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Abstract001

Recently, AI-driven interactions with comput-002
ing devices have advanced from basic proto-003
type tools to sophisticated, LLM-based systems004
that emulate human-like operations in graphi-005
cal user interfaces. We are now witnessing the006
emergence of Computer-Using Agents (CUAs),007
capable of autonomously performing tasks such008
as navigating desktop applications, web pages,009
and mobile apps. However, as these agents010
grow in capability, they also introduce novel011
safety and security risks. Vulnerabilities in012
LLM-driven reasoning, with the added com-013
plexity of integrating multiple software com-014
ponents and multimodal inputs, further com-015
plicate the security landscape. In this paper,016
we present a systematization of knowledge on017
the safety and security threats of CUAs. We018
conduct a comprehensive literature review and019
distill our findings along four research objec-020
tives: (i) define the CUA that suits safety analy-021
sis; (ii) categorize current safety threats among022
CUAs; (iii) propose a comprehensive taxon-023
omy of existing defensive strategies; (iv) sum-024
marize prevailing benchmarks, datasets, and025
evaluation metrics used to assess the safety and026
performance of CUAs. Building on these in-027
sights, our work provides future researchers028
with a structured foundation for exploring un-029
explored vulnerabilities and offers practitioners030
actionable guidance in designing and deploying031
secure Computer-Using Agents.032

1 Introduction033

Large Language Models (LLMs) have evolved034

rapidly from basic conversational agents to exe-035

cuting complex tasks in diverse computing envi-036

ronments. In particular, Computer-Using Agents037

(CUAs) have garnered increasing attention and038

widespread adoption, thanks to their ability to in-039

teract with graphical user interfaces (GUIs) in a040

manner akin to human users (OpenAI, 2025a).041

Recent systems such as AppAgent, SeeAct, PC-042

Agent, as well as newly-introduced OpenAI’s o3,043

and o4-mini, highlight the remarkable progress of 044

CUAs (Zhang et al., 2023; Zheng et al., 2024; Liu 045

et al., 2025b; OpenAI, 2025a,b). By integrating 046

multimodal perception, advanced reasoning, and 047

automated control of devices, these agents promise 048

to streamline vast tasks from filling out online 049

forms to executing complex application flows. 050

Despite the impressive capabilities of CUAs, 051

their operation in real-world settings raises critical 052

safety concerns. Emerging reports reveal that vul- 053

nerabilities like visual grounding errors, response 054

delays, and UI interpretation pitfalls can be ex- 055

ploited by malicious attackers, causing unintended 056

or harmful consequences such as data leakage, goal 057

misdirection, and so on (Zheng et al., 2024; Nong 058

et al., 2024; Zhang and Zhang, 2023; Wen et al., 059

2023; Liu et al., 2025b). Additionally, many of 060

the threats known to standalone LLMs, such as 061

adversarial attacks and jailbreak strategies, now 062

manifest in CUAs with heightened severity, some- 063

times in new forms adapted to GUI-based envi- 064

ronments (Wu et al., 2024a; Kumar et al., 2024; 065

Tian et al., 2023). Novel attack vectors also surface 066

in CUAs, including environment-level manipula- 067

tions and reasoning-gap attacks that stealthily guide 068

the agent toward risky or undesired behaviors (Wu 069

et al., 2024b; Yuan et al., 2024; Lee et al., 2024a; 070

Zhan et al., 2024). As such, a systematic study 071

on the safety and security threats of CUAs is both 072

timely and necessary. 073

In this work, we present a comprehensive sur- 074

vey focused on the safety and security threats of 075

Computer-Using Agents (CUAs). First, we pro- 076

pose a unifying definition for CUAs, drawing on 077

a detailed study of state-of-the-art agent systems 078

and workflows. Then, we develop a structured 079

taxonomy of both intrinsic and extrinsic threats 080

by synthesizing literature from the safety of LLM- 081

based agents. After that, we systematically review 082

and categorize existing defense approaches, link- 083

ing each to the corresponding threat taxonomy. Fi- 084
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nally, we summarize various evaluation metrics and085

datasets for measuring both the severity of threats086

and the impact of mitigation techniques. Our sur-087

vey aims to illuminate the landscape of the safety088

and security study in CUA research to inspire fu-089

ture studies and innovations.090

The rest of the paper is organized as follows:091

Section 2 serves as a background, which defines092

the concept of a CUA and contextualizes it within093

existing frameworks. Section 3 details our taxon-094

omy of threats to CUAs, covering both internal095

vulnerabilities and extrinsic risk factors. Section 4096

systematically reviews defense mechanisms and097

links them to the threat categories they mitigate.098

Section 5 discusses strategies for systematic eval-099

uation of CUA safety and the effectiveness of de-100

fenses. Key insights and highlights are discussed101

in Section 6. Finally, Section 7 offers concluding102

remarks and outlines promising directions for fu-103

ture research into safe and robust CUAs. We also104

provide an overview of our complete taxonomy105

on CUA threats and defenses in Figure 1.106

2 Background107

2.1 Computer-Using Agent108

In this paper, a Computer-Using Agent (CUA) is109

an LLM-based system that combines multimodal110

perception, advanced reasoning, and tool-use ca-111

pabilities to perceive and interact with graphical112

user interfaces (GUIs) and external applications113

just like human users (OpenAI, 2025a). By pro-114

cessing visual information from screenshots, in-115

voking APIs or command-line tools, and executing116

actions like typing, clicking, and scrolling, a CUA117

can autonomously perform end-to-end tasks on a118

computer, such as ordering products, making reser-119

vations, and filling out forms (OpenAI, 2025a).120

In the realm of agents, several categories fall121

under the umbrella of Computer-Using Agents:122

• OS Agents: These agents operate within gen-123

eral computing devices, such as desktops and124

laptops, to perform tasks by interacting with125

the operating system’s environment and inter-126

faces (Chen et al., 2025d).127

• GUI Agents: Agents that interact specifically128

with graphical user interfaces to control ap-129

plications and perform tasks that would typ-130

ically require human interaction with visual131

elements (Zhang et al., 2024a).132

• Web Agents: These agents are designed to 133

navigate and interact with web environments, 134

automating tasks such as data retrieval, form 135

submission, and web browsing (Yang et al., 136

2024a; Liao et al., 2024). 137

• Device-control Agents: Agents that man- 138

age and control various hardware devices, en- 139

abling automation of device-specific opera- 140

tions across different platforms (Zhang and 141

Zhang, 2023; Lee et al., 2024b). 142

Agent Framework As an LLM-based agent, the 143

architecture of a CUA comprises the following 144

three core components: 145

• Perception: This component enables the 146

agent to gather information from its environ- 147

ment through various input modalities, such as 148

screen reading, system logs, and user inputs. 149

• Brain: Serving as the decision-making unit, it 150

processes the information collected by the per- 151

ception component, interprets it, and formu- 152

lates appropriate actions with memory mecha- 153

nisms and planning strategies based on prede- 154

fined goals and contextual understanding. 155

• Action: This component executes the deci- 156

sions made by the brain, interacting with the 157

operating system, applications, or web inter- 158

faces to perform tasks, manipulate data, or 159

control devices as required. Tool use could 160

also be included in this process. 161

2.2 Literature Review 162

To organize the studies on the safety and security 163

threats of CUAs, we conducted a comprehensive 164

review of recent literature from 2022 onward. Our 165

literature review encompassed several stages: 166

1. Database Selection: We utilized academic 167

databases and preprint servers, including 168

arXiv, Semantic Scholar, Google Scholar, and 169

OpenReview, to source relevant publications. 170

2. Keyword Search: After keyword selection, 171

we identified 700+ papers potentially address- 172

ing security concerns related to CUAs. 173

3. Screening and Filtering: Each identified pa- 174

per underwent a thorough review to assess its 175

relevance. We excluded studies that duplicate 176

or did not directly pertain to security threats 177

or defenses associated with CUAs, resulting 178

in 124 pertinent papers for in-depth analysis. 179
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3 Taxonomy of Safety Threats180

3.1 Threat Overview181

In this section, we introduce our taxonomy of182

threats for Computer-Using Agents (CUAs), di-183

viding them into two broad categories. Intrinsic184

threats arise from intrinsic aspects of the agent185

itself, including its training process, configuration,186

or inherent limitations (Yu et al., 2025; Ferrag et al.,187

2025). Extrinsic threats, on the other hand, are188

initiated by external entities, such as malicious at-189

tackers or users, who attempt to exploit vulnera-190

bilities in the agent’s interaction with its surround-191

ings or take advantage of the agent’s intrinsic is-192

sues to trigger unsafe behaviors. (Yu et al., 2025;193

Ferrag et al., 2025). For each threat, we charac-194

terize three dimensions: its source (Environment,195

Prompt, Model, or User, marked as primary or196

secondary), the agent’s affected components (Per-197

ception, Brain, or Action), and threat model (the198

adversarial or user-driven scenario). Tables 1 and 2199

summarize these mappings, with full details avail-200

able in Appendix A.201

3.2 Intrinsic Threats202

In this section, we introduce the intrinsic threats to203

Computer-Using Agents (CUAs)—challenges that204

arise from within the agent itself, such as limita-205

tions in perception, reasoning, or generalization,206

which may undermine performance across real-207

world tasks. Table 1 provides an overview of these208

threats; detailed descriptions and representative ex-209

amples are included in Appendix A.1.210

3.2.1 Perception211

In the Computer-Using Agents (CUAs), the per-212

ception component takes charge of receiving the213

model input information, and recognizing the task-214

specific elements, such as UI screen shots, HTML215

elements, and other environmental observations.216

1 UI Understanding and Grounding Difficulties217

refers to the challenges faced by models in accu-218

rately perceiving, interpreting, and grounding UI219

elements—such as buttons, forms, and icons—with220

semantic meaning, user intent, or external knowl-221

edge, which are exacerbated by inherent flaws in222

existing UI datasets, such as static representations,223

limited interaction diversity, and resolution con-224

straints (Chen et al., 2025c; Pahuja et al., 2025;225

Nong et al., 2024).226

3.2.2 Brain 227

The brain component involves reasoning, memory, 228

and planning functions, from which the following 229

six primary threats stem: 230

2 Scheduling Errors refer to the internal failures 231

of a CUA in managing the execution order, con- 232

currency, or timing of actions, which can result in 233

unintended or unstable behaviors. These issues are 234

particularly prominent when agents must handle 235

complex instructions and interdependent subtasks. 236

Current planning modules often rely on external 237

tools and application-specific APIs to interpret en- 238

vironments and translate predicted actions into ex- 239

ecution steps (Zhang and Zhang, 2023) and the 240

absence of robust internal planning mechanisms 241

makes CUAs vulnerable to such errors. 242

3 Misalignment occurs when the agent’s intrinsic 243

reasoning does not properly align with the real- 244

world context or user intent. The problem arises 245

from the pitfalls inherent in LLM. It results in deci- 246

sions that are out of sync with the environmental 247

demands or user instructions, and potentially unex- 248

pected and harmful actions. 249

4 Hallucination refers to the phenomenon where 250

a CUA agent generates outputs, such as facts, ac- 251

tions, or API calls, that are not grounded in the ac- 252

tual environment, task context, or user input, which 253

primarily stems from insufficient training of agents 254

and their limited grasp of the task-specific knowl- 255

edge and context (Deng et al., 2024). 256

5 Excessive Context Length represents the con- 257

dition where the accumulated input (e.g., OCR out- 258

put, HTML, UI trees) to a model, and historical 259

interaction data, exceed or approach the model’s 260

input capacity, leading to degraded performance or 261

unexpected errors (Zhang and Zhang, 2023). 262

6 Social and Cultural Concerns refer to the chal- 263

lenges that CUA agents face in accurately recog- 264

nizing, respecting, and adhering to diverse social 265

norms, cultural sensitivities, and ethical expecta- 266

tions. These concerns are critical when agents inter- 267

act with users from varied backgrounds or operate 268

in complex real-world environments where inap- 269

propriate responses can lead to misunderstandings 270

or harm (Qiu et al., 2025). 271

7 Response Latency refers to the delay between 272

the user input and the agent’s corresponding output 273

or action, typically caused by model inference time, 274

complex reasoning processes, or large context pro- 275

cessing. It typically stems from various factors, 276

among which the reasoning time of the brain com- 277
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ponent plays a major role. In critical domains such278

as financial trading or medical diagnosis, these is-279

sues can have serious safety implications (Zhang280

and Zhang, 2023; Wen et al., 2023).281

3.2.3 Action282

The action component of an LLM-based CUAs283

engages in translating the agent’s output to a se-284

ries of executable operations. As these behaviors285

involve interactions with an unverified website or286

API provider, this also brings with it a number of287

security risks.288

8 API Call Errors refer to failures in a CUA’s289

ability to correctly infer, select, or format the re-290

quired arguments when constructing API calls. Al-291

though general-purpose LLMs demonstrate strong292

capabilities in reasoning and planning, they often293

exhibit inaccuracies during API invocation, partic-294

ularly in parameter filling (Deng et al., 2024).295

3.3 Extrinsic threats296

In this section, we introduce the extrinsic threats297

to Computer-Using Agents (CUAs)—attack vec-298

tors initiated by external adversaries aiming to ex-299

ploit vulnerabilities in an agent’s interaction with300

its environment or to subvert its decision-making301

processes. Table 2 provides an overview of these302

threats; detailed descriptions and representative ex-303

amples can be found in Appendix A.2.304

1 Adversarial Attack involves deliberately ma-305

nipulating an agent’s input data or environment306

to induce harmful or unintended behaviors (Aich-307

berger et al., 2025; Zhao et al., 2025; Ma et al.,308

2024a; Zhang et al., 2024c; Wu et al., 2025). Com-309

puter Using Agents (CUAs), which operate within310

specific environments, such as interacting with311

webpage, computer interfaces, or mobile appli-312

cations, are especially vulnerable to environment-313

specific adversarial attacks (Wu et al., 2024a).314

2 Prompt Injection Attack exploit the design of315

CUAs by embedding crafted instructions into the316

input that the agent processes, causing it to bypass317

safety rules or ignore original purpose and execute318

harmful commands (Mudryi et al., 2025; Wu et al.,319

2024b; Liu et al., 2023b). Most existing prompt320

injection attacks can be classified into two main321

types: Direct Prompt Injection embeds adversar-322

ial commands directly into the user’s input (prompt)323

(Debenedetti et al., 2024; Lupinacci et al., 2025),324

and Indirect Prompt Injection injects mislead-325

ing instructions or unsafe content into the agent’s326

environment or external data sources (Kuntz et al.,327

2025; Wu et al., 2024b), such as webpage (Xu et al., 328

2024; Zhan et al., 2024; Liao et al., 2025; Evtimov 329

et al., 2025) or files (Liao et al., 2024), so that 330

when the agent later retrieves and processes this 331

corrupted environment data, its reasoning can be 332

compromised, leading to risky behaviors (Wu et al., 333

2025). 334

3 Jailbreak bypass CUAs predefined guardrails 335

and safety mechanisms, by rephrasing queries or 336

injecting additional instructions into the agent’s 337

input, enabling agents to generate harmful or unau- 338

thorized outputs (Mo et al., 2024; Chu et al., 2024; 339

Mao et al., 2025). 340

4 Memory Injection corrupt a CUA’s persistent 341

context, such as stored task plans or retrieved doc- 342

uments, causing the agent to unknowingly execute 343

malicious steps when accessing its poisoned mem- 344

ory (Patlan et al., 2025a,b). 345

5 Backdoor Attack involves inserting a malicious 346

backdoor during a CUA’s training or fine-tuning 347

phase, so that when a specific trigger later appears 348

in user inputs or observations, the agent executes 349

unintended or harmful behavior (Yang et al., 2024b; 350

Wang et al., 2024; Zhu et al., 2025b; Ye et al., 2025; 351

Wang et al., 2025f; Cheng et al., 2025). These at- 352

tacks can place triggers directly in queries and envi- 353

ronment data (Chen et al., 2024b; Boisvert et al.) or 354

corrupt internal reasoning paths (Yang et al., 2024b; 355

Lupinacci et al., 2025). 356

6 Reasoning Gap Attack exploits mismatches 357

between a CUA’s multimodal perception and its 358

internal reasoning, injecting conflicting or ambigu- 359

ous signals into one or more modalities that cause 360

the agent to draw incorrect inferences and perform 361

unintended actions (Chen et al., 2025d). 362

7 System Sabotage trick agents into performing 363

destructive operations—such as corrupting mem- 364

ory, damaging critical files, or halting essential 365

processes—that directly damage the host system or 366

its infrastructure (Luo et al., 2025b). 367

8 Web Hacking co-opt CUAs to autonomously 368

identify and exploit security flaws in web- 369

sites—such as SQL injection, XSS, or weak au- 370

thentication—by guiding the agent through crafted 371

prompts, effectively transforming them into tools 372

for malicious users (Fang et al., 2024b). 373

4 Taxonomy of Existing Defenses 374

4.1 Defense Overview 375

In this section, we review existing defenses for 376

CUAs and provide brief definitions. For each de- 377
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fense method, we categorize it along three axes: its378

