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ABSTRACT

Multimodal Large Language Models (MLLMs) have achieved notable success in
enhancing translation performance by integrating multimodal information. How-
ever, existing research primarily focuses on image-guided methods, whose appli-
cability is constrained by the scarcity of multilingual image-text pairs. The speech
modality overcomes this limitation due to its natural alignment with text and the
abundance of existing speech datasets, which enable scalable language coverage.
In this paper, we propose a Speech-guided Multimodal Machine Translation
(SMMT) framework that integrates speech and text as fused inputs into an MLLM
to improve translation quality. To mitigate reliance on low-resource data, we in-
troduce a Self-Evolution Mechanism. The core components of this framework
include a text-to-speech model, responsible for generating synthetic speech, and
an MLLM capable of classifying synthetic speech samples and iteratively opti-
mizing itself using positive samples. Experimental results demonstrate that our
framework surpasses all existing methods on the Multi30K multimodal machine
translation benchmark, achieving new state-of-the-art results. Furthermore, on
general machine translation datasets, particularly the FLORES-200, it achieves
average state-of-the-art performance in 108 translation directions. Ablation stud-
ies on CoVoST-2 confirms that differences between synthetic and authentic speech
have negligible impact on translation quality. We will open-source our model to
support the wider community.

1 INTRODUCTION

Multimodal Machine Translation (MMT) leverages complementary information from multiple
modalities, such as images, to enhance machine translation (MT) quality. These modalities pro-
vide supplementary contextual information for source texts, thereby mitigating ambiguities caused
by polysemy or omissions (Shen et al., 2024).

Traditionally, image-based MMT models (Cheng et al., 2024) process image-text pairs to generate
translations, leveraging visual context for semantic disambiguation. However, these models require
an associated image for each input text, which limits their applicability. Recent image-free ap-
proaches (Guo et al., 2023) have employed diffusion models (Rombach et al., 2022) to generate
synthetic images to enhance translation. While these studies address the issue of image dependency,
those methods still face two limitations: (1) Generalizability: While MMT models perform well on
ambiguous datasets (Elliott et al., 2016), they struggle to generalize to general translation datasets
and even introduce noise in some scenarios (see Figure 1). (2) Multilinguality: Existing image
MMT datasets (Guo et al., 2022) support only a few languages, with limited of languages coverage
(see Table 1). Advances in diffusion Text-to-Speech (TTS) models (Du et al., 2024) have achieved
high-quality, zero-shot multilingual speech synthesis. This raises a question: Can we leverage
speech modalities to enhance translation quality?

Recent studies have revealed that, alongside lexical information, speech signals also convey prosodic
cues, which offer valuable supplementary information (Chi et al., 2025). Inspired by fusion of text
and prosody features, we propose the framework of Speech-guided Multimodal Machine Translation
(SMMT), which maps speech-text fusion inputs {speech, text} to {translation} outputs. Specifi-
cally, our SMMT framework integrates a TTS model with an MLLM through a self-evolution mech-
anism (Tao et al., 2024) that leverages synthetic speech to enhance translation performance.
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Figure 1: Image-Guided vs. Table 1: Dataset Statistics. For the languages supported by the im-
Speech-Guided Multimodal age datasets, please refer to Table 7. Our MLLM supports 28 lan-
Machine Translation. guages, as shown in Table 8.

The framework consists of two core components: (1) MLLM Pre-training: We employ a multi-
stage curriculum learning strategy with progressively complex objectives, beginning with speech
recognition (ASR) for speech-text mapping, then speech-to-text translation (S2TT) for cross-lingual
and cross-modality bridging, and culminating in SMMT training for joint speech-text processing. (2)
Self-Evolution Mechanism: This component synthesizes training data via the TTS model, where
the MLLM classifies speech samples based on translation scores. The MLLM undergoes continuous
training using positive samples, while translation performance metrics serve as evolution objectives,
enabling continuous framework improvement through iterative refinement cycles.

The experimental results demonstrate that our framework achieves new state-of-the-art (SOTA) re-
sults on the Multi30K benchmark (Elliott et al., 2016), surpassing all existing MMT approaches. Our
framework further achieves SOTA average machine translation (MT) performance across 108 lan-
guages directions on the FLORES-200 benchmark (Team et al., 2022), outperforming much larger
language models. Ablation studies on the CoVoST-2 dataset (Wang et al., 2020) also reveal that
the discrepancy between synthetic and authentic speech has a negligible effect on translation perfor-
mance. In summary, our key contributions are as follows:

* We propose a novel speech-guided multimodal machine translation framework, which con-
sists of a TTS model and an MLLM. Our framework leverages prosodic cues in speech to
enhance translation performance and supports 28 languages, enabling multilingual MMT.

* We propose a self-evolution framework that autonomously generates training data for itera-
tive self-enhancement. The framework employs continual training for the MLLM, utilizing
synthetic data to improve the model’s low-resource translation quality.

