
Adan: Adaptive Nesterov Momentum Algorithm for
Faster Optimizing Deep Models

Xingyu Xie1,2⇤ Pan Zhou1⇤ Huan Li3 Zhouchen Lin2? Shuicheng Yan1?

1Sea AI Lab 2Peking University 3Nankai University
{xyxie,zhoupan,yansc}@sea.com {xyxie,zlin}@pku.cn lihuanss@nankai.edu.cn

Abstract

Adaptive gradient algorithms [1–4] combine the moving average idea with heavy
ball acceleration to estimate accurate first- and second-order moments of gradient
for accelerating convergence. But Nesterov acceleration which converges faster
than heavy ball acceleration in theory [5] and also in many empirical cases [6] is
much less investigated under the adaptive gradient setting. In this work, we propose
the ADAptive Nesterov momentum algorithm (Adan) to speed up the training of
deep neural networks. Adan first reformulates the vanilla Nesterov acceleration to
develop a new Nesterov momentum estimation (NME) method that avoids the extra
computation and memory overhead of computing gradient at the extrapolation point.
Then Adan adopts NME to estimate the first- and second-order gradient moments in
adaptive gradient algorithms for convergence acceleration. Besides, we prove that
Adan finds an ✏-approximate stationary point within O

�
✏�4

�
stochastic gradient

complexity on the non-convex stochastic problems, matching the best-known lower
bound. Extensive experimental results show that Adan surpasses the corresponding
SoTA optimizers for vision, language, and RL tasks and sets new SoTAs for
many popular networks and frameworks, e.g. ResNet [7], ConvNext [8], ViT [9],
Swin [10], MAE [11], Transformer-XL [12] and BERT [13]. More surprisingly,
Adan can use half of the training cost (epochs) of SoTA optimizers to achieve
higher or comparable performance on ViT, ResNet, MAE, etc, and also shows great
tolerance to a large range of minibatch size, e.g. from 1k to 32k. Code is released
at https://github.com/sail-sg/Adan.

1 Introduction

Deep neural networks (DNNs) have made remarkable success in many fields, e.g. computer vision [7,
8, 14–16] and natural language processing [17, 18]. A noticeable part of such success is contributed
by the stochastic gradient based optimizers which find satisfactory solutions with high efficiency.
Starting from AdaGrad [19] and RMSProp [20], adaptive gradient algorithms [1–3, 19–25] have
gained wide attention with faster convergence speed. They adjust the learning rate for each gradient
coordinate according to the current geometry curvature of the loss objective. Indeed, Adam [1] and
AdamW [3], as two representatives which often offer fast convergence speed across many DNN
frameworks, have become the default choice to train CNNs and ViTs [9], respectively.

However, none of the above optimizers can always stay undefeated among all its competitors across
different network architectures and application settings. For instance, for vanilla ResNet, SGD often
achieves better generalization performance than adaptive gradient algorithms such as Adam, whereas
on vision transformers (ViTs) [9, 10, 26], SGD often fails and AdamW is the dominant optimizer
with higher and more stable performance. Moreover, these commonly used optimizers usually fail for

⇤Equal contribution. Xingyu did this work during an internship at Sea AI Lab.
?Co-corresponding authors.

Has it Trained Yet? Workshop at the Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/sail-sg/Adan


large-batch training, but which is a default setting of the prevalent distributed training. Although there
is some performance degradation, we still tend to choose the large-batch setting for large-scale deep
learning training tasks due to the unaffordable training time. Though some methods, e.g. LARS [27]
and LAMB [4], have been proposed to handle large batch sizes, their performance often varies
significantly across batch sizes. This performance inconsistency increases the training cost and
engineering burden, since one usually has to try various optimizers for different architectures.

When we rethink the current adaptive gradient algorithms, we find that they mainly combine the
moving average idea with the heavy ball acceleration technique to estimate the first- and second-order
moments of the gradient [1–4]. However, previous studies [5, 28, 29] have revealed that Nesterov
acceleration can theoretically achieve a faster convergence speed than heavy ball acceleration, as it
uses gradient at an extrapolation point of the current solution and sees a slight “future". Moreover, a
recent work [6] has shown the potential of Nesterov acceleration for large-batch training [30]. Thus
we are inspired to consider efficiently integrating Nesterov acceleration with adaptive algorithms.

