Under review as a conference paper at ICLR 2026

EXCHANGEABILITY OF GNN REPRESENTATIONS
WITH APPLICATIONS TO GRAPH RETRIEVAL

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we discover a probabilistic symmetry, called exchangeability, in
graph neural networks (GNNs). Specifically, we show that the trained node em-
bedding computed using a large family of graph neural networks, learned under
standard optimization tools, are exchangeable random variables. This implies that
the probability density of the node embeddings remains invariant with respect to a
permutation applied on their dimension axis. This results in identical distribution
across the elements of the graph representations. Such a property enables approxi-
mation of transportation-based graph similarities by Euclidean similarities between
the sorted embedding elements in fixed dimension. This allows us to propose a
unified locality-sensitive hashing (LSH) framework that supports diverse relevance
measures for graphs, e.g., subgraph matching, graph edit distance, efc. Experiments
show that our method provides more effective LSH than baselines.

1 INTRODUCTION

In their seminal work, Hecht-Nielsen (1990) first demonstrated that the output of multi-layer per-
ceptrons (MLPs) remains invariant under suitable permutations of the weight matrices across layers.
Since then, such weight-space symmetries have been widely recognized, and have resurfaced with
the advent of deep learning (Neyshabur et al., 2015b; Freeman et al., 2016; Brea et al., 2019). Recent
works (Bui Thi Mai et al., 2020; Godfrey et al., 2022) characterized such symmetries for different
activation functions. Beyond academic interest, weight space symmetries underpin several practical
advances: for example, they enhance model training (Neyshabur et al., 2015b), equivariant architec-
ture design (Cohen et al., 2016; Maron et al., 2019; Navon et al., 2023), enable model merging (Pefia
et al., 2022; Ainsworth et al., 2022), motivate data augmentation (Schiirholt et al., 2021), efc. They
also yield deeper characterizations of geometry and loss landscapes (Brea et al., 2019; Simsek et al.,
2021; Entezari et al., 2021). These works focus on algebraic symmetry largely for MLPs, and treat
them in isolation from training. This leaves unaddressed the probabilistic symmetry structures that
emerge naturally during standard training, starting with random model initialization.

Our contributions Instead of working on well-explored algebraic symmetries, we analyze the
probabilistic symmetries within trained embedding vectors which appear to exist in a broad class
of neural architectures. We move beyond simple MLPs and extend to the more complex setting of
graph neural networks (GNNs). As will gradually unfold, such an analysis for GNNSs has significant
implications for applications including locality-sensitive hashing and efficient neural graph retrieval.

— Characterization of exchangeability: ~ We establish a new property of GNNSs: under standard
conditions, the elements of node embeddings computed by a trained GNN are exchangeable random
variables, where the randomness is induced by the initialization of model parameters. Let z(u) € R”
denote the embedding of node u, produced by a trained GNN. Then, the joint distribution of its
components (u)[1],...,x(u)[D] is invariant under any permutation of the embedding dimensions
d € [D]. This has a significant consequence: the components x(u)[1], ..., z(u)[D] are identically
distributed random variables. Therefore, when averaged across multiple random seeds, the expected
embedding matrix E[[x(u)],cv] collapses to a rank one matrix.

We would like to highlight that, we show such exchangeability holds for a wide spectrum of GNNs and
graph transformers; and several optimizers, e.g., SGD, Adam. In view of GNNs’ known propensity
for spatial oversmoothing (Roth et al., 2024) and recent discoveries of output rank collapse of
transformers (Dong et al., 2023; Naderi et al., 2025), and sequential state space models (Joseph et al.,
2025), this result is of independent interest.

Under review as a conference paper at ICLR 2026

— Applications to graph retrieval: ~ In neural graph retrieval, the goal is to find corpus graphs
C = {Gc} most relevant to a query graph G,. Recent studies (Jain et al., 2024; Zhuo et al., 2022; Fey
et al., 2020) make it clear that optimal transport-based (also called transportation-based) relevance
distance between node embeddings performs significantly better than single-vector aggregation and
graph kernels (Roy et al., 2022; Zhuo et al., 2022). Exchangeability enables efficient graph retrieval
in two steps:

(1) Approximating transportation similarity with 1-D Euclidean approximations: ~ Consider
embeddings in one dimension (D = 1). In this case, the transportation distance between two sets
can be solved exactly by sorting the points in each set and matching them in order. For example,
suppose we use a GNN to produce one-dimensional embeddings xz(u) € R. Then, given two
graphs Gy and G, each with n nodes, the transportation distance between their embedding sets is
Transport ({z(? (u)}, {z(9) (u)}) = ||sorRT({z(? (u)}) — SORT({z(?) (u)})||. In higher dimensions
(D > 1), however, computing transportation-based distance (or transportation-based similarity) is
substantially more complex, with exact algorithms scaling for n nodes as O(n?) and often requiring
O(n?) approximations such as Sinkhorn iterations. Exchangeability provides a way around this: since
embedding coordinates are identically distributed, each dimension yields a concentrated estimate
of the underlying transportation-based similarity. Instead of solving the full high-dimensional
transportation-based similarity, we approximate it by aggregating D simple Euclidean similarities
across dimensions, thereby reducing “transportation distance between high dimensional vector sets”
to an estimate based on per-dimension sorted orders, which is more amenable to indexing.

(2) Locality sensitive hashing (LSH) for graphs: LSH enables sublinear-time retrieval by
hashing similar objects into the same bucket (Gionis et al.; Indyk et al., 1998; Charikar, 2002).
Exchangeability lets us approximate costly transportation-based similarity with simple Euclidean
similarity across embedding dimensions, making existing LSH schemes directly applicable. Notably,
LSH for asymmetric transportation-based similarity has remained unexplored; our approximation
provides the first principled approach, leveraging Roy et al. (2023). This yields a unified LSH
framework that supports diverse graph relevance measures, from subgraph matching to graph edit
distance with general costs.

2 PRELIMINARIES

Notation For a graph G = (V, E), we denote A as its n x n adjacency matrix. We write
[]+ = max{-,0} as the hinge or ReLU function, P, as the set of n x n permutation matrices and
[n] = {17 - n} for any integer n. We denote P and 7r to indicate n and D dimensional permutation
matrices, respectively, which are applied on the nodes and their embedding vectors respectively.
[e] € {0,1} is indicator function. In the context of graph retrieval, we denote a query graph as G, a
corpus graph as G, with |V | = |V.| = n after padding with suitable number of nodes; and, the set
of corpus graphs as C. We also use A, and A, to denote their n x n adjacency matrices. We use
p(+) to denote the density of any random variable. Given a group G, a function f is G-equivariant
(G-invariant) if f(gx) = gf(x) (resp., f(gx) = f(x)) forallg € G.

Node embedding computation using GNN Given the number of message passing steps (or
layers) K and the dimension of node embeddings D, a graph neural network (GNNjy) computes
node embeddings 1 (u) = GNNg(G) € RP for u € V using K message passing steps. For
brevity, we drop K to write (u) = xx (u). We compute the embedding matrices X € R"*P as
X = [x(u)]yepm)- X[, d] € R™ denotes the d-th column of X . The operator SORT(-) sorts an input
vector in decreasing order. In the context of graph retrieval, we denote (%) () and () (u) to denote
embeddings of node u € [n] and v’ € [n] in the query and corpus graphs G, and G., respectively.
Similarly, we use X (@ = [2(D (u)] e € R™P and X(©) = [2() («)] e € R™P to denote
the embedding matrices.

The parameters 6 of the GNN are learned by minimizing a task specific loss function, which we denote

as loss(#). We assume that weights in 6 are initialized via iid sampling from popular distributions,
and then some popular gradient-based update recipes are used for training.

Exchangeability Exchangeability implies that the joint density of the elements within a vector is
permutation invariant with respect to the ordering of the elements.

Definition 1 (Exchangeability (Aldous, 1985)). Let Y; € R™ be random vectors for d € [D]. We
say Y1, ..., Yp are exchangeable, if for all permutations 7 : [D] — [D], the probability density

https://en.m.wikipedia.org/wiki/Rearrangement_inequality

Under review as a conference paper at ICLR 2026

functions of the sequence of vectors {Y1,...,Yp} is the same as that of {Y)y, ..., Yz(p)}, i€,

Py v, (Y1, YD) = Py,) Yo i) (y1,...yp) for all realizations: Yy = yq for d € [D).

Order statistics For a vector a, we denote its order statistics by SORT(a), obtained by sorting its
entries in decreasing order. For the node embedding matrix X, we will frequently use SORT(X [, d])—
the order statistics of the d-th embedding dimension across all nodes.