* Our framework achieves state-of-the-art results on MMT and MT tasks across multiple
benchmarks (Multi30K, FLORES-200). Ablation studies on the CoVoST-2 benchmark
show that the difference between authentic and synthetic speech has a negligible impact on
translation performance.

2 METHODOLOGY

2.1 MODALITY-AGNOSTIC HYPOTHESIS

This section introduces the following assumption:

Assumption 1. Any auxiliary modality can enhance machine translation performance when:

* The modality provides semantically relevant information to the source text.

* The modality representation can be aligned and jointly optimized with textual features in a
shared latent space, given sufficient training data to learn discriminative embeddings.
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Figure 2: Overview of Our SMMT Framework. The proposed system architecture comprises two
core components: (1) MLLM pretraining and (2) Self-Evolution. This framework takes text input,
synthesizes speech of the text via a TTS model, and leverages the MLLM to process both text and
speech features for higher-quality translation output. Self-evolution mechanism can autonomously
generate training data to iteratively optimize the framework.

2.2 OVERALL DESIGN

Figure 2 illustrates the SMMT framework, comprising an MLLM and a TTS model. The processing
pipeline operates as follows: First, the system accepts textual input and synthesizes speech via the
TTS model. Then, the MLLM processes both the text and synthetic speech to generate translations.
The following subsections detail two key components: MLLM pretraining (Section 2.3) and self-
evolution mechanism (Section 2.4).

2.3 MLLM PRE-TRAINING

The MLLM is built upon a large language model (LLM) (Cui et al., 2025), adopts Whisper’s en-
coder (Radford et al., 2023) as the speech encoder, followed by a Q-Former (Li et al., 2023a) and
MLP layer for speech adapter. We design a three-stage training pipeline and perform instruction
tuning. The sequential fine-tuning stages comprise: (1) automatic speech recognition, (2) speech-
to-text translation, and (3) speech-guided multimodal machine translation.

ASR. The MLLM learns speech-text
alignment through ASR pre-training

Training Details

while keeping only the speech adapter =~ Modules Param stage
trainable.

Speech Encoder ~635M - Whisper’s encoder
S2TT. Given speech input and instruc- ~ Speech Adapter ~80.5M  All  Q-Former and MLP

tions, the MLLM simultaneously gener- [ M ~9.2B
ates transcriptions and translations.

- GemmaX2-28-9B
LLM adapter ~8.9M it LoRA (r=16, alpha=32)

SMMT. The MLLM processes joint  Total ~10B

speech-text inputs to generate transla-

tion outputs by leveraging complemen- Table 2: MLLM Pre-training. The blue color indicates

tary multimodal information. the number of trainable parameters. The instruction tun-
ing design is shown in Table 11 in the Appendix.
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2.4 SELF-EVOLUTION MECHANISM

Self-evolution mechanism allows models to autonomously learn through four phases: experience
acquisition, experience refinement, updating, and evaluation. Our SMMT framework is based on (1)
MLLM, (2) TTS model, and (3) a S2TT dataset with authentic speech, text, and translation.

2.4.1 STAGE I: EXPERIENCE ACQUISITION

The purpose of this stage is to generate synthetic speech. During this stage, the prompt text and the
predicted speech duration are strictly aligned with authentic speech and text pairs.

TTS Inference. We employ a TTS model to synthesize speech signals from the text in the S2TT
dataset. Given a reference text, the TTS model generates a new speech utterance while cloning
a randomly selected voice from the same dataset. This process ensures a diverse set of synthetic
speech data with varied prosody, which is crucial for our framework’s training.

2.4.2 STAGE II: EXPERIENCE REFINEMENT

This stage implements a quality-aware labeling strategy for speech samples. We find that not all
speech is beneficial for translation, so we need to classify the samples. This process is achieved by
comparing the scores of MT and MMT.

MT and MMT Inference. The MLLM operates in two distinct modes. In MT mode, the model
processes textual inputs i to generate translations s, producing score S7. In MMT mode, the
model accepts either authentic speech st or synthetic speech sge,, paired with its corresponding
text input to generate translations, producing score Ss.

2.4.3 STAGE III: MODEL UPDATING

This stage is dedicated to optimizing the MLLM by leveraging the synthetic data generated in the
previous stage. The primary goal is to enhance the MLLM’s ability to effectively utilize prosodic
cues from speech input for improved translation quality.

Positive/Negative Sampling. We first perform a comparative analysis to categorize each synthe-
sized speech-text pair into either a positive (sp0s) O a negative (syeg) sample. Let Sp be the translation
quality score with text input only, and S5 be the score when the MLLM receives both text and speech
input.

