
Positive-unlabeled AUC Maximization under Covariate Shift

Atsutoshi Kumagai 1 Tomoharu Iwata 1 Hiroshi Takahashi 1

Taishi Nishiyama 1 Kazuki Adachi 1 2 Yasuhiro Fujiwara 1

Abstract
Maximizing the area under the receiver operating
characteristic curve (AUC) is a standard approach
to imbalanced binary classification tasks. Exist-
ing AUC maximization methods typically assume
that training and test distributions are identical.
However, this assumption is often violated due to
a covariate shift, where the input distribution can
vary but the conditional distribution of the class
label given the input remains unchanged. The
importance weighting is a common approach to
the covariate shift, which minimizes the test risk
with importance-weighted training data. How-
ever, it cannot maximize the AUC. In this paper,
to achieve this, we theoretically derive two esti-
mators of the test AUC risk under the covariate
shift by using positive and unlabeled (PU) data in
the training distribution and unlabeled data in the
test distribution. Our first estimator is calculated
from importance-weighted PU data in the train-
ing distribution, and the second one is calculated
from importance-weighted positive data in the
training distribution and unlabeled data in the test
distribution. We train classifiers by minimizing a
weighted sum of the two AUC risk estimators that
is approximately equivalent to the test AUC risk.
Unlike the existing importance weighting, our
method does not require negative labels and class-
priors. We experimentally show the effectiveness
of our method with six real-world datasets.

1. Introduction
In many real-world binary classification tasks such as cyber
security (Mirsky et al., 2018; Bagui & Li, 2021), medical
care (Yang et al., 2021), and product inspection (Park et al.,
2016), class-imbalance often occurs where positive data is

1NTT Corporation, Japan 2Yokohama National Univer-
sity, Japan. Correspondence to: Atsutoshi Kumagai <atsu-
toshi.kumagai@ntt.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

much smaller than negative data (Johnson & Khoshgoftaar,
2019). In this situation, classification accuracy, which is the
standard performance measure for ordinary classification,
is not a suitable measure (Ueda & Fujino, 2018; Yang &
Ying, 2022). Instead, the area under the receiver operating
characteristic curve (AUC) is widely used (Bradley, 1997;
Huang & Ling, 2005; McDermott et al., 2024). The AUC is
the probability that a classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative
one (Yang & Ying, 2022). Thanks to the nature of the
ranking, the AUC can adequately measure the classifier’s
performance even with imbalanced data. By maximizing
the AUC, we can learn accurate classifiers from imbalanced
data (Brefeld et al., 2005; Yang & Ying, 2022; Ying et al.,
2016; Liu et al., 2020; Yuan et al., 2021a).

Existing AUC maximization methods usually assume that
training and test distributions are identical. However, this
assumption is often violated in practice due to distribution
shifts. This paper considers a covariate shift, where the in-
put distribution can vary but the conditional distribution of
the class label given the input remains unchanged between
training and test stages (Shimodaira, 2000). The covariate
shift is the most common distribution shift (He et al., 2023)
and often occurs in imbalanced classification tasks. For
example, in medical care, the distribution of patients (input
instances) can vary due to the differences in hospitals and
measurement instruments, even when the conditional dis-
tribution of the class label given the input does not change
(Matsui et al., 2019). In cyber security, attackers rapidly
generate new attacks (input instances), and thus the input
distribution can vary over time (Kumagai & Iwata, 2016).

When labeled positive and negative data in the training
distribution and unlabeled data in the test distribution are
available, the covariate shift on ordinary classification can
be alleviated using the widely used importance weighting
framework (Sugiyama et al., 2012; Lu et al., 2022). It first
estimates importance weights that are the ratio between
training and test input densities and then learns classifiers
by minimizing the importance-weighted empirical training
risk that is approximately equivalent to the test risk. How-
ever, it is not designed for AUC maximization. In addition,
labeled negative data in the training distribution are often
difficult to collect in some applications. For example, in

1

Positive-unlabeled AUC Maximization under Covariate Shift

cyber security, although some malicious data (positive data)
can be collected from public sources such as blocklists, be-
nign data (negative data) are often unavailable due to privacy
reasons, and identifying benign data within given unlabeled
data requires a high level of expertise (Mirsky et al., 2018;
Sharafaldin et al., 2018). Although an importance weight-
ing method (Sakai & Shimizu, 2019) does not use labeled
negative data exceptionally, it cannot maximize the AUC.

In this paper, we propose a method for maximizing the AUC
under the covariate shift by using labeled positive and un-
labeled (PU) data in the training distribution and unlabeled
data in the test distribution. On the basis of the importance
weighting, we theoretically derive two estimators of the
AUC risk on the test distribution. The first one is calcu-
lated from importance-weighted PU data in the training
distribution. While this estimator is effective, unlabeled
data in the test distribution are only used for estimating
importance weights and are not directly used in classifier
learning, even if they have useful information. This draw-
back is common in ordinary importance weighting methods
(Sugiyama & Kawanabe, 2012; Fang et al., 2020; Sakai &
Shimizu, 2019). The second estimator is calculated from
importance-weighted positive data in the training distribu-
tion and unlabeled data in the test distribution. This estima-
tor directly uses unlabeled data in the test distribution for
classifier learning. Our loss function for classifier learning
is a weighted sum of these two AUC risk estimators that
is also approximately equivalent to the test AUC risk. By
using this loss, we can directly use all available data in our
setting for classifier learning. Moreover, unlike the existing
method (Sakai & Shimizu, 2019), our method does not re-
quire class-priors for training, which is beneficial since they
are generally difficult or impossible to estimate (Zhao et al.,
2023; Yao et al., 2021).

Although we can learn classifiers by minimizing the loss,
the importance weights are difficult to estimate, especially
when using complex models such as neural networks or
complex data such as image data (Fang et al., 2020; Kato
& Teshima, 2021; Rhodes et al., 2020). Thus, the above
two-step importance weighting often does not work well
in such cases. To deal with this problem, following recent
works (Fang et al., 2020; 2023), we use a dynamic approach
that iterates the importance weight estimation and classifier
learning while sharing a neural network for feature extrac-
tion. By training the shared feature extractor with simpler
classifier learning, the importance weights can be estimated
more easily; the classifier learning can be performed without
biases by using the estimated importance weights.

Our main contributions are as follows:

• We propose a novel and practical problem setting,
where the aim is to maximize the AUC under the co-
variate shift with PU data in the training distribution

and unlabeled data in the test distribution.

• We theoretically derive two estimators of the test AUC
risk under our problem setting, which can be used for
classifier learning without class-priors.

• We develop a dynamic approach for the importance
weighting with the derived AUC risk estimators.

• We experimentally show that the proposed method
outperforms various existing methods with real-world
datasets.

2. Related Work
Many AUC maximization methods have been proposed
(Brefeld et al., 2005; Yang & Ying, 2022; Ying et al., 2016;
Liu et al., 2020; Yuan et al., 2021a). As reported in pre-
vious studies (Yuan et al., 2021a;b; Fujino & Ueda, 2016;
Wang et al., 2023), they often outperform other methods
for imbalanced classification such as class balanced loss
(Charoenphakdee et al., 2019), focal loss (Lin et al., 2017),
or sampling-based methods (Chawla et al., 2002; Menardi &
Torelli, 2014). However, these AUC maximization methods
require labeled positive and negative data and assume that
the training and test distributions are identical. Thus, they
are inappropriate for our problem setting where there are no
labeled negative data and the covariate shift occurs.

Covariate shift adaptation methods attempt to learn accurate
models under the covariate shift by using unlabeled data in
the test distribution and labeled data in the training distri-
bution (Pan & Yang, 2009; Sugiyama & Kawanabe, 2012).
The importance weighting is a representative approach for
the covariate shift (Sugiyama & Kawanabe, 2012). This
approach first estimates importance weights and then mini-
mizes the importance-weighted empirical training risk. Al-
though this two-step approach is theoretically sound, it often
does not work well for complex models or data (Fang et al.,
2020; 2023). To overcome this difficulty, Fang et al. (2020;
2023) have recently proposed a dynamic approach that iter-
ates importance weight estimation and classifier learning,
which enables the importance weighting to work well in
such difficult cases. Our method also uses the dynamic
approach. Another approach is to learn invariant feature
representations by minimizing the discrepancy of the fea-
tures between the training and test distributions (Long et al.,
2015; Sun et al., 2017; 2016; Ganin & Lempitsky, 2015;
Kumagai & Iwata, 2019; Shen et al., 2018). Although this
approach is promising, it often deteriorates the performance
since it does not explicitly minimize the test risk (Zhao
et al., 2019; Kumagai et al., 2024). These existing methods
usually minimize the classification risk (or negative clas-
sification accuracy), which is an inappropriate metric for
imbalanced data. One distribution adaptation method has
been proposed to maximize the AUC by learning invariant

2

Positive-unlabeled AUC Maximization under Covariate Shift

feature representations (Yang et al., 2023). However, all
these methods including the method (Yang et al., 2023) re-
quire positive and negative data in the training distribution,
which are unavailable in our problem setting.