Overview of our analysis (1) Distinct from algebraic symmetry, we characterize a new type
of probabilistic symmetry in the node embeddings X of a graph GG, which is computed using a
trained GNN starting with random model initialization. Specifically, we show that X [:, 1], ..., X[z, D]
are exchangeable random variables, where the randomness is induced by the initialization of the
model. (2) Given a query—corpus graph pair (G, G.), we exploit this property to approximate
the transportation-based similarity between X (9 and X (¢) using Euclidean similarity between the
order statistics SORT(X (9)[:, d]) and SORT(X (©)[:, d]) for d € [D]. (3) Building upon the proposal
of Roy et al. (2023), we develop a unified LSH (Charikar, 2002) method for several graph relevance
measures using the Fourier transform on the order statistics vectors. We further show that the resulting
algorithm is a valid LSH for the original transportation-based graph similarity.

3 EXCHANGEABILITY OF GNN REPRESENTATIONS

In this section, we characterize the probabilistic symmetry of node representations, explicitly
incorporating the effect of model training. Specifically, given the node representation matrix
X = [z(u)]yen) € R™*P = GNNy(G), we show that X [:, 1], ..., X [:, D] are exchangeable random
variables (Definition 1) across the axis of the embedding dimension, where X [:, d] = [x(u)[d]],e[n)-
We first describe the setting for our analysis, followed by a high level explanation on why exchange-
ability will hold. Finally, we present the formal characterization.

3.1 SETTING

We provide the four components of our settings. We emphasize that they are presented primarily for
technical completeness. They are not restrictive and, in fact, capture a broad class of settings.

(1) Broad class of GNN architectures We consider the a wide variety of GNN architectures, which
are listed in Appendix F. This list includes gated GNN (Gilmer et al., 2017), GIN (Xu et al., 2019),
GAT (Velickovié et al., 2018), GCN (Kipf et al., 2017). Our analysis is likely to extend beyond these
cases, and also applies to graph transformers (Appendix F).

(2) IID initialization of the parameters within a layer The entries of the parameter matrix within
each layer are initialized in an i.i.d manner. This covers standard model initialization schemes,
including Kaiming (He et al., 2015) and Xavier initialization (Glorot et al., 2010).

(3) Permutation invariance of loss function We consider loss functions that are invariant to
permutations of elements in the node embedding vectors. This condition holds naturally in several
settings, including graph retrieval. Here, the loss, whether binary cross-entropy or pairwise ranking,
depends on the similarity between (G4, G.) via the transportation plan between X (@) and X (©),
Since this similarity is invariant under permutations of embedding elements, the loss is likewise
permutation-invariant. This also applies to link prediction, when the similarity between nodes u and
v is computed as the dot product «(u) " (v), which is permutation invariant w.r.t. elements of .

(4) Broad class of optimizers Our results hold for a broad class of gradient-based optimizers, viz.,
SGD (Zhang, 2004), Adam (Kingma et al., 2015), efc.

3.2 WHY EXCHANGEABILITY HOLDS: A HIGH LEVEL EXPLANATION

Exchangeability among initialized model parameters Training begins with i.i.d. initialization of
the parameter matrices. Formally, consider a weight matrix @ whose entries are drawn i.i.d. from a
common distribution. Its joint distribution is invariant to column permutations: for any permutation
matrix 7, p(@) = p(Owx). When O is applied to an input row vector x, the output &’ = =@ is
equivariant to column permutations of @: ® — O — z’ — a'w. Although permuting ©
changes the values of &', an i.i.d. initialization ensures that all permutations are equally likely, so the
distribution of &’ is invariant: p(x’) = p(a’). This statistical symmetry is precisely what we mean
by exchangeability of hidden units at initialization. Nonlinear activations o, such as sigmoid or tanh,
being identical and applied pointwise, preserve this symmetry.

Under review as a conference paper at ICLR 2026

Exchangeability in MLP Training Consider a two-layer MLP with weights ¥, ® and nonlinear
activations o, which maps an input row feature vector feat to an output representation x via
x = o(o(feat ¥)O). As discussed, at initialization (¢ = 0), exchangeability holds by construction:
the entries of @ (® at ¢ = 0) are i.i.d., s0 p(©g) = p(@O¢7), and consequently p(x) = p(x).

As noted in Section 3.1 (3), the loss function is invariant to permutations of the embedding dimensions.
With all other randomness fixed by seeding, permuting the columns of ® yields identical losses
and hence equivariant gradients. Consequently, the training trajectories are permutation-equivariant:
for any 7, @y — Oy — O, — O, for all epochs t. Combining p(©y) = p(Oy7) at
initialization, with permutation-equivariant training dynamics, we obtain p(®;) = p(©®;m) and
hence p(x) = p(xm) for all ¢ > 0.

3.3 FORMAL CHARACTERIZATION OF EXCHANGEABILITY

Overview Here, we seek to establish the afore-mentioned arguments for GNN to prove the ex-
changeability of the elements of the node embeddings. We prove this using four steps:

(1) Permutation induced parameter transformation on GNN (Lemma 2): Given GNNy with parame-
ter set 6, consider any permutation w € Pp. We show that there exists a bijective transformation
Tx on 6 such that, for 8’ = T'x (), the elements of the node embeddings are permuted by r, i.e.,
X — Xm. We refer to [as a permutation-inducing transformation corresponding to 7.

(2) Gradient equivariance (Lemma 3): We show that the gradient of loss is equivariant with respect
to a permutation inducing transformation L.

(3) Invariance of the probability density of model parameters (Lemma 4): We show that at any
stage of training, the model parameters are exchangeable— the probability density of the parameters
0 remains invariant to the transformation I',;.

(4) Result on exchangeability (Theorem 5): Using (1-3), we show that X[:,1],..X[:, D] are
exchangeable.

Warmup: Constructing I'; for 2-layer MLP We are given an MLP of the form = =
o(o(feat ¥)O). If we want to reorder x by a given permutation 7, we will transform ® — O,
which will result in & — x7. Equivalently, suppose we write § = [\IIT, ®], then, we can introduce a
bijection Iy by I';(0) := 6 Diag(L,), which will result in output equivariance — x.
Permutation induced parameter transformation on GNN Constructing a similar transformation
T'; is more involved for GNNs. The difficulty stems from the iterative message passing protocol:
permutations of parameters in one layer propagate through neighborhood aggregations, which can
entangle the symmetry across layers and makes it hard to identify I’y for popular GNN, e.g., gated
GNN (Li et al., 2016), (Gilmer et al., 2017) which is widely used in graph retrieval (Li et al., 2019;
Roy et al., 2022; Jain et al., 2024). Nevertheless, in the following, we formally establish that such
transformations can indeed be derived for GNNs (proven in Appendix E).

Lemma 2. Given a graph G and a GNN architecture GNNy described in Appendix F, let the
node embedding matrix of G be X = GNNy(G) € R"*P. Then, for any permutation matrix
7 € Pp, there exists a bijective transformation Iy with |Det (0T'x(0)/00)| = 1 such that X7 =
GNNr, (9)(G). We call Iy a model transformation induced by permutation 7.

Given this characterization, we seek to reduce the problem of establishing exchangeability to estab-
lishing probabilistic symmetries in the model parameters 6 with respect to the transformation I';.

Equivariance of gradient under permutation induced parameter transformation Since the
loss function is invariant to any permutation 7 of the node embeddings, it is also invariant to the
transformation I'; on 6 (Lemma 2). As a result, the corresponding loss landscape exhibits symmetry
under ;.. This symmetry, in turn, implies an equivariance property for the gradient, as formalized
below (proven in Appendix E).

Lemma 3 (Gradient equivariance). Given the setting described in Section 3.1. Let I'x be the
transformation on the GNN parameters 0, induced by a permutation 7, as introduced in Lemma 2.
We denote the loss function as 1oss(0). Then the gradient of the loss V gloss(0) is equivariant under
transformation Uy of the parameters 0.

Invariance of probability density of model parameters under the transformation I, Suppose
we shuffle the initial parameters within a layer. Then, from the gradient equivariance property
(Lemma 3) the resultant trajectory {Gt |t > 0} of 6 at different epochs ¢, will undergo an equivariant

Under review as a conference paper at ICLR 2026

transformation with respect to a permutation-induced bijection I';. Since p(6y) = p(I'x(6p)), the
observation will lead to invariance of the probability density of 6; for ¢ > 0 too, as stated below
(proven in Appendix E).

Lemma 4 (Invariance of density of I (6)). Given the setting described in Section 3.1. Let {6, |t >

0} be the trajectory of the parameter 0 of a GNN across different training epochs t > 0. Then, we
have: p(0;) = p(Tr(0;)) forall t > 0.

Key results on exchangeability Using Lemmas 2—4, we can show our key exchangeability results,
stated as follows (proven in Appendix E).

Theorem 5 (Exchangeability of embedding elements). Given the setting described in Section 3.1.
Then, X = GNNy(G) are exchangeable random variables, where the randomness is induced by the
model initialization prior to training. That is, p(X) = p(X).