A sample is categorized as a positive sample (s;) if the additional speech input improves trans-
lation performance (S; > S1). Conversely, a sample is labeled as a negative sample (sye,) if the
speech input provides no benefit (S2 < S7). The scores are computed as:

Sy = COMET (MLLM(tm), tt)
(D
Sy = COMET (MLLM<Sref Or Sgen, ttext); tlrans)

MLLM Continuous Training. The MLLM is then continually fine-tuned using only the identified
positive samples (spos). This targeted training strategy guides the model to prioritize and learn from
the most beneficial speech-text interactions, thereby enhancing its ability to leverage prosody for
superior translation performance.

2.4.4 STAGE IV: MODEL EVALUATION

In this final stage, we evaluate the framework’s translation performance to determine whether to
continue the self-evolution loop. We synthesize speech for the evaluation text using a fixed reference
voice and measure the SMMT framework’s performance with the COMET score. This process
iterates until the COMET score on the evaluation set converges and no longer shows significant
improvement.
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3 EXPERIMENTS

3.1 DATASETS

We conduct comprehensive evaluations on several benchmarks. For multimodal machine translation,
we use Multi30K' (Elliott et al., 2016). For machine translation, we use FLORES-200> (Team et al.,
2022) and WMT24++ (Deutsch et al., 2025). Additionally, we perform ablation studies on the
CoVoST-2* dataset (Wang et al., 2020). Detailed information for datasets is provided in Table 10.

3.2 EXPERIMENT SETUP

Model Architecture. Our MLLM consists of a frozen speech encoder, specifically the encoder
from Whisper-large-v3 (Radford et al., 2023), and a trainable adapter layer. This adapter comprises
a Q-Former (Li et al., 2023b) and a multilayer perceptron (MLP). The LLM backbone is GemmaX2-
28-9B (Cui et al., 2025). Following the configuration in (Yu et al., 2024), our Q-Former uses 80
queries, each with a dimension of 768. The datasets used for MLLM training are detailed in Table
9. For the TTS model, we adopt the CosyVoice2 (Du et al., 2024) model.

Training Details. Experiments are conducted on four A100 GPUs (80GB). For the MLLM, we
used the AdamW optimizer (Loshchilov, 2017) with a peak learning rate of 1 x 10~%. The learn-
ing rate was linearly warmed up over 1K steps and then linearly decayed for the remainder of the
training. The modelss can be trained in under a week.

Evaluation Metrics. For evaluation, we employ BLEU’ (Post, 2018), spBLEU (Team et al.,
2022), and COMET® (Rei et al., 2020). We compute spBLEU using the tokenizer “flores200”.
For a fair comparison, our LLM inference uses vVLLM (Kwon et al., 2023), with all beam search
settings and temperature uniformly set to 1 and 0, respectively.

3.3 COMPARING MODELS

MT Models. We evaluate the translation performance of four models: Deepseek-V3.1 API (Guo
et al., 2025), Gemma3-27B-it (Team et al., 2025), Qwen3-Next-80B-A3B-Instruct (Team, 2024),
and NLLB-54B (Team et al., 2022).

MMT Models. We compare our framework against two categories of existing multimodal ma-
chine translation models. We compare against four traditional MMT models that use text and authen-
tic image: Soul-Mix (Cheng et al., 2024), RG-MMT-EDC (Tayir & Li, 2024), WRA-guided (Zhao
etal., 2022), and ConsQA-MMT (Gao et al., 2025b). Additionally, we compare against four image-
free MMT models that rely on text and synthetic image: VALHALLA (Li et al., 2022), Bridge (Guo
et al., 2023), DreamLLM (Dong et al., 2024), and IMAGE (Chen et al., 2024a).

3.4 OVERALL RESULTS

Our comprehensive experiments demonstrate the significant effectiveness of our proposed speech-
guided multimodal machine translation approach. Our framework achieves new state-of-the-art re-
sults on the Multi30K benchmark, surpassing traditional text-only and image-based MMT models.
SMMT-10B also consistently outperforms much larger text-only language models. Furthermore,
our framework shows strong generalization, achieving state-of-the-art results in 108 translation di-
rections on the FLORES-200 benchmark. Finally, ablation studies confirm that the performance
difference between authentic and synthetic speech is negligible.

nttps://github.com/multi30k/dataset
Mttps://github.com/facebookresearch/flores
3https://huggianace.co/datasets/google/wmt24pp
*nttps://github.com/facebookresearch/covost
Shttps://github.com/mjpost/sacrebleu
6https://huggingface.co/Unbabel/wmt22fcometfda
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eng — deu eng — fra eng — ces

Model:
odels Test2016 Test2017 MSCOCO | Test2016 Test2017 MSCOCO Test2016 Test2018