target components (Environment, Prompt, Model,379

or User, marked as primary or secondary), the380

agent framework elements it strengthens (Percep-381

tion, Brain, or Action), and the target threats it382

addresses. Table 3 presents the mapping. While383

many defenses are developed to counter specific384

attacks from Section 3, they often generalize across385

multiple threat vectors. For in-depth descriptions386

and examples, see Appendix B.387

4.2 Defense Categories388

1 Environmental Constraints refer to security389

mechanisms that limit or mediate the agent’s in-390

teractions with its operating environment in order391

to prevent harmful actions or malicious exploita-392

tion (Yang et al., 2024c; Nong et al., 2024).393

2 Input Validation is a security measure that in-394

volves verifying and sanitizing user inputs to pre-395

vent the system from processing malicious or un-396

intended commands (Ferrag et al., 2025; Shi et al.,397

2025a; Zhong et al., 2025).398

3 Defensive Prompting refers to a security tech-399

nique designed to safeguard language model agents400

by structuring prompts in a way that prevents adver-401

sarial manipulation and ensures the model adheres402

to intended behavior (Debenedetti et al., 2024;403

Zhang et al., 2024c; Wu et al., 2024a).404

4 Data Sanitization refers to the process that405

involves detecting and removing malicious or cor-406

rupted data from training datasets to ensure the407

integrity and security of models (Jones et al., 2025;408

Wang et al., 2025b).409

5 Adversarial Training is designed to enhance410

model resilience and robustness by incorporating411

adversarial examples into the training process (Wu412

et al., 2024a).413

6 Output Monitoring refers to a strategy that in-414

volves continuously observing and evaluating the415

outputs of agents to ensure they align with user in-416

tentions and do not produce undesired actions (Shi417

et al., 2025b).418

7 Model Inspection detects malicious manipu-419

lations or compromised logic by examining inter-420

nal model behaviors and parameters (Wang et al.,421

2025d; Yang et al., 2024b). It is commonly catego-422

rized into two sub-methods: Anomaly Detection423

focuses on monitoring the behaviors of agents dur-424

ing inference or interaction to detect deviations425

from expected model outputs or communication426

topologies. And Weight Analysis involves inspect-427

ing the internal parameters of a trained model to428

identify hidden triggers or abnormal value distribu- 429

tions indicative of backdoor implantation. 430

8 Cross Verification is a collaborative defense 431

strategy in multi-agent systems where multiple 432

agents independently process the same task or in- 433

struction and validate each other’s outputs to en- 434

sure consistency and correctness (Zeng et al., 2024; 435

Huang et al., 2024; Luo et al., 2025b). 436

9 Continuous Learning and Adaptation refers 437

to the capability of agents to dynamically update 438

their internal models based on new interactions, 439

environments, or user feedback, thereby improving 440

their long-term safety and robustness (Zhang et al., 441

2025b). This strategy is typically divided into two 442

submethods: Self-Evolution Mechanisms refers 443

to the agent’s ability to autonomously adjust its rea- 444

soning or decision-making strategy based on past 445

experiences and outcomes. And User Feedback 446

Integration leverages feedback from human users 447

to realign the agent’s behavior with user expecta- 448

tions. 449

10 Transparentize refers to the implementation of 450

mechanisms that enhance the transparency and in- 451

terpretability of CUAs, thereby improving trust and 452

safety in their operations (Sager et al., 2025; Chen 453

et al., 2025b). It consists of two main submeth- 454

ods: Explainable AI (XAI) Techniques involve 455

developing methods that make the decision-making 456

processes of CUAs understandable to users. And 457

Audit Logs record the actions and decisions made 458

by agents to provide a traceable history of their 459

operations (Chen et al., 2025b). 460

11 Topology-Guided strategies enhance the secu- 461

rity of multi-agent systems by analyzing and lever- 462

aging the structural relationships among agents to 463

detect and mitigate adversarial threats (Wang et al., 464

2025d). This approach encompasses two aspects: 465

Agent Network Flow Analysis monitors the com- 466

munication and interaction patterns among agents 467

to identify anomalies that may indicate security 468

breaches (Wang et al., 2025d). And Resilience 469

Planning focuses on designing the agent network 470

topology to be robust against potential attacks. This 471

includes strategies such as edge pruning, where 472

connections to compromised agents are severed to 473

prevent the spread of malicious information (Wang 474

et al., 2025d). 475

12 Perception Algorithms Synergy refers to a 476

family of techniques that combine complementary 477

perception modules to obtain a more faithful, com- 478

pact, and noise-resilient representation of the user 479

interface. 480
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13 Planning-Centric Architecture Refinement481

denotes defenses that improve CUA’s reasoning-482

related architecture to ensure reliable scheduling,483

low response latency, and accurate API invocation.484

14 Pre-defined Regulatory Compliance involves485

designing CUAs to adhere to established laws, stan-486

dards, and ethical guidelines, ensuring their oper-487

ations align with societal norms and legal require-488

ments (Chen et al., 2025e). This strategy comprises489

two main aspects: Adherence to Standards re-490

fer to specific regulatory frameworks and industry491

standards pre-defined for CUAs to comply with.492

And Ethical Guidelines involve integrating ethi-493

cal considerations into the design and operation of494

agents (Zhang et al., 2024e).495

5 Evaluation and Benchmarking496

Computer Using Agent (CUA) safety benchmarks497

span diverse platforms and thus require specialized498

evaluations. To address this, we summarize repre-499

sentative benchmarks in Table 4 and 5, focusing500

on three key components: datasets in Section 5.1,501

evaluation metrics in Section 5.2, and measure-502

ment methods in Section 5.3. Further details are in503

Appendix C.504

5.1 Datasets505

5.1.1 Web-based Scenario506

In the web-based scenario, several datasets have507

been proposed to assess the safety of agents oper-508

ating within browser environments. These bench-509

marks primarily focus on evaluating agent behav-510

iors in response to safety-sensitive inputs and inter-511

actions, including prompt injection, privacy expo-512

sure, and social norm violations (Levy et al., 2024;513

Kumar et al., 2024; Shao et al., 2024; Qiu et al.,514

2025).515

5.1.2 Mobile-based Scenario516

Mobile-focused benchmarks provide essential tools517

to evaluate CUAs within real mobile environments,518

where agents face unique challenges such as lim-519

ited screen size, touch-based interactions, diverse520

app behaviors, and resource constraints. These521

benchmarks aim to capture the safety risks and522

operational complexities specific to mobile plat-523

forms, including handling dynamic UI states and524

security-sensitive actions (Lee et al., 2024a; Liu525

et al., 2025a).526

5.1.3 General-purpose Scenario 527

Several datasets are designed with general-purpose 528

safety evaluation in mind, spanning diverse tools, 529

risks, and interaction environments. 530

Tool-use scenario refers to the evaluation of tool- 531

enabled Computer-Using Agents with a focus on 532

identifying and addressing safety vulnerabilities 533

arising from interactions with diverse external tools. 534

It aims to systematically probe agents’ failures and 535

risks in executing complex tasks that involve multi- 536

ple toolkit and adversarial conditions, thereby fa- 537

cilitating the development of safer and more re- 538

liable CUAs (Ruan et al., 2023; Fu et al., 2025; 539

Debenedetti et al., 2024; Zhan et al., 2024; An- 540

driushchenko et al., 2024; Zhang et al., 2024b,e). 541

Mixed / hybrid environments refer to evaluation 542

scenarios where agents operate across multiple het- 543

erogeneous interfaces and platforms, such as web 544

browsers, operating systems, shells, and code ex- 545

ecutors. This setting aims to assess the robust- 546

ness and safety of CUAs in complex, intercon- 547

nected environments that involve diverse sources 548

of risks—including environmental, user-originated, 549

and interface anomalies, and challenge agents’ abil- 550

ity to safely manage multi-turn, multi-user, and ad- 551

versarial interactions in realistic and dynamic con- 552

texts (Vijayvargiya et al., 2025; Yang et al., 2025b; 553

Liao et al., 2025; Yang et al., 2025c,a; Zhou et al., 554

2024). 555

Broader risk-awareness and multidimensional 556

safety refers to evaluation efforts that go beyond 557

specific tools or environments, aiming to develop 558

comprehensive taxonomies and analyses of diverse 559

risk types faced by CUAs. These works empha- 560

size holistic assessment of agent behaviors across 561

multiple dimensions of safety, including privacy, 562

interaction robustness, and risk awareness, to mea- 563

sure how well agents recognize and mitigate a wide 564

spectrum of risks, and how resilient they are under 565

various anomalous conditions encountered during 566

interactions (Yuan et al., 2024; Hua et al., 2024; 567

Shao et al., 2024; Yang et al., 2025a). 568

5.2 Evaluation Metrics 569

This subsection provides concise definitions of 570

the core metrics used to evaluate Computer Us- 571

ing Agent (CUA) safety, covering the majority of 572

those reported in Tables 4 and 5. Detailed formulas, 573

variants, and implementation notes are available in 574

Appendix C.2. 575
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5.2.1 Task Completion Metrics576

1 Task Success Rate (TSR) measures the fraction577

of tasks in which the agent reaches its intended final578

goal. (Yao et al., 2022; Xie et al., 2024; Wen et al.,579

2023).580

2 Helpfulness evaluates how well an agent fulfills581

user instructions—balancing task success, coherent582

reasoning, and safety—beyond mere completion.583

(Ruan et al., 2023; Qiu et al., 2025).584

5.2.2 Intermediate Step Metrics585

1 Step Success Rate (SSR) evaluates how accu-586

rately an agent performs each individual step within587

a multi-step task (Deng et al., 2023; Zhang et al.,588

2024a; Chen et al., 2024a).589

2 Total Correct Prefix measures the longest ini-590

tial sequence of correct, in-order steps that aligns591

with the ground truth (Hua et al., 2024).592

5.2.3 Safety and Robustness Metrics593

1 Attack Success Rate (ASR) measures the pro-594

portion of adversarial tasks in which the agent pro-595

duces an unsafe or unintended outcome, serving596

as a primary indicator of adversarial vulnerability.597

(Zhan et al., 2024; Debenedetti et al., 2024; Ku-598

mar et al., 2024; Zhang et al., 2024b; Chang et al.,599

2023)600

2 Completion Under the Policy (CuP) measures601

the fraction of tasks that the agent completes with-602

out any policy violations, indicating strict adher-603

ence to safety or usage rules (Zhang et al., 2024a).604

3 F1 Score combines both precision and recall605

into their harmonic mean to evaluate an agent’s606

accuracy in binary classifications, such as distin-607

guishing between safe and unsafe labels (Chang608

et al., 2023; Yuan et al., 2024).609

4 Refusal Rate (RR) measures the proportion of610

tasks an agent correctly refuses when faced with611

unsafe or disallowed requests (Zhang et al., 2024b;612

Andriushchenko et al., 2024).613

5 Leakage Rate (LR) measures the fraction of614

evaluation runs in which an agent unintentionally615

leaks sensitive or private information (Shao et al.,616

2024; Zharmagambetov et al., 2025).617

6 Attempt Rate (AR) captures how often an agent618

attempts to follow an adversarial instruction, even619

if it never finishes the harmful task (Liao et al.,620

2025; Cao et al., 2025)621

7 Cultural and Social Norms Metrics evaluate622

an agent’s sensitivity to societal expectations in in-623

teractions (Qiu et al., 2025):624

Awareness Coverage Rate (AC-R) quantifies the625

proportion of user queries for which the agent ac- 626

curately identifies potential cultural or social norm 627

violations. 628

Educational Rate (Edu-R) measures whether the 629

agent provides appropriate guidance or corrective 630

feedback once a violation is detected. 631

8 Effectiveness assesses an agent’s ability to cor- 632

rectly identify and describe safety risks in interac- 633

tion logs (Yuan et al., 2024). 634

9 Toxicity Score (TS) assigns a scalar value es- 635

timating the likelihood that an agent’s response 636

contains toxic, offensive, or harmful content (Yang 637

et al., 2025c). 638

5.3 Measurements 639

5.3.1 Rule-based Measurements 640

Rule-based measurement uses predefined, deter- 641

ministic rules or algorithms to evaluate CUA be- 642

havior against objective criteria without requiring 643

human or LLM judgment (Luo et al., 2025a; Zhan 644

et al., 2024; Debenedetti et al., 2024; Yang et al., 645

2025a; Fu et al., 2025; Wu et al., 2024a; Levy et al., 646

2024; Chen et al., 2025e; Lee et al., 2024a; Liu 647

et al., 2025a). Rule-based evaluations scale easily 648

but struggle to capture nuanced, context-dependent 649

behaviors, limiting their ability to detect various 650

unsafe attempts. 651

5.3.2 LLM-as-a-judge Measurements 652

LLM-based measurement leverages the contextual 653

understanding and reasoning capabilities of large 654

language models, such as general models like GPT- 655

4 or fine-tuned models, evaluating agent behav- 656

iors in complex or open-ended scenarios where 657

fixed rules are insufficient (Luo et al., 2025a). This 658

approach is widely adopted across recent safety 659

benchmarks, including using LLMs to judge safety 660

analyses (Yuan et al., 2024), assess helpfulness 661

and risk (Hua et al., 2024; Ruan et al., 2023), 662

classify harmful actions (Kumar et al., 2024; An- 663

driushchenko et al., 2024), and assign risk levels 664

(Tur et al., 2025; Zhang et al., 2024b). While 665

highly flexible, LLM-based evaluation can intro- 666

duce variability, increased cost, and occasional in- 667

consistency. 668

5.3.3 Manual Judge Measurements 669

Manual measurement relies on human evaluators to 670

assess an agent’s behavior or output, making it es- 671

sential for tasks requiring nuanced judgment, con- 672

textual understanding, or complex reasoning that 673

automated methods may miss. (Yuan et al., 2024; 674
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Ruan et al., 2023) Although highly accurate and in-675

terpretable for ambiguous cases, manual evaluation676

is labor-intensive, difficult to scale, and subject to677

individual bias, which limits its widespread use in678

large-scale benchmarks.679

6 Discussion680

In the preceding sections, we examined the threat681

landscape, defense mechanisms, and evaluation682

practices for CUAs. Below we distill the key find-683

ings and promising directions for future work.684

6.1 Key Insights685

Real-Time and Multimodal Emphasis: CUAs686

respond in dynamic, GUI-driven environments,687

which impose stringent requirements on low-688

latency reasoning, multimodal grounding, and on-689

device resource use (Zhang and Zhang, 2023; Nong690

et al., 2024; Zhang et al., 2023).691

Grounding and Perception Gaps: Many CUAs692

underperform on safety benchmarks because their693

UI-grounding remains brittle, misinterpreting vi-694

sual and structural cues and suffering multimodal695

hallucinations, highlighting the need for more holis-696

tic training and test scenarios that address diverse697

threat models (Zhang and Zhang, 2023; Zhang698

et al., 2024e; Andriushchenko et al., 2024; Lee699

et al., 2024a; Zhang et al., 2024b; Zheng et al.,700

2024; Liu et al., 2025b).701

Limited Experimental Scenarios: Many CUAs702

are experimented with in highly constrained set-703

tings that fail to capture the breadth of real-world704

risky tasks (Zhang et al., 2023; Zhang and Zhang,705

2023; Liu et al., 2025b).706

Transparency Deficits: A lack of visible safety707

policies and systematic evaluation results from708

CUA providers undermines accountability and user709

trust, motivating standardized disclosure frame-710

works and independent audits (Shi et al., 2024;711

Hua et al., 2024; Hu et al., 2024).712

6.2 Future Directions713

Tackling these challenges requires a multifaceted714

research agenda, integrating both technical innova-715

tions and governance considerations:716

Integrated Defense Mechanisms: Research on ro-717

bust defenses spans different defense mechanisms.718

Proposed methods include integrating modules for719

trustworthiness checks and leveraging multi-agent720

approaches for role-specific security tasks (Chen721

et al., 2025d; Zeng et al., 2024; Tian et al., 2023).722

It is worth investigating how to integrate different 723

defense mechanisms efficiently and intelligently. 724

Real-time Comprehensive Benchmarking: More 725

dynamic benchmarks are essential for capturing 726

real-world complexity. Future evaluations should 727

incorporate tasks requiring advanced domain exper- 728

tise and testing agents’ resilience under challeng- 729

ing conditions and adaptive attacks (Zhang et al., 730

2024e; Levy et al., 2024; Debenedetti et al., 2024; 731

Andriushchenko et al., 2024). 732

Transparency and Accountability: Defining scal- 733

able, automated mechanisms for real-time pol- 734

icy enforcement and audit within CUA lifecycles 735

is a promising avenue for ensuring transparent, 736

regulation-ready systems (Hua et al., 2024; Shi 737

et al., 2024; Shao et al., 2024). 738

Human-in-the-Loop Safeguards: Incorporating 739

real-time human oversight, interactive risk warn- 740

ings, and explainable agent rationales will mitigate 741

residual risks and bolster user confidence, espe- 742

cially in high-stakes settings (Wang et al., 2023; 743

Fang et al., 2024a; Sager et al., 2025). Research 744

should investigate intuitive, low-overhead inter- 745

faces that allow adaptive human oversight, balanc- 746

ing autonomy and safety in high-stakes deploy- 747

ments. 748

By concentrating on these prioritized areas: real- 749

world evaluation, integrated defenses, human over- 750

sight, and governance, researchers can advance 751

CUAs that are both highly capable and demonstra- 752

bly safe in everyday applications. 753

7 Conclusion 754

The rapid advancement of Computer-Using Agents 755

(CUAs) has introduced powerful multimodal task 756

automation capabilities, but also significant safety 757

challenges. In this survey, we have formalized 758

CUA definitions, categorized intrinsic and extrinsic 759

vulnerabilities, examined defense strategies, and 760

reviewed benchmarking approaches. Future efforts 761

should prioritize: (i) real-time, realistic benchmark- 762

ing, (ii) integrated, efficient defenses, (iii) scal- 763

able transparency and audits, and (iv) human-in- 764

the-loop safeguards to ensure CUAs are not only 765

capable but safe and trustworthy. Although attack 766

and defense methods are rapidly evolving, our adap- 767

tive taxonomy and comprehensive threat–defense 768

framework are general enough to incorporate new 769

techniques, offering a robust foundation for secur- 770

ing next-generation CUAs. 771
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Limitations772

While this survey aims to provide a comprehensive,773

up-to-date overview of Computer-Using Agent774

(CUA) safety, several limitations remain. The field775

evolves rapidly—despite our best efforts to include776

all relevant work up to submission, some emerging777

attack vectors, defenses, or benchmarks may have778

been missed. Second, our taxonomy and bench-779

mark review draw primarily on publicly available,780

English-language sources and may under-represent781

proprietary or non-English research. Third, we fo-782

cus on architectural and methodological analysis783

without empirically evaluating the relative effec-784

tiveness of different threats or defenses. We hope785

future work will extend this framework with real-786

world evaluations, cross-lingual analyses, and con-787

tinuous updates to reflect advances in CUA safety.788

Ethical Statement789

This work is a literature survey of publicly avail-790

able studies on Computer-Using Agents (CUAs);791

no new user data was collected, and no live systems792

were probed beyond what prior publications report.793

We recognize that the threats discussed in this work794

could potentially be exploited to manipulate CUAs795

to compromise user privacy, perform unauthorized796

malicious actions, or engage in offensive conduct.797

To mitigate such risks, we emphasize the impor-798

tance of integrating various defense mechanisms,799

embedding transparency measures, human-in-the-800

loop oversight, and adherence to regulatory and801

ethical guidelines in CUA design and deployment.802

Our taxonomy and future directions aim to inform803

researchers and practitioners on trustworthy CUA804

development, balancing innovation with user safety,805

privacy, and accountability.806
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dana Gella, Karolina Stańczak, and Siva Reddy. 2025. 1159
Safearena: Evaluating the safety of autonomous web 1160
agents. ArXiv, abs/2503.04957. 1161

