
Under review as submission to TMLR

Robustness Evaluation Using Local Substitute Networks

Anonymous authors
Paper under double-blind review

Abstract

The robustness of a neural network against adversarial examples is essential when a deep
classifier is applied in safety-critical use cases like health care or autonomous driving. To
assess the robustness, practitioners use various tools ranging from adversarial attacks to
the exact computation of the distance to the decision boundary. We use the fact that the
robustness of a neural network is a local property and empirically show that computing
the same metrics for smaller local substitute networks yields reasonable estimates of the
robustness for a lower cost. To construct the substitute network, we develop several pruning
techniques that preserve the local properties of the initial network around a given anchor
point. Our experiments on multiple datasets prove that this approach saves a significant
amount of computation.

(a) no pruning (b) 12.5% pruned (c) 50% pruned (d) 100% pruned

(e) Loc., no pruning (f) Loc., 12.5% pruned (g) Loc., 50% pruned (h) Loc., 100% pruned

Figure 1: A toy example in the two-dimensional setting. We show the boundaries of a classifier, before (1a
and 1e) and after the pruning (1b - 1d and 1f - 1h), when up to the 100% of the hidden neurons are removed.
The sample we are interested in is marked by the black point. The square around it on the plots with the
global view (1a - 1d) shows the local region that is depicted on the other four plots (1e - 1h). While the global
behavior changes a lot, the boundary around the chosen anchor point remains similar. Most importantly, the
distance to the closest adversarial from the anchor point (shown by the black line on the plots 1e - 1h) does
not change significantly.

1

Under review as submission to TMLR

1 Introduction

The impressive success of neural networks in various complicated tasks makes them a popular choice for
practitioners despite the known flaws. One problem that continuously gains more attention is the robustness
of the deep neural classifiers. While multiple notions of robustness exist, depending on the use case, we
consider the most basic concept of robustness against adversarial examples—small perturbations of the
correctly classified samples that lead to a false prediction. The presence of adversarial examples severely
limits the application of neural networks in safety-critical tasks like health care and autonomous driving,
where the data is collected from sensors, and it is not acceptable that the same image, for example, a road
sign, is classified differently depending on the signal noise.

While the problem of lacking robustness for the neural network classifiers is widely known, formal robustness
verification methods do not allow for assessing the classifier’s robustness when the network is large or require
specific modifications in the network’s architecture or training procedure. In fact, Katz et al. (2017) show
that the exact verification task for the ReLU classifiers is NP-complete. Therefore, constructing adversarial
attacks and measuring the perturbation’s magnitude, which is required to change the prediction, is still one
of the most popular ways to estimate a network’s robustness. The farther away the adversarial point is from
the initial sample, the more robust behavior we expect from the network around this point. Unfortunately,
the distance to an adversarial point provides only an upper bound on the distance to the decision boundary.
Conversely, formal verification methods output a lower bound on that value by certifying a region around the
sample as adversarial-free.

In this work, we develop a novel inexact robustness assessment method that utilizes the fact that the
robustness of a network against adversarial perturbations around a given sample is a local property. That is,
it does not depend on the behavior of the network outside of the sample’s neighborhood. In other words,
two networks with similar decision boundaries around the same anchor point must have similar robustness
properties, despite showing completely different behavior away from its local neighborhood. Based on these
observations, we

1. develop a novel method to assess the robustness of the deep neural classifiers based on
the local nature of the robustness properties,

2. develop three pruning techniques that remove the non-linear activation functions to reduce the
complexity of the verification task, but preserve the local behavior of the network as much as possible:
one replacing activations by a constant value, one preserving the output of the initial network for
one adversarial point and replacing activation functions by the linear ones, and one preserving the
network behavior in a whole region around the anchor point,

3. develop a method to identify the neurons to prune that is based on a bound propagation
technique and

4. empirically verify that the robustness metrics computed on the pruned substitute
networks are good estimates of the robustness of the initial network by conducting
experiments with convolutional networks on MNIST and CIFAR10 datasets.

In Figure 1, we show an example of the difference in the decision boundary before and after we apply one of
the proposed pruning techniques in the two-dimensional setting. We remove up to all (1d and 1h) of the
hidden neurons while retaining the essential properties of the decision boundary locally around the anchor
point. That means to solve the complex task of finding the distance to the decision boundary for the initial
model, we save cost by working with the simple local substitute and still get a good approximation of the
exact solution.

This work is organized as follows. In Section 2, we introduce the necessary notation and formalize the context
of our analysis. In Section 3, we develop both pruning techniques and explain how we focus on the local
neighborhood around the base sample. Further, in Section 4, we set up the experimentation workflow and
show the results. In Section 5, we mention the relevant related work, and, finally, we present options for
future research in Section 6.

2

Under review as submission to TMLR

2 Notation

The general idea and our pruning methods apply to any deep classifier, and the constraints apply depending
on the deployed attack, verification, and bound propagation approaches. We consider a neural network f
consisting of L linear layers, dense or convolutional, and L − 1 activation layers. We denote the number of
neurons in each layer l as nl for l ∈ {0, . . . , L}, where the zero’s layer contains the input neurons. Furthermore,
we consider the L∞-norm as the perturbation norm since most of the verification methods support it. For a
correctly classified anchor point x0 ∈ Rn0 , weight matrices W l ∈ Rnl×nl−1 , and bias vectors bl ∈ Rnl , the
output of the i-th neuron in the l-th layer before applying the activation function σ is f l

i (x0) = W l
i,:x

l−1 + bl
i

and for the last layer fL(x0) = W LxL−1 + bL = f(x0). Next, we introduce the notation for four metrics
commonly used to assess the robustness of the given classifier. All these algorithms take the network’s
parameters {W l, bl}l∈{1,...,L} and x0 as input.

Pre-activation bounds propagation A pre-activation bounds propagation (or just bounds propagation)
algorithm B is an algorithm that additionally takes a perturbation budget ϵ as an input and returns a set of
the lower and upper bounds {a

¯
l, āl}l∈{1,...,L} on the possible pre-activation values W lxl−1 + bl. In other

words, for all possible points x̃0 with ∥x0 − x̃0∥∞ ≤ ϵ it must hold that a
¯

l ≤ W lx̃l−1 + bl ≤ āl in every layer
l.