PU learning methods aim to learn binary classifiers by us-
ing only PU data (Bekker & Davis, 2020). Our work is
closely related to PU learning since it assumes PU data in
the training distribution. A representative approach for PU
learning is the empirical risk minimization approach, which
rewrites the empirical classification risk by using only PU
data (Du Plessis et al., 2015; Kiryo et al., 2017; Sugiyama
et al., 2022; Jiang et al., 2023). Although they are effec-
tive, they cannot maximize the AUC. Recent studies have
shown that the AUC can be maximized from only PU data
by using the techniques of PU learning (Sakai et al., 2018;
Xie & Li, 2018; Charoenphakdee et al., 2019; Xie et al.,
2024). However, these methods assume that training and
test distributions are the same.

Several PU learning methods for distribution shift have
been proposed that use unlabeled data in the test distribution
and PU data in the training distribution (Sakai & Shimizu,
2019; Kumagai et al., 2024; Nakajima & Sugiyama, 2023).
Nakajima and Sugiyama (2023) considers a class-prior shit,
where the class-prior can vary, but their method cannot treat
the covariate shift and maximize the AUC. Although Sakai
and Shimizu (2019) consider the covariate shift, they treat
the classification risk and cannot maximize the AUC. Due
to the pairwise formulation of the AUC, this method using
ordinary instance-wise loss functions cannot be straightfor-
wardly applied to the AUC. Kumagai et al. (2024) maximize
the AUC under a positive distribution shift, where negative-
conditional density does not change but positive-conditional
density can vary. This method, however, cannot deal with
the covariate shift that often occurs in practice. Additionally,
these methods assume that the class-prior on the training
distribution is available, which is generally difficult to esti-
mate (Yao et al., 2021). In contrast, the proposed method
does not require it.

3. Preliminary
We briefly explain AUC maximization. Let input instance
x ∈ X and its class label y ∈ {−1,+1} be equipped with
probability density p(x, y), where +1 and −1 mean a posi-
tive and negative class, respectively. pp(x) := p(x|y = +1)
and pn(x) := p(x|y = −1) are the conditional probability
densities of positive and negative classes, respectively. Let
s : X → R be a score function that outputs the positivity
of an input instance. The classifier is defined by the score
function with threshold t: y = sign(s(x)− t), where sign
is a sign function.

The AUC is the probability of a randomly drawn positive

instance being ranked before a randomly drawn negative
instance (Yang & Ying, 2022). Specifically, the AUC with
score function s can be formulated as

AUC(s) = Exp∼pp(x)Exn∼pn(x) [I(s(x
p) ≥ s(xn))]

= 1− Exp∼pp(x)Exn∼pn(x) [I(s(x
p) < s(xn))] , (1)

where I(z) is the indicator function that outputs 1 if z is
true and 0 otherwise, and E is the expectation. Maximizing
the AUC is equivalent to minimizing the AUC risk,

R(s) := Exp∼pp(x)Exn∼pn(x) [I(s(x
p) < s(xn))] . (2)

Since the gradient of indicator function I is zero everywhere
except for the origin, the AUC risk cannot be minimized
via gradient descent methods. To avoid this, the following
smoothed AUC risk is often used by replacing the indicator
function with a sigmoid function σ(z) = 1/(1 + exp(−z))
(Iwata & Yamanaka, 2019; Kumagai et al., 2019; 2024):

Rσ(s) :=Exp∼pp(x)Exn∼pn(x) [σ(−s(xp)+s(xn))] . (3)

Given Np positive instances {xp
1 , . . . ,x

p
Np} drawn from

pp(x) and Nn negative instances {xn
1 , . . . ,x

n
Nn} drawn

from pn(x), the empirical estimator of the smoothed AUC
risk is calculated as

R̂σ(s) =
1

NpNn

Np∑
n=1

Nn∑
m=1

[σ(−s(xp
n) + s(xn

m))] . (4)

By minimizing this empirical smoothed AUC risk w.r.t. the
parameters of s, we can obtain good score functions to
maximize the AUC when the training and test distributions
are identical (Yang & Ying, 2022).

4. Proposed Method
In this section, we first explain our problem setting (subsec-
tion 4.1). Then, we theoretically derive two estimators of the
AUC risk on the test distribution under the covariate shift
and define our loss function for classifier learning on the ba-
sis of the derived two AUC risk estimators (subsection 4.2).
After describing the importance weight estimation method
(subsection 4.3), we finally explain our training procedure
(subsection 4.4).

4.1. Problem Setting

Suppose that we are given a set of positive instances Xp
tr

and a set of unlabeled instances Xtr drawn from the training
distribution:

Xp
tr = {xp

tr,n}
Np

tr
n=1 ∼ pptr(x) := ptr(x|y = +1), (5)

Xtr = {xtr,n}Ntr
n=1 ∼ ptr(x) = πtrp

p
tr(x) + (1− πtr)p

n
tr(x),
(6)

3

Positive-unlabeled AUC Maximization under Covariate Shift

where ptr(x) is the marginal density of the training distribu-
tion, pptr(x) and pntr(x) := ptr(x|y = −1) are positive- and
negative-conditional densities of the training distribution,
respectively, and πtr := ptr(y = +1) is the positive class-
prior. We also suppose that a set of unlabeled instances Xte

drawn from the test distribution is given:

Xte = {xte,n}Nte
n=1 ∼ pte(x)=πtep

p
te(x) + (1− πte)p

n
te(x),

(7)

where ppte(x) := pte(x|y = +1), pnte(x) := pte(x|y =
−1), and πte := pte(y = +1). As shown later, we do not
need to know specific values of πtr and πte to maximize the
AUC 1, which is beneficial in practice.

We consider the covariate shift between the training and
test distributions, where the marginal density can vary but
the conditional density of the class label given the input
instance remains unchanged,

ptr(x) ̸= pte(x), ptr(y|x) = pte(y|x) =: p(y|x). (8)

This situation often occurs in imbalanced classification tasks
as described in Section 1. Our goal is to learn the score
function s : X → R that can maximize the AUC on the test
distribution by using Xp

tr ∪Xtr ∪Xte. In the following, C
represents any constant that does not depend on models to
be learned (e.g., score function s).

4.2. Importance-weighted AUC Risks

In this subsection, we theoretically derive two estimators of
the AUC risk on the test distribution under the covariate shift.
The objective function to be minimized is the following
smoothed AUC risk on the test distribution,

Rte
σ (s) := Exp∼pp

te(x)
Exn∼pn

te(x)
[f(xp,xn)] , (9)

where we set f(xp,xn) := σ(−s(xp) + s(xn)). Since this
AUC risk depends on ppte(x) and pnte(x), it seems to be
impossible to calculate directly in our setting. However, by
using the importance weighting framework, this AUC risk
can be calculated as described below.

First AUC Risk Estimator We derive the AUC risk es-
timator that is calculated from PU data in the training dis-
tribution. First, positive-conditional density ppte(x) can be
rewritten as

ppte(x) =
p(y = +1|x)pte(x)

πte

=
p(y = +1|x)ptr(x)

πtr

pte(x)

ptr(x)

πtr

πte

= pptr(x)
pte(x)

ptr(x)

πtr

πte
= pptr(x)w(x)

πtr

πte
, (10)

1We only require πtr, πte ∈ (0, 1) to evade zero-division when
deriving our AUC risk estimators in subsection 4.2.

where we used the Bayes’ theorem and the assumption of
the covariate shift (Eq. (8)) in the first and third equali-
ties, and w(x) := pte(x)

ptr(x)
is referred to as the importance

weight. Similarly, negative-conditional density pnte(x) can
be represented as

pnte(x) = pntr(x)w(x)
1− πtr

1− πte
. (11)

By substituting Eqs. (10) and (11) into Eq. (9), we can
obtain

Rte
σ (s) =

πtr(1−πtr)

πte(1−πte)

× Exp∼pp
tr(x)

Exn∼pn
tr(x)

[w(xp)w(xn)f(xp,xn)] . (12)

From the definition of marginal density ptr(x) in Eq. (6),
negative-conditional density pntr(x) can be expressed as

pntr(x) =
1

1− πtr
[ptr(x)− πtrp

p
tr(x)] . (13)

By substituting Eq. (13) into Eq. (12), we can obtain

Rte
σ (s) =

πtr

πte(1−πte)
Exp∼pp

tr(x)
Ex∼ptr(x) [w(x

p)w(x)f(xp,x)]

− π2
tr

πte(1−πte)
Exp∼pp

tr(x)
Ex̄p∼pp

tr(x)
[w(xp)w(x̄p)f(xp, x̄p)] .

