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Abstract

Adaptive gradient algorithms [1–4] combine the moving average idea with heavy
ball acceleration to estimate accurate first- and second-order moments of gradient
for accelerating convergence. But Nesterov acceleration which converges faster
than heavy ball acceleration in theory [5] and also in many empirical cases [6] is
much less investigated under the adaptive gradient setting. In this work, we propose
the ADAptive Nesterov momentum algorithm (Adan) to speed up the training of
deep neural networks. Adan first reformulates the vanilla Nesterov acceleration to
develop a new Nesterov momentum estimation (NME) method that avoids the extra
computation and memory overhead of computing gradient at the extrapolation point.
Then Adan adopts NME to estimate the first- and second-order gradient moments in
adaptive gradient algorithms for convergence acceleration. Besides, we prove that
Adan finds an ✏-approximate stationary point within O

�
✏�4

�
stochastic gradient

complexity on the non-convex stochastic problems, matching the best-known lower
bound. Extensive experimental results show that Adan surpasses the corresponding
SoTA optimizers for vision, language, and RL tasks and sets new SoTAs for
many popular networks and frameworks, e.g. ResNet [7], ConvNext [8], ViT [9],
Swin [10], MAE [11], Transformer-XL [12] and BERT [13]. More surprisingly,
Adan can use half of the training cost (epochs) of SoTA optimizers to achieve
higher or comparable performance on ViT, ResNet, MAE, etc, and also shows great
tolerance to a large range of minibatch size, e.g. from 1k to 32k. Code is released
at https://github.com/sail-sg/Adan.

1 Introduction

Deep neural networks (DNNs) have made remarkable success in many fields, e.g. computer vision [7,
8, 14–16] and natural language processing [17, 18]. A noticeable part of such success is contributed
by the stochastic gradient based optimizers which find satisfactory solutions with high efficiency.
Starting from AdaGrad [19] and RMSProp [20], adaptive gradient algorithms [1–3, 19–25] have
gained wide attention with faster convergence speed. They adjust the learning rate for each gradient
coordinate according to the current geometry curvature of the loss objective. Indeed, Adam [1] and
AdamW [3], as two representatives which often offer fast convergence speed across many DNN
frameworks, have become the default choice to train CNNs and ViTs [9], respectively.

However, none of the above optimizers can always stay undefeated among all its competitors across
different network architectures and application settings. For instance, for vanilla ResNet, SGD often
achieves better generalization performance than adaptive gradient algorithms such as Adam, whereas
on vision transformers (ViTs) [9, 10, 26], SGD often fails and AdamW is the dominant optimizer
with higher and more stable performance. Moreover, these commonly used optimizers usually fail for
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large-batch training, but which is a default setting of the prevalent distributed training. Although there
is some performance degradation, we still tend to choose the large-batch setting for large-scale deep
learning training tasks due to the unaffordable training time. Though some methods, e.g. LARS [27]
and LAMB [4], have been proposed to handle large batch sizes, their performance often varies
significantly across batch sizes. This performance inconsistency increases the training cost and
engineering burden, since one usually has to try various optimizers for different architectures.

When we rethink the current adaptive gradient algorithms, we find that they mainly combine the
moving average idea with the heavy ball acceleration technique to estimate the first- and second-order
moments of the gradient [1–4]. However, previous studies [5, 28, 29] have revealed that Nesterov
acceleration can theoretically achieve a faster convergence speed than heavy ball acceleration, as it
uses gradient at an extrapolation point of the current solution and sees a slight “future". Moreover, a
recent work [6] has shown the potential of Nesterov acceleration for large-batch training [30]. Thus
we are inspired to consider efficiently integrating Nesterov acceleration with adaptive algorithms.

Contributions: 1) We propose an efficient dnn optimizer, named Adan, to train DNNs. Adan
develops a Nesterov momentum estimation method to estimate stable and accurate first- and second-
order gradient moments in adaptive algorithms for acceleration. 2) Adan enjoys provably faster
convergence speed than previous adaptive algorithms, e.g. Adam. 3) Empirically, Adan shows
superior performance over the SoTA deep optimizers across vision, language, and RL tasks.