Note that the above theorem can also be generalized for a joint distribution over multiple graphs.
For example, in graph retrieval, is necessary to compute the joint distribution of the embeddings of
the query and corpus graph pairs (G4, G.). In such cases, we have the following result (proven in
Appendix E).

Proposition 6. Given two graphs Gy, G, let the settings in Section 3.1 hold true. Specifically, let us

assume that the loss function be invariant to simultaneous permutations of the embeddings X (9 =
GNNy(G,) and X(©) = GNNg(G,.). Then, Y = [X@; X ()] € R?"*D satisfies p(Y) = p(Y 7).

Scope of the result We imposed a few simplifying assumptions only for brevity. In fact, our
exchangeability results continue to hold even when these conditions are not explicitly met, including
architectures that incorporate more complex operations such as normalization layers. Moreover, our
results remain valid even when the loss itself is not permutation-invariant. This is because such
losses may still exhibit invariance under a joint transformation consisting of (i) a permutation of
intermediate representations; and, (ii) a corresponding permutation-induced transformation of the
parameters in the subsequent layer (Appendix E.1.6).

4 APPLICATIONS TO GRAPH RETRIEVAL

Graph retrieval In graph retrieval, we are given a large number of corpus graphs C' = {Gc}
and the goal is to efficiently find out top-b graphs that are relevant to a given query G,. In a
typical real-world application, the corpus database contains large number of graphs, necessitating
efficient indexing and retrieval mechanisms, akin to other retrieval tasks. In this section, we exploit
exchangeability to design a locality-sensitive hashing (LSH) method (Gionis et al.; Indyk et al., 1998;
Charikar, 2002) that accommodates a wide variety of transportation-based graph distance measures
in a unified framework. This would allow us to return the set of relevant items in a query time that is
sublinear in the number of corpus items |C|.

We proceed in two steps: (1) We leverage our results on exchangeability (Theorem 5 and Proposition 6)
to approximate the transportation-based graph similarity using Euclidean similarity, which is suited
for LSH. (2) We build upon the proposal of (Roy et al., 2023) to design LSH for such approximate
Euclidean similarity, which is also a valid LSH for the true transportation-based Euclidean similarity.

4.1 USE OF EXCHANGEABILITY TO DERIVE SIMILARITY OF GRAPHS IN EUCLIDEAN SPACE

Transportation-based relevance distance between graphs It is well established in the literature
(Roy et al., 2022; Zhuo et al., 2022; Fey et al., 2020; Jain et al., 2024; Bommakanti et al., 2024) that
transport distance between sets of node embeddings across query and corpus graphs results in better
accuracy than graph kernels or pooled single-vector representation. These works have proposed
different notions of transportation distances, e.g., hinge distance for subgraph matching (Roy et al.,
2022), graph edit distance (Jain et al., 2024; Zhuo et al., 2022, GED), efc. We unify these distances
under a common relevance distance, computed using a function p convex, potentially asymmetric
and decomposable between dimensions, i.e., p(z) = 3_ ;¢ p) p(2[d]).

A(G.,Gy) = PHé%I)l Z Z p(:c(q)(u)[d] — 2w [d]) - Plu,u] (1)

" uu! de[D]

Under review as a conference paper at ICLR 2026

If p(e) = [o],, then A(G., G,) captures the hinge distance for subgraph isomorphism (Roy et al.,
2022); if p(e) = eg X [8]+ + eg X [—o]4 for some eg,eq > 0, then A(G,, G,) captures GED,
where eg and eg denote the costs of edge deletion and addition, respectively (Jain et al., 2024).
Distance to similarity Suppose the elements of the node embeddings are bounded by x .. Given
cost function p, we COMPUte Prax = MAXy 2/~ g, zmas] (& — o). We define a score function
$(x) = pmax — p(x), which converts the transportation-based distance in Eq. (1) to the following
transportation-based similarity measure.

sim(G.,Gy) = nax Z Z 2 D(u)[d] — ') [d]) - Plu,). ()

"uu’deD]

Approximation of transportation-based similarity into Euclidean similarity Owing to the
random initialization of the parameters 6, (%) (u) and () (u/) are random variables, which makes
sim(G,, G4) a random scalar. Now, sim(G., G,) is not amenable to indexing and search. To tackle
this, we approximate this similarity using a simpler Euclidean similarity sim4(G., G4), focusing on
a single dimension d. This approximate similarity is also a random variable, due to the parameter
initialization, but more amenable to approximate nearest neighbor search. As we will see shortly,
simq(G., G4) serves as a scaled approximation of sim(G., G4) with high probability.

Proposition 6 suggests that the node embedding pairs of G, and G, are exchangeable across dimen-
sions i.e., if Y = [X(9); X (9)], then we have: p(Y') = p(Y) for any permutation 7r. This means
that the elements of the embeddings have an identical distribution across different dimensions. This
also yields an identical distribution in the output of the score function s(-) across different embedding
dimensions. This, in turn, allows us to approximate the score by evaluating it in any one dimension d:

simg(Ge, Gy) = maxz ((a)()[d]—:c(c)(u’)[d]) - Plu,] 3)

By restricting Eq. (3) to a single dlmensmn d € [D], the problem reduces to transportation cost
between scalars. This — together with the property that s(-) is concave (as p is convex) — allows us
to simplify Eq. (3) (Appendix E) into a similarity function between the order statistics or the sorted
vector of the node embedding elements in a fixed dimension. Specifically, we compute the order
statistics: SORT(X (V[:, d]) and SORT(X ()[:, d]) and express the similarity function for dimension
d in Eq. (3) as the similarity between these order statistics:

simg(Ge, Gy) = s(SORT(X D[:,d]) — sOrRT(X V[, d])) “4)

As the distance function p is decomposable p(x) =), p(x[d]), the score function satisfies: s(x) =
> _as(z[d]). Hence, we overload s(e) as a function on scalars in Eq. (3), as well as vectors in Eq. (4).

As exchangeability results in an identical distribution of the above similarity across the dimension d,
we will have the following concentrations (Proven in Appendix E):

Proposition 7. For any ¢ > 0,0 > 0, setting D > ﬁ ensures that, for some Sy = Op (1), we have:

Pr (|Sim(Gc, Gy)/D — sima(Ge, Gy)| < e) >1— Fyd.)

4.2 LOCALITY SENSITIVE HASHING OF GRAPHS

Locality sensitive hashing Locality Sensitive Hashing (LSH) maps queries and corpus items to the
same bucket with high probability when they are similar, and with low probability otherwise (Gionis
et al.; Indyk et al., 1998; Charikar, 2002; Neyshabur et al., 2015a). This enables retrieving relevant
graphs from {G.} by searching only within the bucket where G, gets hashed.

Why will existing approaches not work? If s(-) in Eq. (4) were a symmetric Euclidean distance,
we could directly apply existing LSH methods, such as grid-based projections for L1 (Andoni et al.,
2006) or line projections for Ly (Datar et al., 2004). However, various common graph similarities are
inherently asymmetric (refer to the examples below Eq. (1)). To address this limitation, we propose a
new framework for LSH of graphs, starting with the definition of asymmetric-LSH for graphs under
a general similarity measure (Neyshabur et al., 2015a).

Definition 8. Given Q, C, the domain of query and corpus graphs and a similarity measure sim :
C x Q — R. A distribution over mappings F : Q — Nand H : C — N is called a (So,vSo,p,p’)-

Under review as a conference paper at ICLR 2026

asymmetric LSH (ALSH) if, with p > p' and v € (0, 1), the following conditions are satisfied.
(1) Prpurnu(f(Gq) = h(Ge)) > p, if sim(Ge, Gy) > So, (6)
(2) Prpnrnn(f(Gq) = h(Ge)) < ¢/, if sim(Ge, Gy) < 7S

Intuition behind our approach Suppose we estimate two vectors Tq 4 and Tc d, such that the
Euclidean similarity for dimension d in Eq. (4) can be expressed as simg (G, G¢) cos(Tq,d, Tc,d).
Then, the random hyperplane projections given by f(G,) = sign(w'T,q) and h(G.) =
sign(wTT&,d) with w ~ N(0, I), will be a valid LSH for simgy (Charikar, 2002; Neyshabur et al.,
2015a). Since this Euclidean similarity is only a scaled approximation of the transportation-based
similarity sim(G., G4) (Proposition 7), the same random hyperplane projection is a valid LSH for
sim(G,, G4). Hence, we now focus on obtaining such vectors Ty, 4 and T, 4 whose inner product
approximates simy.

