
Droid: A Resource Suite for AI-Generated Code Detection

Anonymous ACL submission

Abstract001

In this work, we compile DroidCollection,002
the most extensive open data suite for train-003
ing and evaluating machine-generated code de-004
tectors, comprising over a million code sam-005
ples, seven programming languages, genera-006
tions from 43 coding models, and over three007
real-world coding domains. Alongside fully008
AI-generated samples, our collection includes009
human-AI co-authored code, as well as adver-010
sarial samples explicitly crafted to evade detec-011
tion. Subsequently, we develop DroidDetect,012
a suite of encoder-only detectors trained using013
a multi-task objective over DroidCollection.014
Our experiments show that existing detectors’015
performance fails to generalise to diverse cod-016
ing domains and programming languages out-017
side of their narrow training data. Additionally,018
we demonstrate that while most detectors are019
easily compromised by humanising the output020
distributions using superficial prompting and021
alignment approaches, this problem can be eas-022
ily amended by training on a small amount of023
adversarial data. Finally, we demonstrate the ef-024
fectiveness of metric learning and uncertainty-025
based resampling as means to enhance detector026
training on possibly noisy distributions.027

1 Introduction028

In recent years, language models (LMs) for029

code generation (Code-LMs) have become a near-030

indispensable accessory in a developer’s toolbox.031

Their enhancement of productivity has proliferated032

into most of the software development lifecycle, in-033

cluding automating unit test generation (Jain et al.,034

2025), code infilling (Bavarian et al., 2022), pre-035

dicting build errors, and code refactoring, inter036

alia, propelling their broad adoption in produc-037

tion (Dunay et al., 2024; Frömmgen et al., 2024;038

Murali et al., 2024). However, the code authoring039

and refinement abilities of these models present040

issues with respect to domains where the human041

authorship of the generated artefacts is paramount042

and the consequences of limited human supervision 043

are of concern. 044

Despite the well-documented productivity ben- 045

efits of using AI assistance for knowledge work- 046

ers (Weber et al., 2024b; Li et al., 2023a), there 047

exists a wide range of scenarios where ensuring the 048

human authorship of artefacts is vital, resulting in 049

the need for robust detectors of machine-assisted 050

code. For instance, in academia, students’ reliance 051

on LMs for assignments undermines educational 052

integrity, with professors unable to detect the au- 053

thorship of submissions and grading AI-generated 054

coding practices (Koike et al., 2024). Similarly, 055

conducting technical hiring fairly and human code 056

annotation studies accurately requires the ability to 057

ensure that the submitted artefacts are authentically 058

human-authored (Veselovsky et al., 2023). 059

The subtle failure patterns in the outputs of 060

code LMs imply the need for strong detection 061

mechanisms as part of the workflow in order to 062

safeguard against unforeseen side effects. For in- 063

stance, machine-generated code can introduce se- 064

rious vulnerabilities (e.g., insecure logic, hidden 065

backdoors, or injection flaws), which can jeopar- 066

dise software reliability (Bukhari, 2024) and data 067

security (Pearce et al., 2025). It can also facil- 068

itate obfuscation, producing code that is harder 069

to parse (Vaithilingam et al., 2022): this can 070

hide malicious functionality and complicate de- 071

bugging (Nunes et al., 2025). These weaknesses 072

can amplify over time, creating a dangerous feed- 073

back loop where (possibly deficient) AI-generated 074

code enters public repositories and is leveraged for 075

subsequent training runs, thus increasing the risk 076

of degraded data quality (Ji et al., 2024) or, even 077

worse, collapsing (Shumailov et al., 2024). 078

Despite the increasing interest in detecting AI- 079

generated code, most current work has notable lim- 080

itations. Existing work usually covers fewer than 081

three programming languages (Xu et al., 2025a) 082

and focuses on a narrow set of API-based code 083

1

generators (Yang et al., 2023). Moreover, detectors084

typically address the problem as a binary classifi-085

cation task: machine-generated vs. human-written086

code (Jawahar et al., 2020). This ignores com-087

mon hybrid operating modes where code is co-088

authored by humans and LMs or adversarial scenar-089

ios where models are prompted or tuned to evade090

detection (Abassy et al., 2024).091

Our work addresses these limitations with a com-092

prehensive and scalable approach to AI-generated093

code detection. Our contributions are as follows:094

• We compile and open-source DroidCollection,095

an extensive suite of multi-way classification data096

for training and evaluating AI-generated code de-097

tectors. DroidCollection contains over 1 mil-098

lion instances sampled from 43 LMs (spanning099

11 model families), 7 programming languages,100

and multiple coding domains.101

• We propose a novel task: detection of code102

generated by adversarially trained LMs, which103

mimics intentional obfuscation and evasion be-104

haviours. To this end, we compile and release105

DroidCollection-Pref, a preference corpus of106

157k response pairs curated to evince humanilike107

responses from LMs.108

• We open-source DroidDetect-Base and109

DroidDetect-Large, two state-of-the-art110

AI-generated code detectors fine-tuned from111

ModernBERT (Warner et al., 2024a) Base112

(149M) and Large (396M) models, respectively,113

using DroidCollection.114

• We conduct extensive out-of-distribution perfor-115

mance analysis across languages, coding do-116

mains, and detection settings. Our evaluation117

results demonstrate that there is positive transfer118

across related programming languages (Martini,119

2015) and across domains. We also find that most120

existing models struggle when tasked with detect-121

ing machine-refined code and are almost entirely122

unusable against adversarially humanised model-123

generated code. However, we show that this can124

be rectified by incorporating modest amounts of125

such data during training.126

2 Related Work127

We briefly outline three relevant lines of exist-128

ing work: 1) AI-generated text detection, 2) AI-129

generated code detection, and 3) adversarial eva-130

sion of AI-generated content detectors.131

2.1 AI-Generated Text Detection 132

Early research on synthetic data detection has 133

focused on detecting AI-generated text in spe- 134

cific, fundamental tasks such as question answer- 135

ing (Guo et al., 2023), translation, summarisation, 136

and paraphrasing (Su et al., 2023). Major early 137

contributions to creating comprehensive bench- 138

marks include M4 (Wang et al., 2024), which 139

introduced a multilingual, multi-generator, and 140

multi-domain benchmark consisting of 122,000 141

human-written and machine-generated texts. MUL- 142

TITuDE (Macko et al., 2023) featured a multilin- 143

gual dataset with over 70,000 samples of AI and 144

human-written texts across 11 languages. Addi- 145

tionally, MAGE (Li et al., 2024) concentrated on 146

English-only scenarios, but emphasised evaluating 147

model robustness by testing across eight distinct 148

out-of-domain settings to simulate real-world sce- 149

narios. The advancement of this field has been 150

further stimulated by numerous competitions and 151

shared tasks dedicated to AI-generated text detec- 152

tion, including RuATD (Shamardina et al., 2022), 153

a shared task at COLING’2025 (Wang et al., 2025), 154

a shared task at ALTA (Mollá et al., 2024), and 155

DagPap (Chamezopoulos et al., 2024). 156

Tools such as MOSS (Puryear and Sprint, 2022) 157

have shown some effectiveness in identifying AI- 158

generated code, since their style is out of the ordi- 159

nary distributions of student solutions. However, 160

Pan et al. (2024) and JianWang et al. (2024) have 161

shown that detectors such as GPT-Zero often fail 162

when applied to code rather than text. This critical 163

observation, backed up by our experiments in Sec- 164

tion 4, highlights the inadequacy of directly porting 165

generic text-based models to the code domain and 166

strongly motivates the creation of code-specific 167

detection strategies and specialised datasets. Our 168

work responds to this need by providing a large- 169

scale, multifaceted suite specifically curated for 170

AI-generated code, designed to foster the develop- 171

ment and rigorous testing of detection techniques 172

attuned to the unique characteristics of program- 173

ming languages and AI-generated software. 174

2.2 AI-Generated Code Detection 175

Early attempts at AI-generated code detection us- 176

ing decision tree learning methods, such as Idialu 177

et al. (2024) and Li et al. (2023b), demonstrated 178

that code-level statistics (e.g., number of lines, Ab- 179

stract Syntax Tree (AST) depth, identifier length) 180

can serve as reliable indicators of authorship. How- 181

2

ever, robustly identifying AI-assisted code requires182

more involved feature engineering, which is best183

performed using deep learning methods (Tulchin-184

skii et al., 2023). Recent efforts have thus been185

primarily focused on training text-based LMs to de-186

tect AI-assisted code. A common approach in exist-187

ing work, such as GPTSniffer (Nguyen et al., 2024)188

and GPT-Sensor (Xu et al., 2025b), is to extract189

human-written functions from the CodeSearchNet190

dataset (Husain et al., 2020) and then to generate191

machine-generated counterparts using ChatGPT.192

While similar in their dataset construction, these193

two approaches differ in modelling: GPTSniffer194

utilises a multi-class classification loss, whereas195

GPT-Sensor applies a cosine similarity loss to bet-196

ter separate the embeddings of AI-generated and197

human-written code, aiming at learning more dis-198

criminative representations.199

To address the lack of diversity in code data200

sourcing in prior work, Orel et al. (2025) source201

code from LeetCode and CodeForces alongside202

CodeSearchNet. They evaluated a wide range of203

locally deployable LMs as code generators and pro-204

vided a systematic analysis of out-of-distribution205

(OOD) detection performance across different set-206

tings. Importantly, it goes beyond binary classi-207

fication by introducing more nuanced scenarios,208

such as collaborative settings where humans begin209

coding and LMs continue or rewrite the program.210

Our work builds upon and extends this progress by211

further increasing the scale and diversity: we incor-212

porate three distinct domains, utilise 43 generative213

models, and cover seven programming languages.214

Notably, unlike Codet-M4, our dataset is the first215

in this domain to systematically integrate diverse216

sampling strategies using varied generation settings217

and synthetic scenarios.218

2.3 Adversarial Evasion of AI-Generated219

Content Detectors220

While specialised detectors for AI-generated code221

can be effective against honest actors, their222

straightforward training on machine-generated and223

machine-refined data renders them vulnerable to ad-224

versarially perturbed or humanised text, modified225

to evade detection (He et al., 2024; Masrour et al.,226

2025). Currently, RAID (Dugan et al., 2024), one227

of the most extensive benchmarks in AI-generated228

text detection, is notable in being one of the few229

efforts exploring adversarial detection settings with230

various attack methods such as paraphrasing and231

synonym substitution. Our work in AI-generated232

code detection builds upon this important aspect. 233

We extend this focus to the code domain by system- 234

atically incorporating a diverse set of adversarial 235

attack scenarios specifically engineered to chal- 236

lenge detectors. Moreover, we move beyond the 237

language manipulations considered by RAID to ad- 238

dress the possibilities of adversarial training using 239

targeted mining of paired preference data and a ded- 240

icated collection of adversarial prompting, which 241

are all aspects that are vital for assessing detector 242

robustness under more challenging conditions. 243

3 The DroidCollection Corpus 244

In this section, we detail the curation of 245

the human-generated, machine-generated, and 246

machine-refined splits of DroidCollection. The 247

adversarially humanised data collection is deferred 248

to Section 5. 249

3.1 Human-Authored Code Acquisition 250

To build the dataset, we collected human-written 251

samples from multiple sources, covering C++/C, 252

C#, Go, Java, JavaScript and Python languages. 253

Then, we generated code, using base and 254

instruction-tuned LMs from 11 model release fam- 255

ilies, namely: Llama (Grattafiori et al., 2024), 256

CodeLlama, GPT-4o, Qwen (Qwen et al., 2025), 257

IBM Granite (Mishra et al., 2024), Yi (AI et al., 258

2025), DeepSeek (Guo et al., 2024), Phi (Ab- 259

din et al., 2024), Gemma (Gemma et al., 2024), 260

Mistral (AI, 2025), Starcoder (Li et al., 2023c). 261

The list of generators per model family is given 262

in Appendix A. Our dataset covers three do- 263

mains: general use code, algorithmic problems, 264

and research/data-science code. 265

General Use Code These represent general- 266

purpose code normally deployed to production for 267

disparate use cases such as web serving, firmware, 268

game engines, etc. These are largely hosted 269

on GitHub, and mainly obtained from Starcoder- 270

Data (Li et al., 2023c), and The Vault (Manh et al., 271

2023) datasets. 272

Algorithmic Problems This category contains 273

code solutions to competitive programming prob- 274

lems. It is retrieved from multiple sources such 275

as TACO (Li et al., 2023d), CodeNet (Puri et al., 276

2021) (mainly AtCoder1 and AIZU2 platforms), 277

LeetCode and CodeForces, retrieved from the work 278

1https://atcoder.jp/
2https://onlinejudge.u-aizu.ac.jp/home

3

https://atcoder.jp/
https://onlinejudge.u-aizu.ac.jp/home

Name Size
Supported No. of Supported Varied Machine Adversarially

Domains Models Languages Sampling Refined Data Humanized Data

GPT-Sniffer (Nguyen et al., 2024) 7.4k 1 1 2 ✗ ✗ ✗

CodeGPTSensor (Xu et al., 2025a) 1.1M 1 1 2 ✗ ✗ ✗

Whodunit (Idialu et al., 2024) 1.6k 1 1 1 ✗ ✗ ✗

Codet-M4 (Orel et al., 2025) 501K 2 5 3 ✗ ✓ ✗

DroidCollection 1.06M 4 43 7 ✓ ✓ ✓

Table 1: Comparison of DroidCollection to other AI-generated code detection datasets.