2 Methodology

In this work, we study the following regularized nonconvex optimization problem:

min✓ F (✓) := E⇣⇠D [f(✓, ⇣)] +
�

2
k✓k2, (1)

where loss f(·, ·) is differentiable and possibly nonconvex, data ⇣ is drawn from an unknown
distribution D, ✓ is learnable parameters, and k·k is the classical `2 norm. Here we consider the
square `2 regularizer as it can improve generalization performance and is widely used in practice [3].

2.1 Preliminaries

Taking a deeper step into Adam, one can easily observe that the key moving average idea in Adam is
similar to the classical (stochastic) heavy-ball acceleration (HBA) technique [31]:

HBA: gk = rf(✓k) + ⇠k, mk = (1� �1)mk�1 + gk, ✓k+1 = ✓k � ⌘mk,

where gk is the minibatch gradient gk := E⇣⇠D[rf(✓k, ⇣)] + ⇠k, ⇠k is the gradient noise, and the
scalar constant ⌘ is the base learning rate.

In addition to HBA, Nesterov’s accelerated (stochastic) gradient descent (AGD) [5, 28, 29] is another
popular acceleration technique in the optimization community:

AGD: gk = rf(✓k�⌘(1� �1)mk�1)+⇠k, mk = (1� �1)mk�1+gk, ✓k+1 = ✓k�⌘mk. (2)
Unlike HBA, AGD uses the gradient at the extrapolation point ✓0

k = ✓k � (1� �1)(✓k � ✓k�1).
Hence AGD sees a slight “future” to converge faster. Indeed, AGD theoretically converges faster than
HBA and achieves optimal convergence rate on the general smooth convex problems [5]. Meanwhile,
since the over-parameterized DNNs have been observed/proved to have many convex-alike local
basins [32–39], AGD seems more suitable than HBA for DNNs.

For large-batch training, the recent work [6] shows that AGD has the potential to achieve comparable
performance to some specifically designed optimizers, e.g. LARS and LAMB. With its advantage in
convergence and large-batch training, we consider applying AGD to improve adaptive algorithms.

2.2 Adaptive Nesterov Momentum Algorithm

Main iteration. We temporarily set � = 0 in Eqn. (1). As aforementioned, AGD computes gradient
at an extrapolation point ✓0

k instead of the current iterate ✓k, which however brings extra computation
and memory overhead for computing ✓0

k and preserving both ✓k and ✓0
k. To solve the issue, we

reformulate AGD (2) into its equivalent (See Lemma 1 in Appendix) but more DNN-efficient version:
Reformulated AGD: mk = (1� �1)mk�1 + [gk + (1� �1)(gk � gk�1)], ✓k+1 = ✓k � ⌘mk.
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Algorithm 1: Adan (Adaptive Nesterov Momentum Algorithm)
Input: initialization ✓0, step size ⌘, momentum (�1,�2,�3) 2 [0, 1]3, weight decay �k > 0.
Output: some average of {✓k}

K
k=1.

1 while k < K do
2 compute the stochastic gradient estimator gk at ✓k;
3 mk = (1� �1)mk�1 + �1gk /* set m0 = g0 */;
4 vk = (1� �2)vk�1 + �2(gk � gk�1) /* set v1 = g1 � g0 */;
5 nk = (1� �3)nk�1 + �3[gk + (1� �2)(gk � gk�1)]

2 /* set n0 = g2
0 */;

6 ⌘k = ⌘/(
p
nk + ") /* " > 0 is for stabilize training */;

7 ✓k+1 = (1 + �k⌘)
�1[✓k � ⌘k � (mk + (1� �2)vk)];

8 end while

where gk = E⇣⇠D[rf(✓k, ⇣)]+ ⇠k. The main idea here is that we maintain (✓k � ⌘(1� �1)mk�1)
rather than ✓k in vanilla AGD per iteration, as there is no difference between them when the algorithm
converges. Like Adam, by regarding g0

k = gk + (1� �1)(gk � gk�1) as the current stochastic
gradient and movingly averaging g0

k to estimate the first- and second-moments of gradient, we obtain

Vanilla Adan:

8
><

>:

mk = (1� �1)mk�1 + �1[gk + (1� �1)(gk � gk�1)]

nk = (1� �3)nk�1 + �3(gk + (1� �1)[gk � gk�1)]
2

⌘k = ⌘/
�p

nk + "
�
, ✓k+1 = ✓k � ⌘k �mk.