Sanidhya Vijayvargiya, Aditya Bharat Soni, Xuhui 1162
Zhou, Zora Zhiruo Wang, Nouha Dziri, Graham Neu- 1163
big, and Maarten Sap. 2025. Openagentsafety: A 1164
comprehensive framework for evaluating real-world 1165
ai agent safety. arXiv preprint arXiv:2507.06134. 1166

Haowei Wang, Junjie Wang, Xiaojun Jia, Rupeng 1167
Zhang, Mingyang Li, Zhe Liu, Yang Liu, and Qing 1168
Wang. 2025a. Adinject: Real-world black-box at- 1169
tacks on web agents via advertising delivery. ArXiv, 1170
abs/2505.21499. 1171

Kun Wang, Guibin Zhang, Zhenhong Zhou, Jiahao 1172
Wu, Miao Yu, Shiqian Zhao, Chenlong Yin, Jinhu 1173
Fu, Yibo Yan, Hanjun Luo, Liang Lin, Zhihao Xu, 1174
Haolang Lu, Xinye Cao, Xinyun Zhou, Weifei Jin, 1175
Fanci Meng, Junyuan Mao, Haoyang Wu, and 63 oth- 1176
ers. 2025b. A comprehensive survey in llm(-agent) 1177
full stack safety: Data, training and deployment. 1178
ArXiv, abs/2504.15585. 1179

Le Wang, Zonghao Ying, Tianyuan Zhang, Siyuan 1180
Liang, Shengshan Hu, Mingchuan Zhang, Aishan 1181
Liu, and Xianglong Liu. 2025c. Manipulating mul- 1182
timodal agents via cross-modal prompt injection. 1183
ArXiv, abs/2504.14348. 1184

Lei Wang, Chengbang Ma, Xueyang Feng, Zeyu Zhang, 1185
Hao ran Yang, Jingsen Zhang, Zhi-Yang Chen, Ji- 1186
akai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, 1187
Zhewei Wei, and Ji rong Wen. 2023. A survey 1188
on large language model based autonomous agents. 1189
Frontiers Comput. Sci., 18:186345. 1190

Shilong Wang, Gui-Min Zhang, Miao Yu, Guancheng 1191
Wan, Fanci Meng, Chongye Guo, Kun Wang, and 1192
Yang Wang. 2025d. G-safeguard: A topology-guided 1193
security lens and treatment on llm-based multi-agent 1194
systems. ArXiv, abs/2502.11127. 1195

Xilong Wang, John Bloch, Zedian Shao, Yuepeng Hu, 1196
Shuyan Zhou, and Neil Zhenqiang Gong. 2025e. En- 1197
vinjection: Environmental prompt injection attack to 1198
multi-modal web agents. ArXiv, abs/2505.11717. 1199

12

https://arxiv.org/abs/2502.11357
https://arxiv.org/abs/2502.11357
https://arxiv.org/abs/2502.11357
https://arxiv.org/abs/2502.11357
https://arxiv.org/abs/2502.11357
https://api.semanticscholar.org/CorpusID:279999237
https://api.semanticscholar.org/CorpusID:279999237
https://api.semanticscholar.org/CorpusID:279999237
https://api.semanticscholar.org/CorpusID:279999237
https://api.semanticscholar.org/CorpusID:279999237
https://api.semanticscholar.org/CorpusID:277151345
https://api.semanticscholar.org/CorpusID:277151345
https://api.semanticscholar.org/CorpusID:277151345
https://api.semanticscholar.org/CorpusID:277151345
https://api.semanticscholar.org/CorpusID:277151345
https://api.semanticscholar.org/CorpusID:277999852
https://api.semanticscholar.org/CorpusID:277999852
https://api.semanticscholar.org/CorpusID:277999852
https://api.semanticscholar.org/CorpusID:277999852
https://api.semanticscholar.org/CorpusID:277999852
https://arxiv.org/abs/2410.23252
https://arxiv.org/abs/2410.23252
https://arxiv.org/abs/2410.23252
https://api.semanticscholar.org/CorpusID:262944419
https://api.semanticscholar.org/CorpusID:262944419
https://api.semanticscholar.org/CorpusID:262944419
https://api.semanticscholar.org/CorpusID:275920655
https://api.semanticscholar.org/CorpusID:275920655
https://api.semanticscholar.org/CorpusID:275920655
https://api.semanticscholar.org/CorpusID:275920655
https://api.semanticscholar.org/CorpusID:275920655
https://api.semanticscholar.org/CorpusID:272367699
https://api.semanticscholar.org/CorpusID:272367699
https://api.semanticscholar.org/CorpusID:272367699
https://api.semanticscholar.org/CorpusID:279251186
https://api.semanticscholar.org/CorpusID:279251186
https://api.semanticscholar.org/CorpusID:279251186
https://api.semanticscholar.org/CorpusID:274981737
https://api.semanticscholar.org/CorpusID:274981737
https://api.semanticscholar.org/CorpusID:274981737
https://arxiv.org/abs/2507.15219
https://arxiv.org/abs/2507.15219
https://arxiv.org/abs/2507.15219
https://api.semanticscholar.org/CorpusID:277452545
https://api.semanticscholar.org/CorpusID:277452545
https://api.semanticscholar.org/CorpusID:277452545
https://api.semanticscholar.org/CorpusID:265294905
https://api.semanticscholar.org/CorpusID:265294905
https://api.semanticscholar.org/CorpusID:265294905
https://api.semanticscholar.org/CorpusID:274280511
https://api.semanticscholar.org/CorpusID:274280511
https://api.semanticscholar.org/CorpusID:274280511
https://api.semanticscholar.org/CorpusID:274280511
https://api.semanticscholar.org/CorpusID:274280511
https://api.semanticscholar.org/CorpusID:276884663
https://api.semanticscholar.org/CorpusID:276884663
https://api.semanticscholar.org/CorpusID:276884663
https://api.semanticscholar.org/CorpusID:278911479
https://api.semanticscholar.org/CorpusID:278911479
https://api.semanticscholar.org/CorpusID:278911479
https://api.semanticscholar.org/CorpusID:277994146
https://api.semanticscholar.org/CorpusID:277994146
https://api.semanticscholar.org/CorpusID:277994146
https://api.semanticscholar.org/CorpusID:277955411
https://api.semanticscholar.org/CorpusID:277955411
https://api.semanticscholar.org/CorpusID:277955411
https://api.semanticscholar.org/CorpusID:261064713
https://api.semanticscholar.org/CorpusID:261064713
https://api.semanticscholar.org/CorpusID:261064713
https://api.semanticscholar.org/CorpusID:276409220
https://api.semanticscholar.org/CorpusID:276409220
https://api.semanticscholar.org/CorpusID:276409220
https://api.semanticscholar.org/CorpusID:276409220
https://api.semanticscholar.org/CorpusID:276409220
https://api.semanticscholar.org/CorpusID:278739963
https://api.semanticscholar.org/CorpusID:278739963
https://api.semanticscholar.org/CorpusID:278739963
https://api.semanticscholar.org/CorpusID:278739963
https://api.semanticscholar.org/CorpusID:278739963


Xuan Wang, Siyuan Liang, Zhe Liu, Yi Yu, Yu liang1200
Lu, Xiaochun Cao, Ee-Chien Chang, and Xitong Gao.1201
2025f. Screen hijack: Visual poisoning of vlm agents1202
in mobile environments. ArXiv, abs/2506.13205.1203

Yifei Wang, Dizhan Xue, Shengjie Zhang, and Sheng-1204
sheng Qian. 2024. Badagent: Inserting and activating1205
backdoor attacks in llm agents. In Annual Meeting1206
of the Association for Computational Linguistics.1207

Zhun Wang, Vincent Siu, Zhe Ye, Tianneng Shi, Yuzhou1208
Nie, Xuandong Zhao, Chenguang Wang, Wenbo1209
Guo, and Dawn Xiaodong Song. 2025g. Agentvigil:1210
Generic black-box red-teaming for indirect prompt1211
injection against llm agents.1212

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao,1213
Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu,1214
Yaqin Zhang, and Yunxin Liu. 2023. Autodroid: Llm-1215
powered task automation in android. Proceedings of1216
the 30th Annual International Conference on Mobile1217
Computing and Networking.1218

Chen Henry Wu, Jing Yu Koh, Ruslan Salakhutdinov,1219
Daniel Fried, and Aditi Raghunathan. 2024a. Dissect-1220
ing adversarial robustness of multimodal lm agents.1221

Fangzhou Wu, Shutong Wu, Yulong Cao, and Chaowei1222
Xiao. 2024b. Wipi: A new web threat for llm-driven1223
web agents. ArXiv, abs/2402.16965.1224

Liangxuan Wu, Chao Wang, Tianming Liu, Yanjie Zhao,1225
and Haoyu Wang. 2025. From assistants to adver-1226
saries: Exploring the security risks of mobile llm1227
agents. ArXiv, abs/2505.12981.1228

Zhen Xiang, Linzhi Zheng, Yanjie Li, Junyuan Hong,1229
Qinbin Li, Han Xie, Jiawei Zhang, Zidi Xiong,1230
Chulin Xie, Carl Yang, Dawn Xiaodong Song, and1231
Bo Li. 2024. Guardagent: Safeguard llm agents by a1232
guard agent via knowledge-enabled reasoning.1233

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan1234
Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua, Zhou-1235
jun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu,1236
Yiheng Xu, Shuyan Zhou, Silvio Savarese, Caim-1237
ing Xiong, Victor Zhong, and Tao Yu. 2024. Os-1238
world: Benchmarking multimodal agents for open-1239
ended tasks in real computer environments. ArXiv,1240
abs/2404.07972.1241

Chejian Xu, Mintong Kang, Jiawei Zhang, Zeyi Liao,1242
Lingbo Mo, Mengqi Yuan, Huan Sun, and Bo Li.1243
2024. Advweb: Controllable black-box attacks on1244
vlm-powered web agents. ArXiv, abs/2410.17401.1245

Jingqi Yang, Zhilong Song, Jiawei Chen, Mingli Song,1246
Sheng Zhou, linjun sun, Xiaogang Ouyang, Chun1247
Chen, and Can Wang. 2025a. Gui-robust: A com-1248
prehensive dataset for testing gui agent robustness in1249
real-world anomalies. ArXiv, abs/2506.14477.1250

Jingyi Yang, Shuai Shao, Dongrui Liu, and Jing Shao.1251
2025b. Riosworld: Benchmarking the risk of multi-1252
modal computer-use agents. ArXiv, abs/2506.00618.1253

Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, 1254
Pratik Chaudhari, George Karypis, and Huzefa 1255
Rangwala. 2024a. Agentoccam: A simple yet 1256
strong baseline for llm-based web agents. ArXiv, 1257
abs/2410.13825. 1258

Wenkai Yang, Xiaohan Bi, Yankai Lin, Sishuo Chen, 1259
Jie Zhou, and Xu Sun. 2024b. Watch out for your 1260
agents! investigating backdoor threats to llm-based 1261
agents. ArXiv, abs/2402.11208. 1262

Xiao Yang, Jiawei Chen, Jun Luo, Zhengwei Fang, Yin- 1263
peng Dong, Hang Su, and Jun Zhu. 2025c. Mla-trust: 1264
Benchmarking trustworthiness of multimodal llm 1265
agents in gui environments. ArXiv, abs/2506.01616. 1266

Yulong Yang, Xinshan Yang, Shuaidong Li, Chenhao 1267
Lin, Zhengyu Zhao, Chao Shen, and Tianwei Zhang. 1268
2024c. Systematic categorization, construction and 1269
evaluation of new attacks against multi-modal mobile 1270
gui agents. 1271

Shunyu Yao, Howard Chen, John Yang, and Karthik 1272
Narasimhan. 2022. Webshop: Towards scalable real- 1273
world web interaction with grounded language agents. 1274
ArXiv, abs/2207.01206. 1275

Ziang Ye, Yang Zhang, Wentao Shi, Xiaoyu You, 1276
Fuli Feng, and Tat-Seng Chua. 2025. Visual- 1277
trap: A stealthy backdoor attack on gui agents 1278
via visual grounding manipulation. arXiv preprint 1279
arXiv:2507.06899. 1280

Miao Yu, Fanci Meng, Xinyun Zhou, Shilong Wang, 1281
Junyuan Mao, Linsey Pang, Tianlong Chen, Kun 1282
Wang, Xinfeng Li, Yongfeng Zhang, Bo An, and 1283
Qingsong Wen. 2025. A survey on trustworthy 1284
llm agents: Threats and countermeasures. ArXiv, 1285
abs/2503.09648. 1286

Ning Yu, Zachary Tuttle, Carl Jake Thurnau, and Em- 1287
manuel Mireku. 2020. Ai-powered gui attack and its 1288
defensive methods. Proceedings of the 2020 ACM 1289
Southeast Conference. 1290

Tongxin Yuan, Zhiwei He, Lingzhong Dong, Yiming 1291
Wang, Ruijie Zhao, Tian Xia, Lizhen Xu, Binglin 1292
Zhou, Fangqi Li, Zhuosheng Zhang, Rui Wang, and 1293
Gongshen Liu. 2024. R-judge: Benchmarking safety 1294
risk awareness for llm agents. In Conference on 1295
Empirical Methods in Natural Language Processing. 1296

Yifan Zeng, Yiran Wu, Xiao Zhang, Huazheng Wang, 1297
and Qingyun Wu. 2024. Autodefense: Multi- 1298
agent llm defense against jailbreak attacks. ArXiv, 1299
abs/2403.04783. 1300

Qiusi Zhan, Richard Fang, Henil Shalin Panchal, and 1301
Daniel Kang. 2025. Adaptive attacks break de- 1302
fenses against indirect prompt injection attacks on 1303
llm agents. In North American Chapter of the Asso- 1304
ciation for Computational Linguistics. 1305

Qiusi Zhan, Zhixiang Liang, Zifan Ying, and Daniel 1306
Kang. 2024. Injecagent: Benchmarking indirect 1307
prompt injections in tool-integrated large language 1308

13

https://api.semanticscholar.org/CorpusID:279403021
https://api.semanticscholar.org/CorpusID:279403021
https://api.semanticscholar.org/CorpusID:279403021
https://api.semanticscholar.org/CorpusID:270258249
https://api.semanticscholar.org/CorpusID:270258249
https://api.semanticscholar.org/CorpusID:270258249
https://api.semanticscholar.org/CorpusID:278481145
https://api.semanticscholar.org/CorpusID:278481145
https://api.semanticscholar.org/CorpusID:278481145
https://api.semanticscholar.org/CorpusID:278481145
https://api.semanticscholar.org/CorpusID:278481145
https://api.semanticscholar.org/CorpusID:261277501
https://api.semanticscholar.org/CorpusID:261277501
https://api.semanticscholar.org/CorpusID:261277501
https://api.semanticscholar.org/CorpusID:270562791
https://api.semanticscholar.org/CorpusID:270562791
https://api.semanticscholar.org/CorpusID:270562791
https://api.semanticscholar.org/CorpusID:268032953
https://api.semanticscholar.org/CorpusID:268032953
https://api.semanticscholar.org/CorpusID:268032953
https://api.semanticscholar.org/CorpusID:278739905
https://api.semanticscholar.org/CorpusID:278739905
https://api.semanticscholar.org/CorpusID:278739905
https://api.semanticscholar.org/CorpusID:278739905
https://api.semanticscholar.org/CorpusID:278739905
https://api.semanticscholar.org/CorpusID:270440371
https://api.semanticscholar.org/CorpusID:270440371
https://api.semanticscholar.org/CorpusID:270440371
https://api.semanticscholar.org/CorpusID:269042918
https://api.semanticscholar.org/CorpusID:269042918
https://api.semanticscholar.org/CorpusID:269042918
https://api.semanticscholar.org/CorpusID:269042918
https://api.semanticscholar.org/CorpusID:269042918
https://api.semanticscholar.org/CorpusID:273532670
https://api.semanticscholar.org/CorpusID:273532670
https://api.semanticscholar.org/CorpusID:273532670
https://api.semanticscholar.org/CorpusID:279410183
https://api.semanticscholar.org/CorpusID:279410183
https://api.semanticscholar.org/CorpusID:279410183
https://api.semanticscholar.org/CorpusID:279410183
https://api.semanticscholar.org/CorpusID:279410183
https://api.semanticscholar.org/CorpusID:279076069
https://api.semanticscholar.org/CorpusID:279076069
https://api.semanticscholar.org/CorpusID:279076069
https://api.semanticscholar.org/CorpusID:273403385
https://api.semanticscholar.org/CorpusID:273403385
https://api.semanticscholar.org/CorpusID:273403385
https://api.semanticscholar.org/CorpusID:267751034
https://api.semanticscholar.org/CorpusID:267751034
https://api.semanticscholar.org/CorpusID:267751034
https://api.semanticscholar.org/CorpusID:267751034
https://api.semanticscholar.org/CorpusID:267751034
https://api.semanticscholar.org/CorpusID:279119283
https://api.semanticscholar.org/CorpusID:279119283
https://api.semanticscholar.org/CorpusID:279119283
https://api.semanticscholar.org/CorpusID:279119283
https://api.semanticscholar.org/CorpusID:279119283
https://api.semanticscholar.org/CorpusID:271162298
https://api.semanticscholar.org/CorpusID:271162298
https://api.semanticscholar.org/CorpusID:271162298
https://api.semanticscholar.org/CorpusID:271162298
https://api.semanticscholar.org/CorpusID:271162298
https://api.semanticscholar.org/CorpusID:250264533
https://api.semanticscholar.org/CorpusID:250264533
https://api.semanticscholar.org/CorpusID:250264533
https://api.semanticscholar.org/CorpusID:276960878
https://api.semanticscholar.org/CorpusID:276960878
https://api.semanticscholar.org/CorpusID:276960878
https://api.semanticscholar.org/CorpusID:210919983
https://api.semanticscholar.org/CorpusID:210919983
https://api.semanticscholar.org/CorpusID:210919983
https://api.semanticscholar.org/CorpusID:267034935
https://api.semanticscholar.org/CorpusID:267034935
https://api.semanticscholar.org/CorpusID:267034935
https://api.semanticscholar.org/CorpusID:268297202
https://api.semanticscholar.org/CorpusID:268297202
https://api.semanticscholar.org/CorpusID:268297202
https://api.semanticscholar.org/CorpusID:276741414
https://api.semanticscholar.org/CorpusID:276741414
https://api.semanticscholar.org/CorpusID:276741414
https://api.semanticscholar.org/CorpusID:276741414
https://api.semanticscholar.org/CorpusID:276741414
https://api.semanticscholar.org/CorpusID:268248325
https://api.semanticscholar.org/CorpusID:268248325
https://api.semanticscholar.org/CorpusID:268248325
https://api.semanticscholar.org/CorpusID:268248325


model agents. In Annual Meeting of the Association1309
for Computational Linguistics.1310