Adversarial attack An (untargeted) adversarial attack algorithm A is an algorithm that returns a point
x0

adv that is assigned by f to a different class than x0. We denote the magnitude of the adversarial perturbation
∥x0 − x0

adv∥∞ by A(f) = dadv. The smaller the distance dadv, the better.

Distance to the decision boundary Finally, an algorithm D computing the distance to the decision
boundary from x0 is an algorithm that outputs the distance ∥x0 − x̃0

adv∥∞ to the closest adversarial point
x̃0

adv. Formally, D must solve the following optimization problem.

min
ỹ ̸=y

min
x̃0∈Rn0

∥x̃0 − x̃0∥∞ s.t. fy(x0) ≤ fỹ(x̃0), (1)

where y is the correctly predicted label of x0. We denote the optimal objective function value of the
minimization problem equation 1 by D(f) = dbnd.

Note, that for any A and D it holds that dbnd ≤ dadv. When we consider a pair of networks f and the pruned
network g we define d̂adv and d̂bnd as A(g) and D(g) correspondingly.

3 Local substitutes

Given the initial deep classifier, we reduce its size to construct a neural network that allows for efficient
robustness verification. Practitioners pursue the same goal when the network has to be deployed in a setting
with strictly constrained available memory or when the forward pass must be particularly fast. In these
scenarios, it is common to prune the network by removing its neurons and weights while keeping the drop in
performance on the main task as low as possible and even improving generalization to the new data. See
Section 5 for an overview of the existing pruning methods.

However, these available pruning techniques are not suitable for our application. First, all pruning techniques
act globally and consider the network’s behavior on the whole available dataset. Instead, we show how
to prune the network such that only the vicinity of a particular point is considered, which determines its
robustness properties. Second, when we assess the robustness of an already trained network, we do not care
about the classification error of the resulting pruned network, as we do not use it for classification. After
reducing the network complexity, our most crucial goal is to preserve a similar decision boundary in a small
region around the anchor point. To achieve this property, we prune the network differently for each anchor
point. However, as we show in Section 4, the time overhead of the pruning step is insignificant compared to
the robustness verification.

3

Under review as submission to TMLR

(a) Constant activation (b) Linear activation (c) Identity activation

Figure 2: Three options we use to eliminate the non-linear activation function and the corresponding neuron.
Figure 2a shows the constant function that always outputs the value f l

i (x0). Figure 2b shows the linear
function defined by preserving the neuron’s output for two points x0 and x0

adv. Finally, Figure 2c shows the
function that is either the identity or zero depending on the state of the neuron at x0 (since f l

i (x0) is positive
in this example, we use the identity function).

To achieve the primary goal—faster verification—we must reduce the number of non-linear transformations
within the neural network. The non-linear nature of the neural networks and the large number of non-
linear activation functions in their hidden layers are the main reasons deep networks can perform well on
complex, high-dimensional data by learning meaningful representations. On the other hand, these non-linear
transformations make it hard to explain and verify other properties of the network, like robustness. While
the exact reasons for that vary depending on the verification approach, a common problem is to formally
describe the output sets of the points from the neighborhood Bϵ(x0). The more non-linear transformation
this set undergoes, the more complex the output becomes and the worse the possible approximations of the
above-mentioned output sets. See Appendix A.2, where we show in detail how the number of activation
functions affects the complexity of the verification task.

3.1 How to prune the neurons

For our task, we remove the non-linear transformations from the network f by replacing them with linear
or constant functions and getting a new network g. We use one of the following three options to retain
the network’s output at x0

adv and its neighborhood. For each of the pruning methods, we provide proven
evidence that they preserve the network’s output values locally around x0 laying theoretical foundation for
the empirical evaluations.

Constant substitute for the non-linear activation is the simplest option to reduce the complexity of the
verification problem D. For each neuron i in layer l, we set its output value to f l

i (x0), the same as when the
anchor point x0 is propagated through the network. This way we ensure that g(x0) = f(x0) remains the
same. Figure 2a shows how the activation function changes in the example of a ReLU neuron.

One problem that seems to be unavoidable for this type of pruning is what we call boundary collapse. When
we prune too much, the resulting network g becomes not expressive enough to maintain a non-trivial boundary
even locally around x0. In this case, the prediction region grows, and the classifier outputs the same label for
every point, becoming useless for the robustness assessment of the initial network. However, we develop two
different pruning techniques to overcome this problem and ensure that even under severe simplification of the
decision boundary, it does not collapse but remains near x0 as follows.

Adversarial preserving linear substitute uses an adversarial attack A to determine the radius dadv of the
relevant neighborhood around x0. Now, we do not only ensure that the network’s output after the pruning
at the base point x0 remains the same but also at the point x0

adv that is assigned to a different class. That
means we force g to output the same value as f in the center of Bdadv(x0) and at one point on its boundary.
Therefore, by maintaining g’s predicted label at these points, we implicitly enforce that the decision boundary
does not move farther away from x0 than x0

adv.

4

Under review as submission to TMLR

To achieve this adversarial preserving property, we replace the non-linear activation function with a linear
function with the same output for the points x0 and x0

adv. Figure 2b shows an example of the new activation
function for a ReLU neuron. Note that there is always precisely one linear function that satisfies this property
and goes through the points (f l

i (x0), σ(f l
i (x0))) and (f l

i (x0
adv), σ(f l

i (x0
adv))) unless f l

i (x0) = f l
i (x0

adv), in
which case we set the new activation function to be constant as we do it above for the bounds propagation
based pruner.

Activation pattern preserving linear substitute is the third option for pruning the ReLU networks with
an even stronger similarity property between f and g. If a neuron is activated at x0, we replace the ReLU
function with the identity and otherwise by the constant zero function. Due to the continuity of the ReLU,
the new network g has the same output as f not only in a single point but in a neighborhood around x0.
That means, there exists δ > 0 such that f(x̃0) = g(x̃0) for all x̃0 ∈ Bδ(x0). This neighborhood is defined as
the set of points with the same activation pattern for the pruned neurons as x0. However, the more neurons
we prune, the smaller this set becomes. See Section 3.2 for further details, including a proven result that
directly links the robustness verification problem of f and g. Figure 2b shows the new activation function for
the case f l

i (x0) > 0.

