
http://dx.doi.org/10.1145/1772690.1772758
https://arxiv.org/abs/2207.00632
https://arxiv.org/abs/2412.08052
https://arxiv.org/abs/2412.08052
https://arxiv.org/abs/1905.05824
http://jmlr.org/papers/v17/13-210.html
http://jmlr.org/papers/v17/13-210.html
https://openreview.net/forum?id=dsH244r9fA
https://arxiv.org/abs/2206.04405
https://arxiv.org/abs/2206.04405


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Philip S. Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement
learning. In ICML, 2016.

Ryan J. Tibshirani, Rina Foygel Barber, Emmanuel J. Candes, and Aaditya Ramdas. Conformal
prediction under covariate shift, 2020. URL https://arxiv.org/abs/1904.06019.

Harm van Seijen, H. V. Hasselt, Shimon Whiteson, and Marco A Wiering. A theoretical and
empirical analysis of expected sarsa. 2009 IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning, pp. 177–184, 2009. URL https://api.semanticscholar.
org/CorpusID:6230754.

Cameron Voloshin, Hoang M. Le, Nan Jiang, and Yisong Yue. Empirical study of off-policy policy
evaluation for reinforcement learning, 2021.

12

https://arxiv.org/abs/1904.06019
https://api.semanticscholar.org/CorpusID:6230754
https://api.semanticscholar.org/CorpusID:6230754


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ADDITIONAL EMPIRICAL RESULTS

First, we discuss additional empirical results. In the main text, we report CP-Gen and DR-PPI
results across all domains. First, we include results in the Inventory setting that investigate the
performance of our methods if the behavior policy πb is unknown. We report coverage rates across
50 trials, and define the estimation error in terms of ϵx. Here, the true behavior policy is static
and uniform across all actions [1/11 for - in range(11)]. The estimated behavior policy is defined as
[1/11 + ϵx for - in range(5)] + [1/11 − ϵx for - in range(5)] + [1/11]. That is, the perturbation by
increases the probability of the first 5 actions, decreases the probability of the next 5 actions, and
retains the probability of the last action. Our results (Table 3) support the claim that our methods are
robust to small errors in the estimation of the behavior policy, with coverage dropping at ϵx ≥ 0.01.
We observe that the drop in coverage is more pronounced for DR-PPI, though we also note that an
ϵx of 0.03 refers to a very large degree of misspecification.

Finally, we investigate empirical coverage rates for both methods in the Inventory and Sepsis settings
(Table 4). We note that in both environments, DR-PPI covers the ground truth value of the policy, and
that CP-Gen achieves the requested coverage in Inventory. We believe that the slight loss of coverage
for CP-Gen in the Sepsis setting is due to a higher ∆w. In particular, the Sepsis environment, due to
its discrete state and reward space, exhibits weak Lipschitz continuity, with a large Lipschitz constant.
Furthermore, in this setting, Cips, the upper bound of the IPS ratios, is large given that the target and
behavior policies are quite distinct. As suggested in Theorem 1, these two factors contribute to a
higher ∆w, which results in a small loss of coverage.

Method ϵx = 0 ϵx = 0.005 ϵx = 0.01 ϵx = 0.02 ϵx = 0.03
CP-Gen 98% 92% 84% 84% 80%
DR-PPI 96% 94% 90% 82% 72%

Table 3: CP-Gen and DR-PPI are robust to moderate levels of misspecification in πb. Here, we
study the Inventory setting and report coverage rates (out of 50) as we vary ϵx, the degree to which
the behavior policy πb is perturbed. We request a coverage corresponding to α = 0.05.

Setting Method Coverage Rate Average Length of Interval
Inventory CP-Gen 98% 5576.85
Inventory DR-PPI 96% 1951.14

Sepsis CP-Gen 92% 1.442
Sepsis DR-PPI 96% 1.172

Table 4: Empirical coverage rates across the Inventory and Sepsis settings for CP-Gen and
DR-PPI. We report coverage rates (out of 50 iterations) for corresponding to α = 0.05.