(14)

Here, since σ(z) + σ(−z) = 1 for all z ∈ R, the second
term of Eq. (14) becomes

Exp∼pp
tr(x)

Ex̄p∼pp
tr(x)

[w(xp)w(x̄p)f(xp, x̄p)] =

1

2
Exp∼pp

tr(x)
Ex̄p∼pp

tr(x)
[w(xp)w(x̄p)] = C, (15)

where C represents a constant that does not depend on s.
Therefore, the AUC risk on the test distribution in Eq. (14)
can be represented as

Rte
σ (s) =

πtr

πte(1−πte)

× Exp∼pp
tr(x)

Ex∼ptr(x) [w(x
p)w(x)f(xp,x)] + C. (16)

Since this AUC risk depends on positive-conditional training
density pptr(x) and marginal training density ptr(x), we can
obtain the following empirical AUC risk estimator,

R̂te
σ,1(s) :=

πtr

πte(1−πte)

1

Np
trNtr

×
Np

tr∑
n=1

Ntr∑
m=1

[
w(xp

tr,n)w(xtr,m)f(xp
tr,n,xtr,m)

]
+ C.

(17)

In this estimator, training instances with higher importance
weights have a greater influence. The estimation method for
importance weight w(x) is described in subsection 4.3.

4

Positive-unlabeled AUC Maximization under Covariate Shift

Second AUC Risk Estimator In Eq. (17), unlabeled data
in the test distribution Xte are not directly used even if they
have useful information for learning s, although they are
used for estimating importance weights as described later.
This drawback is common in existing importance weighting
methods (Sugiyama & Kawanabe, 2012; Fang et al., 2020;
Sakai & Shimizu, 2019). To deal with this problem, we de-
rive another AUC risk estimator that is calculated from posi-
tive data in the training distribution and unlabeled data in the
test distribution. Specifically, since w(x) = pte(x)/ptr(x),
the equation Ex∼ptr(x) [w(x)g(x)] = Ex∼pte(x) [g(x)] is
satisfied for any function g. Therefore, Eq. (16) can be
rewritten as

Rte
σ (s) =

πtr

πte(1− πte)

× Exp∼pp
tr(x)

Ex∼pte(x) [w(x
p)f(xp,x)] + C. (18)

This AUC risk depends on positive-conditional training den-
sity pptr(x) and marginal test density pte(x). Thus, we can
obtain the following empirical AUC risk estimator,

R̂te
σ,2(s) :=

πtr

πte(1−πte)

1

Np
trNte

×
Np

tr∑
n=1

Nte∑
m=1

[
w(xp

tr,n)f(x
p
tr,n,xte,m)

]
+ C. (19)

Since Eqs. (17) and (19) do not explicitly depend on Xte

and Xtr except for importance weights, respectively, we
consider using both simultaneously for learning s.

Our Loss Function for Classifier Learning Our loss
function for learning s is a weighted sum of two estimators
of the AUC risk in Eqs. (17) and (19),

R̂te
σ (s) := βR̂te

σ,1(s) + (1− β)R̂te
σ,2(s) =

πtr

πte(1−πte)

×

 β

Np
trNtr

Np
tr∑

n=1

Ntr∑
m=1

[
w(xp

tr,n)w(xtr,m)f(xp
tr,n,xtr,m)

]

+
1− β

Np
trNte

Np
tr∑

n=1

Nte∑
m=1

[
w(xp

tr,n)f(x
p
tr,n,xte,m)

]+C, (20)

where β ∈ [0, 1] is a weighting hyperparameter. This loss
directly uses all data Xp

tr ∪Xtr ∪Xte for learning s. Since
coefficient πtr

πte(1−πte)
and constant C do not affect the opti-

mization for s, we can safely ignore them for training. This
loss without the coefficient does not depend on class-priors
πtr and πte, which is beneficial in practice since they are
generally difficult or impossible to estimate (Zhao et al.,
2023). Note that although we use the sigmoid function in
the AUC risk in Eq. (3), when we use symmetric functions
(i.e., function σ satisfying σ(z)+σ(−z) = k for any z ∈ R

and k is a constant), we can derive the loss function of the
same form in Eq. (20). This is because the second term in
Eq. (14) also becomes constant. The symmetric functions
include many popular functions such as sigmoid, ramp, and
unhinged functions (Charoenphakdee et al., 2019).

4.3. Importance Weight Estimation

In Eq. (20), importance weight w(x) = pte(x)
ptr(x)

is unknown.
A common way for estimating importance weights is to use
density-ratio estimation methods that directly estimate the
ratio between training and test densities from data without
density estimation (Sugiyama et al., 2012; Kanamori et al.,
2009; Huang et al., 2006). However, they are known to be
unstable since w(x) is unbounded, i.e., it takes extremely
larger values around a low-density region of the denominator
(Yamada et al., 2013). To alleviate this problem, we use the
following relative density-ratio as the importance weight,

wα(x) :=
pte(x)

αpte(x) + (1− α)ptr(x)
, (21)

where α ∈ [0, 1] is a hyperparameter (Yamada et al., 2013).
wα(x) is bounded above by 1/α, and it is equivalent to
w(x) when α = 0. Thus, wα(x) is a bounded extension of
w(x). The importance weighting with the relative density-
ratio has been reported to perform excellently in various
data (Yamada et al., 2013; Sakai & Shimizu, 2019).

Let r(x) ∈ [0, 1/α] be a model such as a neural network for
estimating wα(x). To learn parameters of r, we minimize
the expected squared error between true importance weight
wα(x) and r(x) as in the previous studies (Yamada et al.,
2013; Kanamori et al., 2009):

J(r) := Epα(x)

[
(wα(x)− r(x))

2
]

= Epte(x)

[
αr(x)2 − 2r(x)

]
+ (1− α)Eptr(x)

[
r(x)2

]
+ C, (22)

where pα(x) := αpte(x)+(1−α)ptr(x) and C is a constant
term that does not depend on r. The empirical estimate of
J can be obtained as

Ĵ(r) :=
1

Nte

Nte∑
n=1

[
αr(xte,n)

2 − 2r(xte,n)
]

+
1− α

Ntr

Ntr∑
n=1

r(xtr,n)
2 + C. (23)

4.4. Training Procedure

To calculate R̂te
σ in Eq. (20), the standard approach is to

first estimate the importance weights and then use them to
calculate the importance-weighted risk (Yamada et al., 2013;
Sugiyama et al., 2012; Kanamori et al., 2009). However, in

5

Positive-unlabeled AUC Maximization under Covariate Shift

this two-step approach, errors in the importance weight es-
timation propagate to the subsequent importance-weighted
risk calculation, which degrades the performance of the
learned classifiers (Fang et al., 2020; Zhang et al., 2020). To
alleviate this, Fang et al. (2020; 2023) recently proposed
a dynamic approach that iterates between the importance
weight estimation and classifier learning for ordinary super-
vised learning.

The proposed method follows this dynamic approach.
Specifically, we use the following neural networks for mod-
eling the score function and importance weight,

s(x) := u(h(x)), r(x) := v(h(x)), (24)

where h : X → RK , u : RK → R, and v : RK → R are
neural networks for feature extraction, score function, and
importance weights, respectively. By sharing feature extrac-
tor h, we can effectively perform the importance weighting.

Algorithm 1 shows the training procedure of the proposed
method with stochastic gradient descent methods. We first
randomly sample PU data from the training distribution and
unlabeled data in the test distribution (Lines 2–3). Then,
we calculate the loss in Eq. (23) for the importance weight
estimation (Line 4) and update parameters of v with the
gradient of the loss fixing feature extractor h (Line 5). We
fixed h to avoid overfitting as in (Fang et al., 2020). By
using the estimated importance weights, we calculate the
loss in Eq. (20) for classifier learning (Line 6). We update
parameters of both u and h by using the gradient of the loss
(Line 7). In this step, we fixed the importance weights to
avoid learning a meaningless model, r(x) = 0 for all x.

5. Experiments
5.1. Data

We used four real-world datasets in the main paper: MNIST
(LeCun et al., 1998), FashionMNIST (Xiao et al., 2017),
SVHN (Netzer et al., 2011), and CIFAR10 (Krizhevsky
et al., 2009). These datasets have been commonly used
in PU learning or distribution adaptation studies (Kumagai
et al., 2024; Fang et al., 2020; Xie et al., 2024; Kiryo et al.,
2017; Jiang et al., 2023). MNIST consists of hand-written
images of 10 digits. Each image is represented by gray-scale
with 28× 28 pixels. FashionMNIST consists of images of
10 fashion categories where each image is represented by
gray scale with 28× 28 pixels. SVHN consists of 32× 32
RGB images of 10 printed digits clipped from photographs
of house number plates. We converted SVHN into gray-
scale for simplicity. CIFAR10 consists of 32 × 32 RGB
images of 10 animal and vehicle categories. In Appendix
D.3, we also used real-world tabular datasets: epsilon and
Hreadmission (Gardner et al., 2023).