3.2 Theoretical Guaranties

We prove that the local similarity of two networks allows us to derive robustness guarantees for one network
if we prove similar properties for the second one without running the verification algorithm a second time.
Here, we address the following so-called ϵ-verification problem. Like in Section 2, given the anchor point x0,
network f , predicted label y, and a target label ŷ, we consider the following problem, which, in case of the
ReLU activation, is equivalent to a mixed-integer optimization task.

min
x̃0∈Rn0

fy(x̃0) − fŷ(x̃0) s.t. ∥x0 − x̃0∥ ≤ ϵ (2)

We denote its optimal value by Vf (ϵ). Note, that Vf (ϵ) ≥ 0 if and only if fy(x̃0) ≥ fŷ(x̃0) for all x̃0 ∈ Bϵ(x0),
meaning that the initial label y has a higher score than ŷ everywhere on Bϵ(x0). Algorithm D solves equation 2
for different ϵ to find the distance to the decision boundary dbnd, which is the largest ϵ, such that Vf (ϵ) ≥ 0.

In the following lemma, we show that the desired property Vf (ϵ) ≥ 0 follows from the corresponding properties
of Vg(ϵ) if f and g have the same values in a neighborhood around x0 (see Appendix A.1 for the proof).

Lemma 1. If for some non-negative δ we have f(x̃0) = g(x̃0) for all x̃0 ∈ Bδ(x0) and

1. δ ≥ ϵ, then Vf (ϵ) ≥ 0 if Vg(ϵ) ≥ 0,

2. δ ≤ ϵ, then Vf (ϵ) ≥ 0 if Vg(ϵ) ≥ 2(Lf + Lg)(ϵ − δ),

where L is the Lipschitz constant of the corresponding function on Bϵ(x0).

In our setting, for the network g being constructed via pruning as described in Section 3, Lemma 1 provides
a way to certify the neighborhood Bϵ(x0) as adversarial free for the network f by solving the optimization
problem 2 for a smaller network g. However, we don’t use this theoretical result to certify f but instead
rely on the empirical comparison of dbnd and d̂bnd. First, only the third from the three developed pruning
methods, called activation preserving pruning (Figure 2c), leads to a new network g that has the same output
as f in a ball around x0. The constant pruning and adversarial preserving linear pruning (Figure 2a and 2b)
preserve the output for single points and do not possess this property (except for δ = 0). Second, for the
activation preserving pruning we need to know δ, such that f(x̃0) = g(x̃0) for x̃0 ∈ Bδ(x0). In other words,
we must find a radius where the pruned neurons’ activation pattern does not change. Unfortunately, the task
of computing δ, knowing the neurons that we prune, is of the same complexity as the same verification task

5

Under review as submission to TMLR

formulated by equation 1 itself. More precisely, δ equals the optimal value of the following problem.

min
pruned (l,i)

min
x̃0∈Rn0

∥x0 − x̃0∥ s.t.

f l
i (x̃0) ≤ 0 if the pruned neuron (l, i) is activated (that is f l

i (x0) ≥ 0), or
f l

i (x̃0) ≥ 0 otherwise

Compared to the initial verification problem equation 1, it has the same objective function and constraints
of the same type. Therefore, we do not use Lemma 1 to derive the robustness certificates for the initial
network f , as solving the intermediate task of computing δ is not feasible in this framework. Nevertheless,
this result proves an underlying theoretical connection between the robustness properties of the initial and
pruned networks and provides a starting point for future research in this intriguing direction.

3.3 How to choose the neurons to prune

Bounds propagation techniques, as defined in Section 2, are widely used in verification literature (see Section 5).
The most straightforward way to utilize them for the ReLU networks is to detect the neurons that do not
change their state for the inputs from Bϵ(x0). If āl

i ≤ 0, the input to the neuron i from layer l is always
negative or zero, and the neuron remains deactivated such that the activation function returns zero for all
relevant inputs. Also, if we get the case a

¯
l
i ≥ 0, this neuron is never deactivated and effectively acts as the

identity function. By pruning these stable neurons, we get the new smaller network g with precisely the same
output g(x̃0) = f(x̃0) for all x̃0 ∈ Bϵ(x0).

Unfortunately, this does not work for the not piece-wise linear activation functions like the sigmoid. Moreover,
in this procedure, the only parameter that controls the number of the removed non-linear transformations is
ϵ, which defines the size of Bϵ(x0). The smaller the input region around x0, the tighter are the bounds a

¯
l
i, āl

i,
such that less of the neurons remain in the undecided state a

¯
l
i ≤ 0 ≤ āl

i. However, we use this parameter
to specify the region we consider for pruning. When ϵ is chosen too small to remove more neurons, we risk
that the decision boundary around x0 will lie entirely outside of Bϵ(x0), meaning that the whole set will
be assigned to the same class as x0. This is not desirable since the computation of the bounds in B does
not account for the behavior of the network at the points outside of the given ϵ-neighborhood around x0,
which, in this case, does determine the network’s robustness properties. That means we would miss essential
information about the network when computing the bounds a

¯
l
i, āl

i in the first place.

Instead, we first set ϵ = dadv by running an attack A. This way, we ensure that Bϵ(x0) is not too small and
contains the decision boundary between the points with different predicted classes x0 and x0

adv (both are
points from Bϵ(x0)). Given a user-defined ratio γ ∈ (0, 1) of the neurons to be pruned, we run the bounds
propagation algorithm B and remove the neurons with the smallest difference āl

i − a
¯

l
i, that we use as a

measure of the neuron’s variability given the input perturbation budget dadv. That is, we prune the neurons
with the least variable output, considering the inputs from Bdadv(x0).

Finally, we observe that the neurons of the first layer have ā1
i and a

¯
1
i with the smallest gap due to the

magnification during bounds estimation when āl
i and a

¯
l
i are propagated in B and become looser. Therefore,

to prevent the elimination of the neurons exclusively from the first layers, we apply the pruning iteratively by
removing a small portion at a time and then recomputing the pre-activation bounds. This way, each time, we
prune neurons with the most tight bounds and distribute the removed neurons more evenly throughout the
layers. We present the described method in Algorithm 1.

By applying our pruning methods, we achieve the following. 1. We preserve local behavior of the network
around x0 by pruning the least uncertain neurons, while we don’t take into account the points outside of
Bdadv(x0). 2. We preserve the value of the network either at x0, at x0 and x0

adv, or even in a
neighborhood of x0, by construction of g as described in Section 3.1. 3. We have a dedicated parameter
γ to set the desired amount of the pruned neurons.