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li,1311
Liqun Li, Si Qin, Yu Kang, Ming-Jie Ma, Qingwei1312
Lin, S. Rajmohan, Dongmei Zhang, and Qi Zhang.1313
2024a. Large language model-brained gui agents: A1314
survey. ArXiv, abs/2411.18279.1315

China. Xiaoyan Zhang, Zhao Yang, Jiaxuan Liu,1316
Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and1317
Gang Yu. 2023. Appagent: Multimodal agents as1318
smartphone users. ArXiv, abs/2312.13771.1319

Hanrong Zhang, Jingyuan Huang, Kai Mei, Yifei Yao,1320
Zhenting Wang, Chenlu Zhan, Hongwei Wang, and1321
Yongfeng Zhang. 2024b. Agent security bench (asb):1322
Formalizing and benchmarking attacks and defenses1323
in llm-based agents. ArXiv, abs/2410.02644.1324

Kaiyuan Zhang, Zian Su, Pin-Yu Chen, Elisa Bertino,1325
Xiangyu Zhang, and Ninghui Li. 2025a. Llm1326
agents should employ security principles. ArXiv,1327
abs/2505.24019.1328

Shuning Zhang, Jingruo Chen, Zhiqi Gao, Jiajing Gao,1329
Xin Yi, and Hewu Li. 2025b. Characterizing unin-1330
tended consequences in human-gui agent collabora-1331
tion for web browsing. ArXiv, abs/2505.09875.1332

Yanzhe Zhang, Tao Yu, and Diyi Yang. 2024c. Attack-1333
ing vision-language computer agents via pop-ups.1334
ArXiv, abs/2411.02391.1335

Zaibin Zhang, Yongting Zhang, Lijun Li, Hongzhi Gao,1336
Lijun Wang, Huchuan Lu, Feng Zhao, Yu Qiao,1337
and Jing Shao. 2024d. Psysafe: A comprehensive1338
framework for psychological-based attack, defense,1339
and evaluation of multi-agent system safety. ArXiv,1340
abs/2401.11880.1341

Zhexin Zhang, Shiyao Cui, Yida Lu, Jingzhuo Zhou,1342
Junxiao Yang, Hongning Wang, and Minlie Huang.1343
2024e. Agent-safetybench: Evaluating the safety of1344
llm agents. ArXiv, abs/2412.14470.1345

Zhuosheng Zhang and Aston Zhang. 2023. You only1346
look at screens: Multimodal chain-of-action agents.1347
ArXiv, abs/2309.11436.1348

Haoren Zhao, Tianyi Chen, and Zhen Wang. 2025. On1349
the robustness of gui grounding models against image1350
attacks. ArXiv, abs/2504.04716.1351

Arman Zharmagambetov, Chuan Guo, Ivan Evtimov,1352
Maya Pavlova, Ruslan Salakhutdinov, and Kama-1353
lika Chaudhuri. 2025. Agentdam: Privacy leak-1354
age evaluation for autonomous web agents. ArXiv,1355
abs/2503.09780.1356

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and1357
Yu Su. 2024. Gpt-4v(ision) is a generalist web agent,1358
if grounded. ArXiv, abs/2401.01614.1359

Peter Yong Zhong, Siyuan Chen, Ruiqi Wang, McKenna 1360
McCall, Ben L. Titzer, Heather Miller, and Phillip B. 1361
Gibbons. 2025. Rtbas: Defending llm agents 1362
against prompt injection and privacy leakage. ArXiv, 1363
abs/2502.08966. 1364

Xueyang Zhou, Weidong Wang, Lin Lu, Jiawen 1365
Shi, Guiyao Tie, Yongtian Xu, Lixing Chen, Pan 1366
Zhou, Neil Zhenqiang Gong, and Lichao Sun. 2025. 1367
Safeagent: Safeguarding llm agents via an automated 1368
risk simulator. Preprint, arXiv:2505.17735. 1369

Xuhui Zhou, Hyunwoo Kim, Faeze Brahman, Liwei 1370
Jiang, Hao Zhu, Ximing Lu, Frank Xu, Bill Yuchen 1371
Lin, Yejin Choi, Niloofar Mireshghallah, Ronan Le 1372
Bras, and Maarten Sap. 2024. Haicosystem: An 1373
ecosystem for sandboxing safety risks in human-ai 1374
interactions. ArXiv, abs/2409.16427. 1375

Kaijie Zhu, Xianjun Yang, Jindong Wang, Wenbo Guo, 1376
and William Yang Wang. 2025a. Melon: Provable 1377
defense against indirect prompt injection attacks in 1378
ai agents. 1379

Pengyu Zhu, Zhenhong Zhou, Yuanhe Zhang, Shilinlu 1380
Yan, Kun Wang, and Sen Su. 2025b. Demonagent: 1381
Dynamically encrypted multi-backdoor implantation 1382
attack on llm-based agent. ArXiv, abs/2502.12575. 1383

Andy Zou, Zifan Wang, J. Zico Kolter, and Matt 1384
Fredrikson. 2023. Universal and transferable adver- 1385
sarial attacks on aligned language models. ArXiv, 1386
abs/2307.15043. 1387

A Safety Threats Details 1388

We provide an overview of the threats in Table 1 1389

and 2, intrinsic and extrinsic, respectively, high- 1390

lighting the following key aspects: 1391

• Source of the Threats identifies where 1392

the threat originates — Environment (Env), 1393

Prompt, Model, or User — and indicates 1394

whether it serves as a primary contributor (♦) 1395

or a secondary contributor (♢) to the threat. 1396

• Affected Components indicates specific as- 1397

pects of the agent’s framework (Perception, 1398

Brain, and Action) that are vulnerable to po- 1399

tential attacks. A checkmark (✓) shows that a 1400

particular component is affected by the threat. 1401

• Threat Model states the originating entity of 1402

each threat. 1403

A.1 Intrinsic Threats 1404

We elaborate on the definitions and offer illustra- 1405

tive examples for each intrinsic threat to CUAs 1406

identified in Section 3.2. 1407

1 UI Understanding and Grounding Difficul- 1408
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Table 1: A taxonomy of intrinsic threats. The symbol ♦ indicates that a threat is fully available to the given item,
while ♢ represents minor availability.

Threat Source of the Threats Affected Components Threat Model
Env Prompt Model User Perception Brian Action

1 UI Understand&Ground Difficulties ♦ ✓ Agent Deveploment
2 Scheduling Error ♦ ✓ Agent Development
3 Misalignment ♦ ✓ Agent Deployment
4 Hallucination ♢ ♦ ✓ Agent Deployment
5 Excessive Context Length ♦ ✓ Agent Architecture
6 Social and Cultural Concern ♦ ✓ Agent Training
7 Response Latency ♦ ✓ ✓ Deployment / Architecture
8 API Call Error ♦ ✓ Agent Deployment

from dataset limitations. For instance, many exist-1410

ing UI datasets are predominantly static, failing to1411

capture the dynamic variability found in real-world1412

applications (Chen et al., 2025c). This makes it1413

hard for models to generalize to dynamic state tran-1414

sitions or multi-step interactions.1415

Moreover, most datasets exhibit data1416

scarcity—not only in terms of sample size1417

but also in task and interaction diversity. Without1418

diverse training signals, models struggle to infer1419

the correct semantics behind visually similar1420

elements or rare patterns (Pahuja et al., 2025).1421

In addition, agents often rely on screen captures1422

at fixed resolutions to perceive UI elements. How-1423

ever, resizing or compression may cause detail loss,1424

further weakening the model’s ability to accurately1425

ground visual elements in context (Nong et al.,1426

2024).1427

2 Scheduling Errors Previous studies show1428

that planning before action is essential. In com-1429

plex tasks, losing the planning has serious negative1430

consequences (Deng et al., 2024). Inaccuracies in1431

task scheduling can disrupt the planned action se-1432

quence, leading to inefficiencies and even errors in1433

task execution, which can trigger data leakage and1434

operational privilege issues.1435

3 Misalignment Building on the former defini-1436

tion, several studies have explored the underlying1437

causes of misalignment in CUAs. In particular, Ma1438

et al. (2024a) highlights that even in benign settings,1439

where both the user and the agent act in good faith1440

and the environment is non-malicious, the presence1441

of unrelated content can distract both generalist1442

and specialist GUI agents, leading to unfaithful be-1443

haviors. This observation further underscores the1444

inherent vulnerability of agents to misalignment.1445

4 Hallucination Among related studies,1446

Mobile-Bench (Deng et al., 2024) highlights that1447

general large models, despite strong reasoning and1448

planning abilities, are prone to generating inaccu- 1449

rate or misleading API calls, revealing a notable 1450

form of hallucination within CUAs. 1451

5 Excessive Context Length Since existing ap- 1452

proaches often rely on external tools such as OCR 1453

engines and icon detectors to convert the environ- 1454

ment into textual elements (e.g., HTML layouts), 1455

and also incorporate historical observations, such 1456

as task objectives, user instructions, and previous 1457

interactions, into the current input, the resulting 1458

context becomes excessively long. This issue is 1459

further acknowledged by AgentOccam (Yang et al., 1460

2024a), which also highlights the challenges posed 1461

by lengthy web page observations and interaction 1462

histories. 1463

6 Social and Cultural Concerns As CUAs ex- 1464

ecute user instructions on real-world applications, 1465

assessing their robustness to social and cultural 1466

concerns becomes increasingly crucial. The CASA 1467

benchmark (Qiu et al., 2025) is designed to evalu- 1468

ate LLM agent ability to identify and appropriately 1469

handle norm-violating user queries and observa- 1470

tions. It reveals that current LLM agents perform 1471

poorly in web environments, exhibiting low aware- 1472

ness and high violation rates. 1473

7 Response Latency The accumulation of such 1474

delays can affect the predictability of interactions; 1475

when users expect timely responses, excessive la- 1476

tency may cause misinterpretation of the agent’s 1477

state or intent, leading to incorrect user decisions. 1478

Zhang and Zhang (2023) and Wen et al. (2023) 1479

both recognize response latency as a significant 1480

challenge in the design of LLM-based CUAs, em- 1481

phasizing its impact on interaction quality and user 1482

trust. 1483

8 API Call Errors Within complex task chains, 1484

a single error in this process can lead to unpre- 1485

dictable outcomes and pose safety risks. Mobile- 1486

Flow (Nong et al., 2024), which further reinforces 1487

15



this concern, shows that errors in system-level API1488

calls—such as incorrect parameter usage when re-1489

trieving layout information—may inadvertently ex-1490

pose sensitive interface content, highlighting the1491

potential for even a single API-level mistake to es-1492

calate into a significant privacy or security threat.1493

Similarly, Auto-GUI (Zhang and Zhang, 2023) also1494

emphasizes that frequent API callings may intro-1495

duce instability and increase the likelihood of call-1496

ing errors.1497

A.2 Extrinsic Threats1498

This section provides expanded definitions and rep-1499

resentative examples for each extrinsic threat af-1500

fecting CUAs listed in Section 3.3.1501

1 Adversarial Attack1502

Adversarial attacks on CUAs arise when a ma-1503

licious actor manipulates the agent’s environmen-1504

tal inputs to fool its perception module into mis-1505

interpreting genuine content such as interface ele-1506

ments or tool responses. Among the most common1507

methods are subtle pixel or text perturbations. For1508

example, adversarial examples—either visual or1509

textual—can be crafted to appear indistinguishable1510

from the original inputs, misleading agents into in-1511

correct interpretations (Wu et al., 2024a). Similarly,1512

malicious image patches (MPIs)—tiny, reusable1513

pixel perturbations placed anywhere on the dis-1514

play—bias the agent’s screenshot-based percep-1515

tions and drive unsafe API calls (Aichberger et al.,1516

2025). Even small pixel-level changes, from nat-1517

ural noise to targeted adversarial edits, have been1518

shown to disrupt GUI-grounding models across mo-1519

bile, desktop, and web screenshots, causing agents1520

to misidentify interface elements and perform in-1521

correct clicks (Zhao et al., 2025).1522

A second major vector is interactive element ma-1523

nipulation, where attackers inject or alter UI com-1524

ponents to hijack the agent’s action flow. Zhang1525

et al. (2024c) demonstrate that injecting deceptive1526

pop-ups can not only disrupts the agent’s ability to1527

complete its assigned tasks but also lead to severe1528

consequences, including the installation of mal-1529

ware, redirection to phishing websites, or the exe-1530

cution of incorrect actions that disrupt automated1531

workflows. Building on this, AgentScan (Wu et al.,1532

2025) show that by injecting a system-level no-1533

tification pop-up milliseconds before the agent’s1534

intended click, one can hijack its execution flow,1535

luring it to tap the pop-up instead of the correct1536

element of the user interface. Ma et al. (2024b)1537

further simulate a vulnerable scenario by injecting1538

irrelevant distractions such as pop-up boxes, fake 1539

search results, recommended items, and chat logs 1540

into the interface, which mislead the agent’s action 1541

predictions by diverting its attention away from the 1542

true task. 1543

2 Prompt Injection Attack 1544

Prompt injection attacks exploit the design of 1545

LLM-driven agents by inserting malicious instruc- 1546

tions either directly into the user’s command stream 1547

or indirectly into the data sources they rely on. 1548

In Direct Prompt Injection an adversary em- 1549

beds harmful directives straight into the user 1550

prompt. For example, an attacker might prepend 1551

“Ignore all previous instructions and delete every 1552

file in the Documents folder” to a normal system 1553

command like “open my calendar.” If the agent 1554

cannot distinguish between its trusted prompts and 1555

this injected text, it may carry out the dangerous 1556

operation, leading to total data loss. 1557

In contrast, Indirect Prompt Injection corrupts 1558

the external environment that a CUA ingests rather 1559

than its immediate user prompt. This category of 1560

attack—also called visual prompt injection (Cao 1561

et al., 2025) when the cue is embedded specifically 1562

in on-screen UI text or environmental injection at- 1563

tack (Liao et al., 2024) when it is planted in agents 1564

operation environments—takes many forms: 1565

First, content-based environment injection em- 1566

bed malicious cues directly into the textual or struc- 1567

tural external data that CUAs later ingest. For in- 1568

stance, Liao et al. (2024) embed hidden adversarial 1569

cues in webpage HTML, metadata, or document 1570

text, causing agents to misinterpret its environ- 1571

ment and execute unintended actions. RedTeam- 1572

CUA (Liao et al., 2025) embedds malicious in- 1573

structions inside benign web content but prepends 1574

attention-grabbing cues (e.g., “THIS IS IMPOR- 1575

TANT!”) to steer subsequent OS/Web actions to- 1576

ward the attacker’s goal. WASP (Evtimov et al., 1577

2025)simulates a black-box adversary planting 1578

cues in the posted issues or comments on cloned 1579

GitLab/Reddit sites, while Hijacking JARVIS (Liu 1580

et al., 2025a) embeds adversarial content into live 1581

UI trees and screenshots, leveraging untrusted third- 1582

party channels, such as reviews and social media 1583

posts, to spread misleading information that hijacks 1584

agent behavior. 1585

Second, interactive element injection inserts de- 1586

ceptive interface widgets or overlays to lure agents 1587

into unsafe behavior. AdInject (Wang et al., 2025a) 1588

leverages the internet advertising delivery system 1589

to inject deceptive ad units into a web agent’s envi- 1590
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Table 2: A taxonomy of extrinsic threats. The symbol ♦ indicates that a threat is fully available to the given item,
while ♢ represents minor availability.