To create the situation of the covariate shift, we imposed a

Algorithm 1 Training procedure of the proposed method

Require: PU data in the training distribution and unlabeled
data in the test distribution Xp

tr∪Xtr∪Xte, mini-batch
size M , positive mini-batch size P , relative parameter
α, and weighting parameter β.

Ensure: Parameters of neural networks h, u, and v.
1: repeat
2: Sample unlabeled data with size M form Xtr ∪Xte

3: Sample positive data with size P form Xp
tr

{Importance weight estimation}
4: Calculate the loss in Eq. (23) on the sampled data
5: Update parameters of v with the gradient of the loss

fixing feature extractor h
{Classifier learning}

6: Calculate the loss in Eq. (20) on the sampled data
with current importance weights

7: Update parameters of u and h with the gradient of
the loss fixing the importance weights

8: until End condition is satisfied;

selection bias in the training and testing distribution follow-
ing a previous study (Aminian et al., 2022). Specifically,
for MNIST and SVHN, we used even digits as negative and
odd digits as positive. For the training distribution, 90% of
data were selected from the digits 0, 1, 2, and 3, and 10% of
data were selected from the remaining digits. We reversed
this ratio for the test distribution: 10% of data were selected
from the digits 0, 1, 2, and 3, and 90% of data were selected
from the remaining digits. For FashionMNIST, following
the study (Xie et al., 2024; Kumagai et al., 2024), we used
upper garments (0, 2, 3, 4, and 6) as negative and the others
as positive, where numbers in parentheses represent class
labels. Similar to MNIST and SVHN, for the training distri-
bution, 90% of data had the class labels 0, 1, 2, and 5, and
10% of data had the remaining class labels. We reversed
this ratio for the test distribution. For CIFAR10, we used
the animal categories (2, 3, 4, 5, 6, and 7) as negative and
the vehicles as positive. For the training distribution, 90%
of data had the class labels 0, 1, 2, 3, and 4, and 10% of data
had the remaining class labels. We reversed this ratio for
the test distribution.

For training in each dataset, we used 50 positive and 3,000
unlabeled data in the training distribution and 3,000 unla-
beled data in the test distribution. Additionally, we used 20
positive and 250 unlabeled data in the training distribution
and 250 unlabeled data in the test distribution for validation.
For unlabeled data in training and validation, we changed
class-prior π := πtr = πte within {0.01, 0.05, 0.1}. We
used 3,000 data in the test distribution as test data for evalu-
ation. Training, validation, and test datasets did not overlap.
We conducted 10 experiments for each positive class-prior
changing the random seeds and evaluated mean test AUC.

6

Positive-unlabeled AUC Maximization under Covariate Shift

5.2. Comparison Methods

We compared the proposed method with eight methods:
non-negative PU learning method with PU data in the train-
ing distribution (trPU) (Kiryo et al., 2017), non-negative
PU learning method with positive data in the training and
unlabeled data in the test distributions (tePU), AUC maxi-
mization method with PU data in the training distribution
(trAUC) (Xie & Li, 2018; Xie et al., 2024), AUC maxi-
mization method with positive data in the training and unla-
beled data in the test distributions (teAUC), AUC maximiza-
tion method with PU data in the training distribution and
unlabeled data in the test distribution (trteAUC), unsuper-
vised domain adaptation method with AUC maximization
(UDAUC), AUC maximization method for positive distribu-
tion shift (PAUC) (Kumagai et al., 2024), and covariate shift
adaptation method for PU learning (CPU) (Sakai & Shimizu,
2019). All methods including the proposed method used
neural networks for modeling classifiers.

trPU learns the neural network by minimizing the non-
negative PU risk with PU data in the training distribution.
This method does not consider the class-imbalance. trAUC
learns the neural network by maximizing the AUC with
PU data in the training distribution. trAUC is equivalent to
the proposed method that minimizes R̂te

σ,1(s) in Eq. (17)
without importance weights (i.e., w(x) = 1 for all x). trPU
and trAUC do not adapt to the test distribution. tePU and
teAUC use unlabeled data in the test distribution instead
of unlabeled data in the training distribution within trPU
and trAUC, respectively. Especially, teAUC is equivalent
to the proposed method that minimizes R̂te

σ,2(s) in Eq. (19)
without importance weights (i.e., w(x) = 1 for all x).

trteAUC, UDAUC, PAUC, and CPU use PU data in the train-
ing distribution and unlabeled data in the test distribution as
in the proposed method. trteAUC uses a weighted sum of
the losses of trAUC and teAUCt for training. Thus, trteAUC
is equivalent to the proposed method that minimizes R̂te

σ (s)
in Eq. (20) without importance weights (i.e., w(x) = 1 for
all x). UDAUC learns the invariant feature representation
to mitigate the discrepancy of the training and test distri-
bution by using CORAL loss, which is a widely used in
domain adaptation studies (Sun et al., 2016; 2017), as in
the previous method (Yang et al., 2023). Specifically, this
method minimizes the weighted sum of the loss of trAUC
and the CORAL loss for training. PAUC is a recently pro-
posed AUC maximization method for positive distribution
shift, where negative-conditional density does not change
but the positive-conditional density can vary between the
training and test phases. CPU is a PU learning method for
covariate shift adaptation. We used the dynamic approach
for the importance weighting in CPU. This method does
not consider the class-imbalance. For trPU, tePU, and CPU,
the absolute-value risk correction was used to improve the

performance as in previous studies (Lu et al., 2020; Ham-
moudeh & Lowd, 2020). trPU, tePU, PAUC, and CPU used
information on class-prior of the training distribution πtr for
training although the proposed method does not require it.

5.3. Settings

For all methods, the sigmoid loss was used instead of indi-
cator functions as in the previous studies (Kiryo et al., 2017;
Kumagai et al., 2024). The empirical risk with validation
data was used to select hyperparameters and early-stopping
to mitigate overfitting. All methods were implemented us-
ing Pytorch (Paszke et al., 2017), and all experiments were
conducted on a Linux server with an Intel Xeon CPU and
A100 GPU. The details of neural network architectures and
hyperparameters are described in Appendixes B and C.

5.4. Results

Table 1 shows the average test AUCs of each method on
the four class-imbalanced datasets. Full results including
the standard deviations are described in Appendix D.6. The
proposed method performed the best or comparably to it in
all cases. trPU and tePU did not work well since they cannot
deal with the class-imbalance. trAUC and teAUC performed
better than trPU and tePU, which indicates that the AUC
maximization is appropriate for the class-imbalanced data.
PAUC performed poorly because the shift assumption used
in PAUC (i.e., positive distribution shift) is different to the
covariate shift and it struggles with small πte due to its re-
liance on extracting positive data from unlabeled test data
as described in the paper (Kumagai et al., 2024). Although
CPU is a method for covariate shift, it did not work well
because it does not consider the class-imbalance. Although
UDAUC that learns invariant feature representations to miti-
gate the distribution gap performed better than other distri-
bution shift methods (PAUC and CPU), it performed worse
than the proposed method. This result suggests that the ap-
proach of learning invariant features was often sub-optimal
for the covariate shift problem. The proposed method per-
formed better than trteAUC, trAUC, and teAUC, which can
be regarded as the special cases of the proposed method
(i.e., non-importance weighting versions of our method) as
described in Section 5.2. This result indicates that the im-
portance weighting with AUC maximization is useful for
the class-imbalanced data under the covariate shift. As for
the results of each class-prior π, the performance of AUC-
based methods (the proposed method, trAUC, teAUC, and
trteAUC) tended to improve as the value of π decreased.
This is because they essentially use loss functions of the
form, Exp∼pp(x)Ex∼p(x) [f(x

p,x)], where pp(x) and p(x)
are positive and marginal densities. When π is small, p(x)
can be regarded as negative density pn(x). In this case, the
above loss function becomes the original AUC risk. Thus,
these methods work well with small π. Since PAUC has a

7

Positive-unlabeled AUC Maximization under Covariate Shift

Table 1. Average test AUCs with different positive class-prior π := πtr = πte. Values in bold are not statistically different at the 5% level
from the best performing method in each row according to a paired t-test. ‘# best’ row represents the number of results of each method
that are the best or comparable to it.