6

Under review as submission to TMLR

Algorithm 1: Bounds propagation based iterative pruning
1: Input: Algorithms A, B, network f , point x ∈ Rn0 , γ ∈ (0, 1) and γ0 ≪ γ.
2: Output: Network with at most (1 − γ)(n1 + · · · + nL) ReLU activations.
3: Compute dadv = A(f).
4: Compute āl, a

¯
l using B with ϵ = dadv, initialize k = 1.

5: repeat
6: Compute the threshold δ as the γ0-quantile of the values āl

i − a
¯

l
i for

l ∈ {2, . . . , L} and i ∈ {1, . . . , nl}.
7: for l = 2, . . . , L do
8: Define I l ∈ {True, False}nl as the indicator vector of the remaining

neurons: I l
i = 1āl

i
−a

¯
l
i
>δ

9: For i ∈ {1, . . . , nl} where I l
i is False replace ReLU by a linear function

according to Section 3.1.
10: end for
11: Update k = k + 1.
12: until (1 − γ0)k ≥ 1 − γ
13: Return: Network with the new activation layers.

4 Experiments

Setup We conduct the experiments using convolutional networks with ReLU activations publicly provided
by Li et al. (2023) that are pretrained on the MNIST (LeCun, 1998) and CIFAR10 (Krizhevsky, 2009)
datasets. The networks have 166406 (for MNIST) and 214918 (for CIFAR10) parameters and consist of two
convolutional layers with 16 and 32 channels respectively, followed by two dense layers with 2028 and 100
neurons. The models are trained either normally or using adversarial training. The following perturbation
magnitudes are used by Li et al. (2023) to generate adversarial examples during adversarial training: 0.1
or 0.3 for MNIST, 0.008 or 0.031 for CIFAR10. We evaluate the verification time of all approaches on a
machine with a single NVIDIA GTX 1080 Ti GPU with 11 GB memory. For the algorithms A, B, and D (see
Section 2), we use the following popular approaches correspondingly (all available within our implementation
based on the unified toolbox by Li et al. (2023)): projected gradient descent (PGD) attack, FastLinIBP
interval bound propagation (combination of the methods by Weng et al. (2018) and Gowal et al. (2018)),
exact verification by Tjeng et al. (2019) based on mixed integer linear programming (MILP). Unless we
mention otherwise, all third-party methods are used with the default parameters by Li et al. (2023).

Procedure The goal is to get a good estimate of dbnd without running D on the full network. We apply
the three pruning methods (Section 3.1) with varying magnitudes for each network. To choose the neurons
to prune, we use the bounds propagation-based approach described in Section 3.3 (Algorithm 1) with
γ ∈ {0.9, 0.99}. Note, that the pruning step is independent of the downstream task solved for the pruned
model. The same holds for the key insight we verify in our work: the proposed pruning procedure preserves
the network’s local boundary around the anchor point.

Before and after the pruning, we run D on 10% of the test samples. We use a particular complete verification
approach in our experiments, but the core property of the pruning method (i.e., preserving the boundary)
does not depend on it. Furthermore, for other complete verification approaches, the resulting dbnd and d̂bnd
must be the same since the verification approaches are complete and solve the same task. Thus, the difference
in the computed radii does not depend on choosing a particular complete verification approach. For all the
pruned networks, we compute the mean absolute difference |d̂bnd − dbnd|/dbnd. The goal is to construct an
estimate close to dbnd and do it faster than D when applied to the initial model f . However, due to the
complexity of D, the exact verification often terminates without reaching the optimal point of the MILP
optimization problem due to the maximum runtime constraint for a single optimization run. Therefore, to
compute the difference in the distance to the decision boundaries fairly, we consider only the points where
the algorithm D does compute the true d̂bnd and dbnd (see Appendix A.2 for more details).

7

Under review as submission to TMLR

The primary instance of the MILP-based verification approach by Tjeng et al. (2019) is the mixed-integer
optimization problem that must be solved for each sample, target label, and the currently verified radius. It
is applied within a binary search to find dbnd as the largest radius where a successful robustness verification
is possible. We compare the average runtime of the solver needed to solve this task before and after pruning.
However, we have to take into account the fact that the larger the verified radius ϵ is, the more complex the
corresponding task becomes as the set of admissible points Bϵ(x0) becomes larger. As the pruned models
have fewer non-linear functions and fewer binary variables in the MILP formulation, we verify larger radii for
these models. Therefore, we restrict the set of the solver runs used to compute the average runtime to those
that evaluate the robustness of the pruned models for the radii from the same range as for the unpruned
models. Thus, we ensure that the computed average runtime represents the solver runs solving the verification
task of the same complexity with respect to ϵ. We provide more details about this issue in Appendix A.2.

Table 1: Comparison of dbnd and optimization runtime before and after the pruning.

Network Pruning Avg rel Avg time (s)
Dataset | Trn Type | γ dbnd diff pruning opt. run opt. run

div. by #runs with pruning w/o pruning
mnist | clean con | 0.9 0.39 ± 0.063 0.02 ± 0.01 0.73 ± 0.56 33.28 ± 26.14

