
Under review as submission to TMLR

Generative Models for Long Time Series: Approximately
Equivariant Recurrent Network Structures for an Adjusted
Training Scheme

Anonymous authors
Paper under double-blind review

Abstract

We present a simple yet effective generative model for time series data based on a Varia-
tional Autoencoder (VAE) with recurrent layers, referred to as the Recurrent Variational
Autoencoder with Subsequent Training (RVAE-ST). Our method introduces an adapted
training scheme that progressively increases the sequence length, addressing the challenge
recurrent layers typically face when modeling long sequences. By leveraging the recurrent
architecture, the model maintains a constant number of parameters regardless of sequence
length. This design encourages approximate time-shift equivariance and enables efficient
modeling of long-range temporal dependencies. Rather than introducing a fundamentally
new architecture, we show that a carefully composed combination of known components
can match or outperform state-of-the-art generative models on several benchmark datasets.
Our model performs particularly well on time series that exhibit quasi-periodic structure,
while remaining competitive on datasets with more irregular or partially non-stationary be-
havior. We evaluate its performance using ELBO, Fréchet Distance, discriminative scores,
and visualizations of the learned embeddings.

1 Introduction

Time series data, particularly sensor data, plays a crucial role in science, industry, energy, and health. With
the increasing digitization of companies and other institutions, the demand for advanced methods to handle
and analyze time series sensor data continues to grow. Sensor data often exhibits distinct characteristics:
it is frequently multivariate, capturing several measurements simultaneously, and may involve high tempo-
ral resolutions, where certain anomalies or patterns of interest only become detectable in sufficiently long
sequences. Furthermore, such data commonly displays approximate stationarity or quasi-periodic behavior,
reflecting repetitive patterns influenced by the underlying processes. These unique properties present both
opportunities and challenges in the development of methods for efficient data synthesis and analysis, which
are essential for a wide range of applications. Time series data analysis spans tasks such as forecasting
(Siami-Namini et al., 2019), imputation (Tashiro et al., 2021; Luo et al., 2018), anomaly detection (Ham-
merbacher et al., 2021), and data generation. Of these, data generation stands out as the most general
task, as advances in generative methods often yield improvements across the entire spectrum of time series
applications (Murphy, 2022).

Recurrent neural networks, particularly Long Short-Term Memory (LSTM) networks (Hochreiter & Schmid-
huber, 1997), are well-known for their ability to model temporal dynamics and capture dependencies in
sequential data. However, their effectiveness tends to diminish with increasing sequence length, as main-
taining long-term dependencies can become challenging (Zhu et al., 2023) where in contrast, convolutional
neural networks (CNNs) (LeCun et al., 1998) demonstrate superior scalability for longer sequences (Bai
et al., 2018). For instance, TimeGAN (Yoon et al., 2019) represents a state-of-the-art approach for gen-
erating synthetic time series data, particularly effective for short sequence lengths. In its original paper,
TimeGAN demonstrates its capabilities on samples with sequence lengths of l = 24, showcasing limitations
of LSTM-based architectures. By contrast, a model like WaveGAN (Donahue et al., 2019), which is built on

1

Under review as submission to TMLR

a convolutional architecture, is trained on significantly longer sequence lengths, with l = 16384 at minimum.
This contrast highlights the fundamental differences and capabilities between recurrent and convolutional
networks.

The limitations of LSTMs in modeling long-term dependencies are not restricted to time series data but also
impact their performance in other domains, such as natural language processing (NLP). Early applications of
attention mechanisms integrated with recurrent neural networks like LSTMs (Bahdanau, 2014) have largely
been replaced by Transformer architectures (Vaswani et al., 2017), which excel in data-rich tasks due to their
parallel processing capabilities and expressive attention mechanisms. While Transformer architectures have
shown exceptional results in NLP (Radford et al., 2019), their application to time series data remains chal-
lenging. This is due in part to the self-attention mechanism’s quadratic scaling in memory and computation
with sequence length (Katharopoulos et al., 2020), which makes them less practical for very long sequences.
Additionally, the inductive bias of Transformers differs from that of recurrent models: Transformers rely on
positional encodings to model temporal structure, whereas recurrent architectures such as LSTMs process
data sequentially by design, which inherently embeds a sense of temporal order into the model dynamics.
This sequential processing makes recurrent models particularly well-suited for long, approximately stationary
time series, where preserving temporal continuity over extended horizons can be highly beneficial.

Among the primary approaches for generative modeling of time series, three dominant frameworks have
emerged: Generative Adversarial Networks (GANs) (Goodfellow et al., 2020), Variational Autoencoders
(VAEs) (Kingma & Welling, 2014; Fabius & Van Amersfoort, 2014), and, more recently, Diffusion Models
(Ho et al., 2020). Diffusion Models have demonstrated impressive capabilities in modeling complex data
distributions, but their significant computational demands, high latency, and complexity make them less
practical for many applications (Yang et al., 2024). Moreover, in terms of practical applications, there
are often constraints in both time and computational resources, which limit the feasibility of performing
extensive fine-tuning for each individual dataset. A general, well-performing approach that is both simple
and efficient is therefore more desirable. In this context, VAEs stand out for their simplicity and direct
approach to probabilistic modeling. In our work, we focus on VAEs and propose a novel method for training
VAEs with recurrent layers to handle longer sequence lengths. We argue that VAEs are particularly suited
for generation of time series data, as they explicitly learn the underlying data distribution, making them
robust, interpretable, and straightforward to implement.

Our major contributions are:

• We introduce a novel combination of inductive biases, network topology, and training scheme in a
recurrent variational autoencoder architecture. Our model integrates approximate time-translation
equivariance into a recurrent structure, introducing a strong inductive bias toward stationary time
series. Unlike existing recurrent or convolutional generative models, our architecture maintains a
fixed number of parameters, independent of the sequence length.

• We propose a simple yet effective training procedure—Recurrent Variational Autoencoder Subse-
quent Train (RVAE-ST)—that progressively increases the sequence length during training. This
scheme leverages the model’s sequence-length-invariant parameterization and mitigates the typical
limitations of recurrent layers in capturing long-range dependencies. It is particularly suited for
approximately stationary datasets and contributes significantly to our model’s performance.

• We conduct extensive experiments on five benchmark datasets and compare our method against a
broad range of strong baselines, including models based on GANs, VAEs, convolutions, diffusion
processes, and Transformers. This diverse set covers the most prominent architectural families in
time-series generation and ensures a fair and comprehensive evaluation.

• To evaluate generative quality, we employ a comprehensive set of evaluation metrics, including ELBO
(Evidence Lower Bound) of simpler generative models. Discriminative Score, and visualizations via
PCA and t-SNE. We additionally apply the Contextualized Fréchet Inception Distance (Context
FID) to better capture the alignment between global structure and local dynamics.

2

Under review as submission to TMLR

Our implementation, including preprocessing and model training scripts, is available at https://github.
com/ruwenflk/rvae-st.

(a) Original data (b) Diffusion-TS (c) RVAE-ST (ours)

Figure 1: This figure shows three excerpts from samples of the electric motor dataset (5.1), each with a
sequence length of l = 1000. Sample (a) is taken from the original dataset. Sample (b) is generated using
Diffusion-TS (Yuan & Qiao, 2024), a transformer-based state-of-the-art approach in time series generation.
Sample (c) is generated using our model, trained with the proposed subsequent training scheme. The first
row in the figure displays the voltage of one of the phases. In the original sample (a), the extremities of the
voltage waveform exhibit pronounced volatility, particularly at peak and trough points. This characteristic
remains clearly visible in the output of model (c), whereas it is notably reduced in model (b). The second
row shows the DC-bus voltage. The signal is characterized by a distinctive sawtooth-like pattern, where
three gradual drops are each followed by an abrupt upward jump. Model (c) reproduces this pattern well,
although the waveform appears slightly smoothed compared to the original. Model (b) captures the general
frequency of the signal but fails to replicate the sawtooth-like structure. The third row shows the effective
motor current in the fixed coordinates of the stator. This channel exhibits both a high-frequency component,
which gives the signal a noisy appearance, and a low-frequency oscillation reflecting the long-term behavior.
Model (c) closely resembles the original (a), capturing both components. Model (b) approximates the low-
frequency trend but deviates significantly in the high-frequency range.

2 Prerequisites

2.1 Variational Autoencoder

Given the input dataset X, the goal is to find a probability density pθ with high marginal likelihood (or
evidence) pθ(x) for x ∈ X. By introducing z = z1:m latent variables and assuming the joint density
pθ(x, z) = pθ(z)pθ(x|z), we get the intractable integral pθ(x) =

∫
pθ(z)pθ(x|z)dz. The evidence pθ(x) can be

approximated by computing the evidence lower bound or ELBO

Lθ,ϕ(x) = Eqϕ(z|x)[log pθ(x|z)] + DKL(qϕ(z|x) || pθ(z)) = LE + LR ≤ log pθ(x).

LE is the reconstruction loss (negative log likelihood) and LR is the KL-Divergence loss (Murphy, 2022).
pθ(z) is the prior distribution which is usually set to N (0, I). The ELBO Lθ,ϕ(x) ≤ log pθ(x) is a lower
bound to the log marginal likelihood and is maximized by training a VAE.

A VAE is a generative model that maps a sample x ∈ X into a probability distribution in latent space z
by using an inference network qϕ(z|x) = N (z|µ, diag(exp(log(σ)))) with (µ, log(σ)) = eϕ(x) where eϕ(x) is
the encoder. The latent variable z = µ + σ ⊙ ϵ where ⊙ is the entrywise multiplication with ϵ = N (0, I)
is then passed through the generator model or decoder network pθ(x|z) giving us a reconstructed sample x̃.

3

https://github.com/ruwenflk/rvae-st.
https://github.com/ruwenflk/rvae-st.

Under review as submission to TMLR

Generating new timeseries samples works by just taking a sample from the known prior distribution pθ(z)
and feeding it through the generative model pθ(x|z).

3 Related Work

3.1 Deep Generative Models for Time Series

Time-series generation has been explored across various deep generative paradigms, including GANs, VAEs,
Transformers, and diffusion models. Early approaches focused on recurrent structures: C-RNN-GAN ((Mo-
gren, 2016)) used LSTM-based generators and discriminators, while RCGAN(Esteban et al., 2017) introduced
label-conditioning for medical time series. TimeGAN(Yoon et al., 2019) combined adversarial training, su-
pervised learning, and a temporal embedding module to better capture temporal dynamics. Around the
same time, WaveGAN(Donahue et al., 2019) introduced a convolutional GAN architecture for raw audio
synthesis, illustrating that convolutional models can also be effective for generative tasks in the time do-
main. TimeVAE(Desai et al., 2021b) further explored this direction by proposing a convolutional variational
autoencoder tailored to time-series data. PSA-GAN (Paul et al., 2022) employed progressive growing (Kar-
ras et al., 2018), incrementally increasing temporal resolution during training by adding blocks composed of
convolution and residual self-attention to both the generator and discriminator. This fundamentally differs
from our approach, which extends sequence length rather than resolution.