Models based on Text

DeepSeek-V3.1 (Guo et al., 2025) | 44.2/87.3 41.1/86.8 36.4/83.2 | 553/882 540/87.7 53.5/858 | 37.9/90.7  359/89.7
Gemma3-27B-it (Team et al., 2025) | 43.7/87.1 40.3/86.3 36.1/832 | 554/87.9 543/87.9 49.6/850 | 36.4/89.9  359/89.1
NLLB-moe-54B (Team et al., 2022) | 41.4/86.2 39.7/858 34.7/82.1 | 55.1/87.4 548/87.7 53.3/853 | 357/889  358/883
Qwen3-Next-80B-A3B (Team, 2025) | 41.6/86.3 37.6/859 31.9/825 | 53.2/878 51.9/87.6 504/85.1 | 292/872  27.9/859

Models based on Text & Authentic Image

WRA-guided { (Zhao et al., 2022) 393/—  323/— 285/— | 61.8/— 541/— 434/— — —
RG-MMT-EDC i (Tayir et al., 2024) | 420/—  334/—  300/— | 629/— 558/— 45.1/— — —
Soul-Mix t (Cheng et al., 2024) 442/ —  371/—  342/— | 647/— 574/—  492/— 36.5/— 328/ —
ConsQA-MMT t (Gao et al., 20252) | 442/—  37.6/— 343/— | 64.8/— 583/—  485/— 347/ — 30.3/—

Models based on Text & Synthetic Image

VALHALLA 1 (Li et al., 2022) 427/—  3501/— 307/— | 63.1/— 560/— 465/ — — —
Bridge 1 (Guo et al., 2023) 425/— 360/— 320/— | 37/— 562/— 463/— | 352/—  312/—
DreamLLM  (Dong et al., 2024) 272/748 19.5/735 193/69.4 |369/81.1 347/80.6 36.6/79.2 — —
IMAGE 1 (Chen et al., 2025) 453/83.1 386/81.9 37.5/788 |67.5/883 61.5/86.6 49.3/82.5 — —

Models based on Text & Synthetic Speech

Baseline (Text only) 429/87.0 38.8/86.4 343/82.7 |524/877 520/879 52.6/86.1 34.1/89.9 34.8/89.0
Baseline + Lora (Text only) 44.0/87.0 39.4/86.4 353/83.0 | 555/88.1 54.0/882 53.4/859 37.2/90.0 35.7/89.1
SMMT-10B 47.0/88.6 41.8/88.1 385/845 |67.0/91.0 62.1/90.7 553/873 | 414 /917 399 / 90.7

Underlined denotes previous state-of-the-art models, while highlighted surpasses the previous models.

Table 3: Translation Performance on Multi30K (BLEU / COMET) MMT Benchmark. The average
character length of the input English text is 5§9.3. { indicates that the scores were directly cited from
other research papers.

3.4.1 MAIN RESULTS FOR MULTIMODAL MACHINE TRANSLATION

Comprehensive Performance Improvement from Speech-Text Fusion Input. Table 3 show-
cases the remarkable performance of our SMMT-10B model, which expertly integrates both syn-
thetic speech and text inputs. The results clearly demonstrate a substantial performance gain across
all evaluated test sets. Specifically, for the eng—deu task, our model attains impressive BLEU
scores of 47.0, 41.8, and 40.3 on the Test2016, Test2017, and MSCOCO datasets, respectively. Sim-
ilarly, for the eng— fra task, it achieves high BLEU scores of 67.0, 62.1, and 55.3. These scores
consistently and significantly outperform all text-only baselines. The clear advantage our approach
holds provides compelling evidence that synthetic speech, as an auxiliary modality, can furnish
crucial prosodic and contextual information that is not available in text alone, thereby effectively
enhancing machine translation performance.

Competitive Advantage of Synthetic Speech in Multimodal Translation. The table clearly
demonstrates the significant performance advantage of our proposed method, which leverages syn-
thetic speech, over existing multimodal machine translation models that primarily rely on visual
inputs. Our SMMT-10B model establishes a new benchmark by achieving a state-of-the-art average
BLEU score of 52.0. This score not only surpasses the performance of all previous methods but
does so by a substantial margin, regardless of whether those models used authentic or synthetic im-
ages. For a direct comparison, our model outperforms the best-performing image-based model by
an impressive 2.1 points (which only achieved an average BLEU of 49.9). This result suggests that
the speech modality is a rich and unique source of contextual information that is both distinct from
and complementary to the visual modality.

Comparative Analysis with Large-Scale Language Models. Although not shown in the table,
our SMMT-10B model, despite having a parameter count that is only 1/67th of the DeepSeek-V3-
671B model, achieves superior translation performance. This result highlights the significant po-
tential of multimodal learning: even a smaller model can achieve or surpass the performance of a
much larger text-only model by effectively leveraging cross-modal information. This demonstrates
that modality fusion can compensate for a lack of scale, offering a viable path for developing high-
performance translation systems in resource-constrained environments.
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Models FLORES-200 WMT24++
eng — 27 jpn — 27 kor — 27 cmn — 27 eng — 22 eng — 22 (<200)
Models based on Text
DeepSeek-V3.1 (Guo et al., 2025) 39.3/88.9 26.1/85.7 27.7/859 27.5/86.2 34.1/83.6 31.8/83.4
Gemma3-27B-it (Team et al., 2025) 37.4/88.0 23.8/81.0 25.0/81.2 24.5/81.5 34.3/82.9 31.8/82.6
NLLB-moe-54B (Team et al., 2022) 35.7/86.3 21.8/81.7 23.6/83.7 22.8/82.1 2547769 2447717
Qwen3-Next-80B-A3B (Team, 2025) 34.5/86.6 22.9/83.8 23.9/83.9 24.2/84.3 30.5/81.5 29.6/81.6
Models based on Text & Synthetic Speech