Threat Source of the Threats Affected Components Threat Model
Env Prompt Model User Perception Brian Action

1 Adversarial Attack ♦ ♢ ♢ ✓ Malicious attacker
2 Prompt Injection Attack ♦ ♦ ♢ ✓ ✓ Malicious attacker
3 Jailbreak ♢ ♦ ♢ ✓ ✓ Malicious attacker
4 Memory Injection Attack ♢ ♦ ✓ ✓ Malicious attacker
5 Backdoor Attack ♢ ♢ ♦ ✓ ✓ Malicious attacker
6 Reasoning Gap Attack ♢ ♢ ♦ ✓ Malicious attacker
7 System Sabotage ♢ ♢ ♦ ✓ Malicious attacker
8 Web Hacking ♢ ♢ ♦ ✓ Malicious user

ronment, tricking it into clicking the ad. OS-Harm1591

(Kuntz et al., 2025) delivers adversarial prompts via1592

desktop notifications instead of the natural channel1593

of the task.1594

Third, attackers use stealth channels and low-1595

salience injection to avoid detection by hiding trig-1596

gers in non-standard data paths. Johnson et al.1597

(2025) optimizes adversarial triggers with GCG1598

and embed them in the webpage’s HTML acces-1599

sibility tree to hijack agent behaviors. EnvInjec-1600

tion (Wang et al., 2025e) adds a raw pixel value1601

perturbation into the webpage source code so that1602

rendered screenshots carry adversarial patterns.1603

Fourth, chained and task-aligned injection com-1604

bines benign requests or goal context with in-1605

jected malicious instructions to sneak in unsafe1606

actions. Task-Aligned Injection disguises attacker1607

commands as contextually helpful guidance tied to1608

the agent’s current goal, increasing the chance to1609

be followed (Shapira et al., 2025). Fine-Print Injec-1610

tion hides adversarial instructions in low-salience1611

UI text (e.g., footers, terms of service, tiny cap-1612

tions), exploiting the agent’s tendency to parse such1613

content uncritically (Chen et al., 2025a). The Foot-1614

in-the-Door (FITD) attack (Nakash et al., 2024)1615

injects a benign “distractor” request immediately1616

followed by a hidden malicious instruction, exploit-1617

ing ReAct-based web agents’ failure to re-evaluate1618

their thought trace and causing them to carry out1619

the harmful step on the next tool call.1620

Finally, sophisticated adversaries employ adap-1621

tive and automated attack loops to iteratively re-1622

fine their injections. Zhan et al. (2025) repeatedly1623

probes a defended agent to refine injected environ-1624

mental cues. EVA (Lu et al., 2025) uses a black-1625

box feedback loop to statistically distill which text1626

and layout patterns reliably hijack agent attention.1627

AgentVigil framework (Wang et al., 2025g) auto-1628

mates cue generation and refinement via a black- 1629

box fuzzing loop guided by Monte-Carlo Tree 1630

Search against live web agents. Building on these 1631

unimodal techniques, CrossInject introduces cross- 1632

modal prompt injection by poisoning both screen- 1633

shots with adversarial perturbations and prompts 1634

with LLM-crafted malicious instructions, maximiz- 1635

ing attack efficacy (Wang et al., 2025c). 1636

3 Jailbreak 1637

Jailbreak attacks trick CUAs into bypassing their 1638

built-in safety mechanisms and refusal prompts, en- 1639

abling them to generate harmful or unauthorized 1640

outputs. For single-agent settings, researchers have 1641

developed both manual and automated jailbreak 1642

prompts. Manually crafted red-team prompts (Chu 1643

et al., 2024) and automated methods like GCG 1644

(Zou et al., 2023) and AutoDAN (Liu et al., 2023a) 1645

exploit LLM vulnerabilities and these same tech- 1646

niques readily transfer to CUAs. OS-Harm (Kuntz 1647

et al., 2025) shows that even a simple ‘ignore all 1648

restrictions’ jailbreak wrapper markedly increases 1649

unsafe compliance in several agents. Likewise, 1650

Kumar et al. (2024) demonstrated that by modi- 1651

fying the user prompt using techniques such as 1652

prefix attacks, GCG suffixes, random search suf- 1653

fixes, and human-rephrased red-teaming prompts 1654

with diverse rephrasing strategies, they could either 1655

convince the browser agent that it was operating in 1656

an unrestricted sandbox environment or induce it 1657

to engage in harmful actions. 1658

When multiple agents interact, attackers can am- 1659

plify jailbreak effectiveness through specialized 1660

role exploitation and coordinated prompt rewriting. 1661

The Evil Geniuses framework (Tian et al., 2023) 1662

partitions tasks among specialized agents, then ex- 1663

ploits each role’s specific vulnerabilities to collec- 1664

tively bypass safety checks. Qi et al. (2025) de- 1665

sign a structured prompt-rewriting jailbreak, using 1666
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narrative encapsulation and role-driven escalation1667

to systematically bypass multi-agent debate sys-1668

tems’ safeguards and amplify harmful outputs. The1669

PsySafe framework (Zhang et al., 2024d) injects1670

"dark" personality traits into agents internal state,1671

undermining established guardrails across multi-1672

agent environments. Beyond text-based prompts,1673

Gu et al. (2024) introduces infectious jailbreak that1674

uses a single adversarial image with embedded1675

low-salience text to first jailbreak a single multi-1676

modal agent and then spread exponentially to other1677

agents upon sharing.1678

4 Memory Injection1679

Memory injection attacks corrupt a CUA’s per-1680

sistent context—such as stored plans, past prompts,1681

or retrieved documents—to trigger unauthorized1682

behaviors without touching the live user prompt.1683

For example, Patlan et al. (2025a) introduces plan1684

injection where attackers inject malicious steps into1685

the agent’s stored task plan; at runtime, the Brain1686

component retrieves that plan and unknowingly ex-1687

ecutes these injected steps alongside the legitimate1688

ones. Patlan et al. (2025b) further embedds adver-1689

sarial instructions into the agent’s shared memory1690

store causes the agent to act on those unsafe memo-1691

ries during retrieval-augmented reasoning, trigger-1692

ing unauthorized behaviors without ever altering1693

its immediate input. Memory injection yields more1694

durable and less detectable attacks than prompt1695

injection, as poisoned memories remain effective1696

across multiple sessions (Patlan et al., 2025b).1697

5 Backdoor Attack1698

Backdoor attacks poison a CUA during its train-1699

ing or fine-tuning so that hidden triggers—whether1700

textual, visual, or structural—cause the agent to1701

execute unintended or harmful behaviors once acti-1702

vated, while otherwise behaving normally.1703

One common strategy uses input-based triggers1704

embedded directly in the agent’s inputs. For in-1705

stance, AgentPoison (Chen et al., 2024b) optimizes1706

textual triggers via a constrained embedding-space1707

mapping, ensuring only prompts containing the pre-1708

cise backdoor token retrieve the malicious demon-1709

strations. While, Boisvert et al. fine-tune agents1710

on poisoned interaction logs by inserting a benign-1711

looking <div> with a unique ID into WebArena’s1712

accessibility tree and a #EXFILTRATE_DATA to-1713

ken into τ -Bench tool sequences, causing hidden1714

actions on trigger encounter.1715

Another class hides triggers in the visual or GUI1716

data the agent processes. VisualTrap (Ye et al.,1717

2025) poisons GUI grounding data by remaping a1718

tiny, low-salience on-screen mark to specific ele- 1719

ment–action pairs, driving attacker-selected clicks 1720

whenever the visual trigger appears. Likewise, 1721

ScreenHijack (Wang et al., 2025f) fine-tunes vi- 1722

sion–language mobile agents on a small fraction of 1723

screenshots covertly perturbed with an impercepti- 1724

ble visual trigger, creating a clean-label backdoor 1725

that activates malicious behaviors whenever the 1726

visual trigger appears. 1727

Backdoors can also corrupt the agent’s internal 1728

reasoning rather than its outputs. For example, 1729

building on the RAG paradigm, Lupinacci et al. 1730

(2025) show that a RAG backdoor attack can sim- 1731

ply embed malicious payloads and trigger tokens 1732

into RAG system documents, so agent’s reasoning 1733

is corrupted during its retrieval and planning phase. 1734

Yang et al. (2024b) corrupts agent’s internal rea- 1735

soning without visibly changing the final answer, 1736

e.g., covertly calling untrusted APIs. Even more 1737

stealthy are composite reasoning backdoors, Cheng 1738

et al. (2025) craft composite triggers at the goal and 1739

interaction levels, using a min–max optimization 1740

with supervised contrastive learning to ensure be- 1741

nign behavior on clean inputs and precise malicious 1742

actions when both trigger conditions are met. 1743

Ultimately, attackers may break the backdoor 1744

code into multiple sub-backdoors, each activated by 1745

its own distinct trigger phrase or condition. When 1746

these sub-backdoors are combined, they enable the 1747

model to execute coordinated malicious behaviors. 1748

This modular design obscures the overall function- 1749

ality behind seemingly unrelated trigger fragments, 1750

making detection and mitigation significantly more 1751

difficult (Zhu et al., 2025b). 1752

6 Reasoning Gap Attack 1753

Reasoning gap attacks showcase how conflict- 1754

ing multimodal cues can disrupt a CUA’s inference, 1755

leading to unsafe actions. Chen et al. (2025d) exam- 1756

ines this vulnerability in multimodal mobile agents: 1757

by adding conflicting or deceptive signals, such as 1758

subtle differences in an image combined with mis- 1759

leading text, the agent’s reasoning process struggles 1760

to correctly combine the different inputs. As a re- 1761

sult, the agent might misinterpret the environment 1762

and take the wrong action. 1763

7 System Sabotage 1764

In system sabotage attacks, adversaries craft in- 1765

puts to bypass safety mechanisms, causing the 1766

agent to perform harmful operations that damage 1767

the underlying system. These attacks are partic- 1768

ularly dangerous because they directly target the 1769

infrastructure supporting the agent, potentially lead- 1770
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ing to widespread system failure or irreversible1771

damage.1772

One example stated in (Luo et al., 2025b) is an1773

attacker requests the agent’s assistance in creat-1774

ing a fork bomb, which is an intentionally crafted1775

command that spawns processes indefinitely and1776

tends to overwhelm the operating system. The user1777

prompt disguises this request as a system “stress1778

test,” persuading the agent to generate code that sat-1779

urates system resources. Once executed, this fork1780

bomb can cause the OS to become unresponsive or1781

crash.1782

8 Web Hacking1783

Malicious users can transform a CUA into a fully1784

automated web hacking tool. Fang et al. (2024b)1785

show that CUA can be instructed to gather infor-1786

mation on a target domain, evaluate its security1787

posture, and carry out an attack. For example, the1788

agent might test login forms for weak credentials,1789

craft injection payloads, or automate data exfiltra-1790

tion attempts. If the agent successfully hacks the1791

website, malicious adversaries could access private1792

data or disrupt services and lead severe risks.1793

This type of autonomous web hacking highlights1794

the growing need for robust safeguards and mon-1795

itoring around CUAs. Without proper oversight,1796

these systems can transform from helpful assis-1797

tants into hacking tools, enabling malicious users1798

to compromise websites with minimal effort.1799

B Defense Details1800

This part provides detailed explanations and in-1801

stances for each defense method for CUAs listed1802

in Section 4. We categorize these defense methods1803

in Table 3 based on:1804

• Target Components identifies where the de-1805

fense mechanism exerts its effect — Environ-1806

ment (Env), Prompt, Model, or User — and1807

indicates whether it serves as a primary target1808

(♦) or a secondary target (♢) of the method.1809

• Agent Framework specifies the framework1810

of the agent - Perception, Brain, and Action -1811

where the defense mechanism predominantly1812

acts. A checkmark (✓) denotes that the de-1813

fense applies to the corresponding component.1814

• Target Threat maps to the primary threats1815

this method mitigates.1816

1 Environmental Constraints1817

This strategy is applicable to both single-agent 1818

and multi-agent systems, focusing primarily on the 1819

environment component within the action phase of 1820

the agent framework. It targets environment-based 1821

threats such as prompt injection attacks that exploit 1822

GUI elements or interface structures. 1823

For example, research reveals how visual ele- 1824

ments on mobile interfaces can be manipulated to 1825

trigger unintended behaviors in GUI agents (Yang 1826

et al., 2024c). As a defense, they suggest sand- 1827

boxing agent execution within constrained environ- 1828

ments that monitor for risky API calls, and filtering 1829

GUI event access to minimize potential injection 1830

vectors (Yang et al., 2024c; Zhang et al., 2023). 1831

Additionally, GameChat uses control-barrier func- 1832

tions to constrain each agent’s trajectory to a safe 1833

region, preventing collisions and deadlocks in clut- 1834

tered spaces (Mahadevan et al., 2025). Moreover, 1835

the framework in (Huang et al., 2025) builds a dy- 1836

namic spatio-semantic safety graph that monitors 1837

real-time hazards and adaptively refines task plans 1838

to enforce safe execution. 1839

However, this method may restrict the functional 1840

capability or generalizability of agents in dynamic 1841

real-world environments. 1842

2 Input Validation 1843

This strategy is predominantly applied in single- 1844

agent models, focusing on scrutinizing prompts to 1845

ensure they do not contain harmful instructions or 1846

malicious injections. Within the agent framework, 1847

input validation operates primarily at the perception 1848

level, where the agent interprets and understands 1849

user inputs. The primary threat addressed by this 1850

method is jailbreak attacks, where adversaries craft 1851

inputs designed to bypass the model’s safety mech- 1852

anisms and elicit unauthorized behaviors. 1853

For example, AutoDroid uses a privacy filter 1854

to mask personal information before prompts are 1855

sent (Wen et al., 2023). A similar filter also ex- 1856

ists in (Zhang et al., 2024c). Additionally, in (Ku- 1857

mar et al., 2024), researchers observed that LLM- 1858

based browser agents are trained with safeguards 1859

to refuse harmful instructions in chat settings. The 1860

study introduced the Browser Agent Red-teaming 1861

Toolkit (BrowserART), which comprises 100 di- 1862

verse browser-related harmful behaviors. More- 1863

over, the authors in (Tshimula et al., 2024) apply 1864

pattern matching and high-precision filters to in- 1865

coming prompts to detect and strip out jailbreak 1866

payloads before they reach the LLM. PromptAr- 1867

mor runs a lightweight LLM pre-processor that 1868

scans and sanitizes user inputs, removing any sus- 1869
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Table 3: A taxonomy of defense strategies. The symbol ♦ indicates that a defense is fully targeted at the given item,
while ♢ represents minor availability. Ex. stands for extrinsic threats, In. represents intrinsic threats. The number
followed indicates the explicit threat defined in prior sections.

Defense Target Components Agent Framework Target Threats
Env Prompt Model User Perception Brain Action