Recent advances in time-series generation have explored diffusion-based and hybrid Transformer architec-
tures. Diffusion-TS (Yuan & Qiao, 2024) introduces a denoising diffusion probabilistic model (DDPM)
tailored for multivariate time series generation. It employs an encoder-decoder Transformer architecture
with disentangled temporal representations, incorporating trend and seasonal components through inter-
pretable layers. Unlike traditional DDPMs, Diffusion-TS reconstructs the sample directly at each diffusion
step and integrates a Fourier-based loss term. Time-Transformer (Liu et al., 2024) presents a hybrid ar-
chitecture combining Temporal Convolutional Networks (TCNs) and Transformers in a parallel design to
simultaneously capture local and global features. A bidirectional cross-attention mechanism fuses these fea-
tures within an adversarial autoencoder framework (Makhzani et al., 2016). This design aims to improve
the quality of generated time series by effectively modeling complex temporal dependencies.

A common limitation across all these approaches is their focus on relatively short sequence lengths. Many
models, including TimeGAN, TimeVAE, and Time-Transformer, are evaluated at l = 24. Only Diffusion-TS
and PSA-GAN extend this slightly, with ablations up to l = 256, leaving the performance on significantly
longer sequences largely unexplored.

3.2 Recurrent Variational Autoencoders

The Recurrent Variational Autoencoder (RVAE) was introduced by Fabius & Van Amersfoort (2014), com-
bining variational inference with basic RNNs for sequence modeling. In this architecture, the latent space
is connected to the decoder via a linear layer, and the sequence is reconstructed by applying a sigmoid
activation to each RNN hidden state.1We build on this framework by replacing the basic RNNs with LSTMs
(or GRUs) and using a repeat-vector mechanism that injects the same latent vector at every time step of
the decoder. This design encourages the latent code to encode global sequence properties, while the LSTM
handles temporal dependencies. Instead of a sigmoid, we apply a time-distributed linear layer, preserving
approximate time-translation equivariance (see Section 4.1).

Unlike dynamic VAEs (dVAE) that use a sequence of latent variables to increase flexibility (Girin et al.,
2021), we opt for a single latent vector of fixed size across the entire sequence. This choice reflects our
focus on the inductive bias of translational equivariance and stationarity, where the latent code is meant to
capture global properties of the sequence while allowing the decoder to model local temporal dynamics. This
distinction means that, unlike in dVAE models, the latent code does not change over time, aligning with the
assumptions of our model and the goal of preserving global structure while modeling temporal relationships.

1https://github.com/arunesh-mittal/VariationalRecurrentAutoEncoder/blob/master/vrae.py

4

https://github.com/arunesh-mittal/VariationalRecurrentAutoEncoder/blob/master/vrae.py

Under review as submission to TMLR

While recurrent models in VAEs are often susceptible to posterior collapse (He et al., 2019), we do not
view this phenomenon as an issue but rather as a natural feature of our model’s design. By relying on the
equivariant structure, we encourage the latent space to focus on capturing global sequence properties, which
aligns with our goal of modeling temporal dependencies while maintaining stationarity over time.

4 Methods

4.1 Equivariant Vec2Seq generator

The objective of our model development was to create a generator that incorporates an inductive bias
toward time-shift invariance in its learned distribution pθ(x) , while being capable of generating sequences
of variable lengths from fixed-length inputs, as seen in vector-to-sequence (Vec2Seq) models. This design
choice was motivated by the idea that such properties would improve model performance, particularly on
(semi-)stationary and quasi-periodic time series.

Assuming that all variables represent probabilities rather than samples, we define an approximately time-shift
invariant pθ(x) for time dependent data x : Z → Rc : t 7→ x(t) as follows:

∫
pθ(x|z)pθ(z) dz = pθ(x) ≈ pθ(τ(x)) =

∫
pθ(τ(x)|z)pθ(z) dz, (1)

where τ is the time-shift operator τ : (Rc)Z → (Rc)Z : x(t) 7→ x(t + 1). This definition says that each sample
can be generated with approximately same probability starting at each time step. This holds when pθ(x|z) ≈
pθ(τ(x)|z), which implies that a generator model with an inductive bias toward time-shift invariance can
be achieved using a τ -equivariant network topology. In practice, we compute probabilities on finite time
windows of x such as x|{1,...,ℓ} : {1, . . . , ℓ} → Rc and by abuse of notation write x ∈ Rℓ×c. Building on this
idea, RNNs process data sequentially and reuse the same transition function at each time step, which results
in approximate temporal shift equivariance. However, due to hidden state initialization and finite context
(e.g., truncation or saturation effects), true equivariance does not strictly hold. For example, the hidden
state at time t may still implicitly depend on absolute position (especially at the beginning of a sequence).
To illustrate this further, consider the case where we use an LSTM cell (yi, hi+1, ci+1) = f(xi, hi, ci) mapping
input xi, hidden state hi, and cell state ci to the output yi. We will denote the map producing the hidden and
cell state by (hi+1, ci+1) = f̂(xi, hi, ci). Now consider mapping two overlapping time series X = [x0, . . . , xn−1]
and X ′ = [x1, . . . , xn] via this LSTM-cell. Of course, in general f(x0, h, c) ̸= f(x1, h, c) for initializations h
and c of hidden and cell state. However, for long time series (i.e. n ≫ 0) we can usually expect convergence
in hidden and cell state over time, more precisely

f̂(xk, f̂(xk−1, f̂(xk−2, f̂(. . . , f̂(x0, h, c) . . .)))) ≈ f̂(xk, f̂(xk−1, f̂(xk−2, f̂(. . . , f̂(x1, h, c) . . .)))), (2)

i.e. shifting a long time series by will be approximately equivariant.

Given that our focus is on time series data with quasi-stationary behavior, other architectures like con-
volutional layers and transformers face specific limitations. Convolutional layers are commonly employed
for building equivariant network structures due to their ability to recognize patterns in data regardless of
their position within the input. This property makes them highly effective, especially in image processing.
However, in the context of time series, convolutional layers alone are insufficient for generating sequences
of variable lengths from fixed-length inputs. The process of upscaling in time series typically enhances the
resolution of the data within a fixed time window, similar to image processing, rather than extending the
sequence itself. (Paul et al., 2022) is an example for this. This fundamental distinction makes convolutional
layers less suitable for handling time series with variable-length sequences. Transformers, while powerful
for capturing long-range dependencies, face challenges when applied to time series data. One of the main
drawbacks is the quadratic increase in computational complexity as sequence length grows (Katharopoulos
et al., 2020) due to the self-attention mechanism. This makes them less efficient for handling long time series
compared to recurrent architectures. We further note that transformers are not translation equivariant but

5

Under review as submission to TMLR

permutation equivariant. While transformers are permutation equivariant and can handle inputs in any
order, they do not capture the inherent sense of temporal order in time series data. This sense of order is
especially important for modeling sequential dependencies in approximately stationary data, as considered
in this paper, where time-shift equivariance is crucial. In contrast, LSTMs naturally embed temporal order
into their model dynamics, enabling them to capture long-range temporal dependencies while maintaining
an internal state.

4.2 RVAE-ST

The inference network qϕ(z|x) is implemented using stacked LSTM layers. Given the final point in time of a
sequence, the output of the last LSTM layer is passed through two linear layers to determine µ and log(σ),
which are then used to sample the latent variable z. Next, the generative network pθ(x|z) reconstructs the
data from the latent variable z.To achieve this, the latent variable z is repeated across all time steps (using
a repeat vector), ensuring that z remains constant at each time step and is shared throughout the entire
sequence. Mathematically, this can be expressed as:

zt = z for all t ∈ {1, 2, . . . , n}

where n denotes the total number of time steps in the sequence. The repeat vector is followed by stacked
LSTM layers. Finally, a time-distributed linear layer is applied in the output. This layer operates indepen-
dently at each time step, applying the same linear transformation to the LSTM output at every time step,
which can be viewed as a 1 × 1 convolution across the time dimension, with shared weights across all time
steps.

The time-distributed layer is inherently equivariant with respect to time-translation, preserving temporal
structure and shifts over time. Together with our LSTM-based approach and the repeat-vector mechanism,
this design ensures that the number of trainable parameters remains independent of the sequence length,
while also enabling an adapted training scheme that can accommodate increasing sequence lengths. Details
and hyperparameters are provided in Appendix A.2.

Stacked
LSTM

Stacked
LSTM

Time-
DistributedRepeat

Encoder hidden
states

Decoder hidden
states

Figure 2: This figure illustrates the architecture of our model. Both the encoder and decoder are based on
stacked LSTM layers. The encoder’s final hidden states, denoted as hn, are used to compute the parameters
µ and log(σ), from which the latent variable z is sampled. The latent variable z is then repeated across
all time steps and used as the input to the decoder. The decoder generates the sequence step-by-step,
with each individual output passed through a time-distributed linear layer. This time-distributed layer
applies the same linear transformation at each time step to the LSTM states, ensuring parameter sharing
across the entire sequence during this transformation. Throughout the network, approximate equivariance
is maintained with respect to time translation, and the number of trainable parameters remains constant
regardless of the sequence length.

4.3 Training scheme for sequence lengths

Training a recurrent neural network such as an LSTM to produce consistent long time sequences is chal-
lenging, as recurrent layers have a limited capacity to preserve information over extended temporal ranges.

6

Under review as submission to TMLR

Here, we suggest a training scheme that allows training over longer time sequences for our RVAE-ST model,
which is visualized in figure 2.

We begin by splitting the dataset into smaller chunks, as is commonly done. The model is initially trained
on short sequences, which ensures stable training and facilitates faster progress. After training on short
sequences, we progressively increase the sequence length, rebuild the dataset by splitting it into new, longer
chunks, and continue training on the longer sequences. Each training phase is completed when no improve-
ment is observed in the validation loss for a predefined number of epochs. This process is repeated as the
sequence length increases. This method stabilizes the training process for long time sequences and improves
the final results, as demonstrated in our experiments.

We motivate this probabilistically for a time series x of length l, hidden features distributed over time h
again of length l, and a fixed latent vector z, where we have a recurrent structure over the h via

p(x, h, z) = p(z)
l∏

i=1
p(hi|z, hi−1, . . . , h1) · p(xi|hi).

The generative model p(x, h|z) can now be approximated by only looking t steps back in time.

p(x, h|z) =
l∏

i=1
p(hi|z, hi−1, . . . , h1) · p(xi|hi)

≈
l∏

i=1
p(hi|z, hi−1, . . . , hmax(1,i−t)) · p(xi|hi) (3)

Hence, training to generate shorter sequences yields an approximation of generating long sequences. We do
not provide general recommendations for which initial sequence length or increment values work best, as the
sequence lengths chosen in our experiments are somewhat arbitrary and may vary depending on the dataset.