Additionally, we discuss the performance of our estimators as a function of the number of generated
synthetic trajectories and the noise of the synthetic trajectories (Figure 1). We find that in the majority
of settings, DR-PPI and CP-Gen achieve the requested coverage (α = 0.05). When DR-PPI
does not achieve the requested coverage, we believe there are too few generated trajectories (i.e.,
non-asymptotic result). When CP-Gen does not achieve the requested coverage, we believe this is
due to a higher ∆w (similar to the empirical coverage experiment in Table 4). We also study the
effect of the trajectory quality on the performance of our estimators. For the Inventory setting, we
find that the coverage rate only slightly decreases at higher degrees of noise. For the sepsis setting,
we find that coverage does not change in comparison to perfect generated trajectories, which suggests
that our methods can correct for noisy synthetic trajectories in these settings.

B CODE

We include a Github link with our code, which we will make public upon acceptance. We also include
code in our supplementary material.
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Figure 1: DR-PPI and CP-Gen are robust to annotation quality and improve in quality as the
number of generated trajectories increase in the Inventory and Sepsis environments. (Left) We
fix N (i.e., number of behavior trajectories) for both the Inventory (N = 60) and Sepsis (N = 200)
settings. We alter the number of generated trajectories from 20 ∗ N to 500 ∗ N . We report the
coverage rate across 50 iterations for α = 0.05. (Right) We fix the number of generated trajectories
at 100 ∗N . We vary the quality of the generated trajectories by adding noise in the form of N (0, σ2),
similar to prior work (Laskin et al., 2020). We report coverage rate across 50 iterations, for α = 0.05.

C EMPIRICAL SETTINGS

In the main text, we consider empirical results using four datasets. Here, we expand the description
of each dataset.

Inventory Control:
The inventory control simulator is adapted from a version featured in Foffano et al. (2023).
The state is the current inventory, actions are the number of units purchased, and reward is the
end-of-day earnings. We make several adaptations to make this inventory control environment
more suitable for our work. First, the distribution of the stochastic demand in the inventory
is o is changed from Poisson to normal N (µ, σ). Additionally, the cost of buying items is
k × 1{a>0} + c(min(N,xt + a)− xt), where k > 0 is the fixed cost for a single order, c > 0 is the
cost of a single unit bought, N is the inventory upper-bound, xt is the state at timestep t, and at is the
action at timestep t. The next state xt+1 is calculated as xt+1 = max(0,min(N,xt + at)− ot+1).
The instantaneous reward observed at the end of the day is the sum of the costs and earnings
listed above (e.g., r(xt, at, xt+1) = 102 × (−k1{at>0} − zxt − c(min(N,xt + at) − xt) +
pmax(0,min(N,xt + at) − xt+1))). When testing our algorithm, we chose the following
parameters: N = 10, k = 1, c = 2, z = 2, p = 4, µ = 5, σ = 10,H = 20. We approximate the
dynamics in this setting using a feed-forward network.

Sepsis:
The Sepsis simulator is taken directly from Oberst & Sontag (2019), which models a synthetic Sepsis
treatment setting. The state is an 8-dimensional vector which contains information about relevant
vitals and labs, indicators of ongoing treatment (e.g., antibiotics, vasopressors, ventilator), and an
indication of whether the patient is diabetic. There are 8 possible actions, each corresponding to a
different combination of 3 binary treatments (e.g., antibiotics, vasopressors, ventilator). The reward
is +1 if the synthetic patient is off of treatment and has stable vitals, −1 if the patient has unstable
vitals, and +0 otherwise. We do not alter any environment details, and report results with a maximum
horizon of H = 20.

D4RL HalfCheetah:
The HalfCheetah environment is a Mujoco task in the D4RL suite (Fu et al., 2020). The cheetah is a
two-dimensional robot that has 9 body parts and 8 joints connecting the body parts. Each state is
represented as a 17-dimensional vector that contains information about the position and velocity of
each of the joints. Each action is represented as a 5-dimensional vector, and applies torque to a subset
of the joints, and the goal of the environment is to get the cheetah to move forward as quickly as
possible. The reward corresponds to how far the cheetah traveled, with negative reward indicating
that the cheetah moved backward. We report results using a maximum horizon of H = 1000.
MIMIC-IV:
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MIMIC-IV is an electronic health records (EHR) dataset collected from patients admitted to the
Beth Israel Deaconess Medical Center in Boston, MA (Johnson et al., 2020; Goldberger et al., 2000).
We consider a subset of patients that receive potassium repletion through an intravenous (IV) line.
We represent the patient state as a 20-dimensional vector containing information about important
labs, administered medicines, and static covariates such as age and gender; each state represents a
4-hour interval in a patient’s hospital stay. There are five actions, each corresponding to a dosage of
potassium delivered through an IV. The reward function is a binary indicator of whether the patient’s
potassium lab value is within the potassium reference range (3.5-4.5 mmol/L), within 2 hours of
receiving the administered potassium.