GRAPHHASH: Our approach for LSH for graphs In their seminal work, Rahimi et al. (2007)
showed that kernels of the form x(x — &) can be approximated using a product of finite-dimensional
Fourier features. Our approximate similarity simg(G., G4) = s(SORT(X (@[:,d]) — SORT(X ()[:
,d])) has a similar structure. However, s(-) is generally not a kernel, because the underlying distance
measure can involve complex asymmetric structure (see examples following Eq. (1)). Hence, their
method cannot be directly applied. Roy et al. (2023) extended the approach to hinge-based similarities.
We build on their idea and generalize it to arbitrary graph similarity functions. Specifically, we
express sim(G., G4) as an integral over dot products of two real vectors.

Proposition 9. For each u € [n], there exist vectors Fy 4(twy), Fea(iw,) € R* with different
Fourier frequency w,, for each node u, such that: simy(G., Gq) (Eq. (4)) can be expressed as:

simg (G, Gy) Z / F,q(wy,) TFC,d(qu) dwy, @)
u€[n] wu€
To approximate the above integral into finite terms, we design the frequency sampling distribution
as p(wy) o |S(twy,)|, where S(ww) is the Fourier transform of the scoring function s(e) when
applied on scalars. Given w = [wy, .., w,], we use Ty 4(w) = [Fo q(1wu)/\/P(wu)]uem) to obtain
an equivalent expression for Eq. (7), as follows:

simg(Ge, Gq) = By, wnmp(o) [Tq,a(w) T e a(w)] (8)

We prove it in Appendix E. One can show that || T, ¢(w)]|2 = ||T a(w)||2 for all G4 and G.. Next,
we draw {w(™)} # p(w) to compute f.,d (e RinM) = 2 [Ty a(w)}mé[k[]’ which will give:

simg(G., G4) x cos(Tq,d,Tc’d) 9)

Overall routine (GRAPHHASH) Finally, we use the random hyperplane method to compute hash
codes f(G,) and h(G,). Given dimy, the dimension of f.d and dimy,, the size of a hashcode,
we first draw W € Rémnxdimr with Wi ¢] 4 A7(0,1) and then set h(D(G,) = sign(WT,.q)
(Algorithm 1). During query execution, we return top-b corpus graphs {G.} which belong to the
hash bucket f(D(G,) where, f()(G,) = sign(Wfqyd) (Algorithm 2) The family of these hash

functions gives a valid LSH. We call our method as GRAPHHASH. We provide LSH guarantees for
GRAPHHASH in Appendix E.

Algorithm 1 Indexing phase of GRAPHHASH Algorithm 2 Query phase of GRAPHHASH

Require: Corpus {G. }, score function s(e) Require: Query G, stored hyperplanes W,
frequency samples {w(™}. frequency samples {w ™}/

1: Wi, j] ~N(0,1),i € [dima],j € [dimz]. I: R« 0

2: forall G. and d € [D] do 2: for d € [D] do

3: Use s(-) to compute Fc,d(wﬁ’")) from | 3: Givens(:), compute Fy, d(“’-’u)from
SORT(X), d]) for all d, m SORT(X (V);, d]) for all d, m

4: Compute fp 4 from 4. Compute T} 4 from

m) (m) (m)

{F..a(w™)} and {pr(wi™)} {Fea(uwn™)} and {px(wi™)}

F(Gy) = sign(WT,a)
R+ RU{G. : G. € Bucket(fV(G,))}
Return Top-b graphs from R

RD(G,) = sign(WT..q)
Store G in the bucket indexed by h(® (G..)
Store W for use in the query phase

SIS th
AN

Under review as a conference paper at ICLR 2026

Density —

o 9. 9. ¢
D % T

X©v, d] —

(a) Ge, v (b) Initialization (c) Epoch 8 (d) Epoch 20
Figure 1: Empirical probability density of X (°)[v, d] the highlighted node v in the example corpus
graph G. in cox2, obtained using 5000 independently trained instances of the GNN model for
Subgraph Matching based graph retrieval. Panels (b)—(d) show the density of X (°)[v, d] after model
initialization and different stages of training.

5 EXPERIMENTS

We organize our experiments in two parts: first, we empirically validate the exchangeability property
of GNN-based graph embeddings (Theorem 5); second, we evaluate the retrieval effectiveness of
GRAPHHASH across multiple datasets. Appendix H shows additional experiments.

5.1 EMPIRICAL VALIDATION OF EMBEDDING EXCHANGEABILITY

Validation using marginal distribution We verify a necessary condition of exchangeability in the
following experiments: identical marginal distribution of the embedding elements for a fixed node
across independently initialized and trained models. For this setup, we train 5,000 independently
initialized GNN models on a small subset of the cox2 dataset, consisting of 1,024 query-corpus
graph pairs. Each model is trained for 20 epochs using the Adam optimizer with an embedding size
D = 10, by minimizing a ranking loss for a subgraph matching based graph retrieval task. For each
trained model, we extract the embedding vector for a fixed, node v from one graph G and record the
scalar values X (°)[v, d] for d € [D]. This yields an empirical distribution of X (°)[v, d] across model
instances for each d € [D].

Figure 1 shows the empirical probability density of X (°)[v, d] for three representative dimensions
d = 1,5, 10, at three points in training: initialization, epoch 8, and epoch 20. We observe that the
distributions remain identical across the embedding dimensions throughout training. This validates
the necessary condition of our result that the embedding dimensions are exchangeable under random
initialization and remain so despite backpropagation, non-convex losses.

Direct test for exchangeability The marginal cox2 (GED) —3.80 x 10~° + 2.69 x 105
distributions do not capture more complex de- ~ _ (SM) —1.18 % 10-6 + 3'28 % 10-5
pendencies between dimensions, which is why _ i

we make use of the maximum mean discrepancy 1able 2: Estimator for unbiased MMD? for px
to quantify the gap between the distribution of and pxn for cox2 dataset

X and X 7. We sample 100 different permutations and compute the estimator of MMD? for each
permutation, and report the average over these 100 observations. Note that estimator of MMD?
can be negative. Table 2 shows that the MMD values are extremely small for cox2dataset for
both GED and subgraph matching (SM). These results strongly support that px and px . are close.

Rank of E[X] Another conse-

quence of exchangeability is that the T 1.00 P anh i T 0.94 A .

expectation of the graph embedding ! / . ¢

matrix E[X] is rank one. Conse- ©&%%| 6 0.92 4

quently, we expect the leading singu- @0 00 / @ P /

lar value of the sample mean graph = °570.90 ./°\./ \

embedding matrix to be significantly % T o o

larger than the rest. Figure 3 shows # Initializations —» # Initializations —
2

how the ratio Z‘Zﬁ,? varies over multi- (a) Graph from cox2 (SM) (b) Graph from cox2 (GED)

ple runs, where o1, ..0,, are the singu- Figure 3: The relative size of the top singular value of the
lar values of E[X], sorted in decreas- mean (trained) embedding across model initializations.

ing order. We observe that this frac-

tion converges to one, which indicates that the rank of the embedding matrix is 1.

Under review as a conference paper at ICLR 2026

5.2 EVALUATION OF GRAPHHASH’S RETRIEVAL PERFORMANCE

We evaluate GRAPHHASH against existing baselines on four datasets to assess retrieval accuracy-
efficiency trade-offs across indexing strategies.

Setup We construct retrieval datasets using four real-world benchmarks from the TUDatasets (Mor-
ris et al., 2020): ptc—fr, ptc-£fm, cox2, and pt c—mr. Each dataset consists of 500 query graphs
and a corpus of 100,000 graphs, following related work (Roy et al., 2022; Lou et al., 2020). We
generate binary relevance labels under two asymmetric graph similarity signals: (1) Subgraph
Matching (SM): Relevance is determined using the VF2 subgraph matching algorithm (Hagberg
et al., 2020). Here, we set binary relevance rel(G., G,) = [G4 C G.], where [o] is the indicator
function. (2) GED: We use the GEDLIB toolkit (Blumenthal et al., 2019) to compute edit distances
with asymmetric costs eg = 1 (insertion) and e, = 2 (deletion), followed by thresholding to obtain
binary relevance. Here, we set rel(G., G,) = [GED(G., G,) < 7], where 7 is a threshold. For each
supervision type, we train a separate transport-based scoring model using the relevance distances for
Subgraph Matching and for GED. The model is trained using a pairwise ranking loss (Roy et al., 2022;
Jain et al., 2024) of the form 3°, 3" .. c, 21,0l Gy =0l A(Ge; Gg) = A(Ger, Go) + 7]+
where + is a fixed margin, and A(-, -) denotes the transport-based relevance distance (Eq. (1)). We
evaluate retrieval performance using both MAP and NDCG. The analysis presented below focuses on
MAP, while NDCG results and additional experiments are in Appendix H.