5 Experiments

In our experiments, we compare the performance of RVAE-ST to comparison models. We emphasize that,
to ensure better comparability, we did not perform extensive hyperparameter tuning in our experiments.
In all experiments, including different datasets and varying sequence lengths, we used exactly the same
hyperparameters on the model. For the training procedure, we started with a sequence length of 100 and
progressively increased it by 100 in each subsequent training phase, until reaching a maximum sequence
length of 1000. In our experiments, we compare the performance of the models at sequence lengths of 100,
300, 500, and 1000.

To evaluate performance, we employ a combination of short-term consistency measures based on indepen-
dently generated ELBOs, the discriminative score, and the contextual FID score. Additionally, we perform
visual comparisons between the training and generated data distributions using dimensionality reduction
techniques such as PCA and t-SNE. All reported results were tested for statistical significance using the
Wilcoxon rank-sum test (Wilcoxon, 1992). In cases where the difference was not statistically significant,
multiple values are highlighted in bold.

5.1 Data Sets

For our experiments we use three multivariate sensor datasets with it’s typical semi-stationary behavior.
We specifically selected datasets with a minimum size, as this is necessary for training generative models
effectively, while still ensuring adequate diversity and the ability to robustly capture underlying patterns
and structures.

Electric motor (EM)(Wißbrock & Müller, 2025; Mueller, 2024): This dataset was collected from a
three-phase motor operating under constant speed and load conditions, with different combinations stored in
separate files. We use only the file H1.5, selected arbitrarily among them. It exhibits periodic behavior with

7

Under review as submission to TMLR

similar, repeating patterns. The data was recorded at a sampling rate of 16,kHz. Out of the twelve initially
available channels, four were removed due to discrete behavior or abrupt changes, leaving only smooth,
continuous signals suitable for learning. The resulting dataset contains approximately 250,000 datapoints
and represents the most stationary real-world dataset used in our experiments.

Ecg data (ECG)2 Goldberger et al. (2000): This dataset contains a two-channel electrocardiogram
recording from the MIT-BIH Long-Term ECG Database. It has nearly 10 million time steps of which we use
the first 500,000 for training. The ECG signals are nearly periodic but exhibits variations in frequency and
occasional irregular arrhythmias, making the dataset slightly less stationary than the EM dataset. While
ECG data serves as a suitable example in generating long sequences, our objective is not to produce medically
usable data. We acknowledge that specialized models are likely more appropriate for medical applications,
e.g. (Neifar et al., 2023).

ETTm2 (ETT)3: The ETTm2 dataset, collected between 2016 and 2018, consist of sensor measurements
such as load and oil temperature from electricity transformers. These datasets contain short-term periodical
patterns, long-term periodical patterns, long-term trends, and various irregular patterns. Out of the three
datasets, it is the smallest, containing 69680 datapoints. It was published in the context of time series
forecasting Zhou et al. (2021a) and is a widespread used dataset (Zhou et al., 2021b; Zhang et al., 2024; Zhu
et al., 2023). Out of the three in this paper, is the least stationary dataset.

Synthetic Sine: The sine dataset is generated by sampling 5 independent sine waves, each with randomly
chosen frequencies and phases, which are drawn independently from uniform distributions in the range
[0, 0.1]. This dataset is highly stationary and noise-free, with each channel following a smooth, periodic sine
wave. It is commonly used as a standard benchmark in time-series modeling tasks (Yoon et al., 2019; Desai
et al., 2021b; Yuan & Qiao, 2024).

MetroPT3 (Davari et al. (2021)): The MetroPT3 dataset is used for predictive maintenance, anomaly
detection, and remaining useful life (RUL) prediction in compressors. It consists of multivariate time-series
data from several analogue and digital sensors installed on a compressor, including signals such as pressures,
motor current, oil temperature, and electrical signals from air intake valves. The data were logged at a
frequency of 1Hz. Similar to the Electric Motor dataset, we removed non-continuous or discrete signals,
leaving only smooth, continuous signals suitable for learning. Out of the original 1.5 million time steps, we
only used the first 500,000 for our experiments. While the dataset contains recurring patterns, it is one of
the less stationary datasets in our study, as the frequency of these patterns exhibits significant variance, and
some signals occasionally drop out completely.

5.2 Comparison Models

In this subsection, we describe the baseline models selected for comparison in our experiments. These models
are chosen for their relevance to time series generation and their established use in similar contexts.

TimeGAN(Yoon et al., 2019): A GAN-based model that is considered state-of-the-art in generation of
times series data. TimeGAN’s generator has a recurrent structure like RVAE-ST. A key difference is that
it’s latent dimension is equal to the sequence length. Notably, equivariance on this model is lost on the
output layer of the generator which maps all hidden states at once through a linear layer to a sequence. On
its initial paper release, TimeGAN was tested and compared to other models on a small sequence length of
l = 24.

WaveGAN (Donahue et al., 2019): A GAN-based model developed for generation of raw audio waveforms.
WaveGAN’s generator is based on convolutional layers. It doesn’t rely on typical audio processing techniques
like spectrogram representations and is instead directly working in the time domain, making it also suitable
for learning time series data. It is designed to exclusively support sequence lengths in powers of 2, specifically
214 to 216. Notably, WaveGAN loses it’s equivariance on a dense layer between the latent dimension and the
generator, however the generator itself completely maintains equivariance with its upscaling approach. In
our experiments, it was trained with the lowest possible sequence length of 214, and the generated samples

2https://physionet.org/content/ltdb/1.0.0/14157.dat
3https://github.com/zhouhaoyi/ETDataset

8

Under review as submission to TMLR

were subsequently split to match the required sequence length. In (Yoon et al., 2019), WaveGAN was
outperformed by TimeGAN on low sequence length.

TimeVAE (Desai et al., 2021b): A VAE-based model designed for time series generation using convolutional
layers. Analogous to WaveGAN, it loses equivariance between the latent dimension and the decoder and
additionally it loses equivariance on the output layer where a flattened convolutional output is passed through
a linare layer. It has demonstrated performance comparable to that of TimeGAN.

Diffusion-TS (Yuan & Qiao, 2024): A generative model for time series based on the diffusion process
framework. It combines trend and seasonal decomposition with a Transformer-based architecture. A Fourier
basis is used to model seasonal components, while a low-degree polynomial models trends. Samples are
generated by reversing a learned noise-injection process. While the model leverages the global structure of
sequences, it lacks time-translation equivariance: this is due both to the use of position embeddings in the
Transformer component and to the fixed basis decomposition, which breaks shift-invariance.

Time-Transformer (Liu et al., 2024): An adversarial autoencoder (AAE) model tailored for time series
generation, integrating a novel Time-Transformer module within its decoder. The Time-Transformer employs
a layer-wise parallel design, combining Temporal Convolutional Networks (TCNs) for local feature extraction
and Transformers for capturing global dependencies. A bidirectional cross-attention mechanism facilitates
effective fusion of local and global features. While TCNs are inherently translation-equivariant, this property
is overridden by the Transformer’s position encoding and attention structure, making the overall model not
equivariant.

5.3 Evaluation by Context-FID Score

To evaluate the distributional similarity between real and generated time series, we use the Context-FID score
(Paul et al., 2022), a variant of the Fréchet Inception Distance (FID) commonly used in image generation.
In this adaptation, the original Inception network is replaced by TS2Vec (Yue et al., 2022), a self-supervised
representation learning method for time series. The score is computed by encoding both real and generated
sequences with a pretrained TS2Vec model and calculating the Fréchet distance between the resulting feature
distributions. Lower scores indicate that the synthetic data better matches the distribution of the real data.

Across the different sequence lengths, RVAE-ST consistently outperforms all comparison models on the
Electric Motor, ECG, and Sine datasets starting from l = 300. These datasets exhibit high stationarity, which
aligns well with the inductive biases of our approach. On the less stationary MetroPT3 and ETT datasets,
our model remains competitive, with TimeVAE surpassing it at l = 1000 for both datasets. Additionally, for
MetroPT3, Diffusion-TS outperforms our model at l = 500.

5.4 Evaluation by Average ELBO

Next we evaluate the average Evidence Lower Bound (ELBO) on a synthetic dataset X̃ ∈ Rns×l×c where ns

represents the numbers of samples, l denotes the sequence length, and c the number of channels. We refer
to this metric as Eavg(X̃). In detail, we first train a VAE model on shorter sequence lengths ℓ ≪ l, which
facilitates easier training. We denote it as the ELBO model L̃θ,ϕ : Rℓ×c → R.

We then calculate the average ELBO:

Eavg(X̃) = 1
ns(l − ℓ)

ns−1∑
i=0

l−ℓ−1∑
t=0

ELBOnorm
(
L̃θ,ϕ(X̃i,t:t+ℓ,·)

)
, (4)

where ELBOnorm = ELBO · (ct)−1 is a normalized ELBO, as explained in Appendix A.3. By normalizing the
ELBO, we get a fairer comparison of datasets with different dimensionalities and varying sequence lengths.

Eavg(X̃) gives us information about short term consistency over the whole synthetic dataset. We chose
ℓ = 50 which is half of the lowest sequence length in the experiments. A well trained ELBO model (An &
Cho, 2015) allows us to evaluate the (relative) short term consistency of synthetic data in high accuracy

9

Under review as submission to TMLR

Table 1: FID score of synthetic time series for six models (see 5.2), computed on the five datasets (see 5.1)
at sequence lengths l = 100, l = 300, l = 500, and l = 1000. Lower scores indicate better performance. Each
score is based on 5000 generated samples, each evaluated 15 times, and reported with 1-sigma confidence
intervals. RVAE-ST consistently outperforms all baselines on the highly stationary Electric Motor, ECG,
and Sine datasets starting from l = 300. On the less stationary MetroPT3 and ETT datasets, performance
is more competitive, with TimeVAE and Diffusion-TS outperforming our model at certain sequence lengths.