The main difference of Adan with Adam-type methods is that as compared in Eqn. (3), the moment
mk of Adan is the average of {gt + (1� �1)(gt � gt�1)}kt=1 while those of Adam-type are the
average of {gt}

k
t=1. So is their second-order term nk.

mk=

(Pk
t=0 ck,t[gt + (1� �1)(gt � gt�1)], Adan,Pk
t=0 ck,tgt, Adam,

ck,t=

(
�1(1� �1)

(k�t) t > 0,

(1� �1)
k t = 0,

(3)

The first-order moment mk =
Pk

t=0 ck,t[gt + (1� �1)(gt � gt�1)] consists of two terms, i.e., gra-
dient term gt and gradient difference term (gt�gt�1), which actually have different physic meanings.
So we further decouple them for greater flexibility and also better trade-off between them:

(✓k+1 � ✓k)/⌘k=
Xk

t=0

⇥
ck,tgt + (1� �2)c

0
k,t(gt � gt�1)

⇤
= mk + (1� �2)vk,

where c0k,t = �2(1� �2)
(k�t) for t > 0, c0k,t = (1� �2)

k for t = 0, and mk and vk are defined as

mk = (1� �1)mk�1 + �1gk, vk = (1� �2)vk�1 + �2(gk � gk�1).

This change for a flexible estimation does not impair convergence speed. As we show in Theorem 1
(see Sec. C in Appendix), the complexity of Adan under this change matches the lower complexity
bound. We do not separate the gradients and their difference in the second-order moment nk, since
E(nk) contains the correlation term Cov(gk,gk�1) 6= 0 which may have statistical significance.

Decay Weight by Proximation. As observed in AdamW, decoupling the optimization objective and
simple-type regularization (e.g. `2 regularizer) can largely improve the generalization performance.
Here we follow this idea but from a rigorous optimization perspective. Intuitively, at each iteration,
we minimize the first-order approximation of F (·) at the point ✓k:

✓k+1 = ✓k � ⌘k � m̄k = argmin
✓

✓
F (✓k) + hm̄k,✓ � ✓ki+

1

2⌘
k✓ � ✓kk

2p
nk

◆
,

where kxk2pnk
:= hx,

p
nk + " � xi and m̄k := mk+(1� �2)vk is the first-order derivative of F (·)

in some sense. Follow the idea of proximal gradient descent [40, 41], we decouple the `2 regularizer
from F (·) and only linearize the loss function f(·):

✓k+1 = argmin
✓

⇣�k

2
k✓k2pnk

+ hm̄k,✓ � ✓ki+
1

2⌘
k✓ � ✓kk

2p
nk

⌘
=

✓k � ⌘k � m̄k

1 + �k⌘
, (4)

where �k > 0 is the weight decay constant at the k-th iteration. One can find that the optimization
objective of Separated Regularization at the k-th iteration is changed from the vanilla “static" function
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Table 1: Top-1 Acc. (%) of ResNet and ConvNext on ImageNet. ⇤ and ⇧ are reported in [42], [8].
ResNet-50 ResNet-101

Epoch 100 200 300 100 200 300

SAM 77.3 78.7 79.4 79.5 81.1 81.6
SGD-M 77.0 78.6 79.3 79.3 81.0 81.4
Adam 76.9 78.4 78.8 78.4 80.2 80.6
AdamW 77.0 78.9 79.3 78.9 79.9 80.4
LAMB 77.0 79.2 79.8⇤ 79.4 81.1 81.3⇤