We benchmark GRAPHHASH against five competitive ANN methods adapted to graph retrieval. These
include single-vector and multi-vector indexing paradigms. (I) FourierHashNet (Roy et al., 2023): It
implements an LSH tailored for shift-invariant asymmetric distances by projecting graph emnbeddings
into the Fourier space. Each graph G, is represented as a single vector z, = |71.\ ZueV, x(u),

where X = [x(u)],e[n). (IT) Random Hyperplanes (RH) (Charikar, 2002; Indyk et al., 1997):
It serves as a classic LSH baseline, where we directly hash mean pooled graph representations using
random linear projections. (III) IVF (Douze et al., 2024): It follows the FAISS-based ColBERT-
style approach, constructing a dense inverted index over the collection of corpus node embeddings,
and probes with individual query node vectors, followed by aggregating the hits at the graph level.
(IV) DiskANN (Simhadri et al., 2023) follows a similar multi-vector setup but leverages an HNSW
index over corpus node embeddings. Lastly, we include a Random baseline that retrieves a uniformly
sampled subset of corpus graphs. Appendix G contains additional details about the setup.

@® GraphHash B FourierHashNet B RH (Subsampled) Disk ANN A IVF ® Random

0 25K 50K 75K 100K "0 25K 50K 75K 100K "0 25K 50K 75K 100K "0 25K 50K 75K 100K
Retrieved Graphs — # Retrieved Graphs — # Retrieved Graphs — # Retrieved Graphs —
(a) ptc—£fm (SM) (b) cox2 (SM) (c) ptc-fr (SM (d) ptc—mr (SM)
““ e Oneg 0.4 — 0.4 sptemongc
" ..A‘. 0.3 0.3
“aft® T T
——————————————— 0.2 Y it it n, 0.2
< <
= 0.1 =R
0.0 ¢ 0.0 &
0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K
Retrieved Graphs — # Retrieved Graphs — # Retrieved Graphs — # Retrieved Graphs —
(e) ptc—£fm (GED) (f) cox2 (GED) (g) ptc—£fr (GED) (h) ptc—mr (GED)

Figure 4: Trade-off between mean average precision (MAP) and number of retrieved graphs, for
GRAPHHASH, FourierHashNet (Roy et al., 2023), Random Hyperplane (RH) (Charikar, 2002; Indyk
et al., 1997), IVF (Douze et al., 2024),DiskANN (Simhadri et al., 2023) and Random, across all
datasets. Top row: Retrieval based on Subgraph Matching (SM); Bottom row: Retrieval based on
GED. Horizontal red line denotes 50% of exhaustive MAP. Our method shows a better trade-off than
others in majority of the cases.

Under review as a conference paper at ICLR 2026

Results We vary hyperparameters in each method to produce different retrieval set sizes, yielding
MAP vs. # retrieved graphs trade-offs shown in Figure 4. The key observations are as follows.
(1) GRAPHHASH consistently outperforms all baselines across both Subgraph Matching (SM)
and Graph Edit Distance (GED), with FourierHashNet emerging as the next-best method overall.

(2) FourierHashNet fails to span the full selectivity spectrum, particularly on SM tasks—most notably
on ptc—fr and ptc-mr, where its MAP plateaus below 50% of the exhaustive MAP. (3) RH

hashing performs reasonably well on GED, occasionally matching GRAPHHASH in MAP. However,
it exhibits high variance at fixed selectivity levels, complicating hyperparameter tuning. On SM tasks,
RH performs worse than random, which is expected since cosine similarity over pooled vectors is
ill-suited to the asymmetric nature of containment queries. (4) DiskANN and IVF, despite using
multi-vector indexing, perform poorly due to their reliance on symmetric similarity metrics like Lo
and cosine, which are incompatible with the asymmetric transport-based supervision. (5) Random
sampling yields substantially lower MAP compared to both GRAPHHASH and FourierHashNet,
highlighting the non-trivial structure captured by learned or LSH-based methods.

Next, we vary dimy, (number of hash bits) and obtain different trade-off curve between MAP and #no
of retrieved graphs. We plot the variation of AUC against dimy,, which shows at around dim;, = 10,

we obtain an optimal trade-off.

P e

’

&% %% O
0.3 Tm"""c'""”\. Tm‘.&mﬂ/.\kfk"' L e e 03| | R e
. “”\.7.7. 0.31]
‘ \
T 0.2 | T | T 0.2 T 0.2 t
2] ¢ X .
o || 002] o | &)
D 2 | =) 2|
<ol | <ot <01 <o /’
\ N
\
L] L] . L]
0 25 50 0 25 50 0 25 50 0 25 50
dim;, —> dim;, — dimy, — dim;, —>
(a) ptc—fm (SM) (b) cox2 (SM) (c) ptc—fr (SM) (d) ptc—mr (SM)
0.30) :c(.('&"v«.o—r./or—.—ofofofow. 0.3 '.é'(o'q¢(070~.\.\.7./. .,.««o.'««o/o—o\.\.\./FF.
0.25] ¢ - 0.20{ ¢ ’ o 031]
| ./ ¢ J
0.20 ¢ $=e=e T / T T
T] 0.15) ¢ 02 | 0.2
0.15] | @) \ @) / 0 .
] > 0.10 ’ =) i 5 |
Z0.10{ | | <0.1{] <01 ‘
L]
0.05 , 0.05 | | !
. . [.
0 25 50 0 25 50 0 25 50 0 25 50
dim, — dim, — dim;, — dim;, —

(e) ptc—fm (GED) (f) cox2 (GED) (g) ptc—£fr (GED) (h) ptc—mr (GED)
Figure 5: Performance of GRAPHHASH across different choices for dimy,, the size of the hashcode.
We summarize the trade-off plot between MAP and the number of retrieved graphs by computing
the area under the curve after normalizing the x-axis. We observe that the optimal size is around

dimy, = 10 across datasets and tasks.

6 CONCLUSIONS
Taking a step beyond existing notions of algebraic symmetries in neural architectures and losses, we
introduce the property of exchangeability over neural graph embeddings. We show that this property
is exhibited by a broad class of graph neural networks across a broad class of loss functions and
optimizers. We utilize this property to obtain a concentration bound for reducing transport problems
on node embeddings, culminating in GRAPHHASH, a unified and theoretically grounded framework
for approximate graph retrieval using general transport-based distances. We experimentally validate
exchangeability, and GRAPHHASH consistently outperforms strong baselines in retrieval performance
under both subgraph matching and edit distance supervision. Future work might explore other
consequences of the phenomenon on learning and training dynamics. It may be worthwhile to extend
the framework to similarities over a richer class of similarity functions between three dimensional

molecular structures, 3D objects, efc.

10

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work makes an algorithmic contribution and uses only publicly available, non-proprietary graph
datasets under their original licenses. No human subjects or sensitive data are involved. We believe
our results advance understanding of graph retrieval without raising additional ethical concerns.

REPRODUCIBILITY STATEMENT

We provide code, configuration files, and dataset splits to fully reproduce all experiments. Hyper-
parameters, training settings, and evaluation protocols are documented, and scripts are included
to regenerate the reported figures and tables. In addition, all theorems are stated formally with
accompanying proofs in the appendix to allow independent verification of our theoretical claims.

REFERENCES

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. arXiv preprint arXiv:2209.04836, 2022.

David J. Aldous. Exchangeability and related topics, pp. 1-198. Springer Berlin Heidelberg, 1985.
ISBN 9783540393160. doi: 10.1007/bfb0099421. URL http://dx.doi.org/10.1007/
BFb0099421.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. In Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’2006), pp. 459-468, 2006.

Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Earth mover distance over high-dimensional
spaces. In Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms (SODA "2008),
pp. 343-352, 2008.

Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David Woodruff. Efficient sketches for earth-mover
distance, with applications. In Proceedings of the 50th Annual IEEE Symposium on Foundations
of Computer Science (FOCS "2009), 2009.

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. Simgnn: A neural
network approach to fast graph similarity computation. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, pp. 384-392, 2019.

Benjamin Bloem-Reddy, Yee Whye, et al. Probabilistic symmetries and invariant neural networks.
Journal of Machine Learning Research, 21(90):1-61, 2020.

David B. Blumenthal, Sébastien Bougleux, Johann Gamper, and Luc Brun. Gedlib: A c++ library
for graph edit distance computation. In Donatello Conte, Jean-Yves Ramel, and Pasquale Foggia
(eds.), Graph-Based Representations in Pattern Recognition, pp. 14-24, Cham, 2019. Springer
International Publishing. ISBN 978-3-030-20081-7.

Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks meet
transformers. 2023.

Salomon Bochner and Komaravolu Chandrasekharan. Fourier transforms. (AM-19), volume 19.
Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, July 1949.

Aditya Bommakanti, Harshith R Vonteri, Konstantinos Skitsas, Sayan Ranu, Davide Mottin, and
Panagiotis Karras. Fugal: Feature-fortified unrestricted graph alignment. Advances in Neural
Information Processing Systems, 37:19523-19546, 2024.