Data π Ours trPU tePU trAUC teAUC trteAUC PAUC UDAUC CPU
MNIST 0.01 0.817 0.677 0.654 0.795 0.813 0.795 0.402 0.794 0.667

0.05 0.812 0.750 0.695 0.793 0.806 0.806 0.473 0.795 0.734
0.1 0.783 0.764 0.691 0.774 0.779 0.779 0.504 0.774 0.748

Fashion 0.01 0.925 0.912 0.906 0.920 0.912 0.920 0.634 0.926 0.920
MNIST 0.05 0.907 0.902 0.890 0.906 0.871 0.871 0.730 0.906 0.893

0.1 0.890 0.834 0.790 0.899 0.839 0.839 0.718 0.899 0.829
SVHN 0.01 0.715 0.504 0.504 0.548 0.724 0.725 0.236 0.549 0.504

0.05 0.686 0.504 0.504 0.559 0.698 0.698 0.246 0.559 0.504
0.1 0.666 0.504 0.504 0.533 0.677 0.677 0.266 0.540 0.504

CIFAR10 0.01 0.896 0.456 0.475 0.874 0.874 0.874 0.364 0.873 0.508
0.05 0.893 0.456 0.482 0.878 0.884 0.884 0.475 0.871 0.534
0.1 0.870 0.469 0.587 0.871 0.874 0.874 0.560 0.869 0.542

best 12 3 2 6 7 6 0 7 2

0.0 0.2 0.4 0.6 0.8 1.0
Beta

0.78

0.79

0.80

0.81

Te
st

 A
UC

(a) MNIST

0.0 0.2 0.4 0.6 0.8 1.0
Beta

0.87

0.88

0.89

0.90

0.91

Te
st

 A
UC

(b) FashionMNIST

0.0 0.2 0.4 0.6 0.8 1.0
Beta

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Te
st

 A
UC

(c) SVHN

0.0 0.2 0.4 0.6 0.8 1.0
Beta

0.875

0.880

0.885

0.890

Te
st

 A
UC

(d) CIFAR10

Figure 1. The average test AUCs with the standard errors of the proposed method when changing weighting hyperparameter β.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

De
ns
ity

Training
Test

Figure 2. Importance weight distribution of our method with Fash-
ionMNIST when π = 0.1. ‘Training’ (blue) and ‘Test’ (orange)
represent data in the training and test distributions, respectively.

different form of loss, its trend was different.

Figure 1 shows the average test AUCs with the standard
errors of the proposed method when changing β, which con-
trols the effect of two estimators of the AUC risk on the test
distribution. When β = 1, our loss function becomes the
AUC risk estimator with PU data in the training distribution
(Eq. (17)). When β = 0, our loss function becomes the
AUC risk estimator with positive data in the training and
unlabeled data in the test distribution (Eq. (19)). The trends
of the results varied across datasets: for MNIST, SVHN, and

Table 2. Comparison with the two-step importance weighting of
the proposed method (Ours w/ 2step). Average test AUCs over
different positive class-priors on each dataset. FMNIST is an
abbreviation of FashionMNIST.

MNIST FMNIST SVHN CIFAR10
Ours 0.817 0.907 0.690 0.886
Ours w/ 2step 0.820 0.911 0.608 0.876

CIFAR10, smaller values of β tended to yield better results,
while for FashionMNIST, larger values of β led to better
results. The proposed method was able to select good β by
using validation data. These results show the effectiveness
of using the weighted sum of two AUC risk estimators.

Figure 2 visualizes the distribution of the importance
weights estimated by the proposed method with FashionM-
NIST. The data in the test distribution tended to have larger
importance weights than the data in the training distribution.
This result shows that the proposed method can estimate
importance weights as expected.

Table 2 compares the proposed method and Ours w/ 2step,
which is the proposed method using conventional two-step
importance weighting. As expected, the proposed method,
which uses the dynamic approach, tended to perform better

8

Positive-unlabeled AUC Maximization under Covariate Shift

Table 3. Results under class-prior shift: average test AUCs with different positive test class-prior πte with postive training class-prior
πtr = 0.01. Values in bold are not statistically different at the 5% level from the best performing method in each row according to a
paired t-test. ‘# best’ row represents the number of results of each method that are the best or comparable to it.

Data πte Ours trPU tePU trAUC teAUC trteAUC PAUC UDAUC CPU
MNIST 0.01 0.938 0.729 0.729 0.938 0.938 0.938 0.562 0.938 0.729

0.05 0.929 0.734 0.717 0.930 0.924 0.930 0.762 0.930 0.733
0.1 0.930 0.736 0.709 0.932 0.921 0.932 0.866 0.932 0.731

Fashion 0.01 0.983 0.899 0.895 0.982 0.984 0.984 0.818 0.982 0.906
MNIST 0.05 0.983 0.900 0.770 0.983 0.980 0.983 0.929 0.983 0.897

0.1 0.988 0.901 0.743 0.988 0.983 0.988 0.970 0.988 0.895
SVHN 0.01 0.644 0.504 0.504 0.642 0.632 0.655 0.499 0.648 0.504

0.05 0.648 0.504 0.504 0.625 0.600 0.635 0.505 0.624 0.504
0.1 0.639 0.504 0.504 0.641 0.619 0.648 0.507 0.645 0.504

CIFAR10 0.01 0.884 0.432 0.427 0.867 0.872 0.872 0.519 0.866 0.481
0.05 0.890 0.433 0.424 0.878 0.872 0.878 0.680 0.878 0.480
0.1 0.891 0.432 0.424 0.885 0.867 0.886 0.785 0.885 0.482

best 12 0 0 10 3 10 0 10 0

than Ours w/ 2step. Note that Ours w/ 2step is also our
proposal since there are no existing importance weighting
methods for AUC maximization.

Although the proposed method assumes the covariate shift,
other forms of distribution shifts may arise in real-world sce-
narios. Therefore, we additionally evaluated the proposed
method under a class-prior shift, in which the class-prior
changes, but the class-conditional density remains the same
(Lu et al., 2022). Table 3 shows the results. The proposed
method empirically worked well. This would be because
the proposed method does not depend on class-priors and
thus is relatively robust against the class-prior shift.

Additionally, scenarios without any distribution shift may
also arise in practice. Table 4 shows the results without
distribution shifts (i.e., ptr(x, y) = pte(x, y)). Since there
were no shifts, we compared trPU and trAUC, which do not
consider shifts. The proposed method and trAUC showed
comparable results, indicating that the proposed method
robustly works well when no shift exists.

6. Conclusion
In this paper, we proposed a method for maximizing the
AUC under a covariate shift. To construct the method, we
theoretically derived two estimators of the AUC risk on
the test distribution: the first is calculated from importance-
weighted PU data in the training distribution, and the second
is calculated from importance-weighted positive data in the
training distribution and unlabeled data in the test distribu-
tion. Our loss function for classifier learning is a weighted
sum of these two AUC risk estimators. The experiments
show that our method outperformed various existing PU
learning and distribution adaptation methods.

Table 4. Results without distribution shift: average test AUCs
over different positive class-prior π := πtr = πte within
{0.01, 0.05, 0.1}.

Data Ours trPU trAUC
MNIST 0.927 0.814 0.927
FashionMNIST 0.982 0.916 0.982
SVHN 0.625 0.504 0.630
CIFAR10 0.885 0.436 0.875

7. Limitations
The proposed method assumes a specific type of distribu-
tion shift: the covariate shift. Although we found that the
proposed method works well under the covariate and class-
prior shifts in our experiments and we can often expect the
validity of the covariate shift assumption to a certain extent
in each real-world application, the proposed method is not
guaranteed to work well if other distribution shifts occur.
Therefore, a method should preferably be developed that
can estimate the type of distribution shifts from data.

Impact Statement
Although our method performed well, misclassification is
possible in practice. In particular, misclassification can
lead to serious incidents in cases such as cyber security and
medical care, which are typical examples of imbalanced
data. Thus, our method should be used as a support tool for
humans to make a final decision.

References
Aminian, G., Abroshan, M., Khalili, M. M., Toni, L., and

Rodrigues, M. An information-theoretical approach to

9

Positive-unlabeled AUC Maximization under Covariate Shift

semi-supervised learning under covariate-shift. In AIS-
TATS, 2022.

Bagui, S. and Li, K. Resampling imbalanced data for net-
work intrusion detection datasets. Journal of Big Data, 8
(1):6, 2021.

Bekker, J. and Davis, J. Learning from positive and unla-
beled data: A survey. Machine Learning, 109(4):719–760,
2020.

Bossard, L., Guillaumin, M., and Van Gool, L. Food-101–
mining discriminative components with random forests.
In ECCV, 2014.

Bradley, A. P. The use of the area under the roc curve in
the evaluation of machine learning algorithms. Pattern
recognition, 30(7):1145–1159, 1997.