Sequence lengths
Dataset Model 100 300 500 1000

Electric
Motor

RVAE-ST (ours) 0.35±0.04 0.12±0.01 0.10±0.01 0.24±0.02
TimeGAN 1.03±0.07 3.77±0.30 3.07±0.24 33.7±1.69
WaveGAN 0.55±0.04 0.75±0.07 0.87±0.14 1.41±0.24
TimeVAE 0.16±0.01 0.97±0.11 1.06±0.14 1.19±0.09
Diffusion-TS 0.04±0.00 0.69±0.06 1.10±0.11 1.93±0.13
Time-Transformer 2.19±0.16 45.4±1.57 44.5±2.67 65.7±2.86

ECG

RVAE-ST (ours) 0.08±0.01 0.09±0.02 0.14±0.02 0.46±0.06
TimeGAN 26.8±6.89 48.0±6.26 47.2±5.91 34.0±3.43
WaveGAN 1.54±0.19 1.56±0.14 1.54±0.13 1.51±0.16
TimeVAE 0.26±0.02 0.89±0.07 1.07±0.10 1.30±0.08
Diffusion-TS 0.16±0.01 0.28±0.03 0.52±0.03 3.74±0.22
Time-Transformer 1.34±0.11 29.7±1.78 33.0±2.28 40.3±2.44

ETT

RVAE-ST (ours) 0.58±0.05 0.65±0.07 0.79±0.07 1.82±0.16
TimeGAN 1.51±0.19 5.76±0.43 13.7±1.28 17.7±1.57
WaveGAN 3.49±0.22 3.90±0.37 4.38±0.39 4.94±0.42
TimeVAE 0.66±0.08 0.72±0.08 0.97±0.10 1.56±0.14
Diffusion-TS 0.90±0.11 1.18±0.18 2.16±0.17 2.55±0.27
Time-Transformer 1.28±0.14 20.1±1.22 22.1±1.96 47.9±5.28

Sine

RVAE-ST (ours) 0.33±0.04 0.34±0.02 0.46±0.03 0.42±0.03
TimeGAN 7.70±0.32 6.01±0.34 7.96±0.37 21.8±1.25
WaveGAN 1.87±0.10 2.09±0.13 2.81±0.22 3.36±0.27
TimeVAE 0.24±0.02 0.55±0.05 1.26±0.14 3.03±1.00
Diffusion-TS 0.06±0.00 1.52±0.13 0.74±0.04 2.66±0.20
Time-Transformer 0.31±0.02 4.10±0.21 51.2±1.94 74.5±3.85

MetroPT3

RVAE-ST (ours) 0.26±0.04 0.65±0.07 2.81±0.37 2.84±0.22
TimeGAN 5.79±0.32 10.1±0.79 18.6±1.06 35.1±3.74
WaveGAN 1.14±0.09 1.82±0.12 2.04±0.16 2.43±0.18
TimeVAE 0.67±0.05 1.32±0.13 2.02±0.29 2.08±0.31
Diffusion-TS 1.07±0.06 1.17±0.12 1.82±0.09 6.97±0.75
Time-Transformer 2.28±0.24 5.25±0.46 22.9±1.45 352±66.1

and low variance. To ensure reliable assessment of sample quality, we prevented overfitting of the ELBO
model by applying early stopping after 50 epochs without improvement and restoring the best weights. In
our experiments, we employed two distinct ELBO models for calculating Eavg(X̃). The first model is based
on the RVAE-ST architecture, while the second utilizes the TimeVAE framework (Desai et al., 2021a). The
use of a TimeVAE-based ELBO model provides an additional evaluation to ensure that the RVAE-ST-based
model is not biased toward our own generated samples. As detailed in Appendix A.6, the results obtained
using TimeVAE are highly similar to those produced by the RVAE-ST-based model.

10

Under review as submission to TMLR

(a) RVAE-ST (b) TimeGAN (c) WaveGAN

(d) TimeVAE (e) Diffusion-TS (f) Time-Transformer

Figure 3: Representative samples for each model at sequence length l = 1000 on a stationary dataset. RVAE-
ST is the only model capable of consistently generating correct sinusoidal curves, demonstrating its ability
to capture the stationary nature of the data.

On the Electric Motor dataset, RVAE-ST consistently generates the best samples. Similarly, on the ETT
dataset, RVAE-ST remains superior starting from l = 300, demonstrating its ability to generate high-quality
samples even on less stationary datasets.
The Time-Transformer model exhibits specific behavior that warrants further examination. On the Sine
and ECG datasets, it generates relatively flat samples that fail to capture the true characteristics of the
datasets. Unfortunately, the ELBO score is unable to detect this issue in the generated samples, leading
to an overestimation of the model’s performance based on its ELBO score. When this issue is taken into
account, RVAE-ST outperforms all other models on the ECG dataset starting at l = 300 and on the Sine
dataset starting at l = 500. The Sine dataset, however, requires special consideration due to its unique
characteristics. One key challenge is that the individual channels are not correlated. As a result, the inference
and subsequent reconstruction by the ELBO model become dysfunctional, leading to excessively negative
ELBO values. This effect is further enhanced when poor samples appear in at least one channel of the
generated samples. Therefore, the ELBO score is only of limited significance for this dataset, and a visual
evaluation of the generated samples is necessary to assess their quality effectively.
In Figure 3, representative samples for each model are shown for a sequence length of l = 1000. RVAE-ST is
the only model that can generate proper and consistent sine curves, which are characteristic of the dataset.
The Sine dataset, as a clear example of a stationary time series, further supports our hypothesis that a
translation-equivariant network architecture is particularly effective at generating consistent, high-quality
long-range sequences in such scenarios. On the MetroPT3 dataset, TimeVAE performs best at l = 500,
while Diffusion-TS outperforms all other models at the other sequence lengths.

5.5 Evaluations by Discriminative Score

The discriminative score D was introduced by (Yoon et al., 2019) as a metric for quality evaluation of
synthetic time series data. For the discriminative score a simple 2-layer RNN for binary classification is
trained to distinguish between original and synthetic data. Implementation details are in the appendix A.5.
It is defined as D = |0.5 − a|, where a represents the classification accuracy between the original test dataset
and the synthetic test dataset that were not used during training. The best possible score of 0 means that
the classification network cannot distinguish original from synthetic data, whereas the worst score of 0.5
means that the network can easily do so.

The discriminative score provides particularly meaningful insights when it allows for clear distinctions be-
tween models, which is best achieved by avoiding scenarios where the score consistently reaches its best or
worst possible values across different models. To ensure consistency, we used the same fixed number of sam-
ples for training the discriminator across all experiments, regardless of sequence length. This fixed sample
size was found to be suitable for our experimental setup.

11

Under review as submission to TMLR

Table 2: Average ELBO score Eavg(X̃) of synthetic time series for six models (see 5.2), computed on the
five datasets (see 5.1) at sequence lengths l = 100, l = 300, l = 500, and l = 1000. Higher scores indicate
better performance. Each score is based on 1500 generated samples evaluated with an ELBO model using
the RVAE-ST architecture, with 1-sigma confidence intervals. Note that while the ELBO score is generally
informative, it can overestimate quality on certain datasets such as Sine and ECG, where implausible outputs
may go undetected. For the Sine dataset in particular, uncorrelated channels and high sensitivity to local
artifacts limit the reliability of this metric.

Sequence lengths
Dataset Model 100 300 500 1000

Electric
Motor

RVAE-ST(ours) 1.62±0.69 1.65±0.60 1.66±0.03 1.65±0.03
TimeGAN 1.20±0.59 1.33±0.48 1.13±0.56 -4.05±2.41
WaveGAN 1.54±0.11 1.54±0.16 1.54±0.14 1.53±0.37
TimeVAE 1.49±0.88 1.38±1.34 1.09±2.21 0.31±3.24
Diffusion-TS 1.58±0.06 1.36±0.26 1.38±0.24 1.30±0.25
Time-Transformer 0.98±2.46 -28.9±3.33 -21.7±0.91 -28.4±4.12

ECG

RVAE-ST(ours) 1.64±0.13 1.64±0.18 1.63±0.20 1.59±0.27
TimeGAN -14.6±1.87 -14.6±1.41 -13.7±6.67 -15.3±2.57
WaveGAN 1.12±0.81 1.11±0.87 1.10±0.86 1.10±0.83
TimeVAE 1.55±0.37 1.37±0.65 1.26±0.70 0.87±0.92
Diffusion-TS 1.65±0.07 1.64±0.19 1.60±0.29 1.29±1.00
Time-Transformer 1.07±0.85 1.68±0.05 1.68±0.05 1.68±0.05

ETT

RVAE-ST(ours) 1.49±0.52 1.50±0.40 1.52±0.35 1.53±0.63
TimeGAN 1.39±0.70 0.85±3.36 -4.29±9.66 -0.38±0.65
WaveGAN 1.40±0.53 1.39±0.70 1.42±0.51 1.42±0.48
TimeVAE 1.47±0.94 1.20±1.54 0.89±1.99 0.42±2.45
Diffusion-TS 1.50±0.18 1.49±0.26 1.50±0.27 1.50±0.17
Time-Transformer 1.07±1.93 1.38±0.86 1.49±0.14 -39.9±5.84

Sine

RVAE-ST(ours) 1.09±0.51 -4.96±6.00 -5.01±5.82 -5.13±5.73
TimeGAN -3.39±3.84 -9.38±6.87 -11.2±6.43 -12.2±8.65
WaveGAN -2.71±2.79 -7.69±5.71 -7.65±5.57 -7.66±5.54
TimeVAE 0.81±0.73 -8.79±7.81 -11.1±7.39 -14.4±9.49
Diffusion-TS 1.26±0.01 -3.58±4.94 -5.53±5.24 -7.33±5.07
Time-Transformer 0.93±0.54 -5.25±4.53 0.84±0.84 1.06±0.62

MetroPT3

RVAE-ST(ours) 1.41±1.74 0.76±3.49 0.57±3.78 0.60±3.75
TimeGAN 1.25±1.38 0.61±4.39 1.46±1.36 -11.1±18.2
WaveGAN -1.71±4.85 -1.62±4.90 -1.64±4.83 -1.68±4.91
TimeVAE -0.07±3.96 -2.06±5.91 -5.64±7.29 -9.03±7.38
Diffusion-TS 1.63±0.92 1.43±2.21 1.36±2.53 0.77±3.50
Time-Transformer -2.30±5.81 -3.05±6.55 -2.97±0.55 -302±14.4

As shown in Table 3, the Discriminative Score yields a less clear-cut picture compared to other evaluation
metrics. The Wilcoxon rank-sum test reveals that in several cases, performance differences between models
are not statistically significant.

On the Electric Motor dataset, RVAE-ST achieves the best performance from l = 300 onwards. For the
ECG dataset, RVAE-ST outperforms all other models at l = 1000, while for shorter sequence lengths, its
performance is comparable to that of Diffusion-TS. On the ETT dataset, RVAE-ST, TimeVAE, and Diffusion-
TSperform similarly well across all sequence lengths, with no statistically significant differences. The Sine

12

Under review as submission to TMLR

Table 3: Discriminative score of synthetic time series for six models (see 5.2), computed on the five datasets
(see 5.1) at sequence lengths l = 100, l = 300, l = 500, and l = 1000. A lower score indicates better
performance. Each score is based on 15 independent discriminator runs and reported with 1-sigma confidence
intervals. RVAE-ST performs best on the Electric Motor dataset from l = 300 onward and significantly
outperforms all models on ECG at l = 1000, while showing comparable performance to Diffusion-TS at
shorter lengths. For the ETT and Sine datasets, multiple models perform similarly depending on the sequence
length. On MetroPT3, RVAE-ST is best at l = 100, while Diffusion-TS dominates for longer sequences. In
cases without statistically significant differences (Wilcoxon rank-sum test), multiple scores are highlighted
in bold.