of Orel et al. (2025). Its primary distinguishing279

feature is its tendency to contain simple and self-280

contained routines.281

Research Code This split is sourced from code282

repositories accompanying research papers, mir-283

roring the data collection in Obscura Coder (Paul284

et al., 2025). Additionally, we augment this split285

with mathematical and data science code (Lu et al.,286

2025). Samples in this split are characterised by287

their lack of modularity and over-representation of288

procedural code.289

3.2 AI-Authored Code Generation290

Generation via Inverse Instruction Since the291

data from sources such as CodeNet and Starcoder-292

Data do not contain any instructions, we decided293

to apply inverse instructions to transform code294

from these datasets into instructions, which can295

be used to prompt LMs. In our case, the method of296

preparing inverse instructions was similar to that297

described in InverseCoder (Wu et al., 2024): we298

passed the code snippets to an LM, asking it to299

build a summary, and a step-by-step instruction300

that can be given to an LM to generate a similar301

code. The main difference between our approach302

and that of InverseCoder is that we were trying to303

minimise the costs of the generation and did not304

split the summarisation and instruction generation305

into separate LM calls. However, in cases where a306

summary could be extracted from the response but307

the instruction could not, we used the summary to308

re-generate the instruction. This experiment with309

details about the prompts and the models we used is310

illustrated in Appendix B.1. This type of generation311

allows us to cover a wide range of prompts, simu-312

lating a diversity of user-LM interactions, which is313

common in the real world.314

Generation Based on Comments Some of the315

data sources used in our study provide docstrings316

(The Vault Class and Function) or comments (The317

Vault Inline) that describe the given code. In this318

case, we mainly used base models, which were319

prompted with the first line of code and the doc- 320

string or comment for generation. Instruct models 321

were given only the docstring and a task to imple- 322

ment the desired class or function. 323

Generation Based on a Task The examples from 324

platforms with algorithmic problems mainly come 325

with a precise task description or a problem state- 326

ment. In this case, we only used the description to 327

prompt the LMs for generation. 328

Unconditional Synthetic Data The machine- 329

generated data used to train the majority of AI- 330

generated content detectors is acquired in a biased 331

manner. It usually involves completing incomplete 332

human-written samples or responding to prompts 333

conditioned on existing human generations. This 334

bias, though rather subtle, leads to a situation where 335

detectors are only exposed to the kinds of synthetic 336

data that are easiest for the models to learn (Su 337

et al., 2024). Hence, we seek to obtain synthetic 338

data that is not conditioned on prior human genera- 339

tions. Following prior work3, we create synthetic 340

user profiles on which we condition coding tasks 341

and, in turn, the final generated code. 342

To explore how large language models can simu- 343

late the behaviour profiles of real programmers, we 344

took inspiration from the PersonaHub dataset (Ge 345

et al., 2024). We first generated a diverse set of 346

programmer profiles, and then used an LM to cre- 347

ate programming tasks that can typically be per- 348

formed by programmers of such types. These tasks, 349

along with their corresponding descriptions, termed 350

DroidCollection-Personas, were then used to 351

generate code samples. More details about the cre- 352

ation of DroidCollection-Personas are outlined 353

in the Appendix B.2. 354

3.3 Machine-Refined Data 355

In practice, purely AI-generated code is rare. De- 356

velopers typically collaborate with LMs, starting 357

with human-written code and asking the model to 358

3https://huggingface.co/blog/cosmopedia

4

https://huggingface.co/blog/cosmopedia

modify or extend it. This makes binary classifi-359

cation (human vs. machine) insufficient for real-360

world scenarios. Instead, introducing a third class361

to capture human-LLM collaboration, as proposed362

by Orel et al. (2025), offers a more realistic and363

useful approach.364

We similarly introduced a third class represent-365

ing machine-refined code samples: those that com-366

bine both human and LM efforts. To generate them,367

we designed three scenarios: (i) Human-to-LLM368

continuation: A human initiates the code, and the369

LM completes it. We simulated this by preserving370

the first N% of the code lines (where N ranges371

from 10% to 85%) and asking the model to com-372

plete the rest. (ii) Gap filling: The model is given373

the beginning and the end of a human-written code374

snippet and is asked to generate the missing part in375

the middle. The amount of preserved code follows376

a similar proportion as in the first scenario. (iii)377

Code rewriting: The LM is asked to rewrite human-378

authored code, either with no specific prompt or379

with an instruction to optimise it.380

3.4 Varying Decoding Strategies381

It was shown by Ippolito et al. (2020) that af-382

ter greedy decoding, it was easier to detect AI-383

generated texts compared to when using other de-384

coding techniques. Thus, we experimented with385

various decoding strategies, as shown in Table 2.386

Strategy Attribute Range

Greedy Decoding — —

Sampling

Temperature {0.1, 0.4, 0.7, 1.0, 1.5, 2.0}

Top-k {10, 50, 100}

Top-p {1.0, 0.95, 0.9, 0.8}

Beam Search Beam Width {2, 4, 6, 8}

Table 2: Decoding settings used for the AI-
generated, AI-refined, and AI-humanised splits of
DroidCollection.

3.5 Data Filtering387

To ensure the quality of our DroidCollection388

dataset, we applied a series of filtering criteria, com-389

monly used in other code-related works (Lozhkov390

et al., 2024; Li et al., 2023c; Paul et al., 2025). First,391

we removed code samples that could not be success-392

fully parsed into an AST. We also filtered samples393

based on AST depth, keeping only such with a394

depth between 2 and 31, to avoid too simple or too395

complex codes. We restricted each sample’s max-396

imum line length to be between 12 and 400 char-397

acters, and the average line length to fall between398

5 and 140 characters, and used only samples with 399

between 6 and 300 lines of code. Moreover, we fil- 400

tered samples according to the fraction of alphanu- 401

meric characters, retaining only those between 0.2 402

and 0.75, to avoid the usage of configs and auto- 403

generated files. To ensure English documentation, 404

we used the Lingua language detector4 and retained 405

only samples where the docstrings showed greater 406

than 99% confidence of being English. Finally, 407

we removed duplicate or near-duplicate samples; 408

for this, we used MinHash (Broder, 1997), with a 409

shingle size of 8 and a similarity threshold of 0.8. 410

3.6 Comparing the Resulting Dataset to 411

Existing Ones 412

Table 1 shows that our dataset is not only one of 413

the largest datasets to date, but also covers more 414

variations compared to previous work. More de- 415

tails about key dataset characteristics are given in 416

Appendix B.3. 417

4 Why Dataset Coverage Matters? 418

Table 1 highlights a key limitation of existing 419

datasets: they often lack diversity in data varia- 420

tions. This raises an important question: Are these 421

variations truly important for training robust AI- 422

generated code detection models? To answer this, 423

we evaluated a variety of off-the-shelf baseline de- 424

tectors against the test split of DroidCollection. 425

We include the following baselines in our 426

evaluation: (i) GPT-Sniffer (Nguyen et al., 427

2024), a model specifically trained to detect AI- 428

generated code, (ii) Codet-M4 (Orel et al., 2025), 429

a model trained for AI-generated code detec- 430

tion from five different models, (iii) M4 classi- 431

fier (Wang et al., 2024), a model trained for general- 432

purpose AI-generated text detection, (iv) Fast- 433

DetectGPT (Bao et al., 2024), an efficient zero- 434

shot detector, and (v) GPT-Zero 56, an API-based 435

tool for detecting AI-generated content. Since 436

most of these detectors are designed for binary 437

classification (human-written vs. AI-generated), 438

when evaluating on the ternary classification set- 439

ting, we convert our ternary labels (human-written, 440

AI-generated, AI-refined) into binary targets by 441

treating both fully LM-generated and LM-refined 442

code snippets as AI-generated. 443

4GitHub: pemistahl/lingua-py
5https://gptzero.me/
6Owing to the cost structure of the paid API, we selected

a representative sample of 500 code snippets for each label-
language and label-domain pair

5

https://github.com/pemistahl/lingua
https://gptzero.me/

Model 2-Class 3-Class

General Algorithmic Research/DS Avg. General Algorithmic Research/DS Avg.

Zero-Shot Baselines

Fast-DetectGPT (Bao et al., 2024) 75.07 63.05 65.43 67.85 66.43 62.90 64.30 64.54

Codet-M4 (Orel et al., 2025) 53.41 44.63 65.43 54.49 41.90 46.06 55.43 47.80

M4 (Wang et al., 2024) 50.17 57.91 44.67 50.92 56.46 58.13 51.21 55.27

GPTSniffer (Nguyen et al., 2024) 54.25 36.85 32.10 41.07 45.22 31.75 39.88 38.95

GPTZero 54.05 71.96 44.73 56.91 50.56 66.13 30.62 49.10

OOD Evaluation

DroidDetectCLS-BaseGeneral 99.30 53.73 76.46 76.50 93.05 46.22 76.99 72.09

DroidDetectCLS-BaseAlgorithmic 49.63 98.26 60.78 69.56 47.86 92.84 56.58 65.76

DroidDetectCLS-BaseResearch/DS 47.01 48.02 72.55 55.86 47.86 38.73 59.97 48.85

Fine-Tuned Baselines
GCN 78.57 60.61 67.79 68.99 56.85 46.91 51.13 51.63

CatBoost 89.69 87.29 77.21 84.73 78.86 74.01 64.07 72.31

Full Training
DroidDetectCLS-Base 99.22 98.22 87.57 95.00 92.78 93.05 74.46 86.76

DroidDetectCLS-Large 99.38 98.39 93.24 97.00 93.08 92.86 80.42 88.78

Table 3: Comparison of models in 2-Class (human- vs machine-generated) and 3-Class (human- vs machine-
generated vs machine-refined) classification setups across programming languages in terms of weighted F1-score.
In the OOD section, we show models trained on each domain individually. The best results are shown in bold.

For a fairer comparison between alternative444

architectural choices, we fine-tuned some addi-445

tional models using a multi-class classification446

objective on our dataset: (i) a simple GCN447

model (Kipf and Welling, 2017), trained on448

our dataset (details in Appendix C.1) and (ii) A449

CatBoost classifier (Prokhorenkova et al., 2018),450

trained following a procedure similar to the one451

used in the Whodunit paper (Appendix C.2).452

Moreover, in order to stress-test the backbone453

of the DroidDetect suite, we fine-tuned two454

encoder-only transformer models, ModernBERT-455

Base and ModernBERT-Large (Warner456

et al., 2024b): DroidDetectCLS-Base and457

DroidDetectCLS-Large(details in Section 6).458

We also evaluated the DroidDetectCLS-Base459

backbone in OOD settings under language shift460

and domain shift conditions. Comparing the multi-461

domain and the multi-lingual performance of the462

baselines to our backbone models trained on re-463

stricted data splits allows us (i) to uncover possi-464

ble shortcomings in the training data curation of465

popular baseline models, as they can be compared466

head-to-head to both the split-specific and fully-467

trained variants of our backbone, and (ii) to assess468

the inherent ease with which models are able to469

transfer along these settings, by-proxy outlining470

the value of extensive training data curation. We471

selected the base version of the backbone for this472

restricted training scenario since it was comparable473

to most of the chosen baselines in terms of size.474

Tables 3 and 4 simultaneously highlight the sig-475

nificant challenges that our test dataset poses for476

existing baseline models, along with the value of477

training on our extensive training split. These zero-478

shot baselines not only underperform compared to479

simpler fine-tuned baselines, such as GCN or Cat-480

Boost, but also fall well short with respect to mod- 481

els trained on specific OOD subsets. Table 4 further 482

shows that, under restricted training conditions, 483

models tend to generalise better to syntactically 484

similar languages. For example, a model trained on 485

C/C++ performs reasonably well on C# and Java. 486

However, for topologically isolated languages such 487

as Python, all models not trained specifically for it 488

tend to struggle in this setting. 489

Among the baselines evaluated, Fast-DetectGPT 490

consistently yields strong performance across both 491

languages and domains, outperforming all other 492

baselines. In contrast, pre-trained models usually 493

perform well only on languages and domains that 494

are closely aligned with their original training data. 495

This highlights the limitations of previously col- 496

lected datasets, which do not cover the diversity of 497

generations in DroidCollection, and hence are 498

far from being useful in real-life scenarios. 499

Unsurprisingly, the DroidDetectCLS models 500

trained on the full training set achieve the highest 501

performance, nearing ideal scores in both binary 502

and ternary classification tasks, with the benefits 503

of parameter count apparent in the domination of 504

DroidDetectCLS-Large across all settings. See 505

Appendix D.2 for further OOD stress-testing of the 506

DroidDetectCLS models. 507

5 Adversarial Samples 508

With the development of post-training tech- 509

niques such as PPO (Schulman et al., 2017), 510

DPO (Rafailov et al., 2023), and GRPO (Shao 511

et al., 2024), it has become possible to set up the 512

training in adversarial ways that enable LMs to 513

evade AI-generated code detectors. Prior work by 514

Shi et al. (2024) and Sadasivan et al. (2023) has 515

shown that LM-generated content detectors are vul- 516

6

Model 2-Class 3-Class

C/C++ C# Go Java Python JS Avg. C/C++ C# Go Java Python JS Avg.

Zero-Shot Baselines

Fast-DetectGPT (Bao et al., 2024) 81.33 72.77 81.16 76.03 73.60 74.59 76.58 77.85 66.37 72.73 69.45 70.34 69.11 70.98

Codet-M4 (Orel et al., 2025) 61.12 50.68 19.66 56.15 58.75 41.44 47.97 53.81 40.74 18.28 45.26 53.51 36.09 41.28

M4 (Wang et al., 2024) 62.22 40.73 57.59 48.39 61.47 64.44 52.81 65.33 50.38 60.49 56.25 61.21 53.64 57.92

GPTSniffer (Nguyen et al., 2024) 63.02 48.90 79.89 40.30 38.34 45.94 52.40 64.18 42.29 76.19 34.94 34.94 47.22 49.96

GPTZero 58.32 45.69 13.64 74.65 73.19 63.16 54.81 61.00 50.38 28.89 61.25 52.63 54.78 51.48

OOD Evaluations

DroidDetectCLS-BaseC/C++ 98.98 96.59 67.32 96.97 74.45 91.15 87.58 92.62 81.67 56.43 79.45 56.43 69.72 72.72

DroidDetectCLS-BaseC# 93.66 99.20 78.89 95.20 71.13 89.87 87.99 80.95 92.93 57.74 84.17 54.25 65.18 71.04

DroidDetectCLS-BaseGo 93.33 86.00 98.94 89.97 71.45 88.72 88.07 80.74 63.61 92.93 74.18 50.38 65.37 71.20

DroidDetectCLS-BaseJava 95.53 96.42 94.57 99.31 75.59 80.26 90.28 85.00 84.43 58.85 93.38 63.25 64.57 74.91

DroidDetectCLS-BasePython 80.27 85.48 82.28 88.80 98.85 86.62 86.75 67.59 75.56 53.70 79.31 93.08 69.96 73.20

DroidDetectCLS-BaseJS 95.76 97.38 75.27 96.45 68.98 97.80 88.61 87.96 87.58 52.78 86.32 60.78 89.67 77.52

Fine-Tuned Baselines
GCN 79.06 78.33 84.33 80.04 72.49 69.69 77.32 65.97 58.03 65.20 60.13 55.22 54.72 59.88

CatBoost 94.00 91.20 90.57 92.26 89.51 82.55 90.02 84.57 81.32 81.54 82.42 78.15 70.98 78.83

Full Training
DroidDetectCLS-Base 99.29 99.33 99.32 99.45 98.87 98.38 99.11 94.43 94.06 93.98 93.93 93.95 90.99 93.56

DroidDetectCLS-Large 99.31 99.51 99.32 99.45 99.11 98.67 99.23 94.24 93.87 94.42 94.05 94.13 91.27 93.66

Table 4: Comparison of models in 2-class (human- vs. machine-generated) vs. 3-class (human- vs. machine-
generated vs. machine-refined) classification setups across programming languages in terms of weighted F1-score.
In the OOD section, we train on each programming language individually. The best results are highlighted in bold.