Contributions: 1) We propose an efficient dnn optimizer, named Adan, to train DNNs. Adan
develops a Nesterov momentum estimation method to estimate stable and accurate first- and second-
order gradient moments in adaptive algorithms for acceleration. 2) Adan enjoys provably faster
convergence speed than previous adaptive algorithms, e.g. Adam. 3) Empirically, Adan shows
superior performance over the SoTA deep optimizers across vision, language, and RL tasks.

2 Methodology

In this work, we study the following regularized nonconvex optimization problem:

min✓ F (✓) := E⇣⇠D [f(✓, ⇣)] +
�

2
k✓k2, (1)

where loss f(·, ·) is differentiable and possibly nonconvex, data ⇣ is drawn from an unknown
distribution D, ✓ is learnable parameters, and k·k is the classical `2 norm. Here we consider the
square `2 regularizer as it can improve generalization performance and is widely used in practice [3].

2.1 Preliminaries

Taking a deeper step into Adam, one can easily observe that the key moving average idea in Adam is
similar to the classical (stochastic) heavy-ball acceleration (HBA) technique [31]:

HBA: gk = rf(✓k) + ⇠k, mk = (1� �1)mk�1 + gk, ✓k+1 = ✓k � ⌘mk,

where gk is the minibatch gradient gk := E⇣⇠D[rf(✓k, ⇣)] + ⇠k, ⇠k is the gradient noise, and the
scalar constant ⌘ is the base learning rate.

In addition to HBA, Nesterov’s accelerated (stochastic) gradient descent (AGD) [5, 28, 29] is another
popular acceleration technique in the optimization community:

AGD: gk = rf(✓k�⌘(1� �1)mk�1)+⇠k, mk = (1� �1)mk�1+gk, ✓k+1 = ✓k�⌘mk. (2)
Unlike HBA, AGD uses the gradient at the extrapolation point ✓0

k = ✓k � (1� �1)(✓k � ✓k�1).
Hence AGD sees a slight “future” to converge faster. Indeed, AGD theoretically converges faster than
HBA and achieves optimal convergence rate on the general smooth convex problems [5]. Meanwhile,
since the over-parameterized DNNs have been observed/proved to have many convex-alike local
basins [32–39], AGD seems more suitable than HBA for DNNs.

For large-batch training, the recent work [6] shows that AGD has the potential to achieve comparable
performance to some specifically designed optimizers, e.g. LARS and LAMB. With its advantage in
convergence and large-batch training, we consider applying AGD to improve adaptive algorithms.

2.2 Adaptive Nesterov Momentum Algorithm

Main iteration. We temporarily set � = 0 in Eqn. (1). As aforementioned, AGD computes gradient
at an extrapolation point ✓0

k instead of the current iterate ✓k, which however brings extra computation
and memory overhead for computing ✓0

k and preserving both ✓k and ✓0
k. To solve the issue, we

reformulate AGD (2) into its equivalent (See Lemma 1 in Appendix) but more DNN-efficient version:
Reformulated AGD: mk = (1� �1)mk�1 + [gk + (1� �1)(gk � gk�1)], ✓k+1 = ✓k � ⌘mk.

2



Algorithm 1: Adan (Adaptive Nesterov Momentum Algorithm)
Input: initialization ✓0, step size ⌘, momentum (�1,�2,�3) 2 [0, 1]3, weight decay �k > 0.
Output: some average of {✓k}

K
k=1.

1 while k < K do
2 compute the stochastic gradient estimator gk at ✓k;
3 mk = (1� �1)mk�1 + �1gk /* set m0 = g0 */;
4 vk = (1� �2)vk�1 + �2(gk � gk�1) /* set v1 = g1 � g0 */;
5 nk = (1� �3)nk�1 + �3[gk + (1� �2)(gk � gk�1)]

2 /* set n0 = g2
0 */;

6 ⌘k = ⌘/(
p
nk + ") /* " > 0 is for stabilize training */;

7 ✓k+1 = (1 + �k⌘)
�1[✓k � ⌘k � (mk + (1� �2)vk)];