Sequence lengths
Dataset Model 100 300 500 1000

Electric
Motor (EM)

RVAE-ST (ours) .121±.021 .032±.018 .038±.018 .085±.015
TimeGAN .338±.030 .477±.018 .486±.013 .500±.000
WaveGAN .352±.009 .416±.009 .425±.011 .444±.011
TimeVAE .268±.214 .226±.176 .185±.083 .152±.047
Diffusion-TS .112±.056 .327±.130 .396±.085 .434±.084
Time-Transformer .334±.098 .500±.000 .500±.000 .500±.000

ECG

RVAE-ST (ours) .012±.011 .009±.008 .016±.014 .009±.010
TimeGAN .466±.125 .500±000 .500±.000 .500±000
WaveGAN .306±.155 .300±.201 .402±.153 .298±.217
TimeVAE .034±.066 .058±.120 .131±.181 .153±.177
Diffusion-TS .007±.007 .016±.016 .010±.015 .382±.145
Time-Transformer .216±.107 .500±.000 .496±.014 .499±.002

ETT

RVAE-ST (ours) .179±.034 .172±.105 .189±.049 .132±.147
TimeGAN .107±.075 .160±.113 .270±.106 .320±.120
WaveGAN .362±.080 .345±.113 .377±.099 .385±.060
TimeVAE .118±.110 .140±.053 .167±.040 .068±.051
Diffusion-TS .204±.086 .173±.063 .151±.055 .122±.051
Time-Transformer .198±.169 .179±.116 .408±.137 .500±.000

Sine

RVAE-ST (ours) .069±.015 .113±.059 .080±.044 .021±.013
TimeGAN .465±.130 .457±.050 .491±.005 .497±.005
WaveGAN .187±.036 .367±.073 .449±.025 .449±.034
TimeVAE .161±.092 .160±.124 .272±.129 .347±.144
Diffusion-TS .035±.014 .182±.163 .294±.109 .428±.105
Time-Transformer .173±.019 .491±.004 .499±.001 .500±.000

MetroPT3

RVAE-ST .098±.066 .367±.109 .423±.074 .496±.004
TimeGAN .428±.041 .498±.002 .499±.001 .499±.001
WaveGAN .432±.042 .494±.005 .497±.002 .497±.003
TimeVAE .279±.103 .438±.070 .488±.024 .495±.004
Diffusion-TS .139±.025 .251±.022 .319±.015 .486±.012
Time-Transformer .473±.007 .493±.005 .500±.000 .500±.000

dataset exhibits more nuanced behavior: Diffusion-TSperforms best at l = 100; at l = 300, RVAE-ST,
TimeVAE, and Diffusion-TSperform comparably; and from l = 500 onwards, RVAE-ST achieves the best
results. For the MetroPT3 dataset, RVAE-ST is best at l = 100, while Diffusion-TS slightly outperforms all
other models at longer sequence lengths.

13

Under review as submission to TMLR

5.6 Evaluation by PCA and t-SNE

In this section, we evaluate the quality of the generated time series using dimensionality reduction techniques
such as PCA (Hotelling, 1933) and t-SNE (Hinton & Van Der Maaten, 2008). The idea is to first train these
methods on the original data, project the data into a lower-dimensional space, and visualize the resulting
patterns. Subsequently, the same transformations are applied to the synthetic data to assess how well
they align with the distribution of the original data. While these techniques are widely used and helpful for
identifying structural similarities, it is important to note that they do not account for temporal dependencies
within the sequences.

These common techniques complement earlier methods that primarily assessed the sample quality of the
models. For brevity, we present the results of four selected experiments in the main paper, as all experiments
consistently yield the same findings. These four experiments include PCA plots on the EM dataset and on
the ECG dataset, each with sequence lengths of l = 100 and l = 1000. The full set of experiments is provided
in Appendix A.8.

The visual inspection of the PCA plots for the EM dataset with a sequence length of l = 100 reveals no
significant differences in the distributions of the models, with Time-Transformer showing a slightly less
pronounced overlap compared to the other models. However, as the sequence length increases to l = 1000,
the performance differences between the models become clearly visible. Interestingly, the PCA at this length
exhibits a circular pattern, indicating the periodic characteristics of the dataset. Among the models, RVAE-
ST demonstrates the highest degree of overlap between the original and synthetic data, fitting the circular
pattern without outliers. Diffusion-TS performs almost equally well, with slightly less overlap compared
to RVAE-ST (see figure 1 for visual comparison of the models). WaveGAN shows only a few outliers near
the circular pattern. TimeVAE synthetic points further fill the circle, leading to greater deviation from the
original data distribution.

The PCA plots for the ECG dataset provide a detailed view of models’ performances. At l = 100, RVAE-ST,
TimeVAE, and Diffusion-TS perform equally well, showing a strong overlap with the original data. WaveGAN
and Time-Transformer show less overlap, and TimeGAN demonstrates almost no overlap at all. At l = 1000,
RVAE-STachieves the best performance, with the original data being very well represented. This is followed
by WaveGAN and TimeVAE, where the synthetic data points cluster together, but with less coverage of the
original distribution. Diffusion-TS performs noticeably worse, while TimeGAN and Time-Transformer show
almost no overlap, with the generated data exhibiting minimal variability.

5.7 Training scheme ablations

In this experiment, we compare the effectiveness of our proposed training approach against the conventional
training method on the same network topology. Our comparison metric is the Evidence Lower Bound
(ELBO), calculated for the original dataset X ∈ Rns×l×c where ns represents the numbers of samples, l
denotes the sequence length, and c the number of channels. It is analogous to (4), but we get

E(X) = 1
ns

ns−1∑
i=0

ELBOnorm
(
L̃θ,ϕ(Xi)

)
, (5)

since we use the trained model L̃θ,ϕ itself for evaluation. Simply speaking, it is the typical model evaluation
on a dataset, but converted to ELBOnorm. We run this comparison on all datasets with a sequence length
of 1000, which is particularly long and challenging. It is the maximum sequence length used in any of the
previous experiments. For each of the following training schemes, we do 10 repetitions:

(i) Conventional train: One trains the model for a predefined sequence length of l = 1000

(ii) Subsequent train: The training procedure begins with a sequence length of l = 100 and continues
until the stopping criteria are met. Afterward, we increase the sequence length by 100 and retrain
the model, repeating this process until we complete training with a sequence length of l = 1000.

14

Under review as submission to TMLR

RVAE-ST
(ours)

TimeGAN

WaveGAN

TimeVAE

Diffusion-TS

Time-
Transformer

EM, l=100 EM, l=1000 ECG, l=100 ECG, l=1000

Figure 4: PCA plots for the EM and ECG datasets at sequence lengths of l = 100 and l = 1000. For
the EM dataset, at l = 100, no significant differences are observed in the distributions of the models, with
Time-Transformer showing a slightly less pronounced overlap. At l = 1000, the circular pattern of the data
becomes more apparent, with RVAE-ST demonstrating the best performance, closely followed by Diffusion-
TS. WaveGAN and TimeVAE show a few outliers and deviations, while TimeGAN exhibits almost no overlap.
For the ECG dataset, at l = 100, RVAE-ST, TimeVAE, and Diffusion-TS show strong overlap with the original
data, while WaveGAN and Time-Transformer exhibit less overlap, and TimeGAN shows almost no overlap.
At l = 1000, RVAE-STperforms best, followed by WaveGAN and TimeVAE, with Diffusion-TS performing
worse and TimeGAN and Time-Transformer showing minimal variability and no significant overlap.

As shown in Table 4, the subsequent training scheme (ii) consistently outperforms the conventional training
scheme (i) across all datasets, with statistically significant improvements (p < 0.002). The largest perfor-
mance gain is observed on the Sine dataset, where the model’s ability to capture sinusoidal patterns improves
substantially.

15

Under review as submission to TMLR

Table 4: Comparison of the effectiveness of our proposed training approach versus the conventional method.
The performance metric is the ELBOnorm as described in Appendix A.3. On each dataset and model we
repeated the experiments n = 10 times. The 1-sigma confidence intervals describe the results between the
independently trained models.

Train method EM ECG ETTm2 Sine MetroPT3
conventional train 0.094±0.004 0.103±0.000 0.174±0.016 -0.837±0.566 -0.140±0.061
subsequent train 0.218±0.004 0.201±0.004 0.217±0.012 0.194±0.010 0.142±0.019

6 Discussion

In this paper, we introduced a novel approach that utilizes a translation-equivariant network architecture
to learn long sequence time series data. The key idea behind our approach is that stationary time series
exhibit consistent patterns over time. Equivariance helps the model generalize better across time shifts,
which is essential for capturing the underlying structure in stationary data. While LSTM layers contribute
approximately to equivariance, the rest of the network’s structure is fully equivariant. This approach is
characterized by two key components: (1) an inductive bias tailored for time series with quasi-stationary
behavior, and (2) the fact that the number of trainable parameters remains independent of the sequence
length, enabling the model to effectively learn as the sequence length increases during training. These two
key components enable the model to actively exploit the inherent stationarity of the data, leading to more
efficient and scalable learning. In our experiments, we compared our model (RVAE-ST) with other state-of-
the-art models across five different datasets. Three of these datasets exhibited stronger stationarity (Electric
Motor, ECG, and Sine), while the remaining two (ETT and MetroPT3) displayed more dynamic behavior,
though still retaining periodic patterns typical for sensor-based time series data. The results show that
on the more stationary datasets, as the sequence length increases, our model significantly outperforms the
other models, particularly in terms of FID and Discriminative Score. On the datasets with more dynamic
behavior, our model also demonstrated competitive performance. The average ELBO score confirmed these
findings, though it required a more nuanced interpretation due to its inherent limitations. The PCA and
t-SNE plots further support our results . In Section A.1, we show that our model, with trained weights
for a sequence length of l = 1000, can generate samples of arbitrary length on the three more stationary
datasets. We have demonstrated this for a sequence length of l = 5000. This experiment strongly supports
our initial intuition (see equation 2) that, for long time series, the hidden and cell states converge in a model
with a translation-equivariant network topology. Our findings not only validate the effectiveness of our
approach but also point to several promising directions for future work. The proposed methodology could
potentially be extended to other model classes, such as diffusion-based generative models. Moreover, the
stepwise increase in sequence length during training was chosen in a relatively ad-hoc manner; optimizing
this training scheme could further enhance both performance and training efficiency. Finally, it would be
valuable to investigate whether our approach can also be applied in different scaling regimes, for example
by explicitly optimizing for shorter target sequence lengths, while still leveraging the benefits of the scalable
architecture.

References
Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using reconstruction

probability. Special lecture on IE, 2(1):1–18, 2015.

Dzmitry Bahdanau. Neural machine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins, and
Alexander Lerchner. Understanding disentangling in β-vae. arXiv preprint arXiv:1804.03599, 2018.

16

Under review as submission to TMLR

Narjes Davari, Bruno Veloso, Rita P. Ribeiro, Pedro Mota Pereira, and João Gama. Predictive maintenance
based on anomaly detection using deep learning for air production unit in the railway industry. In 2021
IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–10, 2021.
doi: 10.1109/DSAA53316.2021.9564181.