Brefeld, U., Scheffer, T., et al. Auc maximizing support vec-
tor learning. In Proceedings of the ICML 2005 workshop
on ROC Analysis in Machine Learning, 2005.

Charoenphakdee, N., Lee, J., and Sugiyama, M. On sym-
metric losses for learning from corrupted labels. In ICML,
2019.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. Smote: synthetic minority over-sampling technique.
Journal of artificial intelligence research, 16:321–357,
2002.

Du Plessis, M., Niu, G., and Sugiyama, M. Convex formu-
lation for learning from positive and unlabeled data. In
ICML, 2015.

Fang, T., Lu, N., Niu, G., and Sugiyama, M. Rethinking
importance weighting for deep learning under distribution
shift. NeurIPS, 2020.

Fang, T., Lu, N., Niu, G., and Sugiyama, M. Generalizing
importance weighting to a universal solver for distribution
shift problems. NeurIPS, 2023.

Fujino, A. and Ueda, N. A semi-supervised auc optimization
method with generative models. In ICDM, 2016.

Ganin, Y. and Lempitsky, V. Unsupervised domain adapta-
tion by backpropagation. In ICML, 2015.

Gardner, J., Popovic, Z., and Schmidt, L. Benchmarking
distribution shift in tabular data with tableshift. NeurIPS,
2023.

Hammoudeh, Z. and Lowd, D. Learning from positive and
unlabeled data with arbitrary positive shift. NeurIPS,
2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

He, Y., Shen, X., Xu, R., Zhang, T., Jiang, Y., Zou, W., and
Cui, P. Covariate-shift generalization via random sample
weighting. In AAAI, 2023.

Huang, J. and Ling, C. X. Using auc and accuracy in evaluat-
ing learning algorithms. IEEE Transactions on knowledge
and Data Engineering, 17(3):299–310, 2005.

Huang, J., Gretton, A., Borgwardt, K., Schölkopf, B., and
Smola, A. Correcting sample selection bias by unlabeled
data. NeurIPS, 2006.

Iwata, T. and Yamanaka, Y. Supervised anomaly detection
based on deep autoregressive density estimators. arXiv
preprint arXiv:1904.06034, 2019.

Jiang, Y., Xu, Q., Zhao, Y., Yang, Z., Wen, P., Cao, X.,
and Huang, Q. Positive-unlabeled learning with label
distribution alignment. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2023.

Johnson, J. M. and Khoshgoftaar, T. M. Survey on deep
learning with class imbalance. Journal of Big Data, 6(1):
1–54, 2019.

Kanamori, T., Hido, S., and Sugiyama, M. A least-squares
approach to direct importance estimation. The Journal of
Machine Learning Research, 10:1391–1445, 2009.

Kato, M. and Teshima, T. Non-negative bregman divergence
minimization for deep direct density ratio estimation. In
ICML, 2021.

Kingma, D. P. and Ba, J. Adam: a method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kiryo, R., Niu, G., Du Plessis, M. C., and Sugiyama, M.
Positive-unlabeled learning with non-negative risk esti-
mator. NeurIPS, 2017.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kumagai, A. and Iwata, T. Learning future classifiers with-
out additional data. In AAAI, 2016.

Kumagai, A. and Iwata, T. Unsupervised domain adap-
tation by matching distributions based on the maximum
mean discrepancy via unilateral transformations. In AAAI,
2019.

Kumagai, A., Iwata, T., and Fujiwara, Y. Transfer anomaly
detection by inferring latent domain representations.
NeurIPS, 2019.

Kumagai, A., Iwata, T., Takahashi, H., Nishiyama, T., and
Fujiwara, Y. Auc maximization under positive distribu-
tion shift. In NeurIPS, 2024.

10

Positive-unlabeled AUC Maximization under Covariate Shift

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P.
Focal loss for dense object detection. In ICCV, 2017.

Liu, M., Yuan, Z., Ying, Y., and Yang, T. Stochastic auc
maximization with deep neural networks. In ICLR, 2020.

Long, M., Cao, Y., Wang, J., and Jordan, M. Learning
transferable features with deep adaptation networks. In
ICML, 2015.

Lu, N., Zhang, T., Niu, G., and Sugiyama, M. Mitigating
overfitting in supervised classification from two unla-
beled datasets: a consistent risk correction approach. In
AISTATS, 2020.

Lu, N., Zhang, T., Fang, T., Teshima, T., and Sugiyama, M.
Rethinking importance weighting for transfer learning. In
Federated and Transfer Learning, pp. 185–231. Springer,
2022.

Matsui, K., Kumagai, W., Kanamori, K., Nishikimi, M.,
and Kanamori, T. Variable selection for nonparametric
learning with power series kernels. Neural Computation,
31(8):1718–1750, 2019.

McDermott, M., Hansen, L. H., Zhang, H., Angelotti, G.,
and Gallifant, J. A closer look at auroc and auprc under
class imbalance. In NeurIPS, 2024.

Menardi, G. and Torelli, N. Training and assessing clas-
sification rules with imbalanced data. Data mining and
knowledge discovery, 28:92–122, 2014.

Mirsky, Y., Doitshman, T., Elovici, Y., and Shabtai, A. Kit-
sune: an ensemble of autoencoders for online network
intrusion detection. In NDSS, 2018.

Nakajima, S. and Sugiyama, M. Positive-unlabeled classifi-
cation under class-prior shift: a prior-invariant approach
based on density ratio estimation. Machine Learning, 112
(3):889–919, 2023.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
Ng, A. Y., et al. Reading digits in natural images with
unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011,
pp. 7. Granada, Spain, 2011.

Pan, S. J. and Yang, Q. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):
1345–1359, 2009.

Park, J.-K., Kwon, B.-K., Park, J.-H., and Kang, D.-J. Ma-
chine learning-based imaging system for surface defect

inspection. International Journal of Precision Engineer-
ing and Manufacturing-Green Technology, 3:303–310,
2016.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Rhodes, B., Xu, K., and Gutmann, M. U. Telescoping
density-ratio estimation. NeurIPS, 2020.

Sakai, T. and Shimizu, N. Covariate shift adaptation on
learning from positive and unlabeled data. In AAAI, 2019.

Sakai, T., Niu, G., and Sugiyama, M. Semi-supervised
auc optimization based on positive-unlabeled learning.
Machine Learning, 107:767–794, 2018.

Sharafaldin, I., Gharib, A., Lashkari, A. H., and Ghorbani,
A. A. Towards a reliable intrusion detection benchmark
dataset. Software Networking, 2018(1):177–200, 2018.

Shen, J., Qu, Y., Zhang, W., and Yu, Y. Wasserstein distance
guided representation learning for domain adaptation. In
AAAI, 2018.

Shimodaira, H. Improving predictive inference under covari-
ate shift by weighting the log-likelihood function. Jour-
nal of statistical planning and inference, 90(2):227–244,
2000.

Sugiyama, M. and Kawanabe, M. Machine learning in non-
stationary environments: Introduction to covariate shift
adaptation. MIT press, 2012.

Sugiyama, M., Suzuki, T., and Kanamori, T. Density ratio
estimation in machine learning. Cambridge University
Press, 2012.

Sugiyama, M., Bao, H., Ishida, T., Lu, N., and Sakai, T.
Machine learning from weak supervision: an empirical
risk minimization approach. MIT Press, 2022.

Sun, B., Feng, J., and Saenko, K. Return of frustratingly
easy domain adaptation. In AAAI, 2016.

Sun, B., Feng, J., and Saenko, K. Correlation alignment for
unsupervised domain adaptation. Domain adaptation in
computer vision applications, pp. 153–171, 2017.

Ueda, N. and Fujino, A. Partial auc maximization via nonlin-
ear scoring functions. arXiv preprint arXiv:1806.04838,
2018.

Wang, G., Kwok, S. W. H., Yousufuddin, M., and Sohel,
F. A novel auc maximization imbalanced learning ap-
proach for predicting composite outcomes in covid-19
hospitalized patients. IEEE journal of biomedical and
health informatics, 2023.

11

Positive-unlabeled AUC Maximization under Covariate Shift

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Xie, Z. and Li, M. Semi-supervised auc optimization with-
out guessing labels of unlabeled data. In AAAI, 2018.

Xie, Z., Liu, Y., He, H.-Y., Li, M., and Zhou, Z.-H. Weakly
supervised auc optimization: a unified partial auc ap-
proach. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2024.

Yamada, M., Suzuki, T., Kanamori, T., Hachiya, H., and
Sugiyama, M. Relative density-ratio estimation for ro-
bust distribution comparison. Neural computation, 25(5):
1324–1370, 2013.

Yang, C., Zhao, M., Zhu, C., Xie, S., and Chen, Y. Auto-
mated detection of breast cancer metastases. In DSInS,
2021.