In the OPE task, we assume access to a behavior policy πb and a target policy πe, and evaluate
using RMSE. It is not immediately obvious how to create this setup within MIMIC-IV. To
emulate a setting in which we have access to both a behavior and target cohort, we construct
two sub-cohorts from the patients that receive potassium repletion. The behavior sub-cohort
consists of patients who receive lower dosages (<20 mEq/L) of potassium, and the target
sub-cohort consists of the patients who receive higher dosages (>= 20mEq/L) of potassium. The
behavior policy corresponds to the repletion policy in the behavior cohort, and the target policy
corresponds to the repletion policy in the target cohort. Both policies are inferred using behavior
cloning. Our goal is to learn the value of the target policy, and a ground truth calculation of this
value is calculated by averaging the returns of the target trajectories. We observe that the maxi-
mum horizon length is H = 189, though most patients have trajectories that are less than 20 timesteps.

D COMPUTATIONAL COST OF EXPERIMENTS

All experiments were conducted on an internally hosted cluster equipped with an NVIDIA RTX
A6000 GPU featuring 48 GB of memory. In total, our experiments consumed approximately 250
compute hours, primarily driven by VAE training and Q-function learning on large datasets.

E DETAILS OF DR-PPI IMPLEMENTATION

As mentioned in Section 3.2, we use a cross-fitting technique to learn the final DR-PPI estimator. In
particular, we average the outcomes of V̂DR-PPI:1 and V̂DR-PPI:2 as follows,

V̂DR-PPI = (V̂DR-PPI:1 + V̂DR-PPI:2)/2. (18)

The variance of the estimator can be calculated using plug-in estimates as follows,

V
[
V̂DR-PPI

]
=

1

4

( σ̂2
f1

Nf
+

σ̂2
b1

n/2
+

σ̂2
f2

Nf
+

σ̂2
b2

n/2

)
, (19)

where σ2
f = Vτ̃∼p̃πe [R(τ̃)], and σ2

b = Vτ∼pπb ,τ̃∼p̃πe

[
R̃(τ)− 1

M

∑M
m=1 R(τ̃m|s0(τ))

]
.
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F PROOFS FOR THEORETICAL RESULTS

F.1 PROOF OF EQN (4)

Proof.

w(s, δrr′) :=
Pπe

(S,∆rr′ )
(s, δrr′)

Pπb

(S,∆rr′ )
(s, δrr′)

(20)

=

∫∫ Pπe

(S,∆rr′ )
(s, δrr′)

Pπb

(S,∆rr′ )
(s, δrr′)

Pπb

τ,τ̃ |S,∆rr′
(τ, τ̃ |s, δrr′)

Pπb

τ,τ̃ |S,∆rr′
(τ, τ̃ |s, δrr′)

Pπe

τ,τ̃ |S,∆rr′
(τ, τ̃ |s, δrr′)dτdτ̃ (21)

=

∫∫ Pπe

(S,∆rr′ ,τ,τ̃)
(s, δrr′ , τ, τ̃)

Pπb

(S,∆rr′ ,τ,τ̃)
(s, δrr′ , τ, τ̃)

Pπb

τ,τ̃ |S,∆rr′
(τ, τ̃ |s, δrr′)dτdτ̃ (22)

= Eτ∼pπb ,τ̃∼p̃πb |S=s,∆rr′=δrr′
[
Pπe

(S,∆rr′ ,τ,τ̃)
(s, δrr′ , τ, τ̃)

Pπb

(S,∆rr′ ,τ,τ̃)
(s, δrr′ , τ, τ̃)

] (23)

= Eτ∼pπb ,τ̃∼p̃πb |S=s,∆rr′=δrr′
[
P (δrr′ |s, τ, τ̃)Pπe(τ |s)P̃πe(τ̃ |s)
P (δrr′ |s, τ, τ̃)Pπb(τ |s)P̃πb(τ̃ |s)

] (24)

= Eτ∼pπb ,τ̃∼p̃πb |S=s,∆rr′=δrr′
[

∏H
t=1 πe(at|st)πe(ãt|s̃t)∏H
t=1 πb(at|st)πb(ãt|s̃t)

] (25)

F.2 ADDITIONAL ASSUMPTIONS

First, we formally state the assumptions used in prior literature (Farajtabar et al., 2018; Thomas &
Brunskill, 2016) to support our theoretical results.
Assumption 4 (Common support). πe(a|s) > 0 → πb(a|s) > 0, ∀s ∈ S, ∀a ∈ A.
Assumption 5 (Bounded reward). 0 ≤ R(τ) ≤ Cr for all τ ∼ p.