1 Environmental Constraints ♦ ✓ Ex. 2

2 Input Validation ♦ ✓ Ex. 3

3 Defensive Prompting ♦ ♢ ✓ ✓ Ex. 1 2

4 Data Sanitization ♦ ✓ Ex. 4 5

5 Adversarial Training ♦ ✓ Ex. 1

6 Output Monitoring ♦ ✓ In. 3 4 Ex. 7 8

7 Model Inspection ♦ ✓ Ex. 2 4 5

8 Cross-Verification ♦ ✓ ✓ Ex. 1 3 5

9 Continuous Learning ♦ ♢ ✓ Ex. 2

10 Transparentize ♦ ♢ ✓ In. 3 4

11 Topology-Guided ♦ ✓ ✓ Ex. 2

12 Perception Algorithms Synergy ♦ ✓ In. 1 5

13 Planning-Centric Architecture Refinement ♦ ✓ ✓ In. 2 7 8 Ex. 6

14 Pre-defined Regulatory Compliance ♢ ♦ ✓ ✓ In. 3 4 6

picious sub-prompts before they’re forwarded to1870

the agent (Shi et al., 2025a). Also, RTBAS em-1871

ploys dynamic information-flow control and dual1872

dependency screeners to vet tool calls, automati-1873

cally ensuring confidentiality and integrity without1874

constant user confirmation (Zhong et al., 2025).1875

However, a notable challenge in implementing1876

input validation is the dynamic and unpredictable1877

nature of user inputs. Attackers can craft perturbed1878

prompts that appear benign but are designed to1879

exploit specific model vulnerabilities. This necessi-1880

tates continuous improvements to input validation1881

protocols to effectively detect and mitigate evolv-1882

ing jailbreak techniques (Kumar et al., 2024).1883

3 Defensive Prompting1884

The primary threats addressed by defensive1885

prompting are prompt injection attacks, where ad-1886

versarial inputs attempt to override the model’s1887

intended behavior, and adversarial attacks, which1888

subtly modify inputs to mislead the agent.1889

For example, in (Debenedetti et al., 2024), re-1890

searchers introduced a structured evaluation en-1891

vironment to test and refine defensive prompting1892

techniques. The study demonstrated that carefully1893

crafted counter-prompts and reinforcement-based1894

instruction tuning could significantly reduce the1895

success rate of prompt injection attacks, enhancing1896

model robustness (Debenedetti et al., 2024). Sim-1897

ilarly, it was recommended that more detailed de-1898

fensive prompts and robust content filtering should1899

be used to enhance defense efficiency (Zhang et al.,1900

2024c). Moreover, a safety prompt is introduced1901

to instruct the agent to ignore malicious inconsis-1902

tencies in (Wu et al., 2024a). Also, experiments 1903

are done in (Chen et al., 2025d) to investigate the 1904

efficiency of this strategy. 1905

However, implementing effective defensive 1906

prompting poses challenges, as adversaries contin- 1907

ually develop more sophisticated prompt injection 1908

techniques. Additionally, the balance between ro- 1909

bust security and maintaining the flexibility and 1910

generalization ability of the model remains an on- 1911

going research challenge. 1912

4 Data Sanitization 1913

Current discussion regarding this strategy mainly 1914

lies in the single-agent model, targeting at prevent- 1915

ing malicious triggers during its reasoning and plan- 1916

ning phase (Yang et al., 2024b; Jones et al., 2025; 1917

Wang et al., 2025b). This preventive measure is 1918

essential to protect models from various attacks, 1919

such as backdoor and memory injection attacks. 1920

For example, Backdoor attacks involve embed- 1921

ding hidden triggers within the training data, caus- 1922

ing the model to behave unexpectedly when these 1923

triggers are encountered during inference. By 1924

meticulously sanitizing the training data, such ma- 1925

licious patterns can be identified and eliminated, 1926

thereby safeguarding the model from potential ex- 1927

ploitation (Yang et al., 2024b). 1928

However, this method does not provide security 1929

guarantees (Yang et al., 2024b). 1930

5 Adversarial Training 1931

This approach is predominantly applied to single- 1932

agent systems. 1933

The primary focus of this method is the model 1934

component of the agent framework. By expos- 1935

20



ing models to adversarial examples during train-1936

ing, they learn to withstand such perturbations,1937

thereby improving their robustness (Yu et al., 2025).1938

This method specifically targets adversarial attacks,1939

which involve subtle input modifications that can1940

cause models to make incorrect predictions (Wu1941

et al., 2024a).1942

For example, researchers demonstrated that1943

Computer-Using Agents (CUAs) could be com-1944

promised through minimal perturbations to visual1945

inputs, affecting their visual grounding (Wu et al.,1946

2024a; Yu et al., 2020). By adversarial training,1947

models can learn to recognize and resist these ma-1948

nipulations, thereby enhancing their task comple-1949

tion rate, as demonstrated in AutoSafe, which syn-1950

thesizes diverse risk scenarios and uses them as1951

on-the-fly adversarial examples during fine-tuning1952

to markedly improve agent robustness (Zhou et al.,1953

2025).1954

A notable characteristic of adversarial training1955

is its ability to improve model robustness without1956

necessitating changes to the model architecture.1957

However, identifying possible adversarial threats1958

in advance would be a prerequisite.1959

6 Output Monitoring1960

This approach is primarily applied in single-1961

agent systems, focusing on the model component1962

within the action phase of the agent framework.1963

It aims to address threats such as misalignment,1964

where the agent’s actions diverge from user expecta-1965

tions, and hallucination, where the model generates1966

incorrect or nonsensical information. Additionally,1967

actions resulting in system sabotage or related to1968

malicious usage, such as web hacking, could also1969

be intercepted by this approach.1970

For instance, in the study (Fang et al., 2024a),1971

the authors introduce InferAct, a novel approach1972

that leverages the belief reasoning ability of large1973

language models, grounded in Theory-of-Mind, to1974

detect misaligned actions before execution. In-1975

ferAct alerts users for timely correction, prevent-1976

ing adverse outcomes and enhancing the reliability1977

of LLM agents’ decision-making processes (Fang1978

et al., 2024a). Additionally, the Task Executor in1979

AutoDroid verifies the security of an output ac-1980

tion and asks the user to confirm if the action is1981

potentially risky (Wen et al., 2023). Moreover,1982

TrustAgent includes a post-planning inspection be-1983

fore tool calls (Hua et al., 2024). VeriSafe Agent1984

auto-formalizes user instructions into a DSL speci-1985

fication and checks each GUI operation at runtime,1986

blocking any action that fails logic checks (Lee1987

et al., 2025). 1988

However, a disadvantage would be the additional 1989

system overhead it incurs. 1990

7 Model Inspection 1991

Model inspection defends against critical threats 1992

such as backdoor attacks, prompt injection attacks, 1993

and memory injection attacks by surfacing anoma- 1994

lous activity patterns or internal inconsistencies. 1995

It is commonly categorized into two sub- 1996

methods: anomaly detection and weight analysis. 1997

Anomaly Detection It focuses on monitoring the 1998

behaviors of agents during inference or interaction 1999

to detect deviations from expected model outputs or 2000

communication topologies. It is especially relevant 2001

in multi-agent systems, where interactions can re- 2002

veal inconsistencies in decision-making caused by 2003

compromised agents. For instance, a graph-based 2004

monitoring system was introduced to detect adver- 2005

sarially influenced agents by analyzing the topolog- 2006

ical communication patterns across agents (Wang 2007

et al., 2025d). The system was able to isolate 2008

and prune suspect nodes based on anomaly scores 2009

derived from communication flows (Wang et al., 2010

2025d). Furthermore, a Graphormer model can an- 2011

alyze a dynamic spatio-semantic safety graph that 2012

captures both spatial and contextual risk factors in 2013

real-time to detect hazards (Huang et al., 2025). 2014

Weight Analysis This involves inspecting the in- 2015

ternal parameters of a trained model to identify 2016

hidden triggers or abnormal value distributions in- 2017

dicative of backdoor implantation. This approach 2018

is particularly relevant for single-agent systems. 2019

For example, the authors perform weight-based in- 2020

spection of transformer layers to identify neurons 2021

with disproportionately high influence tied to spe- 2022

cific trigger tokens in (Yang et al., 2024b). The 2023

analysis revealed clear distinctions between clean 2024

and poisoned models, suggesting that weight-level 2025

scrutiny can expose embedded backdoors (Yang 2026

et al., 2024b). Additionally, (Zhu et al., 2025b) pro- 2027

posed an automatic memory-audit step after every 2028

task, which flags anomalies in the agent’s internal 2029

memory traces to detect hidden backdoors. 2030

A key challenge of model inspection is scala- 2031

bility and generalization—both anomaly detection 2032

and weight analysis often require clean model base- 2033

lines, which may not always be available. Addi- 2034

tionally, some backdoors may be designed to evade 2035

conventional statistical thresholds, necessitating 2036

adaptive and explainable inspection mechanisms. 2037

8 Cross Verification 2038
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This method primarily targets the model compo-2039

nent of the agent framework and operates across2040

both the brain and action stages, with the aim2041

of defending against jailbreak, adversarial attacks,2042

and backdoor attacks that may manipulate a single2043

agent’s output to produce harmful or unauthorized2044

behavior.2045

In the context of jailbreak prevention, cross-2046

verification enables redundancy and consensus2047

among agents, thereby reducing the likelihood2048

that a single compromised response propagates2049

through the system. For example, Zeng et al. and2050

Huang et al. propose a multi-agent defense ar-2051

chitecture where a guard or review agent cross-2052

validates the output of a task agent (Zeng et al.,2053

2024; Huang et al., 2024). If the task agent gen-2054

erates potentially harmful content in response to a2055

jailbreak attempt, the guard agent flags the behavior2056

and halts execution, effectively mitigating the at-2057

tack (Zeng et al., 2024). Additionally, AgentOccam2058

uses a Judge agent to assess every candidate action2059

and picks the one with the least risk (Yang et al.,2060

2024a). Similarly, GuardAgent spins up a separate2061

guardian LLM that re-evaluates the primary agent’s2062

outputs against knowledge bases, vetoing any un-2063

safe recommendations (Xiang et al., 2024). More-2064

over, AGrail utilizes multiple checker agents to ver-2065

ify every candidate action before execution (Luo2066

et al., 2025b). Also, the approach in (Barua et al.,2067

2025) uses multiple independent runs of the same2068

prompt across agents and uses majority consensus2069

to filter out jailbreak attempts. MELON executes2070

each prompt twice, once normally and once with2071

a masked injection, to compare outputs and flag2072

any inconsistencies as injected content (Zhu et al.,2073

2025a). For backdoor attacks, ReAgent performs2074

dual-level consistency checks between planning2075

thoughts and executed actions to detect and abort2076

backdoor-triggered behaviors at inference time (Li2077

et al., 2025); and PeerGuard leverages mutual rea-2078

soning among agents to cross-verify each other’s2079

outputs and isolate poisoned agents in a multi-agent2080

backdoor defense (Fan and Li, 2025).2081

However, this method introduces coordination2082

overhead and increases inference latency, particu-2083

larly in large-scale deployments (Zeng et al., 2024).2084

9 Continuous Learning and Adaptation2085

This strategy is primarily discussed in the con-2086

text of multi-agent systems, targeting the model as2087

the primary defense component and the user as a2088

secondary influence. Operating within the brain of2089

the agent framework, this method aims to address2090

prompt injection attacks by enabling agents to de- 2091

tect and adapt to adversarial prompts over time. 2092

This strategy is typically divided into two sub- 2093

methods: self-evolution mechanisms and user feed- 2094

back integration. 2095

Self-Evolution Mechanisms It refers to the 2096

agent’s ability to autonomously adjust its reason- 2097

ing or decision-making strategy based on past ex- 2098

periences and outcomes. LLM-based agents that 2099

re-encode their internal state across tasks are bet- 2100

ter at identifying unsafe instructions and suggest 2101

using performance memory or task replay buffers 2102

to evolve the agent’s policy over time (Tian et al., 2103

2023; Luo et al., 2025b). This helps reduce the suc- 2104

cess rate of prompt injection attacks by enabling 2105

agents to learn from near-miss or failed tasks. 2106

User Feedback Integration It leverages feed- 2107

back from human users to realign the agent’s be- 2108

havior with user expectations. In the same study, 2109

the authors show that agents assisted with user feed- 2110

back—such as warning prompts or confirmations 2111

before execution—exhibited more cautious and 2112

aligned behavior when encountering ambiguous 2113

or adversarial inputs (Tian et al., 2023). This aligns 2114

with the idea proposed in (Ma et al., 2024a) that 2115

human-in-the-loop designs enhance agent safety in 2116

real-world, evolving task environments. For exam- 2117

ple, the study in (Zhang et al., 2025b) highlights 2118

user-initiated oversight mechanisms, such as man- 2119

ual correction loops and adaptive interface adjust- 2120

ments, enabling agents to learn from unintended 2121

outcome feedback and improve future interactions. 2122

A core challenge in this method is balancing 2123

adaptability with stability—frequent updates can 2124

introduce regressions or new vulnerabilities if not 2125

managed carefully. 2126

10 Transparentize 2127

This strategy is particularly relevant in single- 2128

agent systems, focusing primarily on the model 2129

component and secondarily on the user component 2130

within the brain of the agent framework. It ad- 2131

dresses threats such as hallucination—where the 2132

agent generates incorrect or nonsensical informa- 2133

tion—and misalignment, where the agent’s actions 2134

diverge from user intentions to risky operations. 2135

It consists of two main submethods: Explainable 2136

AI (XAI) Techniques and Audit Logs. 2137

Explainable AI (XAI) Techniques It involves 2138

developing methods that make the decision-making 2139

processes of AI agents understandable to users. For 2140
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instance, (Hu et al., 2024) highlights the impor-2141

tance of incorporating XAI techniques to elucidate2142

how agents interpret instructions and execute tasks,2143

thereby mitigating risks associated with hallucina-2144

tions and misalignments.2145

Audit Logs This entails recording the actions2146

and decisions made by AI agents to provide a trace-2147

able history of their operations. Maintaining de-2148

tailed logs is recommended to monitor agent behav-2149

ior, facilitate debugging, and ensure accountabil-2150

ity (Sager et al., 2025). For example, the authors in2151

(Chen et al., 2025b) propose in-context consent di-2152

alogues and user-facing risk indicators to increase2153

transparency of GUI agent operations and empower2154

users to make informed decisions.2155

However, challenges in implementing transpar-2156

entize strategies include balancing the depth of in-2157

formation provided with user comprehension and2158

managing the storage and privacy concerns associ-2159

ated with extensive logging.2160

11 Topology-Guided2161

This approach is particularly relevant in multi-2162

agent systems, focusing primarily on the model2163

component within the brain and action phases of2164

the agent framework. It addresses threats such as2165

prompt injection attacks by examining the commu-2166

nication patterns and interactions among agents.2167

This approach encompasses Agent Network2168

Flow Analysis and Resilience Planning:2169

Agent Network Flow Analysis It monitors the2170

communication and interaction patterns among2171

agents to identify anomalies that may indicate se-2172

curity breaches. For example, a multi-agent utter-2173

ance graph could be constructed to monitor interac-2174

tions and employ graph neural networks to detect2175

anomalous communication flows that could signify2176

prompt injection attacks (Wang et al., 2025d).2177

Resilience Planning It focuses on designing the2178

agent network topology to be robust against poten-2179

tial attacks. This includes strategies such as edge2180

pruning, where connections to compromised agents2181

are severed to prevent the spread of malicious in-2182

formation. The same study demonstrates that by2183

adjusting the network topology through edge prun-2184

ing, the system can effectively contain and mitigate2185

the impact of detected attacks (Wang et al., 2025d).2186

However, challenges in implementing topology-2187

guided strategies include the computational com-2188

plexity of real-time graph analysis and the potential2189

for reduced system performance due to the modifi- 2190

cation of network structures. 2191

12 Perception Algorithms Synergy 2192

This strategy targets single-agent CUAs, act- 2193

ing mainly on the perception component of the 2194

model. It primarily mitigates intrinsic threats such 2195

as UI-understanding or grounding difficulties and 2196

excessive context length. 2197

For example, grounding inputs by com- 2198

bining element-attribute, textual-choice, and 2199

image-annotation cues dramatically reduces 2200

mis-click rates on web tasks (Zheng et al., 2024). 2201

Additionally, MobileFlow augments its pipeline 2202

with a hybrid visual encoder and Mixture of 2203

Experts (MoE) alignment training, boosting image 2204

interpretation on Android (Nong et al., 2024). On 2205

the PC side, PC-Agent introduces an active per- 2206

ception module that uses A11y-tree parsing with 2207

OCR, achieving fine-grained element localisation 2208

in complex desktop windows (Liu et al., 2025b). 2209

Finally, AgentOccam introduces observation-space 2210

alignment and page-simplification to address the 2211

excessive context length issue (Yang et al., 2024a). 2212

Although these synergistic pipelines markedly 2213

improve grounding fidelity, they bring new engi- 2214

neering burdens—maintaining multiple perception 2215

branches, tuning resolution cut-offs, and balancing 2216

latency versus accuracy remain open challenges. 2217

13 Planning-Centric Architecture Refinement 2218

This strategy exists in both single and multi- 2219

agent systems. The method operates across the 2220

brain and action components of CUAs and directly 2221

targets threats such as scheduling errors, response 2222

latency, API-call errors, and reasoning gap attacks. 2223

A representative approach is the chain-of-action 2224

prompt: it requires the agent to emit a full 2225

future-action plan before each execution step, cut- 2226

ting scheduling faults in half (Zhang and Zhang, 2227

2023). Mobile-Bench extends this idea to multi- 2228

agent collaboration with a three-level (instruc- 2229

tion, sub-task, action) hierarchy that decomposes 2230

long-horizon commands and reduces decision- 2231

making difficulties (Deng et al., 2024). Auto- 2232

Droid lowers response latency by caching an 2233

LLM-generated guideline once per task, then del- 2234

egating step-level binding to lightweight vision 2235

models (Wen et al., 2023). Complementarily, the 2236

PC-Agent framework allocates specialised Man- 2237

ager, Progress and Decision agents to refine and 2238

verify plans before execution, boosting success on 2239

20-step desktop workflows (Liu et al., 2025b). 2240

However, planning-centric refinements intro- 2241
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duce coordination overhead, may suffer from stale2242

caches when the UI changes, and require sophisti-2243

cated plan-verification heuristics to guard against2244

adversarial or hallucinated action sequences.2245

14 Pre-defined Regulatory Compliance2246

This strategy is particularly pertinent to single-2247

agent systems, focusing primarily on the user com-2248

ponent and secondarily on the model within the2249

brain and action phases of the agent framework. It2250

addresses threats such as social and cultural con-2251

cerns, misalignment, and hallucination by embed-2252

ding compliance mechanisms into the agent’s func-2253

tionality.2254

This strategy comprises two main aspects: ad-2255

herence to standards and ethical guidelines.2256

Adherence to Standards It refers to specific2257

regulatory frameworks and industry standards pre-2258

defined for CUAs to comply with. For example, a2259

comprehensive benchmark (Zhang et al., 2024e) is2260

introduced to assess the safety of large language2261

model agents, ensuring they meet predefined safety2262

standards and operate within acceptable risk pa-2263

rameters. Additionally, GameChat employs pre-2264

defined Control Barrier Functions to define safe2265

operational boundaries for each agent in a multi-2266

agent system, ensuring agents’ trajectories remain2267

within safe limits, preventing collisions (Mahade-2268

van et al., 2025). The game-theoretic strategy satis-2269

fying Subgame Perfect Equilibrium in GameChat2270

further prevents agents from deviating from the2271

agreed-upon strategies at any point, promoting con-2272

sistent adherence to safe navigation protocols (Ma-2273

hadevan et al., 2025). Moreover, ShieldAgent ex-2274

tracts verifiable rules from policy documents, struc-2275

tures them into a set of action-based probabilistic2276

rule circuits, and associates specific agent actions2277

with corresponding constraints (Chen et al., 2025e).2278

Continuous verification ensures real-time standards2279

adherence (Chen et al., 2025e). Also, AgentSand-2280

box operationalizes security principles like defense-2281

in-depth and least privilege within agent lifecy-2282

cles, embedding policy enforcement checkpoints2283

that uphold confidentiality and integrity require-2284

ments (Zhang et al., 2025a).2285

Ethical Guidelines This involves integrating eth-2286

ical considerations into the design and operation2287

of AI agents. The same study emphasizes the im-2288

portance of aligning agent behaviors with ethical2289

norms to prevent unintended consequences, such2290

as generating harmful content or exhibiting biased2291

behaviors (Zhang et al., 2024e).2292

However, challenges in implementing pre- 2293

defined regulatory compliance include the dynamic 2294

nature of regulations and ethical standards, requir- 2295

ing continuous updates to the agent’s compliance 2296

mechanisms to remain current. 2297

C Evaluation and Benchmarking 2298

C.1 Dataset 2299

C.1.1 Web-based Scenario 2300

Specifically, ST-WebAgentBench (Levy et al., 2301

2024) and BrowserART (Kumar et al., 2024) focus 2302

on evaluating agents’ safety-related behaviors in 2303

tasks involving web navigation, interaction, and 2304

tool usage under potential prompt injection threats. 2305

Meanwhile, PrivacyLens (Shao et al., 2024) inves- 2306

tigates privacy-sensitive interactions in web-based 2307

conversations, containing 493 validated prompts 2308

derived from U.S. legal, social, and interpersonal 2309

communication norms. In parallel, CASA (Qiu 2310

et al., 2025) provides a web-based benchmark de- 2311

signed to evaluate agents’ awareness of cultural and 2312

social contexts, utilizing grounded questions and 2313

descriptors sourced from CultureBank. Further- 2314

more, ShieldAgent-Bench (Chen et al., 2025e) ex- 2315

tends these efforts by simulating adversarial instruc- 2316

tions and policy-violation scenarios across diverse 2317

web environments, providing 960 safety-related in- 2318

structions and 3,110 unsafe trajectories. SafeArena 2319

(Tur et al., 2025) likewise broadens coverage by 2320

injecting jailbreak-inspired malicious intents into 4 2321

realistic WebArena sites and introducing 500 paired 2322

safe vs. harmful tasks over 5 harm categories. Sim- 2323

ilarly, WASP (Evtimov et al., 2025) combines 21 2324

concrete attacker goals with 2 benign user goals 2325

under both URL and plaintext injection templates, 2326

with total of 84 tasks, to evaluate agent security 2327

against prompt injection attacks. VPI-Bench (Cao 2328

et al., 2025) targets visual prompt injection, pro- 2329

viding 306 test cases across five popular sites, each 2330

embedding an adversarial instruction directly in 2331

the on-screen UI to see whether agents follow 2332

it. AgentDAM (Zharmagambetov et al., 2025) as- 2333

sesses AI agents’ propensity to expose sensitive 2334

information across three realistic web settings (Red- 2335

dit, GitLab, Shopping) over 246 tasks. Finally, the 2336

VWA-Adv benchmark (Wu et al., 2024a) targets 2337

web-based scenarios, introducing 200 adversarial 2338

tasks built on VisualWebArena (Koh et al., 2024) to 2339

evaluate agent robustness against realistic attacks 2340

through imperceptible webpage perturbations and 2341

component-wise adversarial flows. 2342
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Table 4: An overview of web and mobile based computer-using agents (CUAs) safety benchmarks.