mnist | clean con | 0.99 0.39 ± 0.063 0.04 ± 0.02 0.39 ± 0.22 33.28 ± 26.14

mnist | clean lin | 0.9 0.0 ± 0.0 0.04 ± 0.03 31.57 ± 24.16 33.28 ± 26.14

mnist | clean lin | 0.99 0.0054 ± 0.0062 0.06 ± 0.03 16.91 ± 17.95 33.28 ± 26.14

mnist | clean act | 0.9 0.016 ± 0.011 0.04 ± 0.03 31.99 ± 24.49 33.28 ± 26.14

mnist | clean act | 0.99 0.019 ± 0.01 0.06 ± 0.04 17.19 ± 18.64 33.28 ± 26.14

mnist | adv1 con | 0.9 0.19 ± 0.061 0.03 ± 0.02 10.91 ± 19.90 34.01 ± 25.84

mnist | adv1 con | 0.99 0.72 ± 0.76 0.08 ± 0.05 0.79 ± 0.55 34.01 ± 25.84

mnist | adv1 lin | 0.9 0.0 ± 0.0 0.05 ± 0.04 33.78 ± 25.62 34.01 ± 25.84

mnist | adv1 lin | 0.99 0.0068 ± 0.012 0.07 ± 0.04 9.73 ± 14.12 34.01 ± 25.84

mnist | adv1 act | 0.9 0.0067 ± 0.0058 0.03 ± 0.02 30.93 ± 26.11 34.01 ± 25.84

mnist | adv1 act | 0.99 0.01 ± 0.01 0.05 ± 0.02 3.75 ± 5.91 34.01 ± 25.84

mnist | adv2 con | 0.9 0.061 0.04 ± 0.03 20.51 ± 26.21 33.10 ± 25.96

mnist | adv2 con | 0.99 0.3 0.08 ± 0.06 0.68 ± 0.56 33.10 ± 25.96

mnist | adv2 lin | 0.9 0.0 0.06 ± 0.05 37.64 ± 24.63 33.10 ± 25.96

mnist | adv2 lin | 0.99 0.031 0.06 ± 0.06 7.38 ± 11.24 33.10 ± 25.96

mnist | adv2 act | 0.9 0.01 0.03 ± 0.02 31.57 ± 26.17 33.10 ± 25.96

mnist | adv2 act | 0.99 0.031 0.04 ± 0.02 2.17 ± 1.94 33.10 ± 25.96

cifar10 | clean con | 0.9 2.1 ± 0.83 0.02 ± 0.01 1.35 ± 1.52 60.12 ± 52.64

cifar10 | clean con | 0.99 5.5 ± 5.7 0.03 ± 0.02 0.24 ± 0.26 60.12 ± 52.64

cifar10 | clean lin | 0.9 0.0098 ± 0.014 0.02 ± 0.01 37.22 ± 48.50 60.12 ± 52.64

cifar10 | clean lin | 0.99 0.0098 ± 0.014 0.04 ± 0.03 9.20 ± 20.13 60.12 ± 52.64

cifar10 | clean act | 0.9 0.0098 ± 0.014 0.02 ± 0.02 39.01 ± 48.82 60.12 ± 52.64

cifar10 | clean act | 0.99 0.0098 ± 0.014 0.04 ± 0.03 11.01 ± 21.63 60.12 ± 52.64

cifar10 | adv1 con | 0.9 2.8 ± 0.21 0.01 ± 0.01 1.44 ± 5.23 63.00 ± 54.41

cifar10 | adv1 con | 0.99 47 ± 69 0.04 ± 0.02 0.62 ± 0.33 63.00 ± 54.41

cifar10 | adv1 lin | 0.9 0.019 ± 0.032 0.03 ± 0.02 47.08 ± 50.26 63.00 ± 54.41

cifar10 | adv1 lin | 0.99 0.019 ± 0.032 0.06 ± 0.04 19.27 ± 31.93 63.00 ± 54.41

cifar10 | adv1 act | 0.9 0.0 ± 0.0 0.03 ± 0.02 44.74 ± 49.35 63.00 ± 54.41

cifar10 | adv1 act | 0.99 0.0 ± 0.0 0.04 ± 0.02 14.89 ± 29.26 63.00 ± 54.41

cifar10 | adv2 con | 0.9 1.5 ± 0.43 0.02 ± 0.01 10.77 ± 29.97 59.76 ± 55.19

cifar10 | adv2 con | 0.99 3.3 ± 2.6 0.04 ± 0.02 0.69 ± 0.41 59.76 ± 55.19

cifar10 | adv2 lin | 0.9 0.013 ± 0.025 0.04 ± 0.04 49.03 ± 51.70 59.76 ± 55.19

cifar10 | adv2 lin | 0.99 0.017 ± 0.026 0.06 ± 0.05 22.78 ± 38.50 59.76 ± 55.19

cifar10 | adv2 act | 0.9 0.0018 ± 0.0055 0.03 ± 0.02 46.50 ± 50.80 59.76 ± 55.19

cifar10 | adv2 act | 0.99 0.0033 ± 0.0071 0.04 ± 0.01 13.76 ± 30.00 59.76 ± 55.19

8

Under review as submission to TMLR

Results Table 1 shows the results of our experiments. Each row represents an evaluation of an initial and
pruned network pair. Training methods clean, adv1, and adv2 refer to the standard and adversarial training
procedures with different attack budgets, as mentioned above. We encode the pruning approach by one of the
three options constant, linear or activation described in Section 3.1 and Figures 2a-2c as well as the sparsity
level γ. Column Avg rel dbnd diff contains the mean difference of the computed distance to the decision
boundary without reaching the time limit. Column Avg. time (s) pruning div. by #runs shows the time
needed to obtain the pruned model divided by the number of optimization runs (for different target labels
and verified radii) for this model, averaged over all anchor points. Columns Avg time with pruning and Avg
time w/o pruning show the average time needed to solve a single verification MILP after and before pruning
for similar ϵ as we described above. In addition to these metrics, we provide the corresponding standard
deviations after the ± sign (the standard deviation of Avg bnd diff for the model mnist / adv2 are missing
since D terminates without exceeding the runtime limit only for a single datapoint).

Results clearly show that the proposed method achieves a consistent speedup of the verification procedure.
When 99% of the ReLU functions are removed, the average time to solve a single atomic mixed-integer task
is 2 to 5 times shorter compared to the initial model f . The constant pruning achieves the most speedup as
it allows not only to reduce the number of the binary variables that encode the state of the ReLU but the
continuous variables corresponding to the pruned neurons as well (see Appendix A.2).

Note, that the average runtime overhead per optimization run from pruning (column Avg. time (s) pruning
div. by #runs) is smaller than 0.1s compared to the average MILP solution time of several seconds for all
considered datasets and networks. It shows that the pruning step applies to the models without significant
runtime overhead compared to the complete verification procedure.

Looking at the distance difference to the decision boundary before and after the pruning, we report that
the adversarial and activation pattern preserving linear ReLU-substitutes result in a local behavior of g
similar to f . Due to their theoretical properties, these pruning methods keep the decision boundary around
x0, such that the average relative absolute difference between d̂bnd and dbnd stays at around 1%. Thus, we
empirically justify the usage of the smaller substitute models constructed by considering the initial network’s
local properties for the robustness verification task. Contrary to these two pruning methods, the constant
pruning does not lead to any useful approximations of dbnd as the relative difference between d̂bnd and dbnd
is at least 1.5 for CIFAR10 models and at least 0.19 for MNIST except the configuration mnist|adv2|con|0.9,
where the relative difference is 0.061. Overall, the adversarial preserving pruner provides an excellent tool for
practitioners not interested in the exact verification of their network but need a faster way to estimate the
distance to the nearest adversarial point.