8 end while

where gk = E⇣⇠D[rf(✓k, ⇣)]+ ⇠k. The main idea here is that we maintain (✓k � ⌘(1� �1)mk�1)
rather than ✓k in vanilla AGD per iteration, as there is no difference between them when the algorithm
converges. Like Adam, by regarding g0

k = gk + (1� �1)(gk � gk�1) as the current stochastic
gradient and movingly averaging g0

k to estimate the first- and second-moments of gradient, we obtain

Vanilla Adan:

8
><

>:

mk = (1� �1)mk�1 + �1[gk + (1� �1)(gk � gk�1)]

nk = (1� �3)nk�1 + �3(gk + (1� �1)[gk � gk�1)]
2

⌘k = ⌘/
�p

nk + "
�
, ✓k+1 = ✓k � ⌘k �mk.

The main difference of Adan with Adam-type methods is that as compared in Eqn. (3), the moment
mk of Adan is the average of {gt + (1� �1)(gt � gt�1)}kt=1 while those of Adam-type are the
average of {gt}

k
t=1. So is their second-order term nk.

mk=

(Pk
t=0 ck,t[gt + (1� �1)(gt � gt�1)], Adan,Pk
t=0 ck,tgt, Adam,

ck,t=

(
�1(1� �1)

(k�t) t > 0,

(1� �1)
k t = 0,

(3)

The first-order moment mk =
Pk

t=0 ck,t[gt + (1� �1)(gt � gt�1)] consists of two terms, i.e., gra-
dient term gt and gradient difference term (gt�gt�1), which actually have different physic meanings.
So we further decouple them for greater flexibility and also better trade-off between them:

(✓k+1 � ✓k)/⌘k=
Xk

t=0

⇥
ck,tgt + (1� �2)c

0
k,t(gt � gt�1)

⇤
= mk + (1� �2)vk,

where c0k,t = �2(1� �2)
(k�t) for t > 0, c0k,t = (1� �2)

k for t = 0, and mk and vk are defined as

mk = (1� �1)mk�1 + �1gk, vk = (1� �2)vk�1 + �2(gk � gk�1).

This change for a flexible estimation does not impair convergence speed. As we show in Theorem 1
(see Sec. C in Appendix), the complexity of Adan under this change matches the lower complexity
bound. We do not separate the gradients and their difference in the second-order moment nk, since
E(nk) contains the correlation term Cov(gk,gk�1) 6= 0 which may have statistical significance.

Decay Weight by Proximation. As observed in AdamW, decoupling the optimization objective and
simple-type regularization (e.g. `2 regularizer) can largely improve the generalization performance.
Here we follow this idea but from a rigorous optimization perspective. Intuitively, at each iteration,
we minimize the first-order approximation of F (·) at the point ✓k:

✓k+1 = ✓k � ⌘k � m̄k = argmin
✓

✓
F (✓k) + hm̄k,✓ � ✓ki+

1

2⌘
k✓ � ✓kk

2p
nk

◆
,

where kxk2pnk
:= hx,

p
nk + " � xi and m̄k := mk+(1� �2)vk is the first-order derivative of F (·)

in some sense. Follow the idea of proximal gradient descent [40, 41], we decouple the `2 regularizer
from F (·) and only linearize the loss function f(·):

✓k+1 = argmin
✓

⇣�k

2
k✓k2pnk

+ hm̄k,✓ � ✓ki+
1

2⌘
k✓ � ✓kk

2p
nk

⌘
=

✓k � ⌘k � m̄k

1 + �k⌘
, (4)

where �k > 0 is the weight decay constant at the k-th iteration. One can find that the optimization
objective of Separated Regularization at the k-th iteration is changed from the vanilla “static" function

3



Table 1: Top-1 Acc. (%) of ResNet and ConvNext on ImageNet. ⇤ and ⇧ are reported in [42], [8].
ResNet-50 ResNet-101

Epoch 100 200 300 100 200 300

SAM 77.3 78.7 79.4 79.5 81.1 81.6
SGD-M 77.0 78.6 79.3 79.3 81.0 81.4
Adam 76.9 78.4 78.8 78.4 80.2 80.6
AdamW 77.0 78.9 79.3 78.9 79.9 80.4
LAMB 77.0 79.2 79.8⇤ 79.4 81.1 81.3⇤