Adan (ours) 78.1 79.7 80.2 79.9 81.6 81.8

ConvNext Tiny
Epoch 150 300
AdamW [3, 8] 81.2 82.1⇧
Adan (ours) 81.7 82.4

ConvNext Small
Epoch 150 300
AdamW [3, 8] 82.2 83.1⇧
Adan (ours) 82.5 83.3

Table 2: Top-1 Acc. (%) of ViT and Swin on ImageNet. ⇤ and ⇧ are respectively reported in [9], [10].
ViT Small ViT Base Swin Tiny Swin small Swin Base

Epoch 150 300 150 300 150 300 150 300 150 300
AdamW [3, 9, 10] 78.3 79.9⇤ 79.5 81.8⇤ 79.9 81.2⇧ 82.1 83.2⇧ 82.6 83.5⇧
Adan (ours) 79.6 80.9 81.7 82.3 81.3 81.6 82.9 83.7 83.3 83.8

F (·) in (1) to a “dynamic" function Fk(·), which adaptively regularizes the coordinates with larger
gradient square terms more. We summarize our Adan in Algorithm 1.

Convergence Analysis: As shown in Theorems 1 in Appendix. C, the convergence speed of Adan
matches the best-known theoretical lower bound for non-convex stochastic optimization problems.
This conclusion is still valid when it also uses the decoupled weight decay.

3 Experimental Results
Table 3: Top-1 Acc. (%) of
ViT-B and ViT-L trained by self-
supervised MAE on ImageNet.

MAE-ViT-B MAE-ViT-L
Epoch 300 800 1600 800 1600

AdamW 82.9 — 83.6 85.4 85.9
Adan 83.4 83.8 — 85.9 —

For all the tested vision tasks, NLP, and RL tasks, we only
replace the default optimizer with our Adan, and do not make
other changes, e.g. network architectures and data augmentation.

Vision Results. 1) supervised settings: we report the results
on CNN-type architectures and ViTs in Tables 1 and 2, respec-
tively. 2) self-supervised settings: we follow the MAE training
framework to pretrain and fine-tune ViT-B and ViT-L, and report
results in Table 3. All these results show that in most cases, Adan
can use half of the training cost (epochs) of SoTA optimizers to
achieve higher or comparable performance on ViT, ResNet, MAE, etc.

Table 4: Test PPL for Transformer-
XL-base model on WikiText-103.

Transformer-XL
Training Steps

50k 100k 200k
Adam [1] 28.5 25.5 24.2
Adan (ours) 26.2 24.2 23.5

NLP Results. 1) supervised settings: we investigate the per-
formance of Adan on Transformer-XL, and report the results in
Table 4. 2) self-supervised settings: we use Adan to train BERT
from scratch, and report the results in Table 5. For all NLP tasks,
Adan achieves higher performance than the default SoTAs, and
suppress Adam within half training steps on Transformer-XL.

Table 5: Results (the higher, the better) of BERT-base model on the development set of GLUE.
BERT-base MNLI QNLI QQP RTE SST-2 CoLA STS-B Average
Adam [1] (from [43]) 83.7/84.8 89.3 90.8 71.4 91.7 48.9 91.3 81.5
Adam [1] (reproduced) 84.9/84.9 90.8 90.9 69.3 92.6 58.5 88.7 82.5
Adan (ours) 85.7/85.6 91.3 91.2 73.3 93.2 64.6 89.3 84.3 (+1.8)
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Figure 1: PPO with Adam and Adan as its optimizer.

RL Results. We replace
the default Adam optimizer in
PPO [44] (one of the most popu-
lar policy gradient method), and
do not make other change in PPO.
Fig. 1 shows that on representa-
tive MuJoCo games, PPO-Adan
achieves much higher rewards
than PPO with Adam as its opti-
mizer.

More Extra Results. Due to
space limitation, we defer more extra results on vision, NLP and RL tasks (e.g. results with large
batch size, loss curve, ablation study, etc.) to Appendix.
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