Assumption 6 (Bounded IPS weights). cips ≤ πe(a|s)
πb(a|s) ≤ Cips, ∀s ∈ S, ∀a ∈ A.

These assumptions are standard in the literature and minimally restrictive, thus enabling the analysis of
CP-Gen’s performance under realistic conditions. We also consider Assumption 7, a mild regularity
condition that holds in a wide variety of real-world MDPs, including those with heterogeneous
populations and varied outcomes, such as clinical settings with diverse patient cohorts. Prior work in
bandit and reinforcement learning has used similar assumptions (Qian & Yang, 2016; Bastani et al.,
2020; Neu et al., 2010).
Assumption 7 (Bounded density). The joint density of (S,∆rr′) under Pπb is uniformly bounded:
pmin ≤ p(s, δrr′) ≤ pmax, ∀s, δrr′ .

F.3 PROOF OF THEOREM 1

Lemma 3. Assume the action space is bounded, ∥a∥ ≤ Ca. Given two states s, s1, there exists an
optimal coupling, such that

Ea∼π(·|s),a1∼π(·|s1)∥a− a1∥ ≤ 2CaP
π(a ̸= a1) = 2CaTV (π(·|s), π(·|s1)) ≤ 2CaLπ∥s− s1∥.

(26)

Proof. This is a direct consequence of Coupling Lemma.
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Lemma 4. Assume the action space is bounded, ∥s∥ ≤ Cs. Given two states st−1, s
′
t−1, there exists

an optimal coupling, such that

Eat−1∼π(·|st−1),a′
t−1∼π(·|s′t−1),st∼p(·|st−1,at−1),s′t∼p(·|s′t−1,a

′
t−1)

∥st − s′t∥ (27)

≤ 2CsP
π(st ̸= s′t) (28)

= 2CsEat−1∼π(·|st−1),a′
t−1∼π(·|s′t−1)

TV (p(·|st−1, at−1), p(·|s′t−1, a
′
t−1)) (29)

≤ 2Cs(Lp,s∥st−1 − s′t−1∥ (30)

+ Lp,aEat−1∼π(·|st−1),a′
t−1∼π(·|s′t−1)

∥at−1 − a′t−1∥) (31)

≤ 2Cs(Lp,s + 2CaLπLp,a)∥st−1 − s′t−1∥. (32)

Thus, if ∥s1 − s′1∥ ≤ ϵs, then

Eτ,τ ′∼pπ∥st − s′t∥ ≤ Lt−1Eτ,τ ′∼pπ∥s1 − s′1∥ ≤ ϵsL
t−1, (33)

where L = 2Cs(Lp,s + 2CaLπLp,a).

And the same holds also for p̃.

Proof. This is a direct consequence of Coupling Lemma.

Lemma 5. ∀s, a, s′, a′, s1, a1, s′1, a′1, for π ∈ {πb, πe},

|π(a|s)π(a′|s′)−π(a1|s1)π(a′1|s′1)| ≤ Lπ,s(∥s−s1∥+∥s′−s′1∥)+Lπ,a(∥a−a1∥+∥a′−a′1∥). (34)

Proof.

|π(a|s)π(a′|s′)− π(a1|s1)π(a′1|s′1)| (35)

≤ |π(a|s)π(a′|s′)− π(a|s)π(a′1|s′1)|+ |π(a|s)π(a′1|s′1)− π(a1|s1)π(a′1|s′1)| (36)

≤ Lπ,s∥s′ − s′1∥+ Lπ,a∥a′ − a′1∥+ Lπ,s∥s− s1∥+ Lπ,a∥a− a1∥. (37)

Lemma 6. Assume ∀s, a, for π ∈ {πb, πe}, π(a|s) ≥ c > 0. Define the per-step importance-ratio

f(s, a, s′, a′) =
πe(a|s)πe(a

′|s′)
πb(a|s)πb(a′|s′)