Johanni Brea, Berfin Simsek, Bernd Illing, and Wulfram Gerstner. Weight-space symmetry in
deep networks gives rise to permutation saddles, connected by equal-loss valleys across the loss
landscape. arXiv preprint arXiv:1907.02911, 2019.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint, 2017.

Phuong Bui Thi Mai and Christoph Lampert. Functional vs. parametric equivalence of relu networks.
In 8th International Conference on Learning Representations, 2020.

11

http://dx.doi.org/10.1007/BFb0099421
http://dx.doi.org/10.1007/BFb0099421

Under review as a conference paper at ICLR 2026

Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. A comprehensive survey of graph
embedding: Problems, techniques, and applications. IEEE transactions on knowledge and data
engineering, 30(9):1616-1637, 2018.

Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings
of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC 02, pp. 380-388.
Association for Computing Machinery, 2002. ISBN 1581134959. doi: 10.1145/509907.509965.
URL https://doi.org/10.1145/509907.509965.

Xi Chen, Rajesh Jayaram, Amit Levi, and Erik Waingarten. An improved analysis of the quadtree for
high-dimensional emd. 2020.

Xi Chen, Rajesh Jayaram, Amit Levi, and Erik Waingarten. New streaming algorithms for high
dimensional emd and mst. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory
of Computing, pp. 222-233, 2022.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International conference
on machine learning, pp. 2990-2999. PMLR, 2016.

John M. Danskin. The Theory of Max-Min and its Application to Weapons Allocation Problems.
Springer Berlin Heidelberg, 1967. ISBN 9783642460920. doi: 10.1007/978-3-642-46092-0. URL
http://dx.doi.org/10.1007/978-3-642-46092-0.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the 20th ACM Symposium on Computa-
tional Geometry (SoCG °2004), pp. 253-262, 2004.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems
(NeurlIPS), 2016.

Ishan Deshpande, Ziyu Zhang, and Alexander G Schwing. Generative modeling using the sliced
wasserstein distance. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3483-3491, 2018.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth, 2023. URL https://arxiv.org/abs/
2103.03404.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv preprint
arXiv:2401.08281, 2024.

Jian Du, Shanghang Zhang, Guanhang Wu, José MF Moura, and Soummya Kar. Topology adaptive
graph convolutional networks. arXiv preprint arXiv:1710.10370, 2017.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121-2159, 2011.

Chi Thang Duong. Graph Embedding for Retrieval. PhD thesis, EPFL, 2022.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gémez-Bombarelli, Tim-
othy Hirzel, Aldn Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs for
learning molecular fingerprints. 2015.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. arXiv preprint arXiv:2110.06296, 2021.

Matthias Fey, Jan Eric Lenssen, Christopher Morris, Jonathan Masci, and Nils M. Kriege. Deep
graph matching consensus. In 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://
openreview.net/forum?id=HyeJf1HKvS.

12

https://doi.org/10.1145/509907.509965
http://dx.doi.org/10.1007/978-3-642-46092-0
https://arxiv.org/abs/2103.03404
https://arxiv.org/abs/2103.03404
https://openreview.net/forum?id=HyeJf1HKvS
https://openreview.net/forum?id=HyeJf1HKvS

Under review as a conference paper at ICLR 2026

C Daniel Freeman and Joan Bruna. Topology and geometry of half-rectified network optimization.
arXiv preprint arXiv:1611.01540, 2016.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Emma J Gerritse, Faegheh Hasibi, and Arjen P de Vries. Graph-embedding empowered entity
retrieval. In Advances in Information Retrieval: 42nd European Conference on IR Research, ECIR
2020, Lisbon, Portugal, April 14—17, 2020, Proceedings, Part I 42, pp. 97-110. Springer, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263-1272. PMLR, 2017.

Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via hashing.
In Proceedings of the 25th International Conference on Very Large Data Bases (VLDB ’1999).

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249-256. JMLR Workshop and Conference Proceedings, 2010.

Charles Godfrey, Davis Brown, Tegan Emerson, and Henry Kvinge. On the symmetries of deep
learning models and their internal representations. arXiv preprint arXiv:2205.14258, 2022.

Aric Hagberg and Drew Conway. Networkx: Network analysis with python. URL: https://networkx.
github. io, 2020.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems (NeurIPS), 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026—1034, 2015.

Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In Advanced
Neural Computers, pp. 129—135. Elsevier, 1990.

Piotr Indyk. Algorithms for dynamic geometric problems over data streams. In Proceedings of the
36th ACM Symposium on the Theory of Computing (STOC *2004), pp. 373-380, 2004.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse
of dimensionality. In Proceedings of the 30th ACM Symposium on the Theory of Computing
(STOC ’1998), pp. 604—613, 1998.

Piotr Indyk and Nitin Thaper. Fast color image retrieval via embeddings. In Workshop on Statistical
and Computational Theories of Vision (at ICCV), 2003.

Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and Santosh Vempala. Locality-preserving
hashing in multidimensional spaces. In Proceedings of the twenty-ninth annual ACM symposium
on Theory of computing, pp. 618-625, 1997.

Eeshaan Jain, Indradyumna Roy, Saswat Meher, Soumen Chakrabarti, and Abir De. Graph edit
distance with general costs using neural set divergence. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

Rajesh Jayaram, Erik Waingarten, and Tian Zhang. Data-dependent Ish for the earth mover’s distance.
In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, pp. 800-811, 2024.

Federico Arangath Joseph, Jerome Sieber, Melanie Zeilinger, and Carmen Amo Alonso. Lambda-
skip connections: the architectural component that prevents rank collapse. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=1yJP5TVWih.

13

https://openreview.net/forum?id=1yJP5TVWih
https://openreview.net/forum?id=1yJP5TVWih

Under review as a conference paper at ICLR 2026

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014. URL https://api.semanticscholar.org/CorpusID:
6628106.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, and Gustavo Rohde. Generalized
sliced wasserstein distances. Advances in neural information processing systems, 32, 2019.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618-21629, 2021.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, and Yee Whye Teh.
Set transformer: A framework for attention-based permutation-invariant neural networks. In
International Conference on Machine Learning (ICML), 2019.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. In International Conference on Learning Representations (ICLR), 2016.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching networks
for learning the similarity of graph structured objects. In International conference on machine
learning, pp. 3835-3845. PMLR, 2019. URL https://arxiv.org/abs/1904.12787.

Zihao Li, Yuyi Ao, and Jingrui He. Sphere: Expressive and interpretable knowledge graph embedding
for set retrieval. In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2629-2634, 2024.

Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes Canedo, Jure Leskovec, et al. Neural subgraph
matching. arXiv preprint arXiv:2007.03092, 2020.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In 7th International Conference on Learning Representations, ICLR, 2019.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs, 2020.

Alireza Naderi, Thiziri Nait Saada, and Jared Tanner. Mind the gap: a spectral analysis of rank
collapse and signal propagation in attention layers, 2025. URL https://arxiv.org/abs/
2410.07799.

Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and Haggai Maron. Equiv-
ariant architectures for learning in deep weight spaces. In International Conference on Machine
Learning, pp. 25790-25816. PMLR, 2023.

Behnam Neyshabur and Nathan Srebro. On symmetric and asymmetric Ishs for inner product search.
In International Conference on Machine Learning, pp. 1926—1934. PMLR, 2015a.

Behnam Neyshabur, Russ R Salakhutdinov, and Nati Srebro. Path-sgd: Path-normalized optimization
in deep neural networks. Advances in neural information processing systems, 28, 2015b.

Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen, Xinying Song,
and Rabab Ward. Deep sentence embedding using long short-term memory networks: Analysis
and application to information retrieval. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 24(4):694-707, 2016.

Fidel A Guerrero Peiia, Heitor Rapela Medeiros, Thomas Dubail, Masih Aminbeidokhti, Eric
Granger, and Marco Pedersoli. Re-basin via implicit sinkhorn differentiation. arXiv preprint
arXiv:2212.12042, 2022.

14

https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://arxiv.org/abs/1904.12787
https://arxiv.org/abs/2410.07799
https://arxiv.org/abs/2410.07799

Under review as a conference paper at ICLR 2026

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
neural information processing systems, 20, 2007.

Ladislav RampaSek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501-14515, 2022.

Rishabh Ranjan, Siddharth Grover, Sourav Medya, Venkatesan Chakaravarthy, Yogish Sabharwal,
and Sayan Ranu. Greed: A neural framework for learning graph distance functions. In Advances in

Neural Information Processing Systems 36: Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, November 29-Decemer 1, 2022, 2022.

Andreas Roth and Thomas Liebig. Rank collapse causes over-smoothing and over-correlation in
graph neural networks, 2024. URL https://arxiv.org/abs/2308.16800.