Adan (ours) 78.1 79.7 80.2 79.9 81.6 81.8

ConvNext Tiny
Epoch 150 300
AdamW [3, 8] 81.2 82.1⇧
Adan (ours) 81.7 82.4

ConvNext Small
Epoch 150 300
AdamW [3, 8] 82.2 83.1⇧
Adan (ours) 82.5 83.3

Table 2: Top-1 Acc. (%) of ViT and Swin on ImageNet. ⇤ and ⇧ are respectively reported in [9], [10].
ViT Small ViT Base Swin Tiny Swin small Swin Base

Epoch 150 300 150 300 150 300 150 300 150 300
AdamW [3, 9, 10] 78.3 79.9⇤ 79.5 81.8⇤ 79.9 81.2⇧ 82.1 83.2⇧ 82.6 83.5⇧
Adan (ours) 79.6 80.9 81.7 82.3 81.3 81.6 82.9 83.7 83.3 83.8

F (·) in (1) to a “dynamic" function Fk(·), which adaptively regularizes the coordinates with larger
gradient square terms more. We summarize our Adan in Algorithm 1.

Convergence Analysis: As shown in Theorems 1 in Appendix. C, the convergence speed of Adan
matches the best-known theoretical lower bound for non-convex stochastic optimization problems.
This conclusion is still valid when it also uses the decoupled weight decay.

3 Experimental Results
Table 3: Top-1 Acc. (%) of
ViT-B and ViT-L trained by self-
supervised MAE on ImageNet.

MAE-ViT-B MAE-ViT-L
Epoch 300 800 1600 800 1600

AdamW 82.9 — 83.6 85.4 85.9
Adan 83.4 83.8 — 85.9 —

For all the tested vision tasks, NLP, and RL tasks, we only
replace the default optimizer with our Adan, and do not make
other changes, e.g. network architectures and data augmentation.

Vision Results. 1) supervised settings: we report the results
on CNN-type architectures and ViTs in Tables 1 and 2, respec-
tively. 2) self-supervised settings: we follow the MAE training
framework to pretrain and fine-tune ViT-B and ViT-L, and report
results in Table 3. All these results show that in most cases, Adan
can use half of the training cost (epochs) of SoTA optimizers to
achieve higher or comparable performance on ViT, ResNet, MAE, etc.

Table 4: Test PPL for Transformer-
XL-base model on WikiText-103.

Transformer-XL
Training Steps

50k 100k 200k
Adam [1] 28.5 25.5 24.2
Adan (ours) 26.2 24.2 23.5

NLP Results. 1) supervised settings: we investigate the per-
formance of Adan on Transformer-XL, and report the results in
Table 4. 2) self-supervised settings: we use Adan to train BERT
from scratch, and report the results in Table 5. For all NLP tasks,
Adan achieves higher performance than the default SoTAs, and
suppress Adam within half training steps on Transformer-XL.

Table 5: Results (the higher, the better) of BERT-base model on the development set of GLUE.
BERT-base MNLI QNLI QQP RTE SST-2 CoLA STS-B Average
Adam [1] (from [43]) 83.7/84.8 89.3 90.8 71.4 91.7 48.9 91.3 81.5
Adam [1] (reproduced) 84.9/84.9 90.8 90.9 69.3 92.6 58.5 88.7 82.5
Adan (ours) 85.7/85.6 91.3 91.2 73.3 93.2 64.6 89.3 84.3 (+1.8)

0 1 M 2 M 3 M 4 M 5 M 6 M
Timesteps

0

1000

2000

3000

4000

5000

6000

Ep
is

od
e 

Re
w

ar
d

ppo
ppo_adan

Ant

0 1 M 2 M 3 M 4 M 5 M 6 M
Timesteps

0

2000

4000

6000

8000

10000

Ep
is

od
e 

Re
w

ar
d

ppo
ppo_adan

HalfCheetah

Figure 1: PPO with Adam and Adan as its optimizer.

RL Results. We replace
the default Adam optimizer in
PPO [44] (one of the most popu-
lar policy gradient method), and
do not make other change in PPO.
Fig. 1 shows that on representa-
tive MuJoCo games, PPO-Adan
achieves much higher rewards
than PPO with Adam as its opti-
mizer.