Abhyuday Desai, Cynthia Freeman, Zuhui Wang, and Ian Beaver. Timevae: A variational auto-encoder for
multivariate time series generation. arXiv preprint arXiv:2111.08095, 2021a.

Abhyuday Desai, Cynthia Freeman, Zuhui Wang, and Ian Beaver. Timevae: A variational auto-encoder for
multivariate time series generation. https://github.com/abudesai/timeVAE, 2021b.

Chris Donahue, Julian McAuley, and Miller Puckette. Adversarial audio synthesis, 2019.

Cristóbal Esteban, Stephanie L. Hyland, and Gunnar Rätsch. Real-valued (medical) time series generation
with recurrent conditional gans, 2017.

Otto Fabius and Joost R Van Amersfoort. Variational recurrent auto-encoders. arXiv preprint
arXiv:1412.6581, 2014.

Laurent Girin, Simon Leglaive, Xiaoyu Bie, Julien Diard, Thomas Hueber, and Xavier Alameda-Pineda.
Dynamical variational autoencoders: A comprehensive review. Foundations and Trends® in Machine
Learning, 15(1–2):1–175, 2021. ISSN 1935-8245. doi: 10.1561/2200000089. URL http://dx.doi.org/
10.1561/2200000089.

A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. C. Ivanov, R. Mark, and H. E. Stanley. Physiobank,
physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals.
Circulation, 101(23):e215–e220, 2000. doi: 10.1161/01.CIR.101.23.e215. Online.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM, 63(11):
139–144, 2020.

Tom Hammerbacher, Markus Lange-Hegermann, and Gorden Platz. Including sparse production knowledge
into variational autoencoders to increase anomaly detection reliability. In 2021 IEEE 17th International
Conference on Automation Science and Engineering (CASE), pp. 1262–1267. IEEE, 2021.

Junxian He, Daniel Spokoyny, Graham Neubig, and Taylor Berg-Kirkpatrick. Lagging inference networks
and posterior collapse in variational autoencoders, 2019. URL https://arxiv.org/abs/1901.05534.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mo-
hamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a constrained variational
framework. In International Conference on Learning Representations, 2017.

G Hinton and L Van Der Maaten. Visualizing data using t-sne journal of machine learning research. Journal
of Machine Learning Research, 9:2579–2605, 2008.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9:1735–80, 12
1997. doi: 10.1162/neco.1997.9.8.1735.

Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal of
educational psychology, 24(6):417, 1933.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved
quality, stability, and variation, 2018. URL https://arxiv.org/abs/1710.10196.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns: Fast
autoregressive transformers with linear attention. In International Conference on Machine Learning, pp.
5156–5165. PMLR, 2020.

17

https://github.com/abudesai/timeVAE
http://dx.doi.org/10.1561/2200000089
http://dx.doi.org/10.1561/2200000089
https://arxiv.org/abs/1901.05534
https://arxiv.org/abs/1710.10196

Under review as submission to TMLR

Diederik Kingma and Max Welling. Auto-encoding variational bayes. 12 2014.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yuansan Liu, Sudanthi Wijewickrema, Ang Li, Christofer Bester, Stephen O’Leary, and James Bailey. Time-
transformer: Integrating local and global features for better time series generation, 2024. URL https:
//arxiv.org/abs/2312.11714.

Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, et al. Multivariate time series imputation with generative
adversarial networks. Advances in neural information processing systems, 31, 2018.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial autoen-
coders, 2016. URL https://arxiv.org/abs/1511.05644.

Olof Mogren. C-rnn-gan: Continuous recurrent neural networks with adversarial training, 2016. URL
https://arxiv.org/abs/1611.09904.

Philipp N. Mueller. Attention-enhanced conditional-diffusion-based data synthesis for data augmentation
in machine fault diagnosis. Engineering Applications of Artificial Intelligence, 131:107696, 2024. doi:
https://doi.org/10.1016/j.engappai.2023.107696.

Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press, 2022. URL probml.ai.

Nour Neifar, Achraf Ben-Hamadou, Afef Mdhaffar, and Mohamed Jmaiel. Diffecg: A versatile probabilistic
diffusion model for ecg signals synthesis. arXiv preprint arXiv:2306.01875, 2023.

Jeha Paul, Bohlke-Schneider Michael, Mercado Pedro, Kapoor Shubham, Singh Nirwan Rajbir, Flunkert
Valentin, Gasthaus Jan, and Januschowski Tim. Psa-gan: Progressive self attention gans for synthetic
time series, 2022. URL https://arxiv.org/abs/2108.00981.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. The performance of lstm and bilstm in
forecasting time series. In 2019 IEEE International conference on big data (Big Data), pp. 3285–3292.
IEEE, 2019.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based diffusion
models for probabilistic time series imputation. Advances in Neural Information Processing Systems, 34:
24804–24816, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statistics: Methodology
and distribution, pp. 196–202. Springer, 1992.

P. Wißbrock and P. N. Müller. Lenze motor bearing fault dataset (lenze-mb), 2025. URL https://doi.
org/10.5281/zenodo.14762423.

Yiyuan Yang, Ming Jin, Haomin Wen, Chaoli Zhang, Yuxuan Liang, Lintao Ma, Yi Wang, Chenghao Liu,
Bin Yang, Zenglin Xu, et al. A survey on diffusion models for time series and spatio-temporal data. arXiv
preprint arXiv:2404.18886, 2024.

Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series generative adversarial networks.
Advances in neural information processing systems, 32, 2019.

Xinyu Yuan and Yan Qiao. Diffusion-TS: Interpretable diffusion for general time series generation. In The
Twelfth International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=4h1apFjO99.

18

https://arxiv.org/abs/2312.11714
https://arxiv.org/abs/2312.11714
https://arxiv.org/abs/1511.05644
https://arxiv.org/abs/1611.09904
probml.ai
https://arxiv.org/abs/2108.00981
https://doi.org/10.5281/zenodo.14762423
https://doi.org/10.5281/zenodo.14762423
https://openreview.net/forum?id=4h1apFjO99
https://openreview.net/forum?id=4h1apFjO99

Under review as submission to TMLR

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and Bixiong
Xu. Ts2vec: Towards universal representation of time series, 2022. URL https://arxiv.org/abs/2106.
10466.

Yitian Zhang, Liheng Ma, Soumyasundar Pal, Yingxue Zhang, and Mark Coates. Multi-resolution time-
series transformer for long-term forecasting. In International Conference on Artificial Intelligence and
Statistics, pp. 4222–4230. PMLR, 2024.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. In-
former: Beyond efficient transformer for long sequence time-series forecasting. In The Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Virtual Conference, volume 35, pp. 11106–11115. AAAI
Press, 2021a.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. In-
former: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI
conference on artificial intelligence, volume 35, pp. 11106–11115, 2021b.

Yuzhen Zhu, Shaojie Luo, Di Huang, Weiyan Zheng, Fang Su, and Beiping Hou. Drcnn: decomposing
residual convolutional neural networks for time series forecasting. Scientific Reports, 13(1):15901, 2023.

A Appendix

A.1 Extended Time Series

In this section, we provide qualitative examples of generated time series for each of the five datasets used in
our evaluation: Electric Motor, ECG, ETT, Sine, and MetroPT3. All samples were generated with a fixed
sequence length of l = 5000, using model weights trained on sequences up to l = 1000. This allows us to
assess the model’s ability to generalize and synthesize plausible data beyond the training horizon.

The results illustrate how well the model maintains the structure of the original data when generating
extended sequences:

• For datasets with stronger stationarity (Electric Motor, ECG, and Sine), the key patterns continue
to be synthesized plausibly beyond the training length. In these cases, a stable state emerges,
characterized by repeating, but not identical, patterns (see Figures 5, 6, and 8).

• In the Sine dataset, sinusoidal curves are extended effectively, with only a slight reduction in ampli-
tude observable in some channels. (Figure 8).

• For the less stationary datasets (ETT and MetroPT3), a clear degradation in synthesis quality
is observed beyond the trained length. In both cases, the model produces repetitive, flatline-like
patterns with low variation, and characteristic structures are no longer preserved (Figures 7 and 9).

These qualitative results support the quantitative findings and further highlight the model’s ability to gen-
eralize well on quasi-stationary data, while revealing its limitations on more dynamic datasets.

19

https://arxiv.org/abs/2106.10466
https://arxiv.org/abs/2106.10466

Under review as submission to TMLR

Figure 5: Example of a generated time series sample of length l = 5000 from the Electric Motor dataset.
The model was trained on sequences up to l = 1000. The main characteristics of the dataset continue to be
well synthesized in the extended sample. During generation, the model reaches a stable state in which the
output patterns kind of repeat. As a result, slower trends, especially visible in the leff motorcurr stator fxd
coord channel, are not fully reflected in the synthesis.

Figure 6: Example of a generated time series sample of length l = 5000 from the two-channel ECG dataset.
The model was trained on sequences up to l = 1000. The key characteristics of the data, particularly the
heartbeat-like patterns across both channels, continue to be well synthesized in the extended sequence. Still,
a stable state emerges, with periodic patterns that, while not identical, remain strongly similar over time.

Figure 7: Example of a generated time series sample of length l = 5000 from the ETT dataset. The model
was trained on sequences up to l = 1000. Up to this length, the synthesis closely follows the patterns present
in the original data. Beyond this point, a stable state emerges. Most channels no longer reflect the dataset’s
characteristic patterns, though the “OT” channel still produces plausible structures.

20

Under review as submission to TMLR

Figure 8: Example of a generated time series sample of length l = 5000 from the Sine dataset. The model
was trained on sequences up to l = 1000. The sine curves are extended very consistently beyond the trained
length, maintaining the dataset’s structure. Upon closer inspection, a slight decrease in amplitude can be
observed in channels 2 and 4 compared to the initial segment (up to l = 1000).

Figure 9: Example of a generated time series sample of length l = 5000 from the MetroPT3 dataset. The
model was trained on sequences up to l = 1000. While the generation follows the original data up to
this length, no meaningful structure is preserved in the extended part. Still, a stable state emerges, with
the model settling into repetitive, low-variation patterns resembling noisy flatlines across all channels.This
behavior is expected, as the MetroPT3 dataset exhibits low stationarity.

A.2 Hyperparameters and Loss Function

In all experiments, for the encoder aswell as the decoder, we stack 4 LSTM-layers each with 256 hidden
units. The latent dimension is z = 20. We use Adam optimizer with learning rate α = 10−4, β1 = 0.9,
β2 = 0.999, ϵ = 10−7. We perform min-max scaling with (−1, 1). After scaling we do a train/validation split
with a ratio of 9:1.

We use the loss function

Lθ,ϕ = α · SSE + β · DKL, (6)

where the reconstruction loss, SSE, represents the sum of squared errors, computed for each individual
sample within a batch:

SSE =
∑

T

∑
C

(ytc − ŷtc)2, (7)

where T is the sequence length and C is the number of channels. We then average the SSE over the entire
batch. In our experiments we set α = 500

T and β = 0.1.