Baseline (Text only) 39.7/88.3 26.6/85.4 27.4/85.6 27.5/85.7 33.9/82.7 32.1/82.9
SMMT-10B 40.4 / 895 27.3 / 86.9 283 / 87.1 283 / 874 | 33.4/83.0 322/ 834

Underlined denotes previous state-of-the-art models, while highlighted surpasses the previous models.

Table 4: Translation Performance on FLORES-200 and WMT24++ (spBLEU / COMET) MT
Benchmarks. The average character length of the input English text is 130.4 for FLORES-200
and 191.3 for WMT?24++. The notation < 200 indicates that the input English text length is within
200 characters. Detailed results are summarized in Tables 12, and 13 in the Appendix.

3.4.2 EXPERIMENTAL RESULTS FOR MACHINE TRANSLATION

Language Support. Our model exhibits strong language support, surpassing existing MMT mod-
els. Specifically, Table 4 details results for 108 translation directions on the FLORES-200 bench-
mark, encompassing major source languages—English (eng), Japanese (jpn), Korean (kor), and Chi-
nese (cmn)—to 27 target languages. Furthermore, we evaluate on the WMT24++ benchmark for
en—22 directions. The complete list of supported languages is provided in Table 8 in the Appendix.

Scalable Multilingualism. The consistent performance gain underscores our method’s advan-
tages: scalability and multilingual capability. As shown in the Table 4, our model not only performs
exceptionally well on the eng—xx task, but also delivers impressive gains on jpn—xx, kor—xx,
and cmn—xx directions. The average spBLEU scores for these language groups are 27.3, 28.3, and
28.3 respectively, all of which are the highest in their respective categories.

SMMT in Low-Scoring Directions. As shown in Figure 3, the SMMT-10B model outperforms
both the Baseline and DeepSeek models, particularly in low-resource translation directions like
Khmer (khm), Lao (lao), and Burmese (mya), indicating its greater robustness in data-scarce lan-
guage pairs. Beyond this, we note an underperforming high-resource language, Hindi (hin), whose
translation metrics are lower than many low-resource counterparts.

Translation Text Length. As shown in Table 4, the WMT24++ dataset contains numerous ex-
tremely long texts, leading to noise (e.g., word omissions or duration exceeding 30s) in the syn-
thesized speech. Although the model’s performance on the overall dataset is moderate, it exhibits
good performance within the < 200 range. More importantly, the model’s performance does not
significantly degrade compared to the baseline, even when receiving noisy speech input, which fully
demonstrates the model’s robustness.

COMET
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Figure 3: COMET Results by Resource Level, Categorized as Low, Medium, and High. Our model
shows an improvement in translation scores, particularly for low-scoring translation directions.
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Input eng — xx spBLEU / COMET 1

Text AS SS ara deu fra ind jpn tur Avg.
v 37.7/863 452/88.0 32.1/869 47.9/91.5 31.5/90.7 36.7/88.8 38.5/88.7
v 32.6/822 366/822 279/826 368/859 269/86.5 29.3/83.6 31.7/83.8
v 341/835 39.0/84.0 28.9/838 369/874 27.1/874 30.3/850 32.7/854
v v 40.1/86.8 46.5/88.3 33.6/874 484/91.6 33.6/90.6 37.9/89.1 40.0/89.0
v v/ 40.1/86.8 46.5/88.2 33.6/874 485/91.6 33.5/90.7 37.8/89.1 40.0/89.0

Table 5: Ablation Study on the CoVoST-2 Benchmark. A comparison of configurations with differ-
ent modality inputs. (AS denotes authentic speech; SS denotes synthetic speech)

eng — xx spBLEU / COMET ¢
jpn cmn tha khm lao mya Avg.

Baseline 333/913 41.6/89.2 425/88.7 24.1/842 315/847 20.1/88.1 32.2/87.7
SMMT-10B 35.2/927 42.6/912 44.1/903 25.6/83.6 342/863 24.3/88.5 343/88.8
w/o SE 348/92.1 423/89.3 425/89.7 23.0/81.7 31.7/843 23.4/868 33.0/873

Models

Table 6: Ablation Study on Self-Evolution (SE) Mechanism on the FLORES-200 benchmark.