5 Related Work

Regarding robustness verification, two prominent families of methods are used in practice: complete (or
exact) and incomplete. Complete verification techniques verify exactly whether an adversarial example
exists inside the given perturbation budget. The theoretical formulation of this direction uses the MILP
framework, for which multiple solvers are available based on either satisfiability modulo theory (SMT) (Katz
et al., 2017) or integer programming methods (Tjeng et al., 2019; Dutta et al., 2017).

Incomplete verification techniques relax the constraints on the activations of each layer in the neural
network. An example is the work by Wong & Kolter (2018), where the authors replace ReLU activations with
a convex substitute and, to increase the method’s efficiency further, use the dual formulation of the obtained
relaxed linear programming (LP) problem. Ehlers (2017) uses a similar approximation of the ReLU. However,
they do not optimize over the dual LP and solve the problem using SMT. Following this direction, Weng et al.
(2018); Zhang et al. (2018a) approximate the ReLU activation functions and propagate the possible bounds of
the input to the final layer. Other approaches use semi-definite programming (Raghunathan et al., 2018a;b),
Lipschitz constant (Weng et al., 2018; Hein & Andriushchenko, 2017; Zhang et al., 2019; Tsuzuku et al.,
2018) and abstraction of the network (Gehr et al., 2018). Similar to our work, Croce et al. (2019) look at the
local area around the base point and, in particular, utilize the fact that (in the case of ReLU activations) it
consists of regions where the network act as a linear function. Besides their incomplete verification method,
the authors propose a robust training loss.

9

Under review as submission to TMLR

All incomplete verification approaches provide a lower bound on the distance to the decision boundary, which
is strongly dependent on the tightness of the used relaxation and how each algorithm computes the bounds
on the pre-activation values in each layer. Li et al. (2023) provide a detailed overview of the verification
methods, including a proposed taxonomy and a publicly available verification toolbox.

Pruning methods allow for minimizing the models’ size at only a small cost of their accuracy. They eliminate
weights, neurons, or layers, such that the output changes as little as possible. Hoefler et al. (2021) divide the
pruning methods into two categories: data independent pruning and data dependent pruning. The
first group consists of pruning methods that do not explicitly use the training data. These methods consider
the weights and neurons of the network after training and heuristically find a maximal subset of them that
has the minimal impact on the final accuracy (Li et al., 2016; Han et al., 2015; Frankle & Carbin, 2019).
Shumailov et al. (2019) consider the transferability of adversarial examples between the pruned (Han et al.,
2015) and initial model. Their findings are connected to our work since we also deal with the transferability
of the robustness properties to the network after pruning. However, the authors suggest that adversarial
examples are interchangeable only at low sparsity levels, which, unfortunately, limits the potential gain in
computational cost.

Data dependent pruning methods consider the effect of the training data on the network’s output when
deciding which neurons or weights to prune (Lee et al., 2019; Wang et al., 2020; Evci et al., 2020). Specifically,
these methods consider the influence of the training data on either the output, activations, or a network’s
derivatives and eliminate a network’s extraneous parts without using its weights and biases directly. This
idea does not apply well to our scenario, as the training data cannot be used for pruning while preserving the
local decision boundary. However, these methods are successful in preserving the classification accuracy.

Finally, another method to create a small network with similar robustness properties as the initial large
network is to train it from scratch. For example, using the initial network’s output to guide the training
process. Papernot et al. (2016) use this approach to create a substitute network for attacking the initial
model in a black-box environment (that means without access to its gradients). They specifically train the
substitute to mimic the initial network on carefully selected data points, iteratively picked by going towards
the decision boundary using the gradient information of the substitute network. This method seems very
promising, as they also look at the problem by creating a network with a similar decision boundary to the
initial one. However, we abstain from performing training in our use case since we must do it for each of the
considered base points (unlike Papernot et al. (2016), who train a single substitute network).

Pruning and robust training are combined by several papers to achieve multiple goals at once: train
small networks with high clean accuracy that are resilient against adversarial attacks. Gui et al. (2019);
Sehwag et al. (2019); Ye et al. (2019) demonstrate the attainment of empirical adversarial robustness through
a pruning heuristic based on the lowest weight magnitude and alternating direction method of multipliers
pruning framework (Zhang et al., 2018b). In contrast, HYDRA (Sehwag et al., 2020) takes a distinct direction
by allowing the robust training objective itself to determine the connections for pruning. This direction
of research is different compared to our setting due to the following two major reasons. First, again, the
mentioned methods achieve certain global properties of the network while we work with a local neighborhood
around a given point. Second, other methods thrive to train a network from scratch or to modify an existing
one to get a new network that solves a certain task and has desirable properties. For us, the pruned network
is just a tool to evaluate the robustness of the initial network and we do not use it for any other purpose.

Thus our work is the first to use local pruning techniques to preserve local similarity and use it for neural
network robustness evaluation.

6 Conclusion

Successful sustainable integration of machine learning methods into areas relevant to the industry and society
is a challenging task. Especially after deep learning based technologies have proven to be able to tackle
complex classification problems, we have to be cautious. We should not rely on the demonstrated excellent
performance only.

10

Under review as submission to TMLR

The presented verification method contributes to the general acceptance of deep learning models. We develop
a novel framework to estimate the robustness of a deep classifier around a given base point. We apply the
available MILP-based method the exact robustness verification to a specifically constructed local substitute
network. We observe that the decision boundary of the initial network far away from the base point does not
affect its robustness against adversarial perturbations in the local neighborhood and develop three pruning
techniques that preserve the local properties of the network while reducing its overall complexity. This idea
allows for a more efficient application of the verification method D on the pruned models. At the same
time, the resulting metrics are reasonable estimates for the robustness of the initial network because of the
similarity in the local behavior. We conduct the experiments on the MNIST and CIFAR10 datasets and
convolutional networks. The results show that, in particular, the adversarial and activation pattern preserving
pruners (see Section 3.3) approximate dbnd very well (around 1% average absolute relative difference, when at
least 90% of activations are removed) with a significant speedup compared to D applied on the initial model.
In summary, the proposed technique allows practitioners interested in faster inexact robustness assessment to
get a reliable evaluation of the robustness properties.