21

Under review as submission to TMLR

The parameter β was introduced with the β-VAE (Higgins et al., 2017). For 0 < β < 1 the VAE stores more
bits about each input and the reconstructed sample is less smoothed out. If β > 1 the VAE is encouraged
to learn a latent representation that is disentangled (Burgess et al., 2018). We adjust α antiproportional to
the sequence length to retain the ratio between the reconstruction loss and the KL-Divergence.

A.3 Loss to ELBO conversion

Transforming the VAE loss function into the Evidence Lower Bound (ELBO) is essential to connect the
optimization process to a well-established probabilistic framework. The ELBO arises from the variational
inference approach, which allows us to approximate the intractable posterior distribution of latent variables
by optimizing a lower bound to the marginal likelihood of the observed data. By expressing the VAE loss as
the ELBO, we clarify that the model’s objective is twofold: maximizing the likelihood of the data through
reconstruction and simultaneously regularizing the latent space by minimizing the divergence between the
approximate posterior and the prior distribution. This dual objective ensures that the learned latent space
reflects meaningful, structured representations while maintaining the ability to reconstruct the input data.
Using the ELBO as the loss function thus ties the VAE training to a coherent probabilistic theory, enhancing
both its interpretability and its ability to generate diverse and realistic data.

Given the likelihood,

likelihood =
∏
T

∏
C

1√
2πσ2

exp
(

−1
2

(ytc − ŷtc)2

σ2

)
, (8)

we compute the log-likelihood, which can then be reformulated in terms of the SSE:

log-likelihood = log
(∏

T

∏
C

1√
2πσ2

exp
(

−1
2

(ytc − ŷtc)2

σ2

))

=
∑

T

∑
C

log
(

1√
2πσ2

exp
(

−1
2

(ytc − ŷtc)2

σ2

))
=
∑

T

∑
C

(
log
(

1√
2πσ2

)
+ log

(
exp

(
−1

2
(ytc − ŷtc)2

σ2

)))
=
∑

T

∑
C

(
log
(

1√
2πσ2

)
− 1

2
(ytc − ŷtc)2

σ2

)
=
∑

T

∑
C

(
−1

2 log(2πσ2) − 1
2

(ytc − ŷtc)2

σ2

)
= −1

2 log
(
2πσ2) · T · C − 1

2σ2

∑
T

∑
C

(ytc − ŷtc)2

= −1
2 log

(
2πσ2) · T · C − 1

2σ2 SSE

⇐⇒ − 1
2σ2 SSE = log-likelihood + 1

2 log
(
2πσ2) · T · C

⇐⇒ SSE = −2σ2 · log-likelihood − σ2 log
(
2πσ2) · T · C. (9)

The ELBO is defined as the log-likelihood minus the kl-divergence (Murphy, 2022):

ELBO = log-likelihood − DKL. (10)

22

Under review as submission to TMLR

Given (6), (9) and σ2 = 0.5 · β
α , we can derive the conversion to the ELBO:

Lθ,ϕ

β
= α

β
· SSE + DKL

= α

β

(
−2σ2 · log-likelihood − σ2 · log

(
2πσ2) · T · C

)
+ DKL

= −2σ2 · α

β
· log-likelihood − σ2 · α

β
· log

(
2πσ2) · T · C + DKL

= −2 · 0.5 · β

α
· α

β
· log-likelihood − 0.5 · β

α
· α

β
· log

(
2π · 0.5 · β

α

)
· T · C + DKL

= −log-likelihood − 0.5 · log
(

π · β

α

)
· T · C + DKL

⇐⇒ log-likelihood − DKL = −Lθ,ϕ

β
− 0.5 · log

(
π · β

α

)
· T · C

=⇒ ELBO(Lθ,ϕ, α, β, T, C) = −Lθ,ϕ

β
− 0.5 · log

(
π · β

α

)
· T · C. (11)

In our experiments, we normalize the ELBO by dividing it by the product of the number of channels and
the sequence length. This normalization allows for a fairer comparison of model performance across datasets
with different dimensionalities, such as varying sequence lengths or numbers of channels. Without this
adjustment, the ELBO would scale with the size of the data, potentially biasing the evaluation in favor of
datasets with larger sequences or more channels. By normalizing, we make the ELBO more independent
of the specific data structure, enabling a more consistent comparison of the underlying model’s ability to
capture data patterns.

Although this normalization provides a useful heuristic for comparing different datasets, it should be noted
that it does not guarantee perfect comparability in all cases. In some situations, larger datasets with
more channels or longer sequences may introduce additional complexity, which could influence the model’s
performance. Therefore, while the normalized ELBO serves as a practical and interpretable metric.

We denote the normalized version of the ELBO as

ELBOnorm(Lθ,ϕ, α, β, T, C) = ELBO(Lθ,ϕ, α, β, T, C)
T · C

. (12)

A.4 Implementation details of comparison models

A.4.1 Global hyperparameters

To balance data diversity and computational efficiency, we used a dataset-specific step size when splitting
time series into training sequences. This step size determines the offset between starting points of consecutive
sequences, thereby influencing both the number of training samples and the memory requirements during
training.

For the Electric Motor, ECG, and MetroPT3 datasets, we chose a step size of 0.1 · l, where l is the sequence
length. For the ETT dataset, which exhibits more complex and longer-range temporal dependencies, we
used a smaller step size of 0.04 · l to increase the number of training samples. In contrast, for the synthetic
Sine dataset, we fixed the number of training samples to 10,000 for each sequence length.

This approach reflects a practical trade-off: while smaller step sizes increase training data diversity, they
also lead to higher memory usage. Particularly for long sequences, using very small step sizes (e.g., step size
= 1) can cause GPU memory overflow or even exceed system RAM, depending on the model architecture,
implementation and dataset.

23

Under review as submission to TMLR

A.4.2 TimeGAN

We did all experiments with the same hyperparameters. Num layers=3, hidden dim=100, num iterations =
25000. The clockwise computation time on these hyperparameters were the highest of all models. We use
the authors original implementation4 on a Nvidia DGX server in the 19.12-tf1-py3 container5. On sequence
length l = 1000 , the training took about 3 weeks wall-clock time.

A.4.3 WaveGAN

For WaveGan needed special preperation to be usable for training. First we min maxed scaled the dataset file,
split it into training and validation parts and then converted each into a n-dimensional .wav file. WaveGan
is limited in configurability. In terms of sequence length the user can decide between 214, 215 and 216. We
chose 214 = 16384 because it is the smallest possible length. When we generate samples, we cut them into
equal parts which correspond to the desired sequence length l. The rest of the hyperparameters were set to
default. On the sine dataset training, wie used created 10,000 samples with a length of 16,384. We used the
ported pytorch implementation6.

A.4.4 TimeVAE

We use TimeVAE with default parameters. We integrated components of the original TimeVAE implementa-
tion7, such as the encoder, decoder, and loss function, into our own program framework. The reconstruction
loss of TimeVAE is

∑
T

∑
C

(ytc − ŷtc)2 + 1
C

∑
C

(ȳc − ¯̂yc)2. (13)

TimeVAEincludes a hyperparameter a, which acts as a weighting factor for the reconstruction loss. The
authors of the original paper recommend using a value for a in the range of 0.5 to 3.5 to balance the trade-off
between reconstruction accuracy and latent space regularization. In all of our experiments, we set a = 3.

A.4.5 RCGAN

We used the original implementation8 on a Nvidia DGX server in the 19.12-tf1-py3 container9. We trained
RCGANfor 500 epochs and afterswards used the weights with the lowest t̂ for sampling the dataset. On the
ETT dataset, training was numerically instable for l ≥ 300.

A.5 Discriminative Score

The 2-layer RNN for binary classification consists of a GRU layer, where the hidden dimension is set to
⌊nc/2⌋, where nc is the number of channels. This is followed by a linear layer with an output dimension of
one. To prevent overfitting, early stopping with a patience of 50 is applied. We each discriminative score we
repeated 15 training procedures. On each procedure, 2000 random samples were used as the train dataset
and 500 samples were used as the validation dataset for early stopping monitoring. The discriminative score
is then determined by validating further independent 500 samples.

A.6 Average Elbo with TimeVAE Elbo-Model

Table 5 shows the results for the average ELBO score E(X̃) using the base of TimeVAE as the ELBO model.
However, instead of using the original loss function of TimeVAE, we utilized the loss function of RVAE-ST

4https://github.com/jsyoon0823/TimeGAN
5https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/rel_19.12.html
6https://github.com/mostafaelaraby/wavegan-pytorch
7https://github.com/abudesai/timeVAE
8https://github.com/ratschlab/RGAN
9https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/rel_19.12.html

24

Under review as submission to TMLR

as it simplifies the conversion to the ELBO score as shown in (11). Analogous to Table 2, our model is
outperforming all other models. The Wilcoxon rank test indicates statistical significance with p <0.0001,
except for the ETT dataset at l = 100 and l = 300, where TimeVAEis statistically better.

Table 5: Average ELBO score E(X̃) of synthetic time series for six models (see 5.2), computed on the five
datasets (see 5.1) at sequence lengths of l = 100, l = 300, l = 500, and l = 1000. A higher score indicates
better performance. For each score, 1500 generated samples were evaluated by an ELBO model (based on the
TimeVAE architecture) and the results are reported with 1-sigma confidence intervals. The interpretation
must follow analogously to the explanation provided in Section 5.4 of the main paper, where the specifics
and limitations of the ELBO score are discussed in detail.