More Extra Results. Due to
space limitation, we defer more extra results on vision, NLP and RL tasks (e.g. results with large
batch size, loss curve, ablation study, etc.) to Appendix.

4



References
[1] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[2] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Papademetris,
and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed gradients. Advances
in Neural Information Processing Systems, 33:18795–18806, 2020.

[3] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2018.

[4] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learning: Training
bert in 76 minutes. In International Conference on Learning Representations, 2019.

[5] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science
& Business Media, 2003.

[6] Zachary Nado, Justin M Gilmer, Christopher J Shallue, Rohan Anil, and George E Dahl. A large
batch optimizer reality check: Traditional, generic optimizers suffice across batch sizes. arXiv preprint
arXiv:2102.06356, 2021.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[8] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A
convnet for the 2020s. arXiv preprint arXiv:2201.03545, 2022.

[9] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation through attention. In International Conference on
Machine Learning, pages 10347–10357. PMLR, 2021.

[10] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 10012–10022, 2021.

[11] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, 2022.

[12] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 2978–2988, 2019.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–9, 2015.

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition at scale. In International Conference on Learning
Representations, 2020.

[16] Pan Zhou, Yichen Zhou, Chenyang Si, Weihao Yu, Teck Khim Ng, and Shuicheng Yan. Mugs: A
multi-granular self-supervised learning framework. In arXiv preprint arXiv:2203.14415, 2022.

[17] Tara N Sainath, Brian Kingsbury, Abdel-rahman Mohamed, George E Dahl, George Saon, Hagen Soltau,
Tomas Beran, Aleksandr Y Aravkin, and Bhuvana Ramabhadran. Improvements to deep convolutional
neural networks for LVCSR. In 2013 IEEE workshop on automatic speech recognition and understanding,
pages 315–320. IEEE, 2013.

[18] O. Abdel-Hamid, A. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu. Convolutional neural networks for
speech recognition. IEEE Trans. on audio, speech, and language processing, 22(10):1533–1545, 2014.

5



[19] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(7), 2011.

[20] Tieleman Tijmen and Hinton Geoffrey. Lecture 6.5-rmsprop: Divide the gradient by a run- ning average of
its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012.

[21] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In International
Conference on Learning Representations, 2018.

[22] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
algorithms for non-convex optimization. In International Conference on Learning Representations, 2018.

[23] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic bound of
learning rate. In International Conference on Learning Representations, 2018.

[24] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In International Conference on Learning
Representations, 2019.

[25] Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun, Gyuwan Kim, Youngjung
Uh, and Jung-Woo Ha. Adamp: Slowing down the slowdown for momentum optimizers on scale-invariant
weights. In International Conference on Learning Representations, 2020.

[26] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and Shuicheng
Yan. Metaformer is actually what you need for vision. arXiv preprint arXiv:2111.11418, 2021.

[27] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

[28] Yurii E Nesterov. A method for solving the convex programming problem with convergence rate o (1/k2).
In Dokl. akad. nauk Sssr, volume 269, pages 543–547, 1983.

[29] Yurii Nesterov. On an approach to the construction of optimal methods of minimization of smooth convex
functions. Ekonomika i Mateaticheskie Metody, 24(3):509–517, 1988.

[30] Xiaoxin He, Fuzhao Xue, Xiaozhe Ren, and Yang You. Large-scale deep learning optimizations: A
comprehensive survey. arXiv preprint arXiv:2111.00856, 2021.

[31] Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr computational
mathematics and mathematical physics, 4(5):1–17, 1964.

[32] M. Hardt and T. Ma. Identity matters in deep learning. arXiv preprint arXiv:1611.04231, 2016.

[33] Bo Xie, Yingyu Liang, and Le Song. Diverse neural network learns true target functions. In Artificial
Intelligence and Statistics, pages 1216–1224. PMLR, 2017.

[34] Z. Li and Y. Yuan. Convergence analysis of two-layer neural networks with relu activation. In Advances in
Neural Information Processing Systems, 2017.

[35] Z. Charles and D. Papailiopoulos. Stability and generalization of learning algorithms that converge to
global optima. In International Conference on Machine Learning, pages 745–754. PMLR, 2018.