Indradyumna Roy, Venkata Sai Baba Reddy Velugoti, Soumen Chakrabarti, and Abir De. Interpretable
neural subgraph matching for graph retrieval. In Proceedings of the AAAI conference on artificial
intelligence, volume 36, pp. 8115-8123, 2022.

Indradyumna Roy, Rishi Agarwal, Soumen Chakrabarti, Anirban Dasgupta, and Abir De. Locality
sensitive hashing in fourier frequency domain for soft set containment search. Advances in Neural
Information Processing Systems, 36:56352-56383, 2023.

Yuki Saito, Takuma Nakamura, Hirotaka Hachiya, and Kenji Fukumizu. Exchangeable deep neural
networks for set-to-set matching and learning. In European Conference on Computer Vision, pp.
626-646. Springer, 2020.

Filippo Santambrogio. Optimal transport for applied mathematicians, volume 87. Springer, 2015.

Konstantin Schiirholt, Dimche Kostadinov, and Damian Borth. Self-supervised representation learning
on neural network weights for model characteristic prediction. Advances in Neural Information
Processing Systems, 34:16481-16493, 2021.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.
Exphormer: Sparse transformers for graphs. In International Conference on Machine Learning,
pp. 31613-31632. PMLR, 2023.

Harsha Vardhan Simhadri, Ravishankar Krishnaswamy, Gopal Srinivasa, Suhas Jayaram Subramanya,
Andrija Antonijevic, Dax Pryce, David Kaczynski, Shane Williams, Siddarth Gollapudi, Varun
Sivashankar, Neel Karia, Aditi Singh, Shikhar Jaiswal, Neelam Mahapatro, Philip Adams, Bryan
Tower, and Yash Patel. Disk ANN: Graph-structured indices for scalable, fast, fresh and filtered
approximate nearest neighbor search, 2023. URL https://github.com/Microsoft/
DiskANN.

Berfin Simsek, Francois Ged, Arthur Jacot, Francesco Spadaro, Clément Hongler, Wulfram Gerstner,
and Johanni Brea. Geometry of the loss landscape in overparameterized neural networks: Symme-
tries and invariances. In International Conference on Machine Learning, pp. 9722-9732. PMLR,
2021.

Kiran K. Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. Attention-based graph
neural network for semi-supervised learning, 2018. URL https://arxiv.org/abs/1803.
03735.

Tijmen Tieleman and Geoffrey Hinton. Neural networks for machine learning, lecture 6.5—rmsprop.
http://www.cs.toronto.edu/~hinton/coursera/lecture6/lect6.pdf, 2012.
Coursera lecture slides.

Titouan Vayer, Rémi Flamary, Romain Tavenard, Laetitia Chapel, and Nicolas Courty. Sliced
gromov-wasserstein. arXiv preprint arXiv:1905.10124, 2019.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018.

15

https://arxiv.org/abs/2308.16800
https://github.com/Microsoft/DiskANN
https://github.com/Microsoft/DiskANN
https://arxiv.org/abs/1803.03735
https://arxiv.org/abs/1803.03735
http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf

Under review as a conference paper at ICLR 2026

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey of
approaches and applications. IEEE transactions on knowledge and data engineering, 29(12):
2724-2743, 2017.

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr., Christopher Fifty, Tao Yu, and Kilian Q.
Weinberger. Simplifying graph convolutional networks. arXiv preprint, 2019.

Qitian Wu, Wentao Zhao, Zenan Li, David Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification, 2023. URL https://arxiv.org/abs/
2306.08385.

Wah Chai Wu. On rearrangement inequalities for multiple sequences. 2020. https://arxiv.
org/abs/2002.10514v10.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877-28888, 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabds P6czos, Ruslan Salakhutdinov, and
Alexander Smola. Deep sets. In Advances in Neural Information Processing Systems (NeurlPS),
2017.

Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the Twenty-First International Conference on Machine Learning
(ICML), 2004.

Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie, and Yanfang
Ye. Gophormer: Ego-graph transformer for node classification. 2021.

Xixi Zhou, Yang Gao, Xin Jie, Xiaoxu Cai, Jiajun Bu, and Haishuai Wang. Ease-dr: Enhanced
sentence embeddings for dense retrieval. In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 2374-2378, 2024.

Hao Zhu and Piotr Koniusz. Simple spectral graph convolution. In /CLR, 2021.

Wei Zhuo and Guang Tan. Efficient graph similarity computation with alignment regularization.
Advances in Neural Information Processing Systems, 35:30181-30193, 2022.

16

https://arxiv.org/abs/2306.08385
https://arxiv.org/abs/2306.08385
https://arxiv.org/abs/2002.10514v10
https://arxiv.org/abs/2002.10514v10

Under review as a conference paper at ICLR 2026

Exchangeability of GNN Representations
with Applications to Graph Retrieval
(Appendix)

CONTENTS

A
B
C
D
E

Broader Impact
Limitations
LLM Usage
Related work

Proofs and other technical details

E.1 Proofs of the results of exchangeability presented in Section3
E.1.1 Proofof Lemma2
E.1.2 Proofof Lemma3
E.1.3 Proofof Lemmad4
E.1.4 Proof of Theorem 5 and Proposition6
E.1.5 Equivariance of the Update Step
E.1.6 Additional Results on Exchangeability

E.2 Proofs of the technical results in Section4
E.2.1 Proof of Proposition7
E.2.2 Proof of the fact that Eq. (3) and Eq. (4) are equivalent
E.2.3 Auxiliary Results used to prove Lemmas in Appendix E.2 . .
E.24 Proofsof LSHresults.
E.2.5 Auxiliary results used to prove results in this subsection E.2.4

List of GNNs

F.1 Graph Neural Network
F2 Graph Transformers
F3 Set-based Neural Network

G Additional details about experiments

G.1 Datasets e e e
G.2 Embedding model architecture
G.3 Fourier-map and hashcode training
G.4 Baselines
G.5 Evaluation Metrics
G.6 Hardwareand Licenses

H Additional Experiments

H.1 Additional Exchangeability Results
H.2 Further Evaluation of GRAPHHASH’s Retrieval Performance
H.2.1 MAPonEqual-Cost GED
H.2.2 EvaluationusingNDCG
H.2.3 Clarification on RH (Subsampled)
H.2.4 Evaluation on Larger Graphs
H.2.5 Evaluation on larger corpus
H.2.6 Ablation Studies
H.2.7 Comparisonof simandsimg
H.2.8 Evaluation of LSH Methods under Aligned Scoring Functions

17

18

18

18

18

20
20
21
23
24
25
27
31
33
33
35
36
38
43

45
45
47
49

50
50
50
51
51
52
53

Under review as a conference paper at ICLR 2026

A BROADER IMPACT

Our work is the first of its kind within the space of distributional symmetries in neural architectures,
as it moves the focus towards the distribution of embeddings over randomness in initialization. Our
work may also be adapted to other classes of neural networks. Probabilistic symmetries may have
other consequences to training and learning dynamics, like our concentration bound.

GRAPHHASH also offers an efficient way to retrieve graphs from a large database of graphs. It can
help in identifying a subset of molecules which is similar to some other molecule, from a large corpus.
It can also help in video or image retrieval by specifically focusing on scene graphs. Thus, our work
has the potential to reduce computational cost and carbon footprint of large search systems.

B LIMITATIONS

(1) We only restrict ourselves to exchangeability as probabilistic symmetry of GNN, which is
symmetry induced by permutations in the weight space. In this work, we do not consider how other
types of symmetry can affect the probability density function of the embeddings. However, our work
can be seen as a stepping stone to characterize such cases. (2) It is well known that the exchangeable
sequence (Y7, ..., Yp) tends to become an i.i.d. sequence as D — oo. However, this does not apply to
our setting because the values of the embedding elements also depend on D. It would be interesting
to discover asymptotic characterization of embedding values. (3) Exact graph distance involves
solving a quadratic assignment problem, whereas its surrogate used in Eq. (1) approximates graphs
using sets. This gives a first order approximation, which allows us to leverage exchangeability to
approximate transportation distance between two embedding sets using Euclidean distance. One
can provide more accurate approximation using distance between edge embeddings. We did not
provide this formulation in our paper. However, our work can be easily extended to such setting, by
considering joint distribution between node pairs.

C LLM USAGE

We used an LLM primarily for correction of grammar and polishing text. Very occasionally, we
used it to supplement bibliographic search. No LLM was used to generate ideas, design experiments,
analyze data, implement algorithms, or produce results. We carefully reviewed and revised any
response provided by LLM.