Yang, T. and Ying, Y. Auc maximization in the era of big
data and ai: A survey. ACM computing surveys, 55(8):
1–37, 2022.

Yang, Z., Xu, Q., Bao, S., Wen, P., He, Y., Cao, X., and
Huang, Q. Auc-oriented domain adaptation: From theory
to algorithm. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2023.

Yao, Y., Liu, T., Han, B., Gong, M., Niu, G., Sugiyama,
M., and Tao, D. Rethinking class-prior estimation for
positive-unlabeled learning. In ICLR, 2021.

Ying, Y., Wen, L., and Lyu, S. Stochastic online auc maxi-
mization. NeurIPS, 2016.

Yuan, Z., Guo, Z., Chawla, N., and Yang, T. Compositional
training for end-to-end deep auc maximization. In ICLR,
2021a.

Yuan, Z., Yan, Y., Sonka, M., and Yang, T. Large-scale
robust deep auc maximization: a new surrogate loss and
empirical studies on medical image classification. In
ICCV, 2021b.

Zhang, T., Yamane, I., Lu, N., and Sugiyama, M. A one-step
approach to covariate shift adaptation. In ACML, 2020.

Zhao, H., Des Combes, R. T., Zhang, K., and Gordon, G. On
learning invariant representations for domain adaptation.
In ICML, 2019.

Zhao, H., Wang, X., Li, J., and Zhong, Y. Class prior-free
positive-unlabeled learning with taylor variational loss
for hyperspectral remote sensing imagery. In ICCV, 2023.

12

Positive-unlabeled AUC Maximization under Covariate Shift

A. Derivation of Eq. (15)

Lemma A.1. Exp∼pp
tr(x)

Ex̄p∼pp
tr(x)

[w(xp)w(x̄p)f(xp, x̄p)] = 1
2Exp∼pp

tr(x)
Ex̄p∼pp

tr(x)
[w(xp)w(x̄p)] = C, where C is a

constant that does not depend on s.

Proof. Since f(xp, x̄p) = σ(−s(xp) + s(x̄p)) and σ(z) + σ(−z) = 1 for all z ∈ R,

Exp∼pp
tr(x)

Ex̄p∼pp
tr(x)

[w(xp)w(x̄p)f(xp, x̄p)] =Exp∼pp
tr(x)

Ex̄p∼pp
tr(x)

[w(xp)w(x̄p) [1− f(x̄p,xp)]]

=Exp∼pp
tr(x)

Ex̄p∼pp
tr(x)

[w(xp)w(x̄p)]

− Exp∼pp
tr(x)

Ex̄p∼pp
tr(x)

[w(xp)w(x̄p)f(x̄p,xp)] . (25)

It is clear that the lemma follows from this equation.

B. Neural Network Architectures
For MNIST, FashionMNIST, and SVHN, a three-layered feed-forward neural network with ReLU activation was used for
the feature extractor h. The number of hidden and output nodes was 32. For CIFAR10, a convolutional neural network,
which consisted of two convolutional blocks followed by a two-layered feed-forward neural network, was used for the
feature extractor h. The first (second) convolutional block comprised a 6 (16) filter 5× 5 convolution, the ReLU activation,
and a 2× 2 max-pooling layer. The numbers of the hidden and output nodes were 120 and 84, respectively. One-layered and
two-layered feed-forward neural networks were used for u and v, respectively. For the output activation of v, we used 1

ασ(·),
where σ is a sigmoid function, to match the value range of the relative density-ratio (importance weights) when α > 0.
When α = 0 (i.e., using ordinary density-ratio), we used the softplus function for output activation. For all comparison
methods, the same neural network architecture (i.e., u(h(x))) was used for the classifier (score function). For CPU, the
architecture of v was also the same as that of the proposed method.

C. Hyperparameters
For all methods, the empirical risk with validation data was used to select hyperparameters and early-stopping to mitigate
overfitting. Specifically, for the proposed method, the weighted risk in Eq. (20) was used. For the proposed method and
CPU, relative parameter α was set to 0.5 for all datasets. For the proposed method and trteAUC, weighting parameter β
was selected from {0.0, 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99, 1.0}. For UDAUC, the CORAL loss was applied to h(x). The
weighting parameter of the CORAL loss was chosen from {1, 10−1, 10−2, 10−3}. The mini-batch size M was set to 512
and the positive mini-batch size P was set to 50. For all methods, we used the Adam optimizer (Kingma & Ba, 2014). We
set the learning rate to 10−4. The maximum number of epochs was 200. All methods were implemented using Pytorch
(Paszke et al., 2017), and all experiments were conducted on a Linux server with an Intel Xeon CPU and A100 GPU.

D. Additional Experimental Results
D.1. Results with Different Numbers of Labeled Positive Data in the Training Distribution

Figure 3 shows the average test AUCs with the standard error of the proposed method with different numbers of labeled
positive data in the training distribution Np

tr. As expected, the performance of the proposed method improved as Np
tr

increased.

D.2. Results with Different Relative Parameters α

Figure 4 shows the average test AUCs with the standard error of the proposed method with different values of relative
parameter α. Although the tendency of the results varied across datasets, the proposed method with α = 0.5 worked well
for all datasets.

13

Positive-unlabeled AUC Maximization under Covariate Shift

20 40 60 80 100
Labeled P data

0.72

0.74

0.76

0.78

0.80

0.82

0.84
Te

st
 A

UC

(a) MNIST

20 40 60 80 100
Labeled P data

0.800

0.825

0.850

0.875

0.900

0.925

Te
st

 A
UC

(b) FashionMNIST

20 40 60 80 100
Labeled P data

0.55

0.60

0.65

0.70

0.75

Te
st

 A
UC

(c) SVHN

20 40 60 80 100
Labeled P data

0.80

0.82

0.84

0.86

0.88

0.90

Te
st

 A
UC

(d) CIFAR10

Figure 3. The average test AUCs with the standard errors of the proposed method when changing the number of labeled positive data in
the training distribution Np

tr.

0.0 0.2 0.4 0.6 0.8
Alpha

0.800

0.805

0.810

Te
st

 A
UC

(a) MNIST

0.0 0.2 0.4 0.6 0.8
Alpha

0.895

0.900

0.905

0.910

0.915

Te
st

 A
UC

(b) FashionMNIST

0.0 0.2 0.4 0.6 0.8
Alpha

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Te
st

 A
UC

(c) SVHN

0.0 0.2 0.4 0.6 0.8
Alpha

0.85

0.86

0.87

0.88

0.89

Te
st

 A
UC

(d) CIFAR10

Figure 4. The average test AUCs with the standard errors of the proposed method when changing relative hyperparameter α.

Table 5. Average test AUCs over different positive class-prior π := πtr = πte within {0.01, 0.05, 0.1} on tabular datasets. Values in bold
are not statistically different at the 5% level from the best performing method in each row according to a paired t-test.

Data Ours trPU tePU trAUC teAUC trteAUC PAUC UDAUC CPU
epsilon 0.530 0.479 0.480 0.529 0.530 0.530 0.514 0.528 0.490
Hreadmission 0.694 0.541 0.561 0.700 0.553 0.553 0.477 0.699 0.551

D.3. Results with Tabular Data with Distribution Shifts

We evaluated the proposed method with two tabular datasets: epsilon 2 and Hreadmission (Gardner et al., 2023). In epsilon,
the feature vector size is 2,000. To create the covariate shift, we followed the procedure used in a previous study (Sakai &
Shimizu, 2019). Specifically, we first calculated the Euclidean distance between instance xn and the mean vector of all data
x̄, cn := ∥x− x̄∥. Then, we found the median cmed from all {cn}. We split all {cn} into the first set whose elements were
smaller than cmed and the second set whose elements were larger than cmed. With probability 0.9 and 0.1, instances whose
indices were in the first set were selected as data in the training and test distributions, respectively. In contrast, instances
whose indices were in the second set were selected as data in the training and test distributions with probability 0.1 and 0.9,
respectively. In Hreadmission, the task is to predict the 30-day readmission of diabetic hospital patients. Each patient is
represented by a 183-dimensional feature vector. This dataset has a distribution shift where the training and test distributions
were created by “admission source”. The experimental settings such as the number of data were the same as those in the
main paper. Table 5 shows the average test AUCs on these two tabular datasets. The proposed method performed the best or
comparably to it in all cases.

D.4. Computation Cost

We investigated the training time of the proposed method on MNIST with π = 0.1. We used a Linux server with a 2.20Hz
Central Processing Unit. For comparison, we also evaluated the methods that use PU data in the training distribution and
unlabeled data in the test distribution as in the proposed method. Table 6 shows the results. Since the proposed method
and CPU learned both importance weights and classifiers, they had slightly longer training times than the other methods.
However, the differences were not significant. This result indicates that the proposed method is practical in terms of
computation costs.