FastDetectGPT GPTSniffer M4 Codet-M4 GPT-Zero DroidDetectCLS-Base DroidDetectCLS-Large

Human-written 0.84 0.65 0.40 0.38 0.53 0.93 0.98

Adversarial samples 0.48 0.49 0.73 0.63 0.10 0.92 0.92

Table 5: Recall for human-written vs. adversarial examples. The red cells show that despite having high recall on
adversarial samples, M4 and Codet-M4 struggle to detect human-written code. The best results are in bold.

nerable to adversarial attacks and spoofing. This517

motivates the inclusion of adversarial samples in518

DroidCollection to improve model robustness.519

To this end, we introduce two types of adversar-520

ial attacks: prompt-based attacks and preference-521

tuning-based attacks. In the prompt-based setting,522

we construct adversarial prompts by instructing523

the model to “write like a human” in multiple524

ways, relying on the models’ parametric knowl-525

edge of how to produce outputs that mimic human-526

authored code and thus challenge detection systems.527

In the preference-tuning-based setting, we curate528

DroidCollection-Pref, a dataset of 157K paired529

examples consisting of human-written and LM-530

generated code responses to the same prompt. Us-531

ing DroidCollection-Pref, we train LMs with532

up to 9B parameters –including LLaMA, Qwen,533

and Yi–, using LoRA(Hu et al., 2022) with rank534

128 and DPO for two epochs. These models’ out-535

put distributions are, in effect, steered towards536

preferring human-like code, making them less537

likely to contain the stylistic giveaways of machine-538

generated code. Once trained, the models are used539

to generate new “machine-humanised” code sam-540

ples. We filter their generations as in Section 3.5541

to keep only high-quality adversarial examples. As542

a result, we obtained a nearly 1:1 ratio of prompt-543

based vs. preference-tuning adversarial attacks.544

Table 5 shows that these adversarial samples545

are difficult for existing detectors to identify. M4 546

and Codet-M4 exhibit high recall, but they also 547

show low recall on human-written texts. GPT-Zero 548

performs the worst, with a recall of only 0.10. In 549

comparison, even DroidDetect-Base achieves a 550

recall above 0.9. 551

6 Detector Training and Ablations 552

With the aim to optimise detector performance, we 553

conducted a series of ablation experiments starting 554

from our DroidDetectCLS backbone to systemati- 555

cally identify the most effective model architecture 556

and training strategy. 557

We began by exploring whether incorporating 558

the structural representation of code could improve 559

the detector’s performance. Specifically, we trained 560

a 4-layer Graph Convolutional Network over the 561

AST representation of codes to evaluate its ability 562

to distinguish AI-generated from human-written 563

code. The results are shown in Appendix C.1. We 564

can see that while structural signals are informative, 565

GCNs alone are not sufficient to achieve strong 566

generalisation. 567

Next, we explored early fusion of textual and 568

structural representations by combining a text en- 569

coder with a GCN encoder. For text encoding, 570

we used ModernBERT (Warner et al., 2024b), a 571

transformer-based model pre-trained on a mixture 572

of natural language and code. We experimented 573

7

with both the base (149M parameters) and the large574

(396M parameters) variants. This model was se-575

lected for the inference efficiency (Warner et al.,576

2024b), and suitability for code-related tasks. How-577

ever, as shown in Appendix C.3, this fusion strat-578

egy yielded only a marginal improvement. Conse-579

quently, we decided to use a text-only encoder for580

the final model.581

We then address the issue of class separabil-582

ity, which can arise because adversarial and re-583

fined code can intuitively be similar to human-584

written code. We explore training our models using585

triplet loss (Hoffer and Ailon, 2018) in a supervised586

contrastive (Khosla et al., 2020) setup using the587

class labels. This metric-learning approach encour-588

ages the model to place samples of the same class589

closer to each other in the embedding space while590

pushing dissimilar samples apart, and it has been591

demonstrably effective in other detection scenar-592

ios that require high precision (Deng et al., 2022;593

Li and Li, 2024). We refer to these models as594

DroidDetectSCL. Table 6 shows how metric learn-595

ing has a mild but consistent positive impact on596

performance across the board.597

Finally, we addressed the problem of noisy and598

mislabelled training data. Despite extensive data599

filtering, it is possible that some code samples cu-600

rated as human-written may have been generated601

by coding-copilots. The presence of such exam-602

ples could negatively impact the training of our603

detector. To address this, we applied Monte Carlo604

Dropout (Hasan et al., 2022) to estimate the model605

uncertainty on the human-written portion of the606

test set. Specifically, we identified the top 7% most607

uncertain samples –those for which a pre-trained608

model exhibited low prediction confidence–, and609

resampled the dataset, removing them from the610

training set. We then retrained the model on the611

remaining data, thereby getting rid of the influence612

of potentially mislabelled or ambiguous samples.613

This manner of self-bootstrapping datasets has an614

extensive track record in image (Yalniz et al., 2019;615

Xie et al., 2020) and text (Wang et al., 2022) rep-616

resentation learning, relying on the tendency of617

neural networks to understand patterns in clean618

labels before they overfit to noisy data (Feldman619

and Zhang, 2020). Incorporating this filtering into620

our training yielded our final DroidDetect mod-621

els, which, as outlined in Table 6, achieved the622

best performance across size and classification set-623

tings. We include our mined uncertainty metadata624

in DroidCollection to enable further analysis, fil-625

tering, or alternative labelling strategies in future 626

work. 627

We trained all models for 3 epochs, using 628

AdamW (Loshchilov and Hutter, 2019) optimiser, 629

setting the top learning rate to 5e-5, and apply- 630

ing the linear warmup (proportion 0.1) with co- 631

sine decay learning rate scheduler. The batch 632

size is 64 for DroidDetect-Base and 40 for 633

DroidDetect-Large. 634

Model Variant 2-class 3-class 4-class

Base Large Base Large Base Large

DroidDetect 99.18 99.25 94.36 95.17 92.95 94.30

- Resampling
99.15 99.22 93.86 94.43 92.52 93.14

[DroidDetectSCL]

- Triplet Loss
99.14 99.18 90.51 94.07 89.63 92.65

[DroidDetectCLS]

Table 6: Weighted F1-score for DroidDetect across
training ablations. The best results are shown in bold.

7 Conclusion and Future Work 635

We have curated DroidCollection, a large and 636

diverse suite of datasets that facilitate the training 637

and the evaluation of robust AI-generated code de- 638

tectors to support their most common modes of op- 639

eration, i.e., completion and rewriting, along with 640

potentially adversarial use cases. Among openly 641

available corpora for training AI-generated con- 642

tent detectors, DroidCollection offers the most 643

exhaustive coverage with respect to the number 644

of generators, generation settings, programming 645

languages, and domains covered. We further devel- 646

oped DroidDetect, a suite of AI-assisted code de- 647

tection models, in two sizes (Base and Large), and 648

conducted extensive ablation studies to evaluate 649

which training strategies yield the most effective 650

performance for this task. 651

In future work, we plan to enhance the cover- 652

age of DroidCollection and the robustness of 653

DroidDetect. Specifically, we plan to incorporate 654

code samples from additional closed-source API- 655

based generators, thus broadening the diversity of 656

the code samples. We further plan to incorporate 657

generations from popular reasoning or thinking 658

LMs in order to enhance the applicability of our 659

detectors. Finally, we plan to expand language cov- 660

erage to include languages such as PHP, Rust, and 661

Ruby, thereby making our benchmarks more repre- 662

sentative of the global programming landscape. 663

8

Limitations664

Corpus Updates and Coverage Possessing a665

perfect coverage over all major models in the666

current fast-paced release environment is an in-667

tractable task. We acknowledge that the re-668

lease of new model families with unseen out-669

put distributions presents a challenge for all AI-670

generated content detectors. Since we have mature671

pipelines for machine-generated, machine-refined672

and adversarially-humanised data acquisition, we673

plan to update DroidCollection with generations674

sourced from future model releases.675

Cost Effectiveness Owing to cost realities, the676

majority of training samples in our study are677

sourced from locally deployable models. The high678

costs of API invocations are the primary reason679

why our study leaves data collection from recently680

released reasoning/thinking models such as An-681

thropic’s Claude 3.7, DeepSeek R1, and Google’s682

Gemini 2.5 for future work. For similar rea-683

sons, our evaluation of API-based detectors such684

as GPTZero was limited to a subset of the test set.685

Potential Data Contamination In spite of the686

thorough curation and extensive filtering under-687

taken for DroidCollection, we acknowledge the688

possibility that a small number of AI-generated or689

AI-assisted code samples may still be mislabeled690

as human-authored, due to the inherent nature of691

the data sources used for the dataset construction.692

Seeking to limit the negative effects of mislabeled693

or noisy data, our work explores uncertainty-based694

dataset re-sampling using a pre-trained classifier,695

which we show to be effective in improving the696

model’s performance by identifying ambiguous697

samples to discard during training. In the released698

dataset, we include flags for code snippets identi-699

fied as suspicious, enabling downstream users to700

apply additional filtering or analysis as needed.701

Ethics Statement702

The human-written code samples in our dataset are703

sourced exclusively from publicly available code704

corpora vetted for appropriate licensing and PII705

removal. Additionally, all code generation was706

conducted in compliance with the terms of use of707

the respective model providers.708

DroidDetect and DroidCollection aim to709

promote transparency in code authorship, espe-710

cially in academic and research settings. While711

there is a risk that they could be misused to train712

models to evade detection, we strongly discourage 713

any malicious or privacy-invasive applications. We 714

advocate for the responsible use in strictly legiti- 715

mate research and educational contexts. 716

References 717

Mervat Abassy, Kareem Ashraf Elozeiri, Alexander 718
Aziz, Minh Ngoc Ta, Raj Vardhan Tomar, Bimar- 719
sha Adhikari, Saad El Dine Ahmed, Yuxia Wang, 720
Osama Mohammed Afzal, Zhuohan Xie, Jonibek 721
Mansurov, Ekaterina Artemova, Vladislav Mikhailov, 722
Rui Xing, Jiahui Geng, Hasan Iqbal, Zain Muham- 723
mad Mujahid, Tarek Mahmoud, Akim Tsvigun, and 724
5 others. 2024. Llm-detectaive: a tool for fine- 725
grained machine-generated text detection. CoRR, 726
abs/2408.04284. 727

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien 728
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael 729
Harrison, Russell J. Hewett, Mojan Javaheripi, Piero 730
Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li, 731
Weishung Liu, Caio C. T. Mendes, Anh Nguyen, 732
Eric Price, Gustavo de Rosa, Olli Saarikivi, and 733
8 others. 2024. Phi-4 technical report. Preprint, 734
arXiv:2412.08905. 735

01. AI, :, Alex Young, Bei Chen, Chao Li, Chengen 736
Huang, Ge Zhang, Guanwei Zhang, Guoyin Wang, 737
Heng Li, Jiangcheng Zhu, Jianqun Chen, Jing Chang, 738
Kaidong Yu, Peng Liu, Qiang Liu, Shawn Yue, 739
Senbin Yang, Shiming Yang, and 14 others. 2025. 740
Yi: Open foundation models by 01.ai. Preprint, 741
arXiv:2403.04652. 742

Mistral AI. 2025. Mistral small – a new balance of 743
performance and efficiency. Online. Available 744
at https://mistral.ai/news/mistral-small-3 745
(Accessed: 1 April 2025). 746

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi 747
Yang, and Yue Zhang. 2024. Fast-detectgpt: Effi- 748
cient zero-shot detection of machine-generated text 749
via conditional probability curvature. In The Twelfth 750
International Conference on Learning Representa- 751
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024. 752
OpenReview.net. 753

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, 754
John Schulman, Christine McLeavey, Jerry Tworek, 755
and Mark Chen. 2022. Efficient training of language 756
models to fill in the middle. CoRR, abs/2207.14255. 757

A.Z. Broder. 1997. On the resemblance and con- 758
tainment of documents. In Proceedings. Compres- 759
sion and Complexity of SEQUENCES 1997 (Cat. 760
No.97TB100171), pages 21–29. 761

Sufiyan Ahmed Bukhari. 2024. Issues in detection of 762
ai-generated source code. University of Calgary. 763

Savvas Chamezopoulos, Drahomira Herrmannova, 764
Anita De Waard, Drahomira Herrmannova, Domenic 765
Rosati, and Yury Kashnitsky. 2024. Overview of 766