3.4.3 ABLATION STUDY

Authentic Speech vs. Synthetic Speech. As shown in Table 5, experimental results reveal that
the difference between authentic and synthetic speech has minimal impact on multimodal machine
translation performance. Surprisingly, synthetic speech achieves better S2TT performance, likely
due to the absence of background noise. Experimental results demonstrate strong semantic consis-
tency between authentic and synthetic speech.

The Impact of the Self-Evolution Mechanism. As shown in Table 6, we found that after MLLM
pre-training, the model’s performance on high-resource languages improved. However, due to the
imbalance of multilingual data, the performance on low-resource languages like Khmer (khm), Lao
(lao), and Burmese (mya) actually decreased on the COMET metric. Therefore, we introduced the
self-evolution mechanism to enhance the model’s performance on these low-resource directions.

Self-Evolution Rounds on Low-Resource Languages. Figure 4 shows the improvements from
self-evolution for low-resource languages, with round 3 achieving best average gains of +1.9, +2.0,
and +1.7 COMET on khm, lao, and mya, respectively. We observe that the first round yields the
most significant improvement, later rounds give fewer benefits. The average improvement peaks at
round 3 and then remains stable.

Human Evaluation for MT and SMMT Manual review of evaluation samples revealed that the
performance gain from adding the speech modality is likely due to a reduction in under-translation,
which decreased from 5.2% to 3.5%, as shown in Figure 5. The introduction of the speech modality
provides prosodic cues as additional signals that effectively help correct the attention weighting,
thereby mitigating this problem.

35 | spBLEU 891 %
31 86
27 1 83 *//”"\.\.
——
23 ‘ ‘ ‘ ‘ 80 ‘ ‘ ‘ " Round
® mya lao @ khm @ mya lao @ khm

Figure 4: Self-Evolution Rounds of spBLEU / COMET (eng—xx) on FLORES-200 benchmark.
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Case Translation from English to Chinese, Japanese, and Spanish

- Input Singapore is generally an extremely safe place to be and very easy to navigate, and you can buy almost anything after arriving.
-Ground Truth JEHKY, FBER —~DEHRZEIMTT, SAERRES, FIAE0RLT-A LS ERARTE,

Baseline IR AR R — DR R, THREZIM, R/LFA ALY,
SMMT-10B HOMPOER R — MR R 2NN, TERAS M, T055 P SEEUERARA,

- Input The patient had been to Nigeria, where some cases of the Ebola virus have occurred.
-Ground Truth  ZQM#FE, =HZ VA ARDIEHIA DBRELTOEFA V= Y 7IATo TR,

Baseline BE, TRTTAAABRELF AT 2 ) TV,

SMMT-10B  SB#EF4 V= U 7ICHHEL TWED, F4 Y=Y 7TREET VA LRBEFIBEE ST 5,

- Input Workers must often get their superiors’ approval for any decisions they make, and are expected to obey their superiors’ instructions without question.

-Ground Truth Con frecuencia, los trabajadores deben contar con la aprobacién de sus superiores para la toma de decisiones y se espera que obedezcan sus instrucciones sin cuestionamiento.

Baseline Los trabajadores deben obtener la aprobacién de sus superiores para cualquier decisién que tomen y se espera que obedezcan las instrucciones de sus superiores sin cuestionarlas.

SMMT-10B  Con frecuencia, los trabajadores deben obtener la aprobacién de sus superiores para cualquier decisin que tomen y se espera que las instrucciones de sus iores sin cuestionarlas.

Figure 5: Case Study for Under-Translation. Having undergone speech pre-training, MLLMs align
text words with speech. The SMMT model, which receives this speech-text fusion input, is prevented
from ignoring the input text, thereby mitigating omission errors.

4 RELATED WORK

Multimodal Machine Translation. MMT research has primarily followed two distinct paths:
image-based and image-free approaches. Image-based methods, exemplified by foundational work
on the Multi30K dataset (Elliott et al., 2016), utilize paired visual and textual data to improve trans-
lation quality. In contrast, image-free approaches emerged to tackle the challenges of data scarcity.
These methods employ various techniques, such as target-end retrieval (Hitschler et al., 2016), multi-
task learning (Elliott & Kadar, 2017), and even visual generation using advanced models like GANs
and diffusion models (Rombach et al., 2022), to generate or retrieve supplementary information
without relying on a pre-existing image dataset.

Multimodal Large Language Model. MLLMs (Chen et al., 2024b; Xu et al., 2025) typically
feature three core components: an LLM backbone, a modality encoder, and a modality adapter.
Our framework specifically leverages this architecture to handle both speech and text. The speech
encoder, inspired by models like Whisper (Radford et al., 2023), is responsible for extracting rich
speech features from the audio input. Following this, the speech adapter (Li et al., 2023b) projects
these features into the same hidden dimension as the LLM, enabling seamless integration. The
processed speech features are then concatenated with the original text embeddings. This unified
representation is fed into the LLM backbone, which processes both modalities jointly to generate
the final translated text.