2https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

14

Positive-unlabeled AUC Maximization under Covariate Shift

Table 6. Training time [s] of the proposed method on MNIST.
Ours trteAUC PAUC UDAUC CPU
90.2 86.83 87.37 87.93 89.49

Table 7. Performance comparison across different learning rates.
Method Data 10−6 10−5 10−4 10−3 10−2 10−1

Ours MNIST 0.709 0.760 0.804 0.806 0.796 0.738
Ours FahionFMNIST 0.854 0.914 0.907 0.873 0.874 0.789
Ours SVHN 0.507 0.532 0.689 0.682 0.669 0.564
Ours CIFAR10 0.810 0.897 0.886 0.884 0.789 0.644
trAUC MNIST 0.693 0.756 0.787 0.785 0.779 0.784
trAUC FashionMNIST 0.846 0.916 0.909 0.895 0.891 0.876
trAUC SVHN 0.500 0.503 0.547 0.553 0.537 0.533
trAUC CIFAR10 0.761 0.879 0.874 0.870 0.865 0.738

Table 8. Average test AUCs and their standard deviations with different positive class-prior π := πtr = πte. Values in bold are not
statistically different at the 5% level from the best performing method in each row according to a paired t-test.

Data π Ours trPU tePU trAUC teAUC trteAUC PAUC UDAUC CPU
MNIST 0.01 0.817(0.021) 0.677(0.020) 0.654(0.009) 0.795(0.226) 0.813(0.022) 0.795(0.023) 0.402(0.313) 0.794(0.023) 0.667(0.008)

0.05 0.812(0.024) 0.750(0.047) 0.695(0.022) 0.793(0.028) 0.806(0.027) 0.806(0.027) 0.473(0.043) 0.795(0.029) 0.734(0.038)
0.1 0.783(0.027) 0.764(0.026) 0.691(0.038) 0.774(0.022) 0.779(0.026) 0.779(0.026) 0.504(0.043) 0.774(0.022) 0.748(0.037)

Fashion 0.01 0.925(0.028) 0.912(0.032) 0.906(0.029) 0.920(0.027) 0.912(0.021) 0.920(0.027) 0.634(0.038) 0.926(0.026) 0.920(0.029)
MNIST 0.05 0.907(0.040) 0.902(0.067) 0.890(0.068) 0.906(0.036) 0.871(0.033) 0.871(0.033) 0.730(0.031) 0.906(0.036) 0.893(0.063)

0.1 0.890(0.048) 0.834(0.053) 0.790(0.046) 0.899(0.047) 0.839(0.045) 0.839(0.045) 0.718(0.035) 0.899(0.047) 0.829(0.058)
SVHN 0.01 0.715(0.016) 0.504(0.008) 0.504(0.008) 0.548(0.022) 0.724(0.024) 0.725(0.027) 0.236(0.006) 0.549(0.020) 0.504(0.008)

0.05 0.686(0.024) 0.504(0.009) 0.504(0.008) 0.559(0.016) 0.698(0.014) 0.698(0.014) 0.246(0.007) 0.559(0.013) 0.504(0.008)
0.1 0.666(0.037) 0.504(0.008) 0.504(0.008) 0.533(0.024) 0.677(0.040) 0.677(0.040) 0.266(0.009) 0.540(0.024) 0.504(0.008)

CIFAR10 0.01 0.896(0.016) 0.456(0.070) 0.475(0.095) 0.874(0.013) 0.874(0.025) 0.874(0.025) 0.364(0.039) 0.873(0.013) 0.508(0.075)
0.05 0.893(0.025) 0.456(0.064) 0.482(0.114) 0.878(0.020) 0.884(0.026) 0.884(0.026) 0.475(0.046) 0.871(0.021) 0.534(0.115)
0.1 0.870(0.038) 0.469(0.071) 0.587(0.174) 0.871(0.024) 0.874(0.025) 0.874(0.025) 0.560(0.033) 0.869(0.027) 0.542(0.120)

D.5. Results with Different Learning Rates

We investigated the performance obtained by varying the learning rates of the Adam optimizer. Table 7 shows the average
test AUCs over different class-prior within {0.01, 0.05, 0.1} of the proposed method and trAUC, which is the most basic
baseline. As observed, the value 10−4 used in our experiments consistently shows good performance across all datasets.

D.6. Full Results with Standard Deviations

Table 8 shows the average test AUCs and their standard deviations for each method. As class-prior π decreased, the standard
deviations of the proposed method also decreased. This is because when π is small, unlabeled data can be approximately
regarded as negative data; ranking function f in Eqs. (17) and (19) can stably rank data well such that the scores of positive
data are higher than those of negative data. Thus, its training becomes easier and more stable.

D.7. Results with Larger Data

We performed the additional experiments on larger datasets. In this experiment, for each dataset, we used 100 positive and
9,000 unlabeled data in the training distribution and 9,000 unlabeled data in the test distribution for training. In addition, we
included the recent PU learning method (PURA) (Jiang et al., 2023) for comparison. Since it is designed for ordinary PU
learning, it used PU data in the training distribution. Margin ρ was selected from {0.1, 1, 10} by validation data. The results
are described in Table 9. The proposed method outperformed the other methods. Since PURA does not consider distribution
shift, it did not work well.

15

Positive-unlabeled AUC Maximization under Covariate Shift

Table 9. Results in the large-data regime: average test AUCs with different positive class-prior π := πtr = πte. Values in bold are not
statistically different at the 5% level from the best performing method in each row according to a paired t-test. ‘# best’ row represents the
number of results of each method that are the best or comparable to it.

Data π Ours trPU tePU trAUC teAUC trteAUC PAUC UDAUC CPU PURA
MNIST 0.01 0.849 0.719 0.690 0.823 0.842 0.823 0.417 0.823 0.704 0.808

0.05 0.829 0.766 0.738 0.813 0.814 0.813 0.507 0.813 0.774 0.775
0.1 0.810 0.779 0.736 0.806 0.805 0.805 0.524 0.806 0.757 0.776

Fashion 0.01 0.942 0.928 0.922 0.942 0.925 0.942 0.668 0.945 0.920 0.924
MNIST 0.05 0.935 0.864 0.750 0.945 0.912 0.912 0.728 0.946 0.854 0.952

0.1 0.913 0.897 0.820 0.925 0.854 0.854 0.701 0.926 0.898 0.946
SVHN 0.01 0.763 0.504 0.504 0.628 0.780 0.780 0.252 0.628 0.504 0.503

0.05 0.757 0.504 0.504 0.599 0.760 0.765 0.272 0.605 0.504 0.506
0.1 0.750 0.504 0.504 0.587 0.749 0.751 0.304 0.586 0.504 0.503

CIFAR10 0.01 0.920 0.450 0.476 0.915 0.922 0.922 0.343 0.914 0.509 0.854
0.05 0.910 0.464 0.520 0.904 0.910 0.910 0.487 0.906 0.521 0.849
0.1 0.900 0.552 0.654 0.885 0.877 0.879 0.547 0.900 0.579 0.864

best 11 1 0 4 8 7 0 5 1 2

Table 10. Results with the Food101 dataset: average test AUCs with different positive class-prior π := πtr = πte.
π Ours trPU tePU trAUC teAUC trteAUC PAUC UDAUC CPU
0.01 0.590 0.470 0.563 0.585 0.601 0.585 0.385 0.577 0.509
0.1 0.585 0.488 0.551 0.578 0.554 0.578 0.441 0.590 0.506
avg 0.588 0.479 0.557 0.582 0.578 0.582 0.413 0.584 0.508

D.8. Results with the Food101 dataset

We additionally evaluated the proposed method with the Food101 dataset (Bossard et al., 2014) and the ResNet-18 model
(He et al., 2016), which allows us to evaluate our method with a larger dataset and model. The Food101 dataset consists of
image data from 101 food categories and is widely used for image classification tasks. The maximum length of each image is
512 pixels. We resized each image to 224×224 pixels. To create a binary classification problem, we divided the original 101
categories into sweets-related (positive) and main dish-related (negative) classes. Then, following the procedure described
in Section 5.1, we split the original categories within each positive/negative into two groups, assigning the first half with
smaller class indices to the first group and the remaining to the second group. We then created the covariate shift by using
the group ratio of 9:1 for the training and 1:9 for the testing. We used 2,500 (200) positive and 25,000 (2,000) unlabeled
training data and 25,000 (2,000) unlabeled test data for training (validation). We used 3,000 test data for evaluation. As for
ResNet-18, we did not use pre-trained weights to purely investigate the performance with the given data. Table 10 shows the
results. The proposed method performed slightly better than these methods on average.

16