9

https://doi.org/10.48550/ARXIV.2408.04284
https://doi.org/10.48550/ARXIV.2408.04284
https://doi.org/10.48550/ARXIV.2408.04284
https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2403.04652
https://mistral.ai/news/mistral-small-3
https://openreview.net/forum?id=Bpcgcr8E8Z
https://openreview.net/forum?id=Bpcgcr8E8Z
https://openreview.net/forum?id=Bpcgcr8E8Z
https://openreview.net/forum?id=Bpcgcr8E8Z
https://openreview.net/forum?id=Bpcgcr8E8Z
https://doi.org/10.48550/ARXIV.2207.14255
https://doi.org/10.48550/ARXIV.2207.14255
https://doi.org/10.48550/ARXIV.2207.14255
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://aclanthology.org/2024.sdp-1.2/
https://aclanthology.org/2024.sdp-1.2/

the DagPap24 shared task on detecting automatically767
generated scientific paper. In Proceedings of the768
Fourth Workshop on Scholarly Document Processing769
(SDP 2024), pages 7–11, Bangkok, Thailand. Associ-770
ation for Computational Linguistics.771

Jiankang Deng, Jia Guo, Jing Yang, Niannan Xue, Irene772
Kotsia, and Stefanos Zafeiriou. 2022. Arcface: Ad-773
ditive angular margin loss for deep face recognition.774
IEEE Trans. Pattern Anal. Mach. Intell., 44(10):5962–775
5979.776

Liam Dugan, Alyssa Hwang, Filip Trhlík, Andrew777
Zhu, Josh Magnus Ludan, Hainiu Xu, Daphne Ip-778
polito, and Chris Callison-Burch. 2024. RAID: A779
shared benchmark for robust evaluation of machine-780
generated text detectors. In Proceedings of the 62nd781
Annual Meeting of the Association for Computational782
Linguistics (Volume 1: Long Papers), pages 12463–783
12492, Bangkok, Thailand. Association for Compu-784
tational Linguistics.785

Omer Dunay, Daniel Cheng, Adam Tait, Parth Thakkar,786
Peter C. Rigby, Andy Chiu, Imad Ahmad, Arun Gane-787
san, Chandra Shekhar Maddila, Vijayaraghavan Mu-788
rali, Ali Tayyebi, and Nachiappan Nagappan. 2024.789
Multi-line ai-assisted code authoring. In Companion790
Proceedings of the 32nd ACM International Confer-791
ence on the Foundations of Software Engineering,792
FSE 2024, Porto de Galinhas, Brazil, July 15-19,793
2024, pages 150–160. ACM.794

Vitaly Feldman and Chiyuan Zhang. 2020. What neural795
networks memorize and why: Discovering the long796
tail via influence estimation. In Advances in Neural797
Information Processing Systems 33: Annual Confer-798
ence on Neural Information Processing Systems 2020,799
NeurIPS 2020, December 6-12, 2020, virtual.800

Alexander Frömmgen, Jacob Austin, Peter Choy,801
Nimesh Ghelani, Lera Kharatyan, Gabriela Surita,802
Elena Khrapko, Pascal Lamblin, Pierre-Antoine Man-803
zagol, Marcus Revaj, Maxim Tabachnyk, Daniel Tar-804
low, Kevin Villela, Daniel Zheng, Satish Chandra,805
and Petros Maniatis. 2024. Resolving code review806
comments with machine learning. In Proceedings of807
the 46th International Conference on Software Engi-808
neering: Software Engineering in Practice, ICSE-809
SEIP 2024, Lisbon, Portugal, April 14-20, 2024,810
pages 204–215. ACM.811

Kazuki Fujii, Yukito Tajima, Sakae Mizuki, Hinari812
Shimada, Taihei Shiotani, Koshiro Saito, Masanari813
Ohi, Masaki Kawamura, Taishi Nakamura, Takumi814
Okamoto, Shigeki Ishida, Kakeru Hattori, Youmi815
Ma, Hiroya Takamura, Rio Yokota, and Naoaki816
Okazaki. 2025. Rewriting pre-training data boosts817
llm performance in math and code. Preprint,818
arXiv:2505.02881.819

Tao Ge, Xin Chan, Xiaoyang Wang, Dian Yu, Haitao820
Mi, and Dong Yu. 2024. Scaling synthetic data821
creation with 1,000,000,000 personas. Preprint,822
arXiv:2406.20094.823

Team Gemma, Thomas Mesnard, Cassidy Hardin, 824
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, 825
Laurent Sifre, Morgane Rivière, Mihir Sanjay 826
Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, 827
Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam 828
Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, 829
Ambrose Slone, and 89 others. 2024. Gemma: Open 830
models based on gemini research and technology. 831
Preprint, arXiv:2403.08295. 832

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 833
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 834
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel- 835
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh 836
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi- 837
tra, Archie Sravankumar, Artem Korenev, Arthur 838
Hinsvark, and 542 others. 2024. The llama 3 herd of 839
models. Preprint, arXiv:2407.21783. 840

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang, 841
Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng 842
Wu. 2023. How close is chatgpt to human experts? 843
comparison corpus, evaluation, and detection. arXiv 844
preprint arxiv:2301.07597. 845

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 846
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 847
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen- 848
feng Liang. 2024. Deepseek-coder: When the large 849
language model meets programming - the rise of code 850
intelligence. CoRR, abs/2401.14196. 851

Md Mehedi Hasan, Abbas Khosravi, Ibrahim Hossain, 852
Ashikur Rahman, and Saeid Nahavandi. 2022. Con- 853
trolled dropout for uncertainty estimation. 2023 854
IEEE International Conference on Systems, Man, and 855
Cybernetics (SMC), pages 973–980. 856

Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes, 857
and Yang Zhang. 2024. Mgtbench: Benchmarking 858
machine-generated text detection. In Proceedings of 859
the 2024 on ACM SIGSAC Conference on Computer 860
and Communications Security, CCS 2024, Salt Lake 861
City, UT, USA, October 14-18, 2024, pages 2251– 862
2265. ACM. 863

Elad Hoffer and Nir Ailon. 2018. Deep metric learning 864
using triplet network. Preprint, arXiv:1412.6622. 865

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 866
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 867
Weizhu Chen. 2022. LoRA: Low-rank adaptation of 868
large language models. In International Conference 869
on Learning Representations. 870

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis 871
Allamanis, and Marc Brockschmidt. 2020. Code- 872
searchnet challenge: Evaluating the state of semantic 873
code search. Preprint, arXiv:1909.09436. 874

Oseremen Joy Idialu, Noble Saji Mathews, Rungroj 875
Maipradit, Joanne M. Atlee, and Mei Nagappan. 876
2024. Whodunit: Classifying code as human au- 877
thored or gpt-4 generated - a case study on codechef 878
problems. In Proceedings of the 21st International 879
Conference on Mining Software Repositories, MSR 880

10

https://aclanthology.org/2024.sdp-1.2/
https://aclanthology.org/2024.sdp-1.2/
https://aclanthology.org/2024.sdp-1.2/
https://doi.org/10.1109/TPAMI.2021.3087709
https://doi.org/10.1109/TPAMI.2021.3087709
https://doi.org/10.1109/TPAMI.2021.3087709
https://doi.org/10.18653/v1/2024.acl-long.674
https://doi.org/10.18653/v1/2024.acl-long.674
https://doi.org/10.18653/v1/2024.acl-long.674
https://doi.org/10.18653/v1/2024.acl-long.674
https://doi.org/10.18653/v1/2024.acl-long.674
https://doi.org/10.1145/3663529.3663836
https://proceedings.neurips.cc/paper/2020/hash/1e14bfe2714193e7af5abc64ecbd6b46-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1e14bfe2714193e7af5abc64ecbd6b46-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1e14bfe2714193e7af5abc64ecbd6b46-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1e14bfe2714193e7af5abc64ecbd6b46-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1e14bfe2714193e7af5abc64ecbd6b46-Abstract.html
https://doi.org/10.1145/3639477.3639746
https://doi.org/10.1145/3639477.3639746
https://doi.org/10.1145/3639477.3639746
https://arxiv.org/abs/2505.02881
https://arxiv.org/abs/2505.02881
https://arxiv.org/abs/2505.02881
https://arxiv.org/abs/2406.20094
https://arxiv.org/abs/2406.20094
https://arxiv.org/abs/2406.20094
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://api.semanticscholar.org/CorpusID:248562494
https://api.semanticscholar.org/CorpusID:248562494
https://api.semanticscholar.org/CorpusID:248562494
https://doi.org/10.1145/3658644.3670344
https://doi.org/10.1145/3658644.3670344
https://doi.org/10.1145/3658644.3670344
https://arxiv.org/abs/1412.6622
https://arxiv.org/abs/1412.6622
https://arxiv.org/abs/1412.6622
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://doi.org/10.1145/3643991.3644926
https://doi.org/10.1145/3643991.3644926
https://doi.org/10.1145/3643991.3644926
https://doi.org/10.1145/3643991.3644926
https://doi.org/10.1145/3643991.3644926

’24, page 394–406, New York, NY, USA. Association881
for Computing Machinery.882

Daphne Ippolito, Daniel Duckworth, Chris Callison-883
Burch, and Douglas Eck. 2020. Automatic detec-884
tion of generated text is easiest when humans are885
fooled. In Proceedings of the 58th Annual Meeting of886
the Association for Computational Linguistics, pages887
1808–1822, Online. Association for Computational888
Linguistics.889

Kush Jain, Gabriel Synnaeve, and Baptiste Rozière.890
2025. Testgeneval: A real world unit test generation891
and test completion benchmark. In The Thirteenth In-892
ternational Conference on Learning Representations,893
ICLR 2025, Singapore, April 24-28, 2025. OpenRe-894
view.net.895

Ganesh Jawahar, Muhammad Abdul-Mageed, and Laks896
V. S. Lakshmanan. 2020. Automatic detection of ma-897
chine generated text: A critical survey. In Proceed-898
ings of the 28th International Conference on Com-899
putational Linguistics, COLING 2020, Barcelona,900
Spain (Online), December 8-13, 2020, pages 2296–901
2309. International Committee on Computational902
Linguistics.903

Jessica Ji, Jenny Jun, Maggie Wu, and Rebecca Gelles.904
2024. Cybersecurity risks of ai-generated code.905
Technical report, Center for Security and Emerging906
Technology. Center for Security and Emerging Tech-907
nology.908

JianWang, Shangqing Liu, Xiaofei Xie, and Yi Li. 2024.909
An empirical study to evaluate aigc detectors on code910
content. In Proceedings of the 39th IEEE/ACM In-911
ternational Conference on Automated Software En-912
gineering, ASE ’24, page 844–856, New York, NY,913
USA. Association for Computing Machinery.914

Jonathan Katzy, Razvan Mihai Popescu, Arie van915
Deursen, and Maliheh Izadi. 2025. The heap:916
A contamination-free multilingual code dataset917
for evaluating large language models. Preprint,918
arXiv:2501.09653.919

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron920
Sarna, Yonglong Tian, Phillip Isola, Aaron921
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-922
pervised contrastive learning. In Advances in Neural923
Information Processing Systems 33: Annual Confer-924
ence on Neural Information Processing Systems 2020,925
NeurIPS 2020, December 6-12, 2020, virtual.926

Thomas N. Kipf and Max Welling. 2017. Semi-927
supervised classification with graph convolutional928
networks. In 5th International Conference on Learn-929
ing Representations, ICLR 2017, Toulon, France,930
April 24-26, 2017, Conference Track Proceedings.931
OpenReview.net.932

Ryuto Koike, Masahiro Kaneko, and Naoaki Okazaki.933
2024. OUTFOX: llm-generated essay detection934
through in-context learning with adversarially gen-935
erated examples. In Thirty-Eighth AAAI Conference936
on Artificial Intelligence, AAAI 2024, Thirty-Sixth937

Conference on Innovative Applications of Artificial 938
Intelligence, IAAI 2024, Fourteenth Symposium on 939
Educational Advances in Artificial Intelligence, EAAI 940
2014, February 20-27, 2024, Vancouver, Canada, 941
pages 21258–21266. AAAI Press. 942

Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and 943
Zhaoxiang Zhang. 2023a. Sheetcopilot: Bringing 944
software productivity to the next level through large 945
language models. In Advances in Neural Information 946
Processing Systems 36: Annual Conference on Neu- 947
ral Information Processing Systems 2023, NeurIPS 948
2023, New Orleans, LA, USA, December 10 - 16, 949
2023. 950

Ke Li, Sheng Hong, Cai Fu, Yunhe Zhang, and Ming 951
Liu. 2023b. Discriminating human-authored from 952
chatgpt-generated code via discernable feature analy- 953
sis. In 34th IEEE International Symposium on Soft- 954
ware Reliability Engineering, ISSRE 2023 - Work- 955
shops, Florence, Italy, October 9-12, 2023, pages 956
120–127. IEEE. 957

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 958
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 959
Marone, Christopher Akiki, Jia Li, Jenny Chim, 960
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, 961
Thomas Wang, Olivier Dehaene, Mishig Davaadorj, 962
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, 963
and 48 others. 2023c. Starcoder: may the source be 964
with you! Preprint, arXiv:2305.06161. 965

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong 966
Sun, Chen Lyu, Guang Liu, Zhi Jin, and Ge Li. 2023d. 967
Taco: Topics in algorithmic code generation dataset. 968
arXiv preprint arXiv:2312.14852. 969

Xianming Li and Jing Li. 2024. Aoe: Angle-optimized 970
embeddings for semantic textual similarity. In Pro- 971
ceedings of the 62nd Annual Meeting of the Associa- 972
tion for Computational Linguistics (Volume 1: Long 973
Papers), ACL 2024, Bangkok, Thailand, August 11- 974
16, 2024, pages 1825–1839. Association for Compu- 975
tational Linguistics. 976

Yafu Li, Qintong Li, Leyang Cui, Wei Bi, Zhilin Wang, 977
Longyue Wang, Linyi Yang, Shuming Shi, and Yue 978
Zhang. 2024. MAGE: Machine-generated text de- 979
tection in the wild. In Proceedings of the 62nd An- 980
nual Meeting of the Association for Computational 981
Linguistics (Volume 1: Long Papers), pages 36–53, 982
Bangkok, Thailand. Association for Computational 983
Linguistics. 984

Ilya Loshchilov and Frank Hutter. 2019. Decoupled 985
weight decay regularization. In 7th International 986
Conference on Learning Representations, ICLR 2019, 987
New Orleans, LA, USA, May 6-9, 2019. OpenRe- 988
view.net. 989