,

we can derive that there is a constant Lf (c, cips, Cips, Lπ,s, Lπ,a) such that

|f(s, a, s′, a′)− f(s1, a1, s
′
1, a

′
1)| ≤ Lf (∥s− s1∥+ ∥s′ − s′1∥+ ∥a− a1∥+ ∥a′ − a′1∥). (38)

Proof.

|f(s, a, s′, a′)− f(s1, a1, s
′
1, a

′
1)| =

|πe(a|s)πe(a
′|s′)πb(a1|s1)πb(a

′
1|s′1)− πe(a1|s1)πe(a1|s′1)πb(a|s)πb(a

′|s′)|
πb(a|s)πb(a′|s′)πb(a1|s1)πb(a′1|s′1)

(39)

≤ |πe(a|s)πe(a
′|s′)πb(a1|s1)πb(a

′
1|s′1)− πe(a|s)πe(a

′|s′)πb(a|s)πb(a
′|s′)|

πb(a|s)πb(a′|s′)πb(a1|s1)πb(a′1|s′1)
(40)

+
|πe(a|s)πe(a

′|s′)πb(a|s)πb(a
′|s′)− πe(a1|s1)πe(a1|s′1)πb(a|s)πb(a

′|s′)|
πb(a|s)πb(a′|s′)πb(a1|s1)πb(a′1|s′1)

(41)

≤ 2c4(Lπ,s∥s′ − s′1∥+ Lπ,a∥a′ − a′1∥+ Lπ,s∥s− s1∥+ Lπ,a∥a− a1∥)
(42)

≤ Lf (∥s− s1∥+ ∥s′ − s′1∥+ ∥a− a1∥+ ∥a′ − a′1∥). (43)
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Theorem 7 (ϵ−approximation Error Bound).
|wϵ(s, δrr′)− w(s, δrr′)| ≤ Lsϵs + Lrϵr,

where

Ls = 2C
2(H−1)
ips (2CaLπ + 1)Lf

LH − 1

L− 1

Proof. Define

g(τ, τ ′) =

H∏
t=1

f(st, at, s
′
t, a

′
t).

By the telescoping-product bound and the Lipschitz of each f ,

|g(τ, τ ′)− g(τ1, τ
′
1)| = |

H∏
t=1

f(st, at, s
′
t, a

′
t)−

H∏
t=1

f(s1,t, a1,t, s
′
1,t, a

′
1,t)| (44)

= |
H∏
t=1

f(st, at, s
′
t, a

′
t)−

H−1∏
t=1

f(st, at, s
′
t, a

′
t)f(s1,H , a1,H , s′1,H , a′1,H)

(45)

+

H−1∏
t=1

f(st, at, s
′
t, a

′
t)f(s1,H , a1,H , s′1,H , a′1,H)−

H−2∏
t=1

f(st, at, s
′
t, a

′
t)

H∏
t=H−1

f(s1,t, a1,t, s
′
1,t, a

′
1,t)

(46)

+ · · · −
H∏
t=1

f(s1,t, a1,t, s
′
1,t, a

′
1,t)| (47)

≤
H∑
t=1

(
∏
i̸=t

C2
ips)|f(st, at, s′t, a′t)− f(s1,t, a1,t, s

′
1,t, a

′
1,t)| (48)

≤ C
2(H−1)
ips Lf

H∑
t=1

(∥st − s1,t∥+ ∥at − a1,t∥+ ∥s′t − s′1,t∥+ ∥a′t − a′1,t∥).

(49)
Taking expectations under the optimal coupling gives
|w(s, δrr′)− w(s′, δrr′)| = |Eτ∼pπb ,τ ′∼p̃πb [g(τ, τ ′) | s]− Eτ1∼pπb ,τ ′

1∼p̃πb [g(τ1, τ
′
1) | s′]| (50)

≤ Eτ,τ1∼pπb ,τ ′,τ ′
1∼p̃πb [|g(τ, τ ′)− g(τ1, τ

′
1) | s, s′] (51)

= C
2(H−1)
ips Lf

H∑
t=1

Eτ,τ1∼pπb ,τ ′,τ ′
1∼p̃πb (∥st − s1,t∥+ ∥at − a1,t∥+ ∥s′t − s′1,t∥+ ∥a′t − a′1,t∥)

(52)

≤ C
2(H−1)
ips Lf

H∑
t=1

2(2CaLπ + 1)ϵsL
t−1 (53)