Future work Katz et al. (2017) show that the ϵ-verification task and thus also computing the distance
to the decision boundary is NP-complete. Therefore, we do not set the goal to generally make complete
verification computationally tractable, as it is impossible due to the complexity of the underlying optimization
task. Instead, we believe that providing reliable estimates of the robustness of the network is a very promising
direction.

The success of the presented approach indicates an intriguing direction for future work toward larger networks
and datasets. Also, conducting the experiments with different algorithms D should verify that the speedup
we get is agnostic to the applied verification methods. Furthermore, using the result from Lemma 1, we think
about deriving additional theoretical guarantees about the difference of dbnd and d̂bnd.

References
Francesco Croce, Maksym Andriushchenko, and Matthias Hein. Provable robustness of relu networks via

maximization of linear regions. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings of the
Twenty-Second International Conference on Artificial Intelligence and Statistics, volume 89 of Proceedings
of Machine Learning Research, pp. 2057–2066. PMLR, 16–18 Apr 2019. URL https://proceedings.mlr.
press/v89/croce19a.html.

Souradeep Dutta, Susmit Jha, Sriram Sanakaranarayanan, and Ashish Tiwari. Output range analysis for
deep neural networks, 2017. Preprint at https://arxiv.org/abs/1709.09130.

Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In Automated
Technology for Verification and Analysis: 15th International Symposium, ATVA 2017, Pune, India, October
3–6, 2017, Proceedings 15, pp. 269–286. Springer, 2017.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making all
tickets winners. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 2943–2952. PMLR,
13–18 Jul 2020. URL https://proceedings.mlr.press/v119/evci20a.html.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJl-b3RcF7.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin
Vechev. Ai2: Safety and robustness certification of neural networks with abstract interpretation. In IEEE
symposium on security and privacy (SP), pp. 3–18. IEEE, 2018.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Uesato, Relja
Arandjelovic, Timothy Mann, and Pushmeet Kohli. On the effectiveness of interval bound propagation for
training verifiably robust models, 2018. Preprint at https://arxiv.org/abs/1810.12715.

11

https://proceedings.mlr.press/v89/croce19a.html
https://proceedings.mlr.press/v89/croce19a.html
https://arxiv.org/abs/1709.09130
https://proceedings.mlr.press/v119/evci20a.html
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://arxiv.org/abs/1810.12715

Under review as submission to TMLR

Shupeng Gui, Haotao Wang, Haichuan Yang, Chen Yu, Zhangyang Wang, and Ji Liu. Model compression with
adversarial robustness: A unified optimization framework. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/2ca65f58e35d9ad45bf7f3ae5cfd08f1-Paper.pdf.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding, 2015. Preprint at https://arxiv.org/abs/1510.00149.

Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier against
adversarial manipulation. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
e077e1a544eec4f0307cf5c3c721d944-Paper.pdf.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep learning:
Pruning and growth for efficient inference and training in neural networks. The Journal of Machine
Learning Research, 22(1):10882–11005, 2021.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An efficient smt
solver for verifying deep neural networks. In Computer Aided Verification: 29th International Conference,
CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I 30, pp. 97–117. Springer, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009. figshare https://www.cs.
toronto.edu/~kriz/learning-features-2009-TR.pdf.

Yann LeCun. The mnist database of handwritten digits, 1998. figshare http://yann.lecun.com/exdb/
mnist/.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: Single-shot network pruning based on
connection sensitivity. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=B1VZqjAcYX.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient
convnets, 2016. Preprint at https://arxiv.org/abs/1608.08710.

Linyi Li, Tao Xie, and Bo Li. Sok: Certified robustness for deep neural networks. In 2023 IEEE symposium
on security and privacy (SP), pp. 1289–1310. IEEE, 2023.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram Swami.
Practical black-box attacks against deep learning systems using adversarial examples, 2016. Preprint at
https://arxiv.org/abs/1602.02697.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial examples,
2018a. Preprint at https://arxiv.org/abs/1801.09344.

Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relaxations for certifying ro-
bustness to adversarial examples. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018b. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/
29c0605a3bab4229e46723f89cf59d83-Paper.pdf.

Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. Towards compact and robust deep neural
networks, 2019. Preprint at https://arxiv.org/abs/1906.06110.

Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. Hydra: Pruning adversarially ro-
bust neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 19655–19666. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
e3a72c791a69f87b05ea7742e04430ed-Paper.pdf.

12

https://proceedings.neurips.cc/paper_files/paper/2019/file/2ca65f58e35d9ad45bf7f3ae5cfd08f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/2ca65f58e35d9ad45bf7f3ae5cfd08f1-Paper.pdf
https://arxiv.org/abs/1510.00149
https://proceedings.neurips.cc/paper_files/paper/2017/file/e077e1a544eec4f0307cf5c3c721d944-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/e077e1a544eec4f0307cf5c3c721d944-Paper.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://yann. lecun. com/exdb/mnist/
http://yann. lecun. com/exdb/mnist/
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=B1VZqjAcYX
https://arxiv.org/abs/1608.08710
https://arxiv.org/abs/1602.02697
https://arxiv.org/abs/1801.09344
https://proceedings.neurips.cc/paper_files/paper/2018/file/29c0605a3bab4229e46723f89cf59d83-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/29c0605a3bab4229e46723f89cf59d83-Paper.pdf
https://arxiv.org/abs/1906.06110
https://proceedings.neurips.cc/paper_files/paper/2020/file/e3a72c791a69f87b05ea7742e04430ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e3a72c791a69f87b05ea7742e04430ed-Paper.pdf

Under review as submission to TMLR

Ilia Shumailov, Yiren Zhao, Robert Mullins, and Ross Anderson. To compress or not to compress: Under-
standing the interactions between adversarial attacks and neural network compression. Proceedings of
Machine Learning and Systems, 1:230–240, 2019.

Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed integer
programming, 2019. Preprint at https://arxiv.org/abs/1711.07356.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable certification of
perturbation invariance for deep neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/
485843481a7edacbfce101ecb1e4d2a8-Paper.pdf.

Chaoqi Wang, Guodong Zhang, and Roger Baker Grosse. Picking winning tickets before training by preserving
gradient flow, 2020. Preprint at https://arxiv.org/abs/2002.07376.

Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning, and
Inderjit Dhillon. Towards fast computation of certified robustness for relu networks. In Jennifer Dy
and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 5276–5285. PMLR, 10–15 Jul 2018. URL
https://proceedings.mlr.press/v80/weng18a.html.

Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer adversarial
polytope. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 5286–5295. PMLR, 10–15
Jul 2018. URL https://proceedings.mlr.press/v80/wong18a.html.

Shaokai Ye, Kaidi Xu, Sijia Liu, Hao Cheng, Jan-Henrik Lambrechts, Huan Zhang, Aojun Zhou, Kaisheng
Ma, Yanzhi Wang, and Xue Lin. Adversarial robustness vs. model compression, or both? In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 111–120, 2019.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural network
robustness certification with general activation functions. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018a. URL https://proceedings.neurips.cc/paper_files/paper/
2018/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf.

Huan Zhang, Pengchuan Zhang, and Cho-Jui Hsieh. Recurjac: An efficient recursive algorithm for bounding
jacobian matrix of neural networks and its applications. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 5757–5764, 2019. doi: 10.1609/aaai.v33i01.33015757.

Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad, and Yanzhi Wang. A
systematic dnn weight pruning framework using alternating direction method of multipliers. In Proceedings
of the European conference on computer vision (ECCV), pp. 184–199, 2018b.

A Appendix

A.1 Proofs

Lemma 1. If for some non-negative δ we have f(x̃0) = g(x̃0) for all x̃0 ∈ Bδ(x0) and

1. δ ≥ ϵ, then Vf (ϵ) ≥ 0 if Vg(ϵ) ≥ 0,

2. δ ≤ ϵ, then Vf (ϵ) ≥ 0 if Vg(ϵ) ≥ 2(Lf + Lg)(ϵ − δ),

where L is the Lipschitz constant of the corresponding function on Bϵ(x0).

13

https://arxiv.org/abs/1711.07356
https://proceedings.neurips.cc/paper_files/paper/2018/file/485843481a7edacbfce101ecb1e4d2a8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/485843481a7edacbfce101ecb1e4d2a8-Paper.pdf
https://arxiv.org/abs/2002.07376
https://proceedings.mlr.press/v80/weng18a.html
https://proceedings.mlr.press/v80/wong18a.html
https://proceedings.neurips.cc/paper_files/paper/2018/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf

Under review as submission to TMLR

Proof. 1 follows directly from the fact that f = g on the set Bδ(x0) that includes the admissible set of the
optimization task 2, which is Bϵ(x0). To prove 2, assume z0 ∈ Bϵ(x0) and let z̃0 = ϵ

δ z0 be the projection of
z0 on Bδ(x0), then

fy(z0) − fŷ(z0) = fy(z0) − fy(z̃0)︸ ︷︷ ︸
≥−Lf ∥z0−z̃0∥

+ fy(z̃0) − gy(z̃0)︸ ︷︷ ︸
=0

+ gy(z̃0) − gy(z0)︸ ︷︷ ︸
≥−Lg∥z0−z̃0∥

+

+ gy(z0) − gŷ(z0)︸ ︷︷ ︸
≥Vg(ϵ)

+

+ gŷ(z0) − gŷ(z̃0)︸ ︷︷ ︸
≥−Lg∥z0−z̃0∥

+ gŷ(z̃0) − fŷ(z̃0)︸ ︷︷ ︸
=0

+ fŷ(z̃0) − fŷ(z0)︸ ︷︷ ︸
≥−Lf ∥z0−z̃0∥

≥ Vg(ϵ) − 2(Lf + Lg)(ϵ − δ)

That means Vg(ϵ) ≥ 2(Lf + Lg)(ϵ − δ) indeed implies fy(x̃0) ≥ fŷ(x̃0) for all x̃0 ∈ Bϵ(x0), or in other words
Vf (ϵ) ≥ 0.

A.2 Runtime and Complexity

To understand what affects the complexity of the problem 2, we reformulate it as follows (here for a single
target label ỹ).

min
x̃,z̃

(eỹ − ey)T
(
W Lx̃L−1 + bL

)
, s.t. ∥x0 − x̃0∥ ≤ ϵ and for l ∈ [L − 1] (3)

x̃l ≤ W lx̃l−1 + bl − (1 − zl)a
¯

l (4)
x̃l ≥ W lx̃l−1 + bl (5)
x̃l ≤ zlāl, x̃l ≥ 0 (6)
xl

i ∈ R, zl
i ∈ {0, 1}

Note, that once we prune a neuron (l, i) as described in Section 3, the corresponding binary variable zl
i

disappears from the formulation together with the constraints 4–6 and we get a simple linear constraint
x̃l

i = W l
i,:x̃

l−1 + bl
i instead. Here, W l

i,: and bl
i define our new linear transformation instead of the non-linear

ReLU activation. By pruning, for example, 99% of the hidden neurons, we reduce the number of integer
variables in equation 1 by the same amount. The standard approach to solve a MILP task is branch-and-bound,
where we divide the whole set of the admissible points by relaxing the integrality constraints (in our case
zl

i ∈ {0, 1}) one by one and bound the optimal value on the resulting sub-domains. Fewer binary variables
mean less branching and a faster problem solution.

On the other hand, smaller ϵ also contributes to a faster solution. Now, instead of affecting the ReLU-
constraints 4–6, ϵ directly controls the size of Bϵ(x0) via the constraint ∥x0 − x̃0∥ ≤ ϵ. Again, smaller ϵ
results in a smaller admissible set that gets explored faster by the solver. To demonstrate this correlation, in
Figures 3a and 3b, we show the time of each optimization run solving problem 2 that completed within the
time limit of 60 seconds on the x-axis. The ϵ that was verified is shown on the y-axis. Each point represents
the optimization tasks solved a network pruned either using linear adversarial preserving or activation pattern
preserving method indicated by the color of the points. For Figure 3a we use the sparsity parameter γ = 0.9
and for Figure 3b γ = 0.99. That means within one plot, the only parameter affecting the optimization task’s
complexity is ϵ.

14

Under review as submission to TMLR

(a) γ = 0.9

(b) γ = 0.99

Figure 3: Runtime and verified ϵ for the optimization tasks.

15

	Introduction
	Notation
	Local substitutes
	How to prune the neurons
	Theoretical Guaranties
	How to choose the neurons to prune

	Experiments
	Related Work
	Conclusion
	Appendix
	Proofs
	Runtime and Complexity