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed- 990
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi, 991
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, 992
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur 993
Zucker, Younes Belkada, Zijian Wang, Qian Liu, 994

11

https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
https://openreview.net/forum?id=7o6SG5gVev
https://openreview.net/forum?id=7o6SG5gVev
https://openreview.net/forum?id=7o6SG5gVev
https://doi.org/10.18653/V1/2020.COLING-MAIN.208
https://doi.org/10.18653/V1/2020.COLING-MAIN.208
https://doi.org/10.18653/V1/2020.COLING-MAIN.208
https://doi.org/10.51593/2023CA010
https://doi.org/10.1145/3691620.3695468
https://doi.org/10.1145/3691620.3695468
https://doi.org/10.1145/3691620.3695468
https://arxiv.org/abs/2501.09653
https://arxiv.org/abs/2501.09653
https://arxiv.org/abs/2501.09653
https://arxiv.org/abs/2501.09653
https://arxiv.org/abs/2501.09653
https://proceedings.neurips.cc/paper/2020/hash/d89a66c7c80a29b1bdbab0f2a1a94af8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d89a66c7c80a29b1bdbab0f2a1a94af8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d89a66c7c80a29b1bdbab0f2a1a94af8-Abstract.html
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1609/AAAI.V38I19.30120
https://doi.org/10.1609/AAAI.V38I19.30120
https://doi.org/10.1609/AAAI.V38I19.30120
https://doi.org/10.1609/AAAI.V38I19.30120
https://doi.org/10.1609/AAAI.V38I19.30120
http://papers.nips.cc/paper_files/paper/2023/hash/0ff30c4bf31db0119a6219e0d250e037-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/0ff30c4bf31db0119a6219e0d250e037-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/0ff30c4bf31db0119a6219e0d250e037-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/0ff30c4bf31db0119a6219e0d250e037-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/0ff30c4bf31db0119a6219e0d250e037-Abstract-Conference.html
https://doi.org/10.1109/ISSREW60843.2023.00059
https://doi.org/10.1109/ISSREW60843.2023.00059
https://doi.org/10.1109/ISSREW60843.2023.00059
https://doi.org/10.1109/ISSREW60843.2023.00059
https://doi.org/10.1109/ISSREW60843.2023.00059
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://doi.org/10.18653/V1/2024.ACL-LONG.101
https://doi.org/10.18653/V1/2024.ACL-LONG.101
https://doi.org/10.18653/V1/2024.ACL-LONG.101
https://doi.org/10.18653/v1/2024.acl-long.3
https://doi.org/10.18653/v1/2024.acl-long.3
https://doi.org/10.18653/v1/2024.acl-long.3
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

Dmitry Abulkhanov, Indraneil Paul, and 47 others.995
2024. Starcoder 2 and the stack v2: The next genera-996
tion. Preprint, arXiv:2402.19173.997

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren,998
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-999
sheng Li. 2025. Mathcoder2: Better math reason-1000
ing from continued pretraining on model-translated1001
mathematical code. In The Thirteenth International1002
Conference on Learning Representations, ICLR 2025,1003
Singapore, April 24-28, 2025. OpenReview.net.1004

Scott M. Lundberg and Su-In Lee. 2017. A unified1005
approach to interpreting model predictions. In Pro-1006
ceedings of the 31st International Conference on Neu-1007
ral Information Processing Systems, NIPS’17, page1008
4768–4777, Red Hook, NY, USA. Curran Associates1009
Inc.1010

Dominik Macko, Róbert Móro, Adaku Uchendu, Ja-1011
son Samuel Lucas, Michiharu Yamashita, Matús1012
Pikuliak, Ivan Srba, Thai Le, Dongwon Lee, Jakub1013
Simko, and Mária Bieliková. 2023. Multitude: Large-1014
scale multilingual machine-generated text detection1015
benchmark. CoRR, abs/2310.13606.1016

Dung Nguyen Manh, Nam Le Hai, Anh T. V. Dau,1017
Anh Minh Nguyen, Khanh Nghiem, Jin Guo, and1018
Nghi D. Q. Bui. 2023. The vault: A comprehensive1019
multilingual dataset for advancing code understand-1020
ing and generation. Preprint, arXiv:2305.06156.1021

Simone Martini. 2015. Several types of types in pro-1022
gramming languages. In History and Philosophy of1023
Computing - Third International Conference, HaPoC1024
2015, Pisa, Italy, October 8-11, 2015, Revised Se-1025
lected Papers, volume 487 of IFIP Advances in In-1026
formation and Communication Technology, pages1027
216–227.1028

Elyas Masrour, Bradley Emi, and Max Spero. 2025.1029
DAMAGE: detecting adversarially modified AI gen-1030
erated text. CoRR, abs/2501.03437.1031

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang1032
Shen, Aditya Prasad, Adriana Meza Soria, Michele1033
Merler, Parameswaran Selvam, Saptha Surendran,1034
Shivdeep Singh, Manish Sethi, Xuan-Hong Dang,1035
Pengyuan Li, Kun-Lung Wu, Syed Zawad, Andrew1036
Coleman, Matthew White, Mark Lewis, Raju Pavu-1037
luri, and 27 others. 2024. Granite code models: A1038
family of open foundation models for code intelli-1039
gence. Preprint, arXiv:2405.04324.1040

Diego Mollá, Qiongkai Xu, Zijie Zeng, and Zhuang Li.1041
2024. Overview of the 2024 ALTA shared task: De-1042
tect automatic AI-generated sentences for human-AI1043
hybrid articles. In Proceedings of the 22nd Annual1044
Workshop of the Australasian Language Technology1045
Association, pages 197–202, Canberra, Australia. As-1046
sociation for Computational Linguistics.1047

Vijayaraghavan Murali, Chandra Shekhar Maddila,1048
Imad Ahmad, Michael Bolin, Daniel Cheng, Ne-1049
gar Ghorbani, Renuka Fernandez, Nachiappan Na-1050
gappan, and Peter C. Rigby. 2024. Ai-assisted1051

code authoring at scale: Fine-tuning, deploying, and 1052
mixed methods evaluation. Proc. ACM Softw. Eng., 1053
1(FSE):1066–1085. 1054

Phuong T. Nguyen, Juri Di Rocco, Claudio Di Sipio, 1055
Riccardo Rubei, Davide Di Ruscio, and Massimil- 1056
iano Di Penta. 2024. Gptsniffer: A codebert-based 1057
classifier to detect source code written by chatgpt. 1058
Journal of Systems and Software, page 112059. 1059

Henrique Gomes Nunes, Eduardo Figueiredo, 1060
Larissa Rocha Soares, Sarah Nadi, Fischer Ferreira, 1061
and Geanderson E. dos Santos. 2025. Evaluating the 1062
effectiveness of llms in fixing maintainability issues 1063
in real-world projects. CoRR, abs/2502.02368. 1064

Daniil Orel, Dilshod Azizov, and Preslav Nakov. 2025. 1065
Codet-m4: Detecting machine-generated code in 1066
multi-lingual, multi-generator and multi-domain set- 1067
tings. Preprint, arXiv:2503.13733. 1068

Wei Hung Pan, Ming Jie Chok, Jonathan Leong Shan 1069
Wong, Yung Xin Shin, Yeong Shian Poon, Zhou 1070
Yang, Chun Yong Chong, David Lo, and Mei Kuan 1071
Lim. 2024. Assessing ai detectors in identifying 1072
ai-generated code: Implications for education. In 1073
Proceedings of the 46th International Conference on 1074
Software Engineering: Software Engineering Edu- 1075
cation and Training, ICSE-SEET ’24, page 1–11, 1076
New York, NY, USA. Association for Computing 1077
Machinery. 1078

Indraneil Paul, Haoyi Yang, Goran Glavaš, Kristian 1079
Kersting, and Iryna Gurevych. 2025. Obscuracoder: 1080
Powering efficient code lm pre-training via obfusca- 1081
tion grounding. Preprint, arXiv:2504.00019. 1082

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, 1083
Brendan Dolan-Gavitt, and Ramesh Karri. 2025. 1084
Asleep at the keyboard? assessing the security of 1085
github copilot’s code contributions. Commun. ACM, 1086
68(2):96–105. 1087

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr 1088
Vorobev, Anna Veronika Dorogush, and Andrey 1089
Gulin. 2018. Catboost: unbiased boosting with cate- 1090
gorical features. In Advances in Neural Information 1091
Processing Systems, volume 31. Curran Associates, 1092
Inc. 1093

Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, 1094
Giacomo Domeniconi, Vladimir Zolotov, Julian 1095
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, 1096
Veronika Thost, Luca Buratti, Saurabh Pujar, Shyam 1097
Ramji, Ulrich Finkler, Susan Malaika, and Fred- 1098
erick Reiss. 2021. Codenet: A large-scale ai for 1099
code dataset for learning a diversity of coding tasks. 1100
Preprint, arXiv:2105.12655. 1101

Ben Puryear and Gina Sprint. 2022. Github copilot in 1102
the classroom: learning to code with ai assistance. J. 1103
Comput. Sci. Coll., 38(1):37–47. 1104

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, 1105
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan 1106
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan 1107

12

https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://openreview.net/forum?id=1Iuw1jcIrf
https://openreview.net/forum?id=1Iuw1jcIrf
https://openreview.net/forum?id=1Iuw1jcIrf
https://openreview.net/forum?id=1Iuw1jcIrf
https://openreview.net/forum?id=1Iuw1jcIrf
https://doi.org/10.48550/ARXIV.2310.13606
https://doi.org/10.48550/ARXIV.2310.13606
https://doi.org/10.48550/ARXIV.2310.13606
https://doi.org/10.48550/ARXIV.2310.13606
https://doi.org/10.48550/ARXIV.2310.13606
https://arxiv.org/abs/2305.06156
https://arxiv.org/abs/2305.06156
https://arxiv.org/abs/2305.06156
https://arxiv.org/abs/2305.06156
https://arxiv.org/abs/2305.06156
https://doi.org/10.1007/978-3-319-47286-7_15
https://doi.org/10.1007/978-3-319-47286-7_15
https://doi.org/10.1007/978-3-319-47286-7_15
https://doi.org/10.48550/ARXIV.2501.03437
https://doi.org/10.48550/ARXIV.2501.03437
https://doi.org/10.48550/ARXIV.2501.03437
https://arxiv.org/abs/2405.04324
https://arxiv.org/abs/2405.04324
https://arxiv.org/abs/2405.04324
https://arxiv.org/abs/2405.04324
https://arxiv.org/abs/2405.04324
https://aclanthology.org/2024.alta-1.17/
https://aclanthology.org/2024.alta-1.17/
https://aclanthology.org/2024.alta-1.17/
https://aclanthology.org/2024.alta-1.17/
https://aclanthology.org/2024.alta-1.17/
https://doi.org/10.1145/3643774
https://doi.org/10.1145/3643774
https://doi.org/10.1145/3643774
https://doi.org/10.1145/3643774
https://doi.org/10.1145/3643774
https://doi.org/10.1016/j.jss.2024.112059
https://doi.org/10.1016/j.jss.2024.112059
https://doi.org/10.1016/j.jss.2024.112059
https://doi.org/10.48550/ARXIV.2502.02368
https://doi.org/10.48550/ARXIV.2502.02368
https://doi.org/10.48550/ARXIV.2502.02368
https://doi.org/10.48550/ARXIV.2502.02368
https://doi.org/10.48550/ARXIV.2502.02368
https://arxiv.org/abs/2503.13733
https://arxiv.org/abs/2503.13733
https://arxiv.org/abs/2503.13733
https://arxiv.org/abs/2503.13733
https://arxiv.org/abs/2503.13733
https://doi.org/10.1145/3639474.3640068
https://doi.org/10.1145/3639474.3640068
https://doi.org/10.1145/3639474.3640068
https://arxiv.org/abs/2504.00019
https://arxiv.org/abs/2504.00019
https://arxiv.org/abs/2504.00019
https://arxiv.org/abs/2504.00019
https://arxiv.org/abs/2504.00019
https://doi.org/10.1145/3610721
https://doi.org/10.1145/3610721
https://doi.org/10.1145/3610721
https://proceedings.neurips.cc/paper_files/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2105.12655

Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin1108
Yang, Jiaxi Yang, Jingren Zhou, and 25 oth-1109
ers. 2025. Qwen2.5 technical report. Preprint,1110
arXiv:2412.15115.1111

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-1112
pher D Manning, Stefano Ermon, and Chelsea Finn.1113
2023. Direct preference optimization: Your language1114
model is secretly a reward model. In Advances in1115
Neural Information Processing Systems, volume 36,1116
pages 53728–53741. Curran Associates, Inc.1117

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Bala-1118
subramanian, Wenxiao Wang, and Soheil Feizi. 2023.1119
Can ai-generated text be reliably detected? CoRR,1120
abs/2303.11156.1121

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec1122
Radford, and Oleg Klimov. 2017. Proximal policy1123
optimization algorithms. CoRR, abs/1707.06347.1124

Tatiana Shamardina, Vladislav Mikhailov, Daniil Cher-1125
nianskii, Alena Fenogenova, Marat Saidov, Anas-1126
tasiya Valeeva, Tatiana Shavrina, Ivan Smurov, Elena1127
Tutubalina, and Ekaterina Artemova. 2022. Findings1128
of the the ruatd shared task 2022 on artificial text1129
detection in russian. In Computational Linguistics1130
and Intellectual Technologies, page 497–511. RSUH.1131

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,1132
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,1133
and Daya Guo. 2024. Deepseekmath: Pushing the1134
limits of mathematical reasoning in open language1135
models. CoRR, abs/2402.03300.1136

Zhouxing Shi, Yihan Wang, Fan Yin, Xiangning Chen,1137
Kai-Wei Chang, and Cho-Jui Hsieh. 2024. Red team-1138
ing language model detectors with language models.1139
Transactions of the Association for Computational1140
Linguistics, 12:174–189.1141

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas1142
Papernot, Ross J. Anderson, and Yarin Gal. 2024. AI1143
models collapse when trained on recursively gener-1144
ated data. Nat., 631(8022):755–759.1145