[36] Y. Zhou and Y. Liang. Characterization of gradient dominance and regularity conditions for neural networks.
In International Conference on Learning Representations, 2018.

[37] Pan Zhou, Hanshu Yan, Xiaotong Yuan, Jiashi Feng, and Shuicheng Yan. Towards understanding why
lookahead generalizes better than sgd and beyond. In Neural Information Processing Systems, 2021.

[38] Quynh Nguyen, Marco Mondelli, and Guido F Montufar. Tight bounds on the smallest eigenvalue of the
neural tangent kernel for deep relu networks. In International Conference on Machine Learning, pages
8119–8129, 2021.

[39] Quynh N Nguyen and Marco Mondelli. Global convergence of deep networks with one wide layer followed
by pyramidal topology. Advances in Neural Information Processing Systems, 33:11961–11972, 2020.

[40] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in optimization, 1(3):127–
239, 2014.

[41] Zhenxun Zhuang, Mingrui Liu, Ashok Cutkosky, and Francesco Orabona. Understanding adamw through
proximal methods and scale-freeness. arXiv preprint arXiv:2202.00089, 2022.

6



[42] Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training procedure in
timm. arXiv preprint arXiv:2110.00476, 2021.

[43] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages
38–45, Online, October 2020. Association for Computational Linguistics.

[44] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep reinforcement
learning for continuous control. In International conference on machine learning, pages 1329–1338. PMLR,
2016.

[45] Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

[46] Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. A novel convergence analysis for algorithms
of the adam family. arXiv preprint arXiv:2112.03459, 2021.

[47] Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quanquan Gu. On the convergence
of adaptive gradient methods for nonconvex optimization. arXiv preprint arXiv:1808.05671, 2018.

[48] Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural networks. In Proceedings of the
Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pages
3267–3275, 2021.

[49] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for
efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

[50] Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International Conference on
Machine Learning, pages 2260–2268. PMLR, 2020.

[51] Mingrui Liu, Wei Zhang, Francesco Orabona, and Tianbao Yang. Adam +: A stochastic method with
adaptive variance reduction. arXiv preprint arXiv:2011.11985, 2020.

[52] Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-aware
minimization for scale-invariant learning of deep neural networks. In International Conference on Machine
Learning, pages 5905–5914. PMLR, 2021.

[53] Yizhou Wang, Yue Kang, Can Qin, Huan Wang, Yi Xu, Yulun Zhang, and Yun Fu. Adapting stepsizes by
momentumized gradients improves optimization and generalization. arXiv preprint arXiv:2106.11514,
2021.

[54] Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth. Lower
bounds for non-convex stochastic optimization. arXiv preprint arXiv:1912.02365, 2019.

[55] Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Ayush Sekhari, and Karthik Sridharan.
Second-order information in non-convex stochastic optimization: Power and limitations. In Conference on
Learning Theory, pages 242–299. PMLR, 2020.

[56] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods for
nonconvex optimization. Advances in neural information processing systems, 31, 2018.

[57] Naichen Shi, Dawei Li, Mingyi Hong, and Ruoyu Sun. Rmsprop converges with proper hyper-parameter.
In International Conference on Learning Representations, 2020.

[58] Cong Fang, Zhouchen Lin, and Tong Zhang. Sharp analysis for nonconvex sgd escaping from saddle
points. In Conference on Learning Theory, pages 1192–1234. PMLR, 2019.

[59] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE,
2012.

[60] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pages 248–255, 2009.

7



[61] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. In International Conference on Learning Representations, 2018.

[62] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the
IEEE International Conference on Computer Vision, pages 6023–6032, 2019.

[63] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated data
augmentation with a reduced search space. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 702–703, 2020.

[64] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with stochastic
depth. In European Conference on Computer Vision, pages 646–661, 2016.

[65] Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets without
pre-training or strong data augmentations. arXiv preprint arXiv:2106.01548, 2021.

[66] Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr Dollár, and Ross Girshick. Early convolutions
help transformers see better. Advances in Neural Information Processing Systems, 34:30392–30400, 2021.

[67] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations, 2019.

[68] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[69] Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Hang Su, and Jun Zhu.
Tianshou: A highly modularized deep reinforcement learning library. arXiv preprint arXiv:2107.14171,
2021.

8