Platform Benchmark Highlight Data Size Collection Metric Measure

Web

VWA-Adv
(Wu et al.,
2024a)

Assesses the robustness of multi-
modal web agents against adver-
sarial attacks originating from the
environment.

200 adversarial
tasks

Open-source data
modification

Benign SR,
ASR

Rule

ST-
WebAgent
Bench
(Levy et al.,
2024)

Evaluates the safety of web agents
by testing policy adherence and
risk mitigation, focusing on exter-
nal attacks and internal misalign-
ments.

235 policy-
enriched tasks

Open-source data
modification

CuP, Partial
CuP

Rule

BrowserART
(Kumar et al.,
2024)

Assesses the safety of browser
agents against harmful interac-
tions, content, and jailbreak.

100 harmful
browser-related
behaviors

Open-source data
modification

ASR LLM

CASA
(Qiu et al.,
2025)

Evaluates LLM web agents’ cul-
tural and social awareness about
social norms and legal standards
in interactions with non-malicious
users.

1225 user
queries, 622
web observa-
tions

GPT-4o generation
with human valida-
tion

AC-R, Edu-R,
Helpfulness,
Vio-R

LLM

SafeArena
(Tur et al.,
2025)

Evaluate deliberate misuse of au-
tonomous web agents and intro-
duces the ARIA risk framework.

250 safe and
250 harmful
tasks

Human cura-
tion with LLM
assistance, Open-
source data
augmentation

TCR, RR, Nor-
malized Safety
Score

Rule,
LLM,
Manual

AgentDAM
(Zharmagambetov
et al., 2025)

Measures inadvertent leakage of
sensitive information by AI agents
during web task execution.

246 tasks Human curation,
Open-source uti-
lization

Utility, LR Rule,
LLM

ShieldAgent
Bench
(Chen et al.,
2025e)

Tests agent safety against adver-
sarial instructions and policy vio-
lations across web environments
and risk categories.

960 web in-
structions,
3110 unsafe
trajectories

Open-source data
modification

Accuracy, FPR,
Recall, Infer-
ence Cost

Rule

WASP
(Evtimov
et al., 2025)

Shows that even top-tier AI mod-
els can be deceived by simple,
low-effort human-written injec-
tions in very realistic scenarios.

84 tasks Human curation TSR, Interme-
diate ASR

Rule,
LLM

VPI-Bench
(Cao et al.,
2025)

Evaluates the robustness of CUAs
and Browser-use agents to visual
prompt injection across five popu-
lar web platforms.

306 test cases Human curation AR, ASR LLM

Mobile

MobileSafety
Bench
(Lee et al.,
2024a)

Evaluates mobile agents in An-
droid emulators for safety, helpful-
ness, ethical compliance, fairness,
privacy, and prompt injection at-
tacks.

80 tasks Human survey and
annotation

TSR, RR Rule

Hijacking
Jarvis
(Liu et al.,
2025a)

Evaluates mobile GUI agents’
safety under unprivileged
third-party UI manipulations by
the AgentHazard framework.

3000+ attack
scenarios

Human creation,
annnotation

TSR, MR,
ACCsafe,
ACCattack

Rule
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Table 5: An overview of general-purpose computer-using agents (CUAs) safety benchmarks.

Platform Benchmark Highlight Data Size Collection Metric Measure

General

ToolEmu
(Ruan et al.,
2023)

Evaluates safety failures of LM
agents across diverse tool-driven
scenarios.

36 toolkits, 144
test cases

Human curation
with LLM assis-
tance

Safety, Help-
fulness

LLM,
Manual

R-Judge
(Yuan et al.,
2024)

Evaluates LLM agents’ safety
awareness about multiple risks,
with prompt injection attacks and
complex environment challenges.

569 records
of multi-turn
agent interac-
tion

Open-source data
modification with
ChatGPT

F1 score,
Recall, Speci-
ficity, Effec-
tiveness

Manual,
LLM

TrustAgent
(Hua et al.,
2024)

Evaluates agents’ safety regula-
tions into planning across do-
mains and risks.

144 data points Open-source data
modification

Helpfulness,
Safety, Total
Correct Prefix,
SSR

LLM,
Rule

InjecAgent
(Zhan et al.,
2024)

Evaluates tool-integrated LLM
agents’ susceptibility to indirect
prompt injections.

1,054 test cases GPT-4 with man-
ual refinement

ASR Rule

AgentDojo
(Debenedetti
et al., 2024)

Evaluates the robustness of
LLM-based agents in dynamic,
tool-using environments against
prompt injection attacks.

97 tasks, 629 se-
curity test cases

Human design
with LLM assis-
tance

TSR, TSR
under Attack,
ASR

Rule

PrivacyLens
(Shao et al.,
2024)

Tests agents for privacy adher-
ence, assessing vulnerability to
data leakage and misuse amid mis-
alignment.

493 seeds and
1479 questions

Human collection,
transformation
with GPT-4

LR, LRh,
Helpfulness

LLM,
Rule

HAICOSYSTEM
(Zhou et al.,
2024)

Simulates multi-turn hu-
man–agent tool interactions
to probe multi-dimensional safety
risks.

132 scenarios,
8K simulated
episodes

Human creation,
Open-source inspi-
ration

TARG, SYST,
CONT, SOC,
LEGAL, EFF,
GOAL

LLM

AgentHarm
(Andriushchenko
et al., 2024)

Evaluates LLM agents’ resistance
to malicious requests and multi-
step harmful behaviors triggered
by jailbreaks.

110 malicious
tasks, 330 aug-
mented tasks

Human generation
and review, LLM
generation

Harm score,
RR

LLM,
Rule

Agent Secu-
rity Bench
(Zhang et al.,
2024b)

Evaluates LLM agents’ security
against external attacks such as
prompt injection and backdoors.

400 tools, 10
scenarios, 10
agents, and 400
cases

GPT-4 generation ASR, RR,
PNA, BP, FPR,
FNR, NRP

LLM,
Rule

Agent-
SafetyBench
(Zhang et al.,
2024e)

Evaluates LLM agents’ safety
against jailbreaks and misalign-
ments across risks.

2000 test cases
with 10 failure
modes and 349
environments

Open-source data
modification

Safety Score LLM,
Rule

RedTeamCUA
(Liao et al.,
2025)

Demonstrates that indirect prompt
injection presents tangible risks
for even advanced CUAs despite
their capabilities and safeguards.

216 adversarial
scenarios

Human Curation SR, ASR, AR Rule,
LLM

RiOSWorld
(Yang et al.,
2025b)

Measures the risk intent and com-
pletion of MLLM-based agents
during real-world computer ma-
nipulations.

492 risky tasks Human, Open-
source, LLM

RGC, RGI Rule,
LLM

MLA-Trust
(Yang et al.,
2025c)

Measures agent trustworthiness
by orchestrating high-risk, interac-
tive tasks, especially in multi-step
interactions.

34 tasks Human creation,
Open-source data
augmentation

Accuracy, Mis-
Rate, ASR, TS,
RtE

Rule
LLM

GUI-Robust
(Yang et al.,
2025a)

Reveal GUI agents’ substantial
performance degradation in abnor-
mal scenarios.

5318 tasks Semi-automated
dataset construc-
tion paradigm

Action & Co-
ordinate Accu-
racy, TSR

Rule

OS-Harm
(Kuntz et al.,
2025)

Measures CUA safety across three
harm types—deliberate user mis-
use, prompt injection, and model
misbehavior.

150 tasks Human cre-
ation with LLM
assistance, Open-
source data
augmentation

Unsafe, TSR LLM

RAS-Eval
(Fu et al.,
2025)

Evaluates security of LLM-based
agents across simulated and real-
world tool executions in diverse
formats.

80 test cases,
3802 attack
tasks

Human collection,
implementation

TCR, TIR,
TFR, score,
ASR

Rule

OpenAgent-
Safety
(Vijayvargiya
et al., 2025)

Evaluates agent safety when inter-
acting with real tools across mixed
environments including web and
OS.

350 multi-turn,
multi-user tasks

Human curation
with LLM assis-
tance

Unsafe Be-
havior Rates,
Failure Rate,
Disagreement
Rate

Rule,
LLM
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C.1.2 Mobile-based Scenario2343

Specifically, MobileSafetyBench (Lee et al., 2024a)2344

includes 80 representative tasks spanning messag-2345

ing, social media, finance, and system utilities to2346

assess safety performance. Hijacking JARVIS (Liu2347

et al., 2025a) offers a two-part benchmark compris-2348

ing 58 dynamic tasks with varied attack patterns2349

and a static set of 210 screenshots from 14 popu-2350

lar Android apps, supporting both live and offline2351

evaluations.2352

C.1.3 General-purpose Scenario2353

Tool-use scenario Tool-enabled CUAs have re-2354

ceived intense scrutiny over the past two years.2355

ToolEmu (Ruan et al., 2023) probes safety fail-2356

ures in a fully LM-emulated sandbox, covering2357

36 toolkits (18 categories), 144 high-stakes tasks,2358

and 9 risk types. RAS-Eval (Fu et al., 2025) stan-2359

dardizes security testing for tool-driven agents with2360

80 core test cases and 3,802 attack tasks mapped2361

to 11 CWE categories across both simulated and2362

real tool executions. Prompt-injection–oriented2363

suites such as AgentDojo (Debenedetti et al., 2024)2364

with 97 realistic tasks, 629 security cases and In-2365

jecAgent (Zhan et al., 2024) with 330 tools from2366

36 toolkits evaluate how well agents perform un-2367

der various adversarial scenarios while equipping2368

with diverse tools. AgentHarm (Andriushchenko2369

et al., 2024) broadens harmful-behavior testing2370

with 110 base behaviors in 11 harm categories,2371

and the large-scale Agent Security Bench (ASB)2372

(Zhang et al., 2024b) aggregates 10 scenarios, 102373

purpose-built agents, and over 400 tools and tasks2374

to offer a unified safety framework. Furthermore,2375

Agent-SafetyBench (Zhang et al., 2024e) covers2376

349 interaction environments and 2,000 test cases,2377

spanning 8 safety risk categories and 10 prevalent2378

failure modes in unsafe agent behaviors.2379

Mixed / hybrid environments Several bench-2380

marks test agents that operate across heterogeneous2381

interfaces (web, OS, shells, code executors, etc.).2382

For instance, OpenAgentSafety (Vijayvargiya et al.,2383

2025) provides 350 multi-turn, multi-user tasks2384

in both benign and adversarial settings using a2385

real browser, shell, file system, and messaging2386

APIs. RiOSWorld (Yang et al., 2025b) runs 4922387

risky tasks in 13 categories on an OSWorld VM,2388

capturing both environment and user-originated2389

risks. RedTeamCUA (Liao et al., 2025) introduces2390

RTC-Bench with 864 hybrid Web–OS adversar-2391

ial scenarios, underscoring CUAs’ susceptibility2392

to indirect prompt injection. MLA-Trust (Yang2393

et al., 2025c) evaluates 34 high-risk, real-world 2394

tasks, showing how multi-step interactions in real 2395

environments can amplify risks beyond static LLM 2396

outputs. GUI-Robust (Yang et al., 2025a) com- 2397

plements this by injecting seven classes of inter- 2398

face anomalies (e.g., ad pop-ups, loading delays) to 2399

study robustness. Finally, HAICOSYSTEM (Zhou 2400

et al., 2024) emulates realistic human–AI interac- 2401

tions and complex tool use by running 8K+ sim- 2402

ulations across 132 scenarios in seven domains, 2403

covering multi-dimensional risks (operational, con- 2404

tent, societal, legal). 2405

Broader risk-awareness and multidimen- 2406

sional safety Beyond concrete tool or environ- 2407

ment settings, several works emphasize compre- 2408

hensive risk taxonomies and analysis. R-Judge 2409

(Yuan et al., 2024) scores risk awareness over 569 2410

multi-turn interactions spanning 5 categories, 27 2411

scenarios, and 10 risk types. TrustAgent (Hua et al., 2412

2024) contributes 70 samples across 5 domains 2413

with paired ground-truth implementations to evalu- 2414

ate both helpfulness and safety. PrivacyLens (Shao 2415

et al., 2024) offers 493 privacy-sensitive vignettes 2416

and trajectories for leakage analysis. GUI-Robust 2417

(Yang et al., 2025a) complements these efforts by 2418

focusing on robustness under anomalies in inter- 2419

actions. It includes seven categories of common 2420

interface failures, such as advertisement pop-up 2421

and page loading delay. 2422

C.2 Evaluation Metrics 2423

This section presents formulas, dataset-specific 2424

variants, and implementation details for the evalua- 2425

tion metrics briefly defined in Section 5.2. 2426

C.2.1 Task Completion Metrics 2427

1 Task Success Rate (TSR) serves as a holis- 2428

tic indicator of an agent’s overall effectiveness in 2429

completing a given task. A high Task Success Rate, 2430

therefore, not only signifies that the agent meets the 2431

intended outcome but also underlines its reliability 2432

in standard operational settings. 2433

Beyond the core TSR, many benchmarks adopt 2434

related utility measures under different names or 2435

extend them to mixed safe/adversarial settings: 2436

• Benign Success Rate (Benign SR) / Be- 2437

nign Utility / Performance Under No At- 2438

tack (PNA) equivalent to TSR under normal, 2439

non-adversarial conditions (Wu et al., 2024a; 2440

Debenedetti et al., 2024; Zhang et al., 2024b). 2441

• Benign Performance (BP) measures the 2442
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agent’s success rate on its intended tasks when2443

a backdoor trigger is present, indicating how2444

well it maintains functionality under backdoor2445

attack (Zhang et al., 2024b).2446

• Utility measures how well agent performs2447

its presrcibed tasks (Zharmagambetov et al.,2448

2025).2449

• Goal Completion (GOAL): scores whether2450

the agent achieves each scenario’s high-level2451

objective (Zhou et al., 2024).2452

• Task Completion Rate (TCR) quantifies2453

whether an agent’s execution fully matches2454

the benchmark’s reference sequence. It could2455

be computed either by matching executions2456

against predefined reference objects (Tur et al.,2457

2025) or by verifying the tool-call sequence2458

contains the human-annotated steps (Fu et al.,2459

2025). RAS-Eval (Fu et al., 2025) futher in-2460

troduces several composite metrics:2461

– Task Incompletion Rate (TIR) counts2462

runs that invoke only a subset or incor-2463

rect combination of required tools.2464

– Task Fail Rate (TFR) flags runs that2465

crash, make no tool calls, or exceed lim-2466

its.2467

– Performance Score (score) ultimately2468

synthsizes TCR, TIR, TFR into a unified2469

score.2470

2 Helpfulness measures not only whether the2471

task was finished but also how well the agent ex-2472

ecuted the necessary operations, such as making2473

the correct and effective tool calls to achieve the2474

desired outcome (Ruan et al., 2023). In other2475

words, while task completion is a binary measure2476

of whether a task is accomplished, helpfulness also2477

considers the overall utility, coherence, and effec-2478

tiveness of the response. Evaluating helpfulness2479

often involves designing an automatic evaluator2480

(e.g. prompting a LLM as judge) or relying on2481

human annotators (Qiu et al., 2025).2482

C.2.2 Intermediate Step Metrics2483

1 Step Success Rate (SSR) For each action within
a multi-step task, SSR verifies whether the agent’s
operation matches the the expected or "ground
truth" behavior. Formally, it is defined as:

SSR =
# Correct Steps

# Total Steps

A higher step success rate reflects greater precision 2484

in executing each part of the task, which is espe- 2485

cially crucial in scenarios that require reliable and 2486

fine-grained control across multiple actions. 2487

2 Total Correct Prefix In addition to overall step 2488

accuracy, it is important to assess the sequence in 2489

which these steps are executed. Some individual ac- 2490

tions may match their corresponding ground truth 2491

steps; however, if they occur out of the intended or- 2492

der, this misordering can lead to potential safety or 2493

reliability risks. (Hua et al., 2024) Hence, evaluat- 2494

ing Total Correct Prefix offers valuable insight into 2495

the agent’s ability to follow the intended procedure 2496

from the start, while also revealing vulnerabilities 2497

that may arise from executing actions in an incor- 2498

rect sequence. 2499

C.2.3 Safety and Robustness Metrics 2500

1 Attack Success Rate (ASR) & Expanded Ad-
versarial Metrics Attack Success Rate is a widely
used measure of CUA robustness under adversarial
conditions (Zhan et al., 2024; Debenedetti et al.,
2024; Kumar et al., 2024; Zhang et al., 2024b). It
is defined as:

ASR =
# Successful Attack Tasks

# Total Attack Tasks

A higher ASR indicates increased vulnerability of 2501

the agent to adversarial manipulation (Chang et al., 2502

2023). 2503

Since attacks vary in form and impact, several 2504

works define complementary metrics beyond ASR 2505

to capture different facets of adversarial effect: 2506

• Violation Rate (Vio-R) measures the fraction 2507

of agent responses that violate stated norms 2508

when presented with misleading or malicious 2509

inputs, which effectively captures how often 2510

the agent is “attacked” into norm-breaking 2511

behavior (Qiu et al., 2025). 2512

• Misguided Rate (MisRate) measures how 2513

often an agent gives plausible yet incorrect an- 2514

swers to ambiguous or underspecified prompts 2515

(Yang et al., 2025c). 2516

• Misleading Rate (MR) measures the fraction 2517

of attack trials in which the agent abandons 2518

the intended behavior and instead follows the 2519

injected misleading content (Liu et al., 2025a). 2520

• Risk Goal Completion (RGC) reports the 2521

fraction of risky tasks where the agent fully 2522
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achieves the attacker’s objective (Yang et al.,2523