= Lsϵs (54)
Hence x 7→ w(x, y) is Ls-Lipschitz. Finally, notice that

wϵ(s, δrr′) = Eπb
[
w(S,∆rr′) | S ∈ B(s, ϵs),∆rr′ ∈ B(δrr′ , ϵr)

]
,

so ∣∣wϵ(s, δrr′)− w(s, δrr′)
∣∣ = Eπb

[
w(S,∆rr′)− w(s, δrr′) | S ∈ B(s, ϵs),∆rr′ ∈ B(δrr′ , ϵr)

]
(55)

≤ sup
∥s′−s∥≤ϵs, |δ′rr′−δrr′ |≤ϵr

∣∣w(s′, δ′rr′)− w(s, δrr′)
∣∣ (56)

≤ Lsϵs + Lrϵr. (57)
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as claimed.

Lemma 8. There exists an (ϵ0s, ϵ
0
r)−covering of S × ∆rr′ , denoted as N =

{(si, δrr′,j)}i=1,...,NS(ϵ0s);j=1,...,N∆
rr′

(ϵ0r)
, such that with probability ≥ 1− δ,

|ŵϵ(si, δrr′,j)− wϵ(si, δrr′,j)| ≤ (C2
ips − c2ips)

√
ln(2NS(ϵ0s)N∆rr′ (ϵ

0
r)/δ)

Nmin
, ∀i, j, (58)

where Nmin = npminV ol(B(ϵs, ϵr)).

We now start the main proof of Theorem 1.

Proof.

Eπb |ŵϵ(S,∆rr′)− w(S,∆rr′)| ≤ Eπb |ŵϵ(S,∆rr′)− wϵ(S,∆rr′)|+ Eπb |wϵ(S,∆rr′)− w(S,∆rr′)|
(59)

≤ Eπb |ŵϵ(S,∆rr′)− wϵ(S,∆rr′)|+ Lsϵs + Lrϵr (60)

For each (s, δrr′), ∃(si, δrr′,j) ∈ N , such that ∥s− si∥ ≤ ϵ0s, ∥δrr′ − δrr′,j∥ ≤ ϵ0r , so

Eπb |ŵϵ(S,∆rr′)− wϵ(S,∆rr′)| ≤ Eπb [|ŵϵ(S,∆rr′)− ŵϵ(si, δrr′,j)|︸ ︷︷ ︸
1

+ |ŵϵ(si, δrr′,j)− wϵ(si, δrr′,j)|︸ ︷︷ ︸
2

(61)
+ |wϵ(si, δrr′,j)− wϵ(S,∆rr′)|︸ ︷︷ ︸

3

] (62)

Bounding (1) by Assumption 7:

|ŵϵ(s, δrr′)− ŵϵ(si, δrr′,j)| (63)

= | 1

N(s, δrr′ , ϵs, ϵr)

∑
(k,k′)∈N(s,δrr′ ,ϵs,ϵr)

∏H
t=1 πe(a

k
t |skt )πe(a

k′

t |sk′

t )∏H
t=1 πb(akt |skt )πb(ak

′
t |sk′

t )
(64)

− 1

N(si, δrr′,j , ϵs, ϵr)

∑
(k,k′)∈N(si,δrr′,j ,ϵs,ϵr)

∏H
t=1 πe(a

k
t |skt )πe(a

k′

t |sk′

t )∏H
t=1 πb(akt |skt )πb(ak

′
t |sk′

t )
| (65)

≤ | 1

N(s, δrr′ , ϵs, ϵr)
(

∑
(k,k′)∈N(s,δrr′ ,ϵs,ϵr)

∏H
t=1 πe(a

k
t |skt )πe(a

k′

t |sk′

t )∏H
t=1 πb(akt |skt )πb(ak

′
t |sk′

t )
−

∑
(k,k′)∈N(si,δrr′,j ,ϵs,ϵr)

∏H
t=1 πe(a

k
t |skt )πe(a

k′

t |sk′

t )∏H
t=1 πb(akt |skt )πb(ak

′
t |sk′

t )
)|

(66)

+ |( 1

N(s, δrr′ , ϵs, ϵr)
− 1

N(si, δrr′,j , ϵs, ϵr)
)

∑
(k,k′)∈N(si,δrr′,j ,ϵs,ϵr)

∏H
t=1 πe(a

k
t |skt )πe(a

k′

t |sk′

t )∏H
t=1 πb(akt |skt )πb(ak

′
t |sk′

t )
|]

(67)

≤ 2d2H
pmax

pmin

Vol(Diff(B(s, δrr′ , ϵs, ϵr), B(si, δrr′,j , ϵs, ϵr)))

V ol(B(ϵs, ϵr))
(68)

= Õ(
2d2Hpmaxϵ

0
sϵ

ds−1
s ϵ0r

pminϵ
ds
s ϵr

), (69)

where the last equation is followed by Li (2011).