Self-Evolution. The concept of self-evolution (Liu et al, 2021) empowers models to au-
tonomously acquire, refine, and learn from self-generated experiences. As outlined in recent sur-
veys (Tao et al., 2024), this process typically involves a four-phase iterative cycle: (1) experience
acquisition, (2) experience refinement, (3) updating, and (4) evaluation. Each iteration is designed to
achieve a specific evolutionary objective. In our implementation, the process begins with the expe-
rience acquisition phase, where we generate synthetic speech data. This is followed by a refinement
phase that involves the annotation of positive and negative samples. This newly labeled data is then
used to update the model, which is subsequently evaluated for its machine translation performance.

5 CONCLUSION

In this paper, we present the Speech-guided Multimodal Machine Translation (SMMT) framework,
a novel approach that overcomes the limitations of traditional image-based multimodal translation.
Our framework integrates a TTS model with an MLLM, leveraging speech as a complementary
modality to text. A key feature is the Self-Evolution Mechanism, which autonomously generates and
refines training data. This significantly reduces the need for human-annotated data in low-resource
languages, making the system more scalable and practical. Our experiments show that SMMT-10B
achieves SOTA performance on benchmarks such as Multi30K and FLORES-200.
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6 LIMITATION

Unlike image-based methods, our speech-guided multimodal machine translation approach can
cover a broader range of languages. However, we are still limited by the languages supported by
the TTS models, as we need to synthesize speech from text. Although recent advancements in TTS
technology have enabled the synthesis of dozens of languages, open-source TTS models still have
limited language coverage.

7 THE USE OF LARGE LANGUAGE MODELS

In this paper, LLMs are not used for ideation but are utilized for checking grammatical rules.

8 REPRODUCIBILITY STATEMENT

All models and datasets tested in this research are open-source. We will open-source our model to
support the wider community.
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A APPENDIX

ISO-3 | Language |  Script | Family | Subgrouping | Resource
ben Bemba Latin Atlantic-Congo Benue-Congo Low
ces Czech Latin Indo-European Balto-Slavic High
cmn Chinese Han Sino-Tibetan Sinitic High
deu German Latin Indo-European Germanic High
eng English Latin Indo-European Germanic High
fra French Latin Indo-European Italic High
hau Hausa Latin Afro-Asiatic Chadic Low
hin Hindi Devanagari | Indo-European Indo-Aryan High
lav Latvian Latin Indo-European Balto-Slavic High
spa Spanish Latin Indo-European Italic High
tur Turkish Latin Turkic Common Turkic High

Table 7: 11 Languages Supported by Image-Guided MMT datasets. The resource of each language
is determined according to the taxonomy classes by (Joshi et al., 2020).

ISO-3 | Language |  Script | Family |  Subgrouping | Resource
ara Arabic Arabic Afro-Asiatic Semitic High
ben Bengali Bengali Indo-European Indo-Aryan Med
ces Czech Latin Indo-European Balto-Slavic High
cmn Chinese Han Sino-Tibetan Sinitic High
deu German Latin Indo-European Germanic High
eng English Latin Indo-European Germanic High
fas Persian Arabic Indo-European Iranian High
fra French Latin Indo-European Italic High
heb Hebrew Hebrew Afro-Asiatic Semitic Med
hin Hindi Devanagari | Indo-European Indo-Aryan High
ind Indonesian Latin Austronesian | Malayo-Polynesian Med
ita Italian Latin Indo-European Italic High
jpn Japanese Japanese Japonic Japanesic High
khm Khmer Khmer Austroasiatic Khmeric Low
kor Korean Hangul Koreanic Korean High
lao Lao Lao Tai-Kadai Kam-Tai Low
msa Malay Latin Austronesian | Malayo-Polynesian Med
mya Burmese Myanmar Sino-Tibetan Burmo-Qiangic Low
nld Dutch Latin Indo-European Germanic High
pol Polish Latin Indo-European Balto-Slavic High
por Portuguese Latin Indo-European Italic High
rus Russian Cyrillic Indo-European Balto-Slavic High
spa Spanish Latin Indo-European Italic High
tgl Tagalog Latin Austronesian | Malayo-Polynesian Med
tha Thai Thai Tai-Kadai Kam-Tai Med
tur Turkish Latin Turkic Common Turkic High
urd Urdu Arabic Indo-European Indo-Aryan Med
vie Vietnamese Latin Austroasiatic Vietic High

Table 8: 28 Languages Supported by Our Model. The resource of each language is determined
according to the taxonomy classes by (Joshi et al., 2020).
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Model Task Description Dataset Split Data Size Metric
t i ~
ASR Automatic Speech Recognition FLEURS. tra}n 160h WER |
Common Voice 19 train ~3000h
MLLM
SMMT Speech-Guided FLEURST train ~160h spBLEU / COMET 1
Multimodal Machine Translation Multi30K train ~40h BLEU / COMET 1

Table 9: Summary of Training Datasets for SMMT Models. Data size refers to the actual amount
used for training, as we removed some overly long samples. 7 indicates that we performed data
cleaning on the dataset. Since there is an overlap between the FLEURS and FLORES datasets, we
removed the overlapping portions from the FLEURS training set.