Dan Su, Kezhi Kong, Ying Lin, Joseph Jennings,1146
Brandon Norick, Markus Kliegl, Mostofa Patwary,1147
Mohammad Shoeybi, and Bryan Catanzaro. 2024.1148
Nemotron-cc: Transforming common crawl into1149
a refined long-horizon pretraining dataset. CoRR,1150
abs/2412.02595.1151

Zhenpeng Su, Xing Wu, Wei Zhou, Guangyuan Ma,1152
and Songlin Hu. 2023. Hc3 plus: A semantic-1153
invariant human chatgpt comparison corpus. CoRR,1154
abs/2309.02731.1155

Eduard Tulchinskii, Kristian Kuznetsov, Laida1156
Kushnareva, Daniil Cherniavskii, Sergey I.1157
Nikolenko, Evgeny Burnaev, Serguei Barannikov,1158
and Irina Piontkovskaya. 2023. Intrinsic dimension1159
estimation for robust detection of ai-generated texts.1160
In Advances in Neural Information Processing1161
Systems 36: Annual Conference on Neural Informa-1162
tion Processing Systems 2023, NeurIPS 2023, New1163
Orleans, LA, USA, December 10 - 16, 2023.1164

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glass- 1165
man. 2022. Expectation vs. experience: Evaluating 1166
the usability of code generation tools powered by 1167
large language models. In Extended Abstracts of the 1168
2022 CHI Conference on Human Factors in Com- 1169
puting Systems, CHI EA ’22, New York, NY, USA. 1170
Association for Computing Machinery. 1171

Veniamin Veselovsky, Manoel Horta Ribeiro, and 1172
Robert West. 2023. Artificial artificial artificial in- 1173
telligence: Crowd workers widely use large lan- 1174
guage models for text production tasks. CoRR, 1175
abs/2306.07899. 1176

Liang Wang, Nan Yang, Xiaolong Huang, Binx- 1177
ing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma- 1178
jumder, and Furu Wei. 2022. Text embeddings by 1179
weakly-supervised contrastive pre-training. CoRR, 1180
abs/2212.03533. 1181

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan 1182
Su, Artem Shelmanov, Akim Tsvigun, Chenxi White- 1183
house, Osama Mohammed Afzal, Tarek Mahmoud, 1184
Toru Sasaki, Thomas Arnold, Alham Fikri Aji, 1185
Nizar Habash, Iryna Gurevych, and Preslav Nakov. 1186
2024. M4: Multi-generator, multi-domain, and multi- 1187
lingual black-box machine-generated text detection. 1188
In Proceedings of the 18th Conference of the Euro- 1189
pean Chapter of the Association for Computational 1190
Linguistics (Volume 1: Long Papers), pages 1369– 1191
1407, St. Julian’s, Malta. Association for Computa- 1192
tional Linguistics. 1193

Yuxia Wang, Artem Shelmanov, Jonibek Mansurov, 1194
Akim Tsvigun, Vladislav Mikhailov, Rui Xing, Zhuo- 1195
han Xie, Jiahui Geng, Giovanni Puccetti, Ekaterina 1196
Artemova, Jinyan Su, Minh Ngoc Ta, Mervat Abassy, 1197
Kareem Ashraf Elozeiri, Saad El Dine Ahmed El Et- 1198
ter, Maiya Goloburda, Tarek Mahmoud, Raj Vardhan 1199
Tomar, Nurkhan Laiyk, and 7 others. 2025. GenAI 1200
content detection task 1: English and multilingual 1201
machine-generated text detection: AI vs. human. 1202
In Proceedings of the 1stWorkshop on GenAI Con- 1203
tent Detection (GenAIDetect), pages 244–261, Abu 1204
Dhabi, UAE. International Conference on Computa- 1205
tional Linguistics. 1206

Benjamin Warner, Antoine Chaffin, Benjamin Clavié, 1207
Orion Weller, Oskar Hallström, Said Taghadouini, 1208
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom 1209
Aarsen, Nathan Cooper, Griffin Adams, Jeremy 1210
Howard, and Iacopo Poli. 2024a. Smarter, better, 1211
faster, longer: A modern bidirectional encoder for 1212
fast, memory efficient, and long context finetuning 1213
and inference. CoRR, abs/2412.13663. 1214

Benjamin Warner, Antoine Chaffin, Benjamin Clavié, 1215
Orion Weller, Oskar Hallström, Said Taghadouini, 1216
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom 1217
Aarsen, Nathan Cooper, Griffin Adams, Jeremy 1218
Howard, and Iacopo Poli. 2024b. Smarter, better, 1219
faster, longer: A modern bidirectional encoder for 1220
fast, memory efficient, and long context finetuning 1221
and inference. CoRR, abs/2412.13663. 1222

13

https://arxiv.org/abs/2412.15115
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://doi.org/10.48550/ARXIV.2303.11156
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.28995/2075-7182-2022-21-497-511
https://doi.org/10.28995/2075-7182-2022-21-497-511
https://doi.org/10.28995/2075-7182-2022-21-497-511
https://doi.org/10.28995/2075-7182-2022-21-497-511
https://doi.org/10.28995/2075-7182-2022-21-497-511
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.1162/tacl_a_00639
https://doi.org/10.1162/tacl_a_00639
https://doi.org/10.1162/tacl_a_00639
https://doi.org/10.1038/S41586-024-07566-Y
https://doi.org/10.1038/S41586-024-07566-Y
https://doi.org/10.1038/S41586-024-07566-Y
https://doi.org/10.1038/S41586-024-07566-Y
https://doi.org/10.1038/S41586-024-07566-Y
https://doi.org/10.48550/ARXIV.2412.02595
https://doi.org/10.48550/ARXIV.2412.02595
https://doi.org/10.48550/ARXIV.2412.02595
https://doi.org/10.48550/arXiv.2309.02731
https://doi.org/10.48550/arXiv.2309.02731
https://doi.org/10.48550/arXiv.2309.02731
http://papers.nips.cc/paper_files/paper/2023/hash/7baa48bc166aa2013d78cbdc15010530-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/7baa48bc166aa2013d78cbdc15010530-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/7baa48bc166aa2013d78cbdc15010530-Abstract-Conference.html
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.48550/ARXIV.2306.07899
https://doi.org/10.48550/ARXIV.2306.07899
https://doi.org/10.48550/ARXIV.2306.07899
https://doi.org/10.48550/ARXIV.2306.07899
https://doi.org/10.48550/ARXIV.2306.07899
https://doi.org/10.48550/ARXIV.2212.03533
https://doi.org/10.48550/ARXIV.2212.03533
https://doi.org/10.48550/ARXIV.2212.03533
https://aclanthology.org/2024.eacl-long.83/
https://aclanthology.org/2024.eacl-long.83/
https://aclanthology.org/2024.eacl-long.83/
https://aclanthology.org/2025.genaidetect-1.27/
https://aclanthology.org/2025.genaidetect-1.27/
https://aclanthology.org/2025.genaidetect-1.27/
https://aclanthology.org/2025.genaidetect-1.27/
https://aclanthology.org/2025.genaidetect-1.27/
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663

Maurice Weber, Daniel Y. Fu, Quentin Anthony,1223
Yonatan Oren, Shane Adams, Anton Alexandrov,1224
Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Vir-1225
ginia Adams, Ben Athiwaratkun, Rahul Chalamala,1226
Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang,1227
Christopher Ré, Irina Rish, and Ce Zhang. 2024a.1228
Redpajama: an open dataset for training large lan-1229
guage models. In Advances in Neural Information1230
Processing Systems 38: Annual Conference on Neu-1231
ral Information Processing Systems 2024, NeurIPS1232
2024, Vancouver, BC, Canada, December 10 - 15,1233
2024.1234

Thomas Weber, Maximilian Brandmaier, Albrecht1235
Schmidt, and Sven Mayer. 2024b. Significant pro-1236
ductivity gains through programming with large lan-1237
guage models. Proc. ACM Hum. Comput. Interact.,1238
8(EICS):1–29.1239

Yutong Wu, Di Huang, Wenxuan Shi, Wei Wang,1240
Lingzhe Gao, Shihao Liu, Ziyuan Nan, Kaizhao1241
Yuan, Rui Zhang, Xishan Zhang, Zidong Du, Qi Guo,1242
Yewen Pu, Dawei Yin, Xing Hu, and Yunji Chen.1243
2024. Inversecoder: Self-improving instruction-1244
tuned code llms with inverse-instruct. Preprint,1245
arXiv:2407.05700.1246

Qizhe Xie, Minh-Thang Luong, Eduard H. Hovy, and1247
Quoc V. Le. 2020. Self-training with noisy student1248
improves imagenet classification. In 2020 IEEE/CVF1249
Conference on Computer Vision and Pattern Recog-1250
nition, CVPR 2020, Seattle, WA, USA, June 13-19,1251
2020, pages 10684–10695. Computer Vision Founda-1252
tion / IEEE.1253

Xiaodan Xu, Chao Ni, Xinrong Guo, Shaoxuan Liu,1254
Xiaoya Wang, Kui Liu, and Xiaohu Yang. 2025a.1255
Distinguishing llm-generated from human-written1256
code by contrastive learning. ACM Trans. Softw. Eng.1257
Methodol., 34(4).1258

Xiaodan Xu, Chao Ni, Xinrong Guo, Shaoxuan Liu,1259
Xiaoya Wang, Kui Liu, and Xiaohu Yang. 2025b.1260
Distinguishing llm-generated from human-written1261
code by contrastive learning. ACM Trans. Softw. Eng.1262
Methodol., 34(4).1263

I. Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar1264
Paluri, and Dhruv Mahajan. 2019. Billion-scale semi-1265
supervised learning for image classification. CoRR,1266
abs/1905.00546.1267

Xianjun Yang, Kexun Zhang, Haifeng Chen, Linda R.1268
Petzold, William Yang Wang, and Wei Cheng. 2023.1269
Zero-shot detection of machine-generated codes.1270
CoRR, abs/2310.05103.1271

14

http://papers.nips.cc/paper_files/paper/2024/hash/d34497330b1fd6530f7afd86d0df9f76-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/d34497330b1fd6530f7afd86d0df9f76-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/d34497330b1fd6530f7afd86d0df9f76-Abstract-Datasets_and_Benchmarks_Track.html
https://doi.org/10.1145/3661145
https://doi.org/10.1145/3661145
https://doi.org/10.1145/3661145
https://doi.org/10.1145/3661145
https://doi.org/10.1145/3661145
https://arxiv.org/abs/2407.05700
https://arxiv.org/abs/2407.05700
https://arxiv.org/abs/2407.05700
https://doi.org/10.1109/CVPR42600.2020.01070
https://doi.org/10.1109/CVPR42600.2020.01070
https://doi.org/10.1109/CVPR42600.2020.01070
https://doi.org/10.1145/3705300
https://doi.org/10.1145/3705300
https://doi.org/10.1145/3705300
https://doi.org/10.1145/3705300
https://doi.org/10.1145/3705300
https://doi.org/10.1145/3705300
https://arxiv.org/abs/1905.00546
https://arxiv.org/abs/1905.00546
https://arxiv.org/abs/1905.00546
https://doi.org/10.48550/ARXIV.2310.05103

Contents1272

1 Introduction 11273

2 Related Work 21274

2.1 AI-Generated Text Detection . . . 21275

2.2 AI-Generated Code Detection . . 21276

2.3 Adversarial Evasion of AI-1277

Generated Content Detectors . . . 31278

3 The DroidCollection Corpus 31279

3.1 Human-Authored Code Acquisition 31280

3.2 AI-Authored Code Generation . . 41281

3.3 Machine-Refined Data 41282

3.4 Varying Decoding Strategies . . . 51283

3.5 Data Filtering 51284

3.6 Comparing the Resulting Dataset1285

to Existing Ones 51286

4 Why Dataset Coverage Matters? 51287

5 Adversarial Samples 61288

6 Detector Training and Ablations 71289

7 Conclusion and Future Work 81290

A List Of Models Used 151291

B Dataset Creation and Statistics 151292

B.1 Inverse Instructions Setup 151293

B.2 DroidCollection-Personas cre-1294

ation 161295

B.3 Dataset Statistics 161296

C Detailed Architectural Ablations 171297

C.1 GCN Experiments 171298

C.2 CatBoost Experiments 171299

C.3 Does Structure-Based Late-Fusion1300

Improve Robustness? 171301

D DroidDetect Stress Tests 171302

D.1 Input Length Stress Tests 171303

D.2 Additional OOD Stress Testing . . 171304

E Qualitative Examples 191305

E.1 Inverse Instructions Examples . . 191306

E.2 Dataset Samples 191307

A List Of Models Used1308

Table 7 illustrates that we are using a diverse set of1309

models from 11 model families, combining both1310

instruct and base versions of models. We are also1311

covering a diverse set of sizes: from 2B up to 72B,1312

Model Family Model

Yi

Yi-Coder-9B

Yi-Coder-9B-Chat

Yi-Coder-1.5B-Chat

Yi-Coder-1.5B

GPT
GPT-4o-mini

GPT-4o

Qwen

Qwen2.5-Coder-7B

Qwen2.5-Coder-7B-Instruct

Qwen2.5-Coder-1.5B-Instruct

Qwen2.5-Coder-32B-Instruct

Qwen2.5-72B-Instruct

Qwen2.5-Coder-1.5B

Qwen2.5-Coder-14B-Instruct

Gemma

codegemma-7b-it

codegemma-7b

codegemma-2b

CodeLlama

CodeLlama-70b-Instruct-hf
CodeLlama-34b-Instruct-hf

CodeLlama-7b-hf

Deepseek

deepseek-coder-6.7b-instruct

deepseek-coder-6.7b-base

deepseek-coder-1.3b-instruct

deepseek-coder-1.3b-base

Granite
granite-8b-code-instruct-4k

granite-8b-code-base-4k

Llama

Llama-3.1-8B-Instruct

Llama-3.2-3B

Llama-3.1-70B-Instruct

Llama-3.3-70B-Instruct

Llama-3.3-70B-Instruct-Turbo

Llama-3.2-1B

Llama-3.1-8B

Phi

Phi-3-small-8k-instruct

Phi-3-mini-4k-instruct

phi-4

Phi-3-medium-4k-instruct

phi-2

Phi-3.5-mini-instruct

Mistral Mistral-Small-24B-Instruct-2501

StarCoder

starcoder2-15B

starcoder

starcoder2-7b

starcoder2-3b

Table 7: Model families and their selected models used
in DroidCollection.