Bounding (2) by Lemma 8:

Because with probability ≥ 1− δ,

|ŵϵ(si, δrr′,j)− wϵ(si, δrr′,j)| ≤ (C2
ips − c2ips)

√
ln(2NS(ϵ0s)N∆rr′ (ϵ

0
r)/δ)

Nmin
, ∀i, j, (70)
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let t = (C2
ips − c2ips)

√
ln(2NS(ϵ0s)N∆

rr′
(ϵ0r)/δ)

Nmin
, we have δ = 2NS(ϵ

0
s)N∆rr′ (ϵ

0
r)e

−( t

C2
ips

−c2
ips

)2Nmin

,
so

Pπb(|ŵϵ(si, δrr′,j)− wϵ(si, δrr′,j)| ≥ t) ≤ 2NS(ϵ
0
s)N∆rr′ (ϵ

0
r)e

−( t

C2
ips

−c2
ips

)2Nmin

.

Eπb [|ŵϵ(si, δrr′,j)− wϵ(si, δrr′,j)|] =
∫ ∞

0

Pπb(|ŵϵ(si, δrr′,j)− wϵ(si, δrr′,j)| ≥ t)dt (71)

≤
∫ ∞

0

2NS(ϵ
0
s)N∆rr′ (ϵ

0
r)e

−( t

C2
ips

−c2
ips

)2Nmin

dt (72)

=
(C2

ips − c2ips)NS(ϵ
0
s)N∆rr′ (ϵ

0
r)
√
π

√
Nmin

(73)

= Õ
( (1 + 1

ϵ0s
)ds(1 + 1

ϵ0r
)√

npminϵ
ds
s ϵr

)
(74)

Bounding (3) by Lipschitz property:

Eπb [|wϵ(si, δrr′,j)− wϵ(S,∆rr′)|] ≤ Lsϵs + Lrϵr. (75)

Putting it all together,

Eπb |ŵϵ(S,∆rr′)− w(S,∆rr′)| = Õ(
2d2Hpmaxϵ

0
sϵ

ds−1
s ϵ0r

pminϵ
ds
s ϵr

+
(1 + 1

ϵ0s
)ds(1 + 1

ϵ0r
)√

npminϵ
ds
s ϵr

+ ϵs + ϵr)

(76)

= Õ(n−1/2ϵ−3ds/2
s ϵ−3/2

r + ϵs + ϵr), (77)

where the last step follows by setting ϵ0s = ϵs, ϵ
0
r = ϵr.

The rest of the proof follows directly from Proposition 2 in (Foffano et al., 2023).

F.4 PROOF OF THEOREM 2

We use Assumptions 4 to 6, which are standard in prior OPE literature.

Proof. Because

Eπb [R̃IS(τi)] = Eπb [

∏H
t=1 πe(a

i
t|sit)∏H

t=1 πb(ait|sit)
R(τi)] = V πe , (78)

and

Eπb [R̃PDIS(τi)] = Eπb [

H∑
t=1

γt−1
t∏

k=1

πe(a
i
k | sik)

πb(aik | sik)
rt] = V πe , (79)

the theorem with IS and PDIS is thus a direct consequence of Proposition 1 in (Angelopoulos et al.,
2023).

For WIS, by (Powell & Swann, 1966),

Eπb [R̃WIS(τi)] = Eπb [n

∏H
t=1

πe(a
i
t|s

i
t)

πb(ai
t|sit)∑n

i=1

∏H
t=1

πe(ai
t|sit)

πb(ai
t|sit)

R(τi)] = V πe +O(
1

n
). (80)

We still have

R̃WIS(τi)−V πe = R̃WIS(τi)−Eπb [R̃WIS(τi)]+Eπb [R̃WIS(τi)]−V πe = Op(
1√
n
)+O(

1

n
) = Op(

1√
n
),

(81)
which indicates the desired result following the standard proof of Proposition 1 in (Angelopoulos
et al., 2023).
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