Sequence lengths
Dataset Model 100 300 500 1000

Electric
Motor

RVAE-ST (ours) 1.61±0.69 1.64±0.12 1.64±0.01 1.64±0.02
TimeGAN 1.29±0.39 1.33±0.17 1.21±0.10 -2.14±0.82
WaveGAN 1.52±0.14 1.47±1.05 1.52±0.22 1.52±0.15
TimeVAE 1.52±0.87 1.44±1.28 1.01±2.35 0.10±3.58
Diffusion-TS 1.56±0.45 1.35±0.36 1.39±0.21 1.30±0.29
Time-Transformer 1.25±1.88 -22.9±7.52 -85.4±18161 -22.7±8.05

ECG

RVAE-ST (ours) 1.62±0.07 1.62±0.07 1.62±0.06 1.59±0.06
TimeGAN -2.57±0.22 -2.26±0.22 -2.67±1.92 -2.58±0.49
WaveGAN 1.32±0.29 1.33±0.18 1.32±0.16 1.32±0.15
TimeVAE 1.57±0.15 1.46±0.16 1.39±0.15 1.08±0.28
Diffusion-TS 1.63±0.06 1.63±0.08 1.60±0.18 1.16±25.2
Time-Transformer 1.22±0.50 1.67±0.04 1.67±0.04 1.67±0.04

ETT

RVAE-ST (ours) 1.56±0.24 1.57±0.09 1.59±0.05 1.60±0.13
TimeGAN 1.49±0.17 1.20±1.49 0.83±0.91 -0.00±0.28
WaveGAN 1.50±0.50 1.50±0.41 1.47±0.64 1.49±0.43
TimeVAE 1.56±0.45 1.41±0.81 1.15±1.05 0.40±2.06
Diffusion-TS 1.53±0.07 1.52±0.13 1.52±0.13 1.52±0.16
Time-Transformer 1.43±0.52 1.57±0.11 1.48±0.04 -39.6±5.63

Sine

RVAE-ST (ours) -34.5±29.1 -48.7±27.8 -51.9±27.5 -56.2±28.3
TimeGAN -40.1±32.6 -54.8±31.2 -61.6±28.6 -62.9±46.5
WaveGAN -41.6±27.9 -49.0±26.7 -51.2±27.4 -51.9±27.1
TimeVAE -34.4±27.9 -51.9±31.5 -54.4±308 -62.3±138
Diffusion-TS -36.4±31.2 -40.3±24.2 -48.2±26.7 -44.5±25.4
Time-Transformer -38.1±30.1 -32.0±19.5 -2.60±5.32 -1.43±3.95

MetroPT3

RVAE-ST (ours) 1.49±0.64 1.38±0.77 1.39±0.74 1.36±0.81
TimeGAN 1.33±0.77 0.95±1.83 1.42±0.84 -0.07±2.94
WaveGAN 0.35±1.57 0.18±1.67 0.23±1.64 0.22±1.64
TimeVAE 1.06±1.14 -0.07±2.07 -2.81±3.43 -5.61±3.36
Diffusion-TS 1.63±0.24 1.58±0.49 1.59±0.41 1.04±2.08
Time-Transformer 0.06±1.73 -0.97±2.21 -1.29±0.63 -331±26.2

A.7 PyTorch vs TensorFlow

The experiments were conducted using a TensorFlow implementation of our model. Additionally, we per-
formed tests with a PyTorch reimplementation (which is not part of this paper). In these tests, we found
that the performance in PyTorch was significantly worse compared to the TensorFlow implementation.

25

Under review as submission to TMLR

Upon investigation, we identified the cause of the performance difference. The weight initialization in
both the LSTM and Dense layers differs between TensorFlow and PyTorch. Specifically, TensorFlow uses
a uniform distribution for the initialization of both LSTM and Dense weights, while PyTorch employs
different initialization methods by default. To align the behavior between both frameworks, we modified
the PyTorch implementation to use the same uniform weight initialization for both LSTM and Dense layers
as in TensorFlow. After making these adjustments, we were able to achieve consistent results across both
frameworks.

A.8 PCA and t-SNE Results

The following section presents the PCA and t-SNE plots for all experiments, including each dataset, model,
and sequence length. Since RCGAN consistently underperforms, and the performance of TimeGAN and
WaveGAN remains unchanged across sequence lengths within a given dataset, these points will not be
explicitly mentioned in each figure to maintain clarity and readability.

26

Under review as submission to TMLR

RVAE-ST
(ours)

TimeGAN

WaveGAN

TimeVAE

Diffusion-TS

Time-
Transformer

EM, l=100 EM, l=300 EM, l=500 EM, l=1000

Figure 10: PCA plots for all sequence lengths on the Electric Motor dataset. At l = 100, all models perform
similarly, though Time-Transformer already shows slightly weaker results. From l = 300 onward, TimeGAN
and TimeVAE both degrade consistently with increasing sequence length, with TimeGAN showing reduced
variance. Time-Transformer fails to generate coherent samples beyond this point. At l = 1000, RVAE-ST
and Diffusion-TS produce the most consistent results, followed by WaveGAN.

27

Under review as submission to TMLR

RVAE-ST
(ours)

TimeGAN

WaveGAN

TimeVAE

Diffusion-TS

Time-
Transformer

EM, l=100 EM, l=300 EM, l=500 EM, l=1000

Figure 11: t-SNE plots for all sequence lengths on the Electric Motor dataset. At l = 100, TimeGAN already
performs worse than the other models, similarly to Time-Transformer. From l = 300 onward, TimeGAN
shows further deterioration, while TimeVAE also degrades but to a lesser extent. Time-Transformer fails to
generate coherent samples at longer sequence lengths. At all sequence lengths, WaveGAN, RVAE-ST, and
Diffusion-TS perform similarly.

28

Under review as submission to TMLR

RVAE-ST
(ours)

TimeGAN

WaveGAN

TimeVAE

Diffusion-TS

Time-
Transformer

ECG, l=100 ECG, l=300 ECG, l=500 ECG, l=1000

Figure 12: PCA plots for all sequence lengths on the ECG dataset. At l = 100, TimeVAE performs similarly
to RVAE-ST and Diffusion-TS. RVAE-ST shows the best performance at l = 1000. Diffusion-TS performs
as well as RVAE-ST up to l = 500. WaveGAN consistently performs worse than the best models but still
significantly outperforms TimeGAN and Time-Transformer , which fail to generate coherent samples starting
from l = 300.

29

Under review as submission to TMLR

RVAE-ST
(ours)

TimeGAN

WaveGAN

TimeVAE

Diffusion-TS

Time-
Transformer

ECG, l=100 ECG, l=300 ECG, l=500 ECG, l=1000

Figure 13: t-SNE plots for all sequence lengths on the ECG dataset. At l = 100, TimeVAE performs
similarly to RVAE-ST and Diffusion-TS. RVAE-ST shows the best performance at l = 1000. Diffusion-TS
performs as well as RVAE-ST up to l = 500. WaveGAN consistently performs worse than the best models
but still outperforms TimeGAN and Time-Transformer , which fail to generate coherent samples starting
from l = 300.

30

Under review as submission to TMLR

RVAE-ST
(ours)

TimeGAN

WaveGAN

TimeVAE

Diffusion-TS

Time-
Transformer

ETT, l=100 ETT, l=300 ETT, l=500 ETT, l=1000

Figure 14: PCA plots for all sequence lengths on the ETT dataset. RVAE-ST and Diffusion-TS consistently
perform the best across all sequence lengths. WaveGAN fails to capture the full variance of the dataset.
TimeVAE performs similarly to RVAE-ST and Diffusion-TS at l = 100, but its performance degrades with
increasing sequence length. TimeGAN and Time-Transformer perform reasonably well at l = 100, though
already worse than the other models, and their performance significantly drops starting from l = 300.

31

Under review as submission to TMLR

RVAE-ST
(ours)

TimeGAN

WaveGAN

TimeVAE

Diffusion-TS

Time-
Transformer

ETT, l=100 ETT, l=300 ETT, l=500 ETT, l=1000

Figure 15: t-SNE plots for all sequence lengths on the ETT dataset. RVAE-ST and Diffusion-TS consistently
perform the best across all sequence lengths. WaveGAN fails to capture the full variance of the dataset.
TimeVAE performs similarly to RVAE-ST and Diffusion-TS at l = 100, but its performance degrades with
increasing sequence length. TimeGAN and Time-Transformer perform reasonably well at l = 100, though
already worse than the other models, and their performance significantly drops starting from l = 300.

32

Under review as submission to TMLR

RVAE-ST
(ours)

TimeGAN

WaveGAN

TimeVAE

Diffusion-TS

Time-
Transformer

MetroPT3, l=100 MetroPT3, l=300 MetroPT3, l=500 MetroPT3, l=1000

Figure 16: PCA plots for all sequence lengths on the MetroPT3 dataset. RVAE-ST, TimeVAE and Diffusion-
TS perform similarly and the best across all sequence lengths. WaveGAN performs slightly worse, as it does
not capture the entire distribution of the dataset (with a minimal difference). Time-Transformer performs
reasonably well at l = 100 and l = 300, but its performance degrades at longer sequence lengths. TimeGAN
consistently performs the worst, failing to generate plausible samples.

33

Under review as submission to TMLR

RVAE-ST
(ours)

TimeGAN

WaveGAN

TimeVAE

Diffusion-TS

Time-
Transformer

MetroPT3, l=100 MetroPT3, l=300 MetroPT3, l=500 MetroPT3, l=1000

Figure 17: t-SNE plots for all sequence lengths on the MetroPT3 dataset. RVAE-ST and Diffusion-TS
perform the best across all sequence lengths, with RVAE-ST slightly outperforming at l = 1000. TimeVAE
and WaveGAN perform similarly, but exhibit more outliers in the plots. TimeGAN and Time-Transformer
perform similarly to the PCA results, showing significant degradation as the sequence length increases.

34

Under review as submission to TMLR

RVAE-ST
(ours)

TimeGAN

WaveGAN

TimeVAE

Diffusion-TS

Time-
Transformer

Sine, l=100 Sine, l=300 Sine, l=500 Sine, l=1000

Figure 18: PCA plots for all sequence lengths on the Sine dataset. At l = 100, all models perform similarly
well, except TimeGAN which consistently performs less effectively. From l = 500 onward, Time-Transformer
also shows a decline in performance. RVAE-ST, Diffusion-TS, WaveGAN and TimeVAE perform equally
well throughout all sequence lengths. However, when looking at Figure 3, this does not fully reflect the
models performance, as the limitations in accounting for temporal dependencies lead to significantly reduced
effectiveness.

35

Under review as submission to TMLR

RVAE-ST
(ours)

TimeGAN

WaveGAN

TimeVAE

Diffusion-TS

Time-
Transformer

Sine, l=100 Sine, l=300 Sine, l=500 Sine, l=1000

Figure 19: t-SNE plots for all sequence lengths on the Sine dataset. At l = 100, all models perform similarly
well, except TimeGAN which consistently performs less effectively. From l = 500 onward, Time-Transformer
also shows a decline in performance. RVAE-ST, Diffusion-TS, WaveGAN and TimeVAE perform equally
well throughout all sequence lengths. However, when looking at Figure 3, this does not fully reflect the
models performance, as the limitations in accounting for temporal dependencies lead to significantly reduced
effectiveness.

36

	Introduction
	Prerequisites
	Variational Autoencoder

	Related Work
	Deep Generative Models for Time Series
	Recurrent Variational Autoencoders

	Methods
	Equivariant Vec2Seq generator
	RVAE-ST
	Training scheme for sequence lengths

	Experiments
	Data Sets
	Comparison Models
	Evaluation by Context-FID Score
	Evaluation by Average ELBO
	Evaluations by Discriminative Score
	Evaluation by PCA and t-SNE
	Training scheme ablations

	Discussion
	Appendix
	Extended Time Series
	Hyperparameters and Loss Function
	Loss to ELBO conversion
	Implementation details of comparison models
	Global hyperparameters
	TimeGAN
	WaveGAN
	TimeVAE
	RCGAN

	Discriminative Score
	Average Elbo with TimeVAE Elbo-Model
	PyTorch vs TensorFlow
	PCA and t-SNE Results