and use both open-weights and API-based models. 1313

1314

B Dataset Creation and Statistics 1315

B.1 Inverse Instructions Setup 1316

For inverse instruction creation, we applied 4 1317

LLMs: GPT-4o-mini, Llama3.1 8B, Qwen2.5 7B, 1318

and Phi-3 small (7B). These models were given the 1319

code, and they were asked to generate their sum- 1320

mary and a prompt which could result in an LLM 1321

generating it. The prompt is given on Listing 1. 1322

15

Listing 1: Prompt for code analysis and LLM prompt
generation

1323
Code Analysis and LLM Prompt1324

Generation1325
1326

You are an experienced software engineer1327
using `{language}` programming1328

language skilled in analyzing ,1329
summarizing , and writing code. When1330
provided with code , you break it1331
down into its constituent parts ,1332
summarize its functionality1333
concisely , and create prompts to1334
guide an LLM in replicating similar1335
outputs.1336

1337
Your Tasks:1338
1. **Code Summary **: Analyze the given1339

code and summarize its purpose ,1340
logic , and functionality. Enclose1341
this summary within [SUMMARY] and [/1342
SUMMARY] tags.1343

2. ** Prompt Creation **: Write a clear1344
and specific LLM prompt that , if1345
provided to a language model , would1346
generate code with similar1347
functionality and structure. Enclose1348
the LLM prompt within [LLM_PROMPT]1349

and [/ LLM_PROMPT] tags.1350
1351

Interaction will be in the following way1352
:1353

1354
INPUT:1355
[CODE]1356
{{code}}1357
[/CODE]1358

1359
OUTPUT:1360
[SUMMARY]1361
{{ summary }}1362
[/ SUMMARY]1363

1364
[LLM_PROMPT]1365
{{ prompt }}1366
[/ LLM_PROMPT]13671368

Examples of codes, and corresponding inverse1369

instructions are in Tables 13 to 15.1370

B.2 DroidCollection-Personas creation1371

To generate DroidCollection-Personas, we1372

started by identifying the main characteristics of1373

a programmer. Our final list contains 9 features:1374

Primary Programming Language, Preferred Frame-1375

works, Field of Work, Code Commenting Style,1376

Error-Proneness, Debugging Strategies, Code Aes-1377

thetics, Documentation Habits, Function Length1378

Preference. The possible values for each feature1379

are listed in Table 8.1380

Then we did a Cartesian product to combine1381

all the possible combinations of these properties,1382

and started generating the tasks, which could be1383

performed by this programmer. For task generation,1384

we used the GPT-4o model, and prompted it in the 1385

way shown in Listing 2. 1386

Listing 2: Prompt for Persona’s task generation
1387

I have the following description 1388

of a programmer: 1389

{description} 1390

Write a non -trivial programming 1391

task 1392

which matches what this person 1393

probably does at work , 1394

you can ignore some of the person 1395

's traits. Return only the 1396

task. 13971398

After the tasks were generated, we deduplicated 1399

them using MinHash with the same parameters as 1400

for the dataset filtering. After that, the resulting 1401

tasks were used for code generation.

Property Name Values / Options

Primary Programming Language
Python, Java, JavaScript, PHP,
C, C#, C++, Go, Ruby, Rust

Field of Work

Web Development, AI/ML,
Game Development,
System Programming, Embedded
Systems, Data Engineering,
Research, Distributed
Systems Developer, IoT

Code Commenting Style Concise, Detailed, Minimal
Error-Proneness High, Medium, Low
Debugging Strategies Print Statements, Debugger, Log-

ging
Code Aesthetics Highly Readable, Functional,

Minimalist, Hard to Comprehend
Documentation Habits Detailed, Minimal, Occasional
Function Length Preference Short, Medium, Long

Table 8: List of attributes and characteristics in
DroidCollection-Personas.

1402

B.3 Dataset Statistics 1403

In this section, we present key statistics of our 1404

dataset and compare them with existing alterna- 1405

tives. As shown in Table 9, our dataset includes a 1406

broader class distribution and shows greater diver- 1407

sity in code structure, as reflected by higher AST 1408

depth percentiles and longer line lengths. It sug- 1409

gests that our dataset captures more complex and 1410

varied code patterns, making it a more challeng- 1411

ing and real-life-oriented benchmark for evaluating 1412

AI-generated code detection models. The impor- 1413

tance of varying code lengths and difficulties is also 1414

shown in Appendix D.1. We also show the num- 1415

ber of samples per generator, and programming 1416

language (not considering the datasets with <= 2 1417

languages or generators). Several qualitative exam- 1418

16

ples of samples belonging to different classes in1419

our dataset are shown in Tables 16 and 17.1420

C Detailed Architectural Ablations1421

C.1 GCN Experiments1422

We used a simple 4-layer Graph Convolutional Net-1423

work (GCN) to evaluate how effectively a GCN can1424

capture structural and semantic features of code.1425

As input, we utilised AST representations of the1426

code, treating them as graphs. To assess the impact1427

of node-level information, we experimented with1428

three types of node features:1429

• Dummy features – no meaningful features1430

were provided at the node level;1431

• One-hot encoded node types – encoding the1432

syntactic type of each AST node;1433

• Node content embeddings – textual embed-1434

dings derived from the string content of each1435

node. To reduce computational overhead,1436

we used the HashingVectorizer, which con-1437

verts strings into sparse vectors by hashing1438

tokens to fixed-dimensional indices without1439

maintaining a vocabulary in memory.1440

As shown in Table 11, features based on the1441

textual content of the node yielded the best perfor-1442

mance, showing that the semantic information is1443

important in distinguishing between human-written1444

and AI-generated code.1445

C.2 CatBoost Experiments1446

Following the experimental methodology of Idialu1447

et al. (2024) and Orel et al. (2025), we computed1448

733 statistical features that capture various struc-1449

tural properties of code. These include metrics1450

such as the density of specific AST node types, av-1451

erage line length, whitespace ratio, and the number1452

of empty lines, code maintainability index, among1453

others.1454

These features were used to train CatBoost clas-1455

sifiers with automatically tuned hyperparameters.1456

Figure 1 shows the top unique features ranked1457

by SHAP (SHapley Additive exPlanations) val-1458

ues (Lundberg and Lee, 2017). Interestingly, the1459

most informative features vary across the 2-, 3-,1460

and 4-class classification tasks, suggesting that dif-1461

ferent granularities of classification are dependent1462

on different aspects of code structure.1463

Nonetheless, some patterns persist across all se-1464

tups. In particular, features related to the length1465

of identifiers (variable names) and the density of1466

comments consistently present as strong indica-1467

tors for distinguishing AI-generated/Refined from 1468

human-written code. 1469

C.3 Does Structure-Based Late-Fusion 1470

Improve Robustness? 1471

To decide whether fusion is helpful for improving 1472

the detection, we combined the GCN from Ap- 1473

pendix C.1 with our text-only classifier using early 1474

fusion of embeddings. We used OOD-based gen- 1475

eralisation, and compared how well the models 1476

perform for 2, 3, and 4-class classification in OOD 1477

settings (since when trained directly, it is hard to 1478

measure the significance of the performance dif- 1479

ference), and then compared in which scenarios 1480

each method provides a better weighted F1-score. 1481

Table 12 shows that there is no clear trend of one 1482

approach being better than another: in the binary 1483

classification task, there are more ties, fusion has 1484

a higher win-rate in 4-class classification, while 1485

the model without fusion performs best in the 3- 1486

class case. Then we compared how the difference 1487

in F1-scores between models compares to the in- 1488

terquartile range within the model’s predictions. As 1489

shown in Figure 2, the interquartile range is much 1490

larger than the model difference, so both models 1491

with and without fusion perform nearly equally. 1492

D DroidDetect Stress Tests 1493

D.1 Input Length Stress Tests 1494

Table 10 shows that while other approaches seem 1495

to work best on short code snippets, probably 1496

because they were trained on shorter code sam- 1497

ples (mainly functions) as shown in Table 9, our 1498

models actually get better with longer code se- 1499

quences. This matters because real code is not 1500

usually just a few lines long. Another important 1501

thing is how stable our models remain across dif- 1502

ferent input lengths. When we cut the input from 1503

512 to 128 tokens, DroidDetect-Base only drops 1504

7.28 F1-score points (from 99.18 to 91.90), and 1505

DroidDetect-Large drops just 4.34 points (from 1506

99.25 to 94.91). This consistency suggests the gen- 1507

eralisability of our models to various inputs. 1508

D.2 Additional OOD Stress Testing 1509

To evaluate the generalisation ability of our models, 1510

we tested them on additional open-source datasets 1511

containing AI-generated code. Specifically, we 1512

sampled 15,000 examples from the Swallow-Code 1513

dataset (Fujii et al., 2025), a high-quality collec- 1514

tion of Python code from The Stack v2 (Lozhkov 1515

17

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.HashingVectorizer.html

Metric CoDet-M4 CodeGPTSensor GptSniffer DroidCollection

AST@75 15.00 12.00 15.00 15.00

AST@90 18.00 15.00 18.00 18.00

AST@99 23.00 20.00 23.15 25.00

Line@75 90.00 93.00 99.00 107.00

Line@90 113.00 112.00 117.00 135.00

Line@99 228.00 169.00 153.60 314.00

Class Distribution

AI - 50% AI - 50% AI - 90% AI - 25%

Human - 50% Human - 50% Human - 10% Human - 47%

Refined - 13%

Adv. - 15%

Avg. # of samples per language 166,850 - - 148,491

Avg. # of samples per generator 50,866 - - 8,458

Table 9: Comparison of AST depth percentile, line length percentile, class distribution, and average samples per
language/generator between DroidCollection and existing datasets.

Figure 1: Feature importances

Model Truncation Length

128 256 512

GptSniffer 57.05 57.20 56.64

M4 59.69 53.10 51.13

CoDet-M4 72.28 70.62 61.68

DroidDetect-Base 91.90 96.25 99.18

DroidDetect-Large 94.91 98.31 99.25

Table 10: Impact of input length truncation (measured
using the ModernBERT tokeniser) on weighted F1-
scores for binary classification. The most competitive
numbers are highlighted in bold.

et al., 2024) synthetically refined by LLaMA3.3-1516

70B-Instruct model. This dataset was concurrently1517

released with our work and is highly unlikely to be1518

part of the training distribution of any of our mod-1519

els, thus serving as a strong test for our models’1520

recall on machine-rewritten code.1521

We also randomly selected 15,000 samples per1522

programming language from The Heap (Katzy1523

et al., 2025) dataset. This dataset contains illiber-1524

ally licensed code with metadata about its presence1525

in existing code-retraining corpora. We specifi-1526

cally filter for samples that are not exact- or near-1527

duplicates with any sample in major pre-training1528

Features 2-class 3-class 4-class

Dummy 60.02 39.27 34.17

Node Type 50.12 39.54 33.12

Text 76.67 59.10 51.14

Table 11: Comparison of different feature types used
as node-level features in a GCN, based on the weighted
F1-score on the validation set. The most competitive
numbers are highlighted in bold.

Classification
Tie With Without

(%) Fusion (%) Fusion (%)

2-Class 60.0 40.0 0.0

3-Class 40.0 20.0 40.0

4-Class 20.0 60.0 20.0

Table 12: Comparative task-level win-rates of
DroidDetect with and without GCN late-fusion ag-
gregated over OOD classification tasks.

corpora (Li et al., 2023c; Lozhkov et al., 2024; We- 1529

ber et al., 2024a). Jointly, these ensure that our 1530

curated split is extremely unlikely to be seen by 1531

models during pre-training, thus constituting a stiff 1532

test of our detectors’ recall on human-written code. 1533

Both DroidDetect-Base and 1534

DroidDetect-Large models were tested on 1535

these datasets. On Swallow-Code, they achieved 1536

18

Figure 2: Weighted F1-score comparison between mod-
els with and without fusion

recall scores of 98.95% and 99.11% respectively.1537

On The Heap, DroidDetect-Base reached1538

94.14%, while DroidDetect-Large achieved1539

96.28%. It shows that the models trained on our1540

dataset can also work on other datasets robustly.1541

E Qualitative Examples1542

E.1 Inverse Instructions Examples1543

In Tables 13 to 15 we show examples of code with1544

the corresponding inverse instructions.1545

E.2 Dataset Samples1546

In this appendix (Tables 16 and 17), we provide a1547

small portion of code per class, written by differ-1548

ent models in different languages. To check the1549

diversity of our dataset, it is suggested to check the1550

release repository7.1551

7The release repository will be made public on acceptance.