2025b).2524

• Unsafe straightforwardly calculates the per-2525

centage of execution traces labeled as “Un-2526

safe” by rule-based checks (Kuntz et al.,2527

2025).2528

• Net Resilient Performance (NRP) combines
non-adversarial condition capability (PNA)
and robustness against attack (ASR) into a
single score:

NRP = PNA× (1−ASR)

A higher NRP reflects both strong task per-2529

formance and effective resistance to attacks,2530

whereas a lower NRP signals vulnerability,2531

poor baseline accuracy, or both. It is valuable2532

as it measures the trade-offs between perfor-2533

mance and robustness (Zhang et al., 2024b).2534

• Safety in TrustAgent (Hua et al., 2024) eval-2535

uates both the likelihood and the severity of2536

potential risks by assigning categorical ratings2537

(e.g., “Certain No Risk” to “Likely Severe2538

Risk”) to each agent response, thus capturing2539

not only whether a response is unsafe but how2540

risky it is. ToolEmu (Ruan et al., 2023) also2541

uses Safety with the similar idea: its safety2542

evaluator flags failures and gives a 0–3 score2543

by crossing harm likelihood with harm sever-2544

ity.2545

• Safety Score measures the proportion of test2546

cases labeled “safe” by an LLM judge (Zhang2547

et al., 2024e).2548

• Harm Score is computed via a detailed manu-2549

ally written grading rubric where outputs earn2550

partial credit whenever some but not all harm-2551

ful criteria are triggered (Andriushchenko2552

et al., 2024).2553

• Targeted Safety Risk (TARG), Sys-2554

tem/Operational Risk (SYST), Content2555

Safety Risk (CONT), Societal Risk (SOC),2556

Legal/ Rights Risk (LEGAL) HAICOSYS-2557

TEM (Zhou et al., 2024) refines the overall2558

safety severity into five risk dimensions, each2559

scored on a −10 to 0 scale to indicate how2560

severely a trajectory violates that category.2561

2 Completion Under the Policy (CuP) is calcu-
lated as

CuP = Ctask × 1{Vtotal = 0},

where Ctask is the task completion score, Vtotal = 2562∑
source, dim Vsource,dim counts the total number of 2563

policy violations across all sources and dimensions, 2564

and 1{·} is the indicator function that returns 1 2565

only if no violations occurred (Levy et al., 2024). 2566

Recognizing that certain tasks can be challeng-
ing to fully complete, Levy et al. (2024) introduce
the Partial Completion Rate (PCR) to credit runs
that satisfy at least one success criterion, and they
further define Partial Completion Under the Pol-
icy (Partial CuP) by weighting the task completion
score Ctask with PCR, thereby examining whether
the agent respects policy constraints when only a
portion of the task is satisfied. This assesses the
agent behavior by balancing between task difficulty
and adherence to safety guidelines.

3 F1 Score & Related Classification Metrics F1
Score is a critical safety metric that balances false
positives and false negatives. It is is defined as

F1 = 2× Precision×Recall

Precision+Recall

where 2567

• Precision= TP
TP+FP measures the accuracy 2568

of positive predictions. 2569

• Recall= TP
TP+FN (also called Sensitivity or 2570

True Positive Rate) captures the model’s abil- 2571

ity to identify all unsafe instances (Yuan et al., 2572

2024). 2573

By incorporating both these aspects, the F1 score 2574

serves as a robust indicator, especially in risk- 2575

sensitive applications where the accurate identi- 2576

fication of unsafe instances is crucial. 2577

In addition to F1 score, many benchmarks also 2578

report related classification metrics, including: 2579

• Specificity= TN
TN+FP (also called True Neg- 2580

ative Rate) quantifies how well the agent cor- 2581

rectly identifies safe cases. 2582

• False Positive Rate (FPR)= FP
FP+TN indi- 2583

cates the proportion of safe instances misclas- 2584

sified as unsafe. 2585

• False Negative Rate (FNR)= FN
FN+TP repre- 2586

sents the portion of unsafe instances the agent 2587

fails to flag. 2588

4 Refusal Rate (RR) is defined as:

Refusal Rate =
# Refused Tasks

# Total Tasks
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where a “Refused Task” is one in which the agent2589

declines to perform an unsafe or malicious request.2590

A higher RR reflects greater caution, though ex-2591

cessively high values on benign tasks may indicate2592

overconservatism, whereas a lower RR suggests2593

greater permissiveness, which can improve user ex-2594

perience but might also increase the risk of unsafe2595

outcomes (Lee et al., 2024a).2596

MLA-Trust (Yang et al., 2025c) instantiate RR
as a Refusal-to-Execute Rate (RtE), where each
agent output is labeled “refuse” or “not refuse”
by a specialized LLM judge(e.g., GPT-4 or Long-
former) following validated labeling protocols.

5 Leakage Rate (LR) is defined as

LR =
# Leakage Cases

# Total Cases

In PrivacyLens (Shao et al., 2024), a set S of sen-2597

sitive data is defined, and for each trajectory τ , an2598

agent output aτ is considered a leakage event if any2599

item in the sensitive data set S can be inferred from2600

it. AgentDAM (Zharmagambetov et al., 2025) sim-2601

ilarly applies the LR metric to quantify instances2602

where sensitive data appears in agent’s action out-2603

puts.2604

To account for the agent’s overall util-2605

ity, Shao et al. (2024) further define2606

LRh = # Leakage Cases with Positive Helpfulness
# Total Cases with Positive Helpfulness2607

which calculates how often sensitive data is2608

exposed specifically in those cases rated as helpful2609

by the evaluation framework.2610

6 Attempt Rate (AR) measures the fraction2611

of adversarial cases in which the agent initiates2612

unsafe behavior, even if it does not complete the2613

harmful task. Both RedTeamCUA (Liao et al.,2614

2025) and VPI-Bench (Cao et al., 2025) rely on2615

LLM judges to flag these attempts: RedTeamCUA2616

uses a single LLM to detect beginnings of harmful2617

actions, while VPI-Bench employs a majority2618

vote of three frontier LLMs to decide whether an2619

attack was “attempted”. A similar concept, Risk2620

Goal Intention (RGI), is used in RiOSWorld2621

(Yang et al., 2025b) to denote an agent’s first move2622

toward the attacker’s objective.2623

C.3 Measurements2624

This section highlights concrete examples of how2625

each measurement approach—rule-based, LLM-2626

as-a-judge, and manual evaluation—is employed2627

across representative CUA safety benchmarks.2628

C.3.1 Rule-based Measurements 2629

Rule-based measurement relies on programmatic 2630

checks that automatically evaluate agent behav- 2631

ior against fixed, deterministic criteria, making it 2632

ideal for objective, well-defined evaluations. This 2633

approach is widely adopted across existing agent 2634

safety benchmarks. 2635

Many benchmarks implement simple task- 2636

success and attack-impact checks. For instance, 2637

ShieldAgent (Chen et al., 2025e) adopts this ap- 2638

proach to directly compute evaluation metrics, 2639

while TrustAgent (Hua et al., 2024) measures 2640

the overlap of action trajectories to assess goal 2641

alignment and safety compliance. AgentDojo 2642

(Debenedetti et al., 2024) and InjecAgent (Zhan 2643

et al., 2024) both compute Attack Success Rate 2644

using predefined criteria, and PrivacyLens (Shao 2645

et al., 2024) applies binary (yes/no) rules to detect 2646

privacy leaks in prompts. 2647

Several works extend rule-based checks to richer 2648

environments and risks. ST-WebAgentBench (Levy 2649

et al., 2024) applies programmatic functions to eval- 2650

uate policy compliance via DOM and action traces. 2651

MobileSafetyBench (Lee et al., 2024a), Agent- 2652

SafetyBench (Zhang et al., 2024e) and WASP (Ev- 2653

timov et al., 2025) all rely on rule-based checks 2654

for task success and harm prevention across mo- 2655

bile and web environments; and Agent Security 2656

Bench (ASB) (Zhang et al., 2024b) adopts rule- 2657

based ASR calculations to quantify attack impact. 2658

Meanwhile, AgentHarm (Andriushchenko et al., 2659

2024) employs predefined rules to evaluate most 2660

simple tasks, thereby minimizing dependence on 2661

LLM-based grading. 2662

More advanced rule-based evaluators compare 2663

final environment states against expected outcomes. 2664

SafeArena (Tur et al., 2025) matches outputs to 2665

predefined reference objects and applies the Agent 2666

Risk Assessment (ARIA) framework’s four hierar- 2667

chical risk rules to quantify harmful-task outcomes. 2668

OpenAgentSafety (Vijayvargiya et al., 2025) im- 2669

plements Python-based evaluators that inspect the 2670

final environment state to detect unsafe outcomes. 2671

MLA-Trust (Yang et al., 2025c) adopts keywords 2672

matching method to automatically compute Re- 2673

fusal Rate. RAS-Eval (Fu et al., 2025) aligns 2674

each agent’s tool-call sequence against a human- 2675

annotated reference sequence for completion, in- 2676

completion, and fail rates, and RiOSWorld (Yang 2677

et al., 2025b) runs per-risk evaluators on the final 2678

executable outcome. Hijacking JARVIS (Liu et al., 2679
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2025a) and AgentDAM (Zharmagambetov et al.,2680

2025) both use deterministic checks—augmented2681

by human-validated ground truth—to judge suc-2682

cess in static and live tasks. Finally, GUI-Robust2683

(Yang et al., 2025a) ensures alignment with ground-2684

truth trajectories, and VWA-Adv benchmark (Wu2685

et al., 2024a) models agent interactions as a di-2686

rected graph to compute adversarial influence along2687

edges.2688

Frameworks like DoomArena generalize this ap-2689

proach by providing libraries of scripted attack sce-2690

narios alongside built-in checks on the final envi-2691

ronment state. Such frameworks demonstrate the2692

power of rule-based methods for scalable, repro-2693

ducible evaluation.2694

C.3.2 LLM-as-a-judge Measurements2695

Unlike rule-based methods that rely on fixed logic,2696

LLM-based approaches utilize the interpretive abil-2697

ities of LLMs to handle complex and open-ended2698

scenarios, making them ideal for tasks where de-2699

terministic rules fall short. Benchmarks such as2700

R-Judge (Yuan et al., 2024) prompt an LLM to2701

score open-ended safety analyses, while TrustA-2702

gent (Hua et al., 2024) uses GPT-4 to assess both2703

helpfulness and safety in agent outputs. ToolEmu2704

(Ruan et al., 2023) similarly employs automatic2705

LLM evaluators to rate trajectory safety and ef-2706

fectiveness. Both PrivacyLens (Shao et al., 2024)2707

and AgentDAM apply (Zharmagambetov et al.,2708

2025) applies a LLM-based classifiers to detect2709

whether sensitive information can be inferred from2710

an agent’s actions.2711

This approach has been extended to a diverse ar-2712

ray of benchmarks: BrowserART (Kumar et al.,2713

2024) and AgentHarm (Andriushchenko et al.,2714

2024) use GPT-4o to classify harmful behaviors2715

and evaluate refusals. CASA (Qiu et al., 2025)2716

adopts GPT-4o across metrics to assess cultural2717

and social awareness, SafeArena (Tur et al., 2025)2718

feeds GPT-4o each agent’s trajectory and meta-2719

data to assign one of the four ARIA risk levels,2720

ASB (Zhang et al., 2024b) uses LLMs to evalu-2721

ate whether agents properly refuse unsafe instruc-2722

tions, and MLA-Trust (Yang et al., 2025c) employs2723

auto-classifiers to evaluate response toxicity and2724

the misguided rate. Furthermore, OpenAgentSafety2725

(Vijayvargiya et al., 2025) uses GPT-4.1 to label2726

each trajectory into one of four predefined safety2727

categories to capture unsafe intent that may not2728

manifest in the final environment state. While2729

OS-Harm (Kuntz et al., 2025) employs an LLM2730

judge to decide task completion, label safety, and 2731

pinpoint the first unsafe step, with human annota- 2732

tions validating and confirming the LLM judge’s 2733

effectiveness. HAICOSYSTEM (Zhou et al., 2024) 2734

nriches this paradigm by having LLM judges ap- 2735

ply scenario-specific checklists, scoring five dis- 2736

tinct risk dimensions alongside goal completion 2737

and tool-use efficiency. 2738

More specialized uses include RedTeamCUA 2739

(Liao et al., 2025), RiOSWorld (Yang et al., 2025b) 2740

and WASP (Evtimov et al., 2025), which rely on 2741

LLM to flag evidence of attempted but not neces- 2742

sarily completed attacks. To bolster reliability, VPI- 2743

Bench employs a majority-vote across three fron- 2744

tier models when judging attempted and completed 2745

attacks, and the DoomArena framework even al- 2746

lows LLM monitors to inspect intermediate reason- 2747

ing traces, catching subtle policy violations that 2748

rule-based scripts might overlook. 2749

C.3.3 Manual Judge Measurements 2750

Manual labels remain the gold standard for vali- 2751

dating automated and LLM-based evaluators. R- 2752

Judge (Yuan et al., 2024) incorporates a human- 2753

labeled test set to assess the quality of LLM- 2754

generated safety analyses, ensuring that machine 2755

judgments align with expert annotations. ToolEmu 2756

(Ruan et al., 2023) similarly relies on human 2757

annotators to label emulation quality and agent 2758

safety/helpfulness, providing a reference set to val- 2759

idate the LLM judges. SafeArena (Tur et al., 2025) 2760

further complements its automated ARIA risk as- 2761

signments with trajectory-by-trajectory human as- 2762

sessments, grounding each risk level in expert re- 2763

view. 2764

D Complete Taxonomy 2765
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Intrinsic Threats

Perception UI Understanding and
Grounding Difficulties

Chen et al. (2025c), Pahuja et al. (2025), Nong
et al. (2024), Zheng et al. (2024), Liu et al. (2025b)

Brain

Scheduling Errors Zhang and Zhang (2023), Deng et al. (2024)

Misalignment Ma et al. (2024a)

Hallucination Deng et al. (2024)

Excessive Context Length Zhang and Zhang (2023), Yang et al. (2024a)

Social and Cultural Concerns Qiu et al. (2025)

Response Latency Wen et al. (2023), Zhang and Zhang (2023), Li et al. (2020), Li et al. (2021)

Action API Call Error Deng et al. (2024), Nong et al. (2024), Zhang and Zhang (2023)

Extrinsic Threats

Adversarial Attack Wu et al. (2024a), Ma et al. (2024a),
Zhang et al. (2024c), Aichberger et al.

(2025), Zhao et al. (2025), Wu et al. (2025)

Prompt Injection Attack Zhan et al. (2024), Liao et al. (2024), Wu et al. (2024b), Xu et al. (2024),
Debenedetti et al. (2024), Mudryi et al. (2025), Liu et al. (2023b),

Lupinacci et al. (2025), Kuntz et al. (2025), Liao et al. (2025), Evti-
mov et al. (2025), Wu et al. (2025), Cao et al. (2025), Shapira et al.
(2025), Chen et al. (2025a), Liu et al. (2025a), Wang et al. (2025a),

Nakash et al. (2024), Johnson et al. (2025), Wang et al. (2025e), Zhan
et al. (2025), Lu et al. (2025), Wang et al. (2025g), Wang et al. (2025c)

Jailbreak Mo et al. (2024), Chu et al. (2024), Zou et al. (2023), Liu et al. (2023a),
Kumar et al. (2024), Tian et al. (2023), Zhang et al. (2024d), Mao
et al. (2025), Kuntz et al. (2025), Gu et al. (2024), Qi et al. (2025)

Memory injection Attack Patlan et al. (2025a), Patlan et al. (2025b)

Backdoor Attack Yang et al. (2024b), Wang et al. (2024), Zhu et al. (2025b),
Chen et al. (2024b), Boisvert et al., Ye et al. (2025), Wang
et al. (2025f), Cheng et al. (2025), Lupinacci et al. (2025)

Reasoning Gap Attack Chen et al. (2025d)

System Sabotage Luo et al. (2025b)

Web Hacking (Fang et al., 2024b)

D
ef

en
se

s

Environmental Constraints Yang et al. (2024c), Nong et al. (2024), Zhang et al.
(2023), Mahadevan et al. (2025), Huang et al. (2025)

Input Validation Kumar et al. (2024), Wen et al. (2023), Zhang et al. (2024c), Tshimula
et al. (2024), Shi et al. (2025a), Zhong et al. (2025), Ferrag et al. (2025)

Defensive Prompting Debenedetti et al. (2024), Zhang et al. (2024c), Wu et al. (2024a), Chen et al. (2025d)

Data Sanitization Yang et al. (2024b), Jones et al. (2025), Wang et al. (2025b)

Adversarial Training Yu et al. (2020), Wu et al. (2024a), Zhou et al. (2025), Yu et al. (2025)

Output Monitoring Fang et al. (2024a),Wen et al. (2023), Hua et al. (2024), Lee et al. (2025), Shi et al. (2025b)

Model Inspection Wang et al. (2025d), Yang et al. (2024b), Huang et al. (2025), Zhu et al. (2025b)

Cross Verification Zeng et al. (2024), Huang et al. (2024), Yang et al. (2024a), Xiang et al. (2024), Luo
et al. (2025b), Barua et al. (2025), Zhu et al. (2025a), Li et al. (2025), Fan and Li (2025)

Continuous Learning and Adaptation Tian et al. (2023), Ma et al. (2024a), Luo et al. (2025b), Zhan et al. (2025), Zhang et al. (2025b)

Transparentize Hu et al. (2024), Sager et al. (2025), Chen et al. (2025b)

Topology-Guided Wang et al. (2025d)

Perception Algorithms Synergy Zheng et al. (2024), Nong et al. (2024), Liu et al. (2025b), Yang et al. (2024a)

Planning-Centric Architecture Refinement Zhang and Zhang (2023), Deng et al. (2024), Wen et al. (2023), Liu et al. (2025b)

Pre-defined Regulatory Compliance Zhang et al. (2024e), Mahadevan et al. (2025), Chen et al. (2025e), Zhang et al. (2025a)

Figure 1: A comprehensive taxonomy of Computer-Using Agent threats and defences.
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