Task Description Dataset Split Metric
. . FLORES-200  devtest
MT Machine Translation spBLEU / COMET
WMT24-++ test P T
MMT Multimodal Machine Translation Multi30K test BLEU / COMET 1
S2TT Speech-to-Text Translation CoVoST-2 test spBLEU / COMET 1
Table 10: Summary of Evaluation Benchmarks.
Table 11: Instruction Design.
Task Speech Instruction Text Prediction
v <l|eng|> Will it rain tomorrow?
ASR leng|
v <|deul|> Regnet es morgen?
SOTT v <leng|><|deu|> Will it rain tomorrow?< | eng | >< | deu | >Regnet es morgen?
v <|deu|><|fral|> Regnet es morgen?< | deu | >< | fra | >Il va pleuvoir demain ?
SMMT v Will it rain tomorrow?< | eng | ><|deu | > Regnet es morgen?
v Regnet es morgen?<|deu|><|fral> 11 va pleuvoir demain ?
Direction DeepSeek Gemma3 NLLB-moe Qwen3-Next Baseline SMMT
V3.1 -27B -54B -80B-A3B ’ -10B
eng — ara 20.0/78.5 20.0/78.1 18.5/74.6 19.4/77.6 19.4/77.3 19.1/77.5
eng — ben 25.9/83.3 25.4/82.7 23.5/79.7 16.2/78.5 24.8/82.1 23.6/80.7
eng — ces 36.3/85.9 36.3/84.6 23.4/79.0 30.3/82.2 36.4/85.1 35.8/85.5
eng — cmn 34.3/84.9 36.4/83.5 18.0/69.5 37.4/849 36.9/83.8 36.5/85.3
eng — deu 37.9/82.6 37.9/81.9 28.5/76.3 36.2/81.7 37.7/823 37.3/82.3
eng — fas 29.9/83.1 32.9/83.1 25.8/78.0 27.7/80.7 32.1/83.1 31.9/83.8
eng — fra 48.1/82.7 4741822 34.8/75.5 45.0/82.0 443/82.2 45.0/81.9
eng — heb 37.4/82.6 36.6/82.3 33.9/79.4 26.8/76.7 38.8/83.5 38.3/84.5
eng — hin 19.6/74.0 19.5/73.4 16.0/65.5 12.6/68.5 19.3/71.0 19.6/70.2
eng — ind 38.2/86.8 37.6/86.3 30.6/80.8 36.6/86.0 37.3/853 37.2/86.0
eng — ita 452/84.7 46.2/84.4 33.3/78.6 41.9/83.7 45.0/84.6 4421852
eng — jpn 25.4/87.6 24.0/86.4 11.7/79.1 22.6/86.9 22.5/85.7 22.5/85.9
eng — kor 27.1/87.3 26.9/86.4 20.7/81.9 23.9/86.1 26.0/85.6 25.0/854
eng — nld 40.4/84.4 39.3/83.7 28.5/71.8 35.8/82.7 38.7/84.6 37.5/84.3
eng — pol 30.5/84.8 29.2/83.9 18.0/71.3 25.6/81.7 29.4/83.8 28.7/84.8
eng — por 40.7/83.4 40.0/82.9 2871712 38.6/82.7 39.5/83.0 39.3/83.4
eng — rus 29.6/83.4 31.4/827 23.2/76.6 28.8/81.9 29.2/81.9 29.9/83.5
eng — spa 48.4/83.7 48.7/83.6 36.0/77.7 46.2/83.0 48.5/83.7 46.1/83.8
eng — tha 32.6/85.1 33.8/84.8 223/77.9 29.6/83.5 32.4/828 31.7/83.7
eng — tra 36.0/85.5 36.6/84.3 27.0/79.0 30.6/83.0 36.6/84.6 36.3/84.2
eng — urd 30.5/79.8 30.3/79.0 29.0/73.7 235/75.8 33.3/79.8 32.4/80.5
eng — vie 36.6/84.8 37.2/84.1 26.5/77.7 35.9/83.9 37.6/83.7 37.1/84.2
Avg. | 34.1/836 34.3/829 25.4/76.9 30.5/81.5 33.9/827 33.4/83.0

Table 12: spBLEU / COMET Scores on the WMT24++ Benchmark.
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27.7/83.0 26.0/83.5 26.4/84.7 30.3/86.2 31.1/87.7

30.1/86.7

Avg.

Table 13: spBLEU / COMET Scores on the FLORES-200 Benchmark.
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