19

Language Instruction Code
C++

Wri t e a C− s t y l e f u n c t i o n t o
r e t r i e v e t h e bus speed o f a

s p e c i f i c dev i ce , g i v e n i t s
UART' s baud c l o c k d i v i s o r ,
ba se baud c lock , and t ime

base r e a d i n g f u n c t i o n a l i t y .
The f u n c t i o n s h o u l d s e t

t h e DLAB, r e a d t h e DLL and
DLM, c a l c u l a t e t h e baud
c l o c k d i v i s o r , u p d a t e t h e
DLAB, and t h e n loop t o f i n d

t h e f i r s t edge o f t h e baud
c lock , g e t t h e s t a r t i n g

and e nd in g t ime base v a l u e s
, and f i n a l l y compute t h e
bus speed from t h e s e v a l u e s
.

static unsigned long __init
prpmc750_get_bus_speed(void)
{
unsigned long tbl_start, tbl_end;
unsigned long current_state, old_state, bus_speed;
unsigned char lcr, dll, dlm;
int baud_divisor, count;

/* Read the UART's baud clock divisor */
lcr = readb(PRPMC750_SERIAL_0_LCR);
writeb(lcr | UART_LCR_DLAB, PRPMC750_SERIAL_0_LCR);
dll = readb(PRPMC750_SERIAL_0_DLL);
dlm = readb(PRPMC750_SERIAL_0_DLM);
writeb(lcr & ~UART_LCR_DLAB, PRPMC750_SERIAL_0_LCR);
baud_divisor = (dlm << 8) | dll;

/*
* Use the baud clock divisor and base baud clock
* to determine the baud rate and use that as
* the number of baud clock edges we use for
* the time base sample. Make it half the baud
* rate.
*/
count = PRPMC750_BASE_BAUD / (baud_divisor * 16);

/* Find the first edge of the baud clock */
old_state = readb(PRPMC750_STATUS_REG) & PRPMC750_BAUDOUT_MASK;
do {
current_state = readb(PRPMC750_STATUS_REG) &
PRPMC750_BAUDOUT_MASK;
} while(old_state == current_state);

old_state = current_state;

/* Get the starting time base value */
tbl_start = get_tbl();

/*
* Loop until we have found a number of edges equal
* to half the count (half the baud rate)
*/
do {
do {
current_state = readb(PRPMC750_STATUS_REG) &
PRPMC750_BAUDOUT_MASK;
} while(old_state == current_state);
old_state = current_state;
} while (--count);

/* Get the ending time base value */
tbl_end = get_tbl();

/* Compute bus speed */
bus_speed = (tbl_end-tbl_start)*128;

return bus_speed;
}

Python

G e n e r a t e Python code t h a t
p e r f o r m s d a t a r e a d i n g ,
t r imming , and d a t e t i m e
c o n v e r s i o n f o r a s e t o f
f i l e s l o c a t e d i n a
s p e c i f i e d d i r e c t o r y . The
f i l e s s h o u l d be named i n a
p a t t e r n `
met_sum_ins i tu_1_obop_hour_20
<Year > . t x t ` , and t h e d a t a
s h o u l d be tr immed t o remove

i r r e l e v a n t columns , h a n d l e
m i s s i n g v a l u e s , and c r e a t e
a d a t e t i m e column u s i n g

t h e e x i s t i n g year , month ,
day , and hour columns . The
r e s u l t i n g d a t a s h o u l d be
r e t u r n e d as a p r o c e s s e d
pandas DataFrame

def metTrim():
---- initial reading of data
root = r'C:\Users\ARL\Desktop\MetData'
ext = list(range(12, 20)) # yearly extensions

colnames = ['na', 'yr', 'mo', 'dy', 'hr', 'dir', 'spd', 'steady', 'na', 'na', 'na', 'na', 'na', 'na']
met = pd.DataFrame(columns=colnames) # preallocate df
for yr in ext:
read in data
data = pd.read_csv(root + r'\met_sum_insitu_1_obop_hour_20{}.txt'.format(yr), delim_whitespace=True,
header=None)
data.columns = colnames # apply col names
met = met.append(data) # append to list
print('Data Imported')

---- trimming data
met = met.drop('na', axis=1) # drop na cols
met = met.replace(-999.9, np.nan) # turn missing val to nan
met = met.replace(-9, np.nan)
met = met.replace(-999, np.nan)
met = met.replace(-99.9, np.nan)
met = met.dropna(axis=0, how='any') # remove rows with nan vals

---- convert date to datetime
metInt = met.applymap(int) # make sure values are ints
dates = createDatetime(metInt['yr'].values,
metInt['mo'].values,
metInt['dy'].values,
metInt['hr'].values)

met['datetime'] = dates # add it as a new column
met = met.drop(['yr', 'mo', 'dy', 'hr'], axis=1) # drop old date columns

return met

Table 13: Code and Corresponding Inverse Instructions (C++, Python)

20

Language Instruction Code
Java

Given a f i l e wi th b log e n t r i e s
and t h e i r r e s p e c t i v e d a t e s

, w r i t e a Java method t o
r e a d t h e f i l e , s o r t t h e
e n t r i e s i n r e v e r s e
c h r o n o l o g i c a l o r d e r , and
s e p a r a t e them i n t o l i s t s
f o r p u b l i s h e d and
u n p u b l i s h e d e n t r i e s . The
method s h o u l d h a n d l e
v a r y i n g f i l e e x i s t e n c e
c o n d i t i o n s and l o g e r r o r s
a c c o r d i n g l y . Assume t h e
b log e n t r i e s a r e s t o r e d i n
l i n e s o f t h e f i l e , w i th
each e n t r y c o n s i s t i n g o f a
d a t e i n ' yyyyMMdd ' f o r m a t
f o l l o w e d by t h e e n t r y ' s ID .

private void readIndex(boolean published) {
File indexFile;
if (published) {
indexFile = new File(blog.getIndexesDirectory(), "blogentries-published.index");
} else {
indexFile = new File(blog.getIndexesDirectory(), "blogentries-unpublished.index");
}

if (indexFile.exists()) {
try {
BufferedReader reader = new BufferedReader(new FileReader(indexFile));
String indexEntry = reader.readLine();
while (indexEntry != null) {
indexEntries.add(indexEntry);

// and add it to the internal memory structures
Date date = new Date(Long.parseLong(indexEntry));
Day day = blog.getBlogForDay(date);

if (published) {
publishedIndexEntries.add(indexEntry);
day.addPublishedBlogEntry(indexEntry);
} else {
unpublishedIndexEntries.add(indexEntry);
day.addUnpublishedBlogEntry(indexEntry);
}

indexEntry = reader.readLine();
}

reader.close();
} catch (Exception e) {
log.error("Error while reading index", e);
}
}

Collections.sort(indexEntries, new ReverseBlogEntryIdComparator());
Collections.sort(publishedIndexEntries, new ReverseBlogEntryIdComparator());
Collections.sort(unpublishedIndexEntries, new ReverseBlogEntryIdComparator());
}

JavaScript

G e n e r a t e a J a v a S c r i p t f u n c t i o n
named Teth , which i s a

c o n s t r u c t o r f u n c t i o n ,
o u t s i d e o f i t s p a r e n t
f u n c t i o n . Te th s h o u l d
i n h e r i t a l l p r o p e r t i e s and
methods from i t s p a r e n t
f u n c t i o n and add a new
method − g e t C h a i n . Th i s
method s h o u l d r e t u r n t h e
s t r i n g " t e t h " . The Teth
f u n c t i o n s h o u l d a t t a c h i t s
p r o t o t y p e t o i t s p a r e n t ' s
p r o t o t y p e , moving i t one
l e v e l away . The code s h o u l d

u t i l i z e t h e Node . j s
e n v i r o n m e n t and s h o u l d
i n c l u d e d o c u m e n t a t i o n t o
d e s c r i b e t h e p u r p o s e o f t h e

f u n c t i o n and i t s newly
added method .

var Btc = require('./btc');
var bitcoin = require('bitcoinjs-lib');
var _ = require('lodash');

var Tbtc = function() {
// this function is called externally from BaseCoin
// replace the BaseCoin prototype with the local override prototype, which inherits from BaseCoin
// effectively, move the BaseCoin prototype one level away
this.__proto__ = Tbtc.prototype;
this.network = bitcoin.networks.testnet;
};

Tbtc.prototype.__proto__ = Btc.prototype;

Tbtc.prototype.getChain = function() {
return 'tbtc';
};

module.exports = Tbtc;

Table 14: Code and Corresponding Inverse Instructions (Java, JavaScript)

21

Language Instruction Code
Go

Wri t e a Go f u n c t i o n t h a t
c r e a t e s a s e t o f c o n s t a n t
l a b e l s f o r Prometheus
m e t r i c s based on I S I
c l u s t e r s e t t i n g s .

The f u n c t i o n s h o u l d check i f a
s i t e has been s p e c i f i e d

f o r t h e I S I c l u s t e r and
c r e a t e l a b e l s w i th bo th t h e

c l u s t e r name and s i t e name
i f a v a i l a b l e .

Otherwise , i t s h o u l d c r e a t e
l a b e l s w i th on ly t h e
c l u s t e r name .

I n c l u d e a l o g s t a t e m e n t t o
d i s p l a y t h e c r e a t e d l a b e l s .

func CreateConstLabels() error {
//Only create a const label for site if a site has been specified.
if IsiCluster.Site != "" {
ConstLabels = prometheus.Labels{"cluster": IsiCluster.Name, "site": IsiCluster.Site}
} else {
ConstLabels = prometheus.Labels{"cluster": IsiCluster.Name}
}
log.Debugf("ConstLables are %v", ConstLabels)
return nil
}

C#

G e n e r a t e C# code t h a t p rompts
t h e u s e r f o r a s t r i n g and
t h e n c he ck s i f i t i s a
p a l i n d r o m e by compar ing
c h a r a c t e r s from t h e s t a r t
and end of t h e s t r i n g ,
moving t o w a r d s t h e c e n t e r .
I f t h e c h a r a c t e r s match ,
p r i n t a message i n d i c a t i n g
t h e y a r e e q u a l ; o t h e r w i s e ,
p r i n t a message i n d i c a t i n g
t h e y a r e n o t e q u a l . The
code s h o u l d h a n d l e s t r i n g s
o f any l e n g t h and i n p u t
u s e r c h a r a c t e r s u n t i l t h e
s t r i n g l e n g t h i s r e a c h e d .

using System;

namespace _76
{
class Program
{
static void Main(string[] args)
{
int cont = 0;

Console.WriteLine("Quantos caracteres seu palindromo tem?");
int max = int.Parse(Console.ReadLine());

string [] caractere = new string [max];

for (cont = 0; cont < max; cont++)
{
Console.WriteLine("Digite" + (cont + 1) + " caracteres da palavra");
caractere[cont] = Console.ReadLine();
}

int inverso = cont;

for (cont = 0; cont < max; cont++)
{
if (caractere[cont] == caractere[inverso])
{
Console.WriteLine("O " + (cont + 1) + " caractere " + (inverso + 1) + " caractere");
}
Console.WriteLine("O " + (cont + 1) + " caractere " + (inverso + 1) + " caractere ");
inverso--;
}
}
}
}

Table 15: Code and Corresponding Inverse Instructions (Go, C#)

22

Language Class Generator Code

Python
LLM-Refined
(re-written)

Qwen2.5-72B

from collections import defaultdict
class Solution:
MAXPRIME = 100001
isPrime = [0] * (MAXPRIME + 1)
isPrime[0] = isPrime[1] = -1
def __init__(self):
for i in range(2, MAXPRIME):
if isPrime[i] == 0:
isPrime[i] = i
for multiple in range(i * i, MAXPRIME + 1, i):
if isPrime[multiple] == 0:
isPrime[multiple] = i
def largestComponentSize(self, A):
label = defaultdict(int)
roots = {}
def find_root(key):
if key not in roots:
roots[key] = key
if roots[key]!= key:
roots[key] = find_root(roots[key])
return roots[key]
def merge_roots(k1, k2):
r1, r2 = find_root(k1), find_root(k2)
if r1!= r2:
r1, r2 = min(r1, r2), max(r1, r2)
label[r1] += label[r2]
roots[r2] = r1
return r1
for x in A:
root_id = None
prime_factors = set()
while self.isPrime[x]!= -1:
p = self.isPrime[x]
root_id = find_root(p) if root_id is None else merge_roots(root_id, p)
x //= p
label[root_id] -= 1
return -min(label.values())

C Human-written Human

int
pack_white(char *ptr)
{
int cnt = 0;
char *tptr, ch;
if (ptr == NULL)
return (0);
tptr = ptr;
while (isspace(*tptr))
tptr++;
for (;;) {
while ((ch = *tptr) != '\0' && !isspace(ch)) {
*ptr++ = ch;
tptr++;
}
while (isspace(*tptr))
tptr++;
if (*tptr == '\0')
break;
*ptr++ = ' ';
cnt++;
}
*ptr = '\0';
return (cnt);
}

Table 16: Code samples by different models (Part 1)

23

Language Class Generator Code
Go Adversarial Qwen2.5-Coder-7B-Instruct

package main
import (
"context"
"fmt"
"golang.org/x/sync/errgroup"
)
func parallelExecute(ctx context.Context, runners ...func(context.Context) error) error {
g := new(errgroup.Group)
for _, runner := range runners {
runner := runner
g.Go(func() error {
return runner(ctx)
})
}
return g.Wait()
}
func main() {
ctx := context.Background()
runners := []func(context.Context) error{
func(ctx context.Context) error {
select {
case <-ctx.Done():
return ctx.Err()
case <-time.After(2 * time.Second):
return fmt.Errorf("runner 1 error")
}
},
func(ctx context.Context) error {
select {
case <-ctx.Done():
return ctx.Err()
case <-time.After(3 * time.Second):
return fmt.Errorf("runner 2 error")
}
},
}
err := parallelExecute(ctx, runners...)
if err != nil {
fmt.Println("First error encountered:", err)
}
}

JavaScript AI-Generated Yi-Coder-9B

class Vector2D {
#x;
#y;
constructor(x, y) {
this.#x = x;
this.#y = y;
}
setX(x) {
this.#x = x;
}
setY(y) {
this.#y = y;
}
getX() {
return this.#x;
}
getY() {
return this.#y;
}
add(vector) {
this.#x += vector.getX();
this.#y += vector.getY();
return this;
}
compare(vector) {
return this.#x === vector.getX() && this.#y === vector.getY();
}
}

Table 17: Code samples by different models (Part 2)

24

	Introduction
	Related Work
	AI-Generated Text Detection
	AI-Generated Code Detection
	Adversarial Evasion of AI-Generated Content Detectors

	The DroidCollection Corpus
	Human-Authored Code Acquisition
	AI-Authored Code Generation
	Machine-Refined Data
	Varying Decoding Strategies
	Data Filtering
	Comparing the Resulting Dataset to Existing Ones

	Why Dataset Coverage Matters?
	Adversarial Samples
	Detector Training and Ablations
	Conclusion and Future Work
	List Of Models Used
	Dataset Creation and Statistics
	Inverse Instructions Setup
	DroidCollection-Personas creation
	Dataset Statistics

	Detailed Architectural Ablations
	GCN Experiments
	CatBoost Experiments
	Does Structure-Based Late-Fusion Improve Robustness?

	DroidDetect Stress Tests
	Input Length Stress Tests
	Additional OOD Stress Testing

	Qualitative Examples
	Inverse Instructions Examples
	Dataset Samples