D RELATED WORK

Representation learning Representation using dense embeddings of structured objects has been a
much-studied area of research, e.g. for, sets (Lee et al., 2019; Zaheer et al., 2017), sequences (Palangi
et al., 2016; Zhou et al., 2024), and graphs (Cai et al., 2018; Wang et al., 2017). Relatively fewer
results focus on the question of retrieval using these embeddings (Li et al., 2024; Duong, 2022;
Gerritse et al., 2020). Prior works on graph retrieval predominantly aggregate node embeddings
from each graph into a single, pre-computable embedding vector (Li et al., 2019; Bai et al., 2019;
Ranjan et al., 2022). This allows for the use of standard indexing methods for vector similarity search.
However, this reduces accuracy due to compressing the entire graph into one embedding.

Transportation distance in graphs More recent techniques for graph embedding employ node-
based vectors and then define relevance scores of the corpus graphs with respect to the query by using
transportation distance between the two sets of vectors (Roy et al., 2022; Zhuo et al., 2022; Fey et al.,
2020). The cost within the transportation framework models various notions of relevance measure,
including asymmetric measures for subgraph matching, graph edit distance with non-uniform costs,
etc., which results in enhanced accuracy, as compared to aggregation to single vectors.

Locality sensitive hashing After obtaining the embedding (or set of embeddings), there still
remains the question of finding out the most relevant object using this representation. For traditional
vector databases, locality sensitive hashing (LSH), Indyk et al. (1998) pioneered a celebrated method
for approximate near neighbor search. The benefit of LSH over comparable techniques, e.g., IVF, and
graph-based techniques, e.g., HNSW, is the faster indexing time while giving comparable or slightly
worse recall times.

LSH for transportation distance A key contribution of the current work is to propose an LSH for
transportation distance, in context of GNN. Nearest neighbor methods has been studied extensively in

18

Under review as a conference paper at ICLR 2026

the theory community (Indyk et al., 2003; Andoni et al., 2009; Chen et al., 2022; 2020; Indyk, 2004;
Andoni et al., 2008; Jayaram et al., 2024). They first embed a set similarity into Euclidean space with
some distortion factor, and then use this reduction to design an LSH. However, the similarity measure
in these existing works is always symmetric, whereas in graph retrieval, it is often asymmetric, such
as in subgraph matching or Graph Edit Distance (GED) with non-uniform costs.

Sliced Wasserstein distance While transportation distance is computationally expensive, recent
studies have explored approximations that are cheaper (Kolouri et al., 2019; Deshpande et al., 2018;
Vayer et al., 2019). The most well-known one, perhaps, is the sliced Wasserstein (SW) distance,
which is the average of the Wasserstein distance over multiple 1D random projections. Deshpande
et al. (2018) show the efficacy of the SW distance for GAN training. Kolouri et al. (2019) demonstrate
the connection of SW distance to the Radon transform, and Vayer et al. (2019) propose sliced Gromov
Wasserstein, a similar approximation for the Gromov-Wasserstein distance, also used for optimal
transport. However, none of them study the question of efficient retrieval under such distances, or the
connection with dimension exchangeability of representations produced by common neural networks.

Transportation distance has also been studied in the average case: Jayaram et al. (2024) give a
O(logn) approximate data-dependent LSH in the distributional case. In our setting, this problem is
tackled by showing the exchangeability of embedding dimensions of GNNS. Our result is incom-
parable to (Jayaram et al., 2024), since their posited distribution is not exchangeable, and our set
of exchangeable distributions is broader than what (Jayaram et al., 2024) assumed. The notion of
exchangeability has been studied before for neural networks, but in different contexts and toward
different goals. Set transformers famously utilized permutation invariance to give set embeddings,
exchangeable networks for set-to-set matching were described by Saito et al. (2020), while Bloem-
Reddy et al. (2020) characterized invariant network architectures for a particular symmetry property,
including exchangeability, of the input. However, none of these results have characterized the ex-
changeability property of the embedding dimensions, as is done in our work. In Introduction, we have
already mentioned works that recognized various symmetries of loss surfaces with respect to hidden
units of some standard networks. In those works, such symmetry is usually an impediment to fast
optimization, remedied by advanced optimization techniques. In contrast, we use such symmetries to
establish exchangeability, in the service of efficient LSH indexes.

19

Under review as a conference paper at ICLR 2026

E PROOFS AND OTHER TECHNICAL DETAILS

In this section, we present the proofs of the technical results presented in Section 3 and Section 4.

E.1 PROOFS OF THE RESULTS OF EXCHANGEABILITY PRESENTED IN SECTION 3

Here, we prove Lemma 2, Lemma 3, Lemma 4, Theorem 5 and Proposition 6. To achieve this goal,
we first restate the setting:

(1) Broad class of GNN architectures We consider the a wide variety of GNN architectures, which
are enlisted in Appendix F. This list encompasses a wide range of GNN architectures, including gated
GNN (Gilmer et al., 2017), GIN (Xu et al., 2019), GAT (Velickovi¢ et al., 2018), GCN (Kipf et al.,
2017). Note that, our analysis is likely to extend beyond these cases, and can also be applied in Graph
transformers, as shown in Appendix F

(2) IID intialization of the parameters within a layer The entries of the parameter matrix © ()
in each layer of are initialized in an i.i.d manner. Parameters across different layers are initialized
independently, but not necessarily identically. This covers standard model initialization schemes,
such as Kaiming initialization (He et al., 2015) and Xavier initialization (Glorot et al., 2010), both of
which yield i.i.d. initialization of the parameters within a layer.

(3) Permutation invariance of loss function We consider the loss function is invariant to the
permutations of elements in the node embeddings. This holds naturally in several settings including
our graph retrieval. Here, the loss, whether binary cross-entropy or pairwise ranking, depends on the
similarity between (G, G.) via the transportation plan between X (@) and X(®) (Roy et al., 2022;
Zhuo et al., 2022). Since this similarity is invariant under permutations of embedding elements, the
loss is likewise permutation-invariant. In link prediction, the similarity between two nodes u and v is
often computed as the dot product x(u) " (v), which is invariant to permutations of the elements of
x. Consequently, the associated loss is also permutation-invariant.

(4) Broad class of optimizers The optimizer for training can be SGD (Zhang, 2004),
Adam (Kingma et al., 2015), efc. This pertains to standard optimizers, which are routinely em-
ployed across learning settings.

Additional Notation We further introduce supplementary notation.

(1) We use @Ee) to denote the parameter matrix of the /-th layer at the ¢ update step. We shall
index our weights using the set [{max] = {0,1, ..., £max |, Which shall implicitly cover each of the
components (embedding initialization, message passing and update step). We will typically use ¢ to

denote the layer index.

2 @(2 denotes the collection of parameters @i(fe)r foriter =0,1,...,t —1.

(3) 0.; denotes the collection of all parameters 6, for iter =0,1,...,¢t — 1.

@ I‘,(f) is a transformation on the parameters of the ¢-th layer. I’ is a global transformation on
all parameters. We take I’ to be separable across layers (this holds for the permutation-based

transformations considered by us). That is, I'; may be written as I'y = € I I‘,(f). This means

that [y () = (rff)(@“)) 1t e [zmax]).

(5) I refers to the domain of the parameters, which is R?” where p is the number of parameters in
the network.

(6) We refer to the loss function at the ¢ update step as loss;, which a function of the parameters of
the network, i.e., loss;(6); thus the index ¢ encodes the batching/data used for that update step. When
it is clear from context, we may write loss; (6;) simply as loss;.

(7) OA, (k) is defined as the matrix of appropriate dimensions with all zeros except for a A at the
(k,1)-th position. Note that this is different from Dirac delta function §(e) — we will alert the reader
if we use ¢ as Dirac delta function.

(8) We denote the gradient of the loss function with respect to the parameters 6; as the collection
)

Cinax]

grad, 2 (gradge)w € [lmax]), where ¢ is the layer index. Here, grady is a matrix of the same

dimensions as @ﬁ” which has the corresponding gradients. As set by earlier convention, grad(fz

denotes the collection of gradients grad.(z) for iter = 0,1,...,¢ — 1, and grad_; denotes the

iter
collection of all gradients grad,,, foriter =0,1,...,¢t — 1.

iter

20

Under review as a conference paper at ICLR 2026

E.1.1 PROOF OF LEMMA 2

Lemma 2. Given a graph G and a GNN architecture GNNy enlisted in Appendix F, let the node
embedding matrix of G be X = GNNy(G) € R"*P. Then, for any permutation matrix ™ €
Pp, there exists a bijective transformation T with |Det (0Tx(0)/00)| = 1 such that X =
GNNr, (9)(G). We call Ty as a permutation induced transformation, for .

Proof: Overview. In this section, we focus on two architectures, which covers the intricacy
involved in designing the permutation inducing transformation. For other GNN architectures, we
provide the reader with building blocks for transformations involving other common GNN layers in
Appendix F.

In this proof, we consider the GNN in the form of gated GNN used by Li et al. (2016); Gilmer et al.
(2017).

Architecture. Given integers K and D, a graph neural network (GNNy) computes node embeddings
xr(u) € RP for u € V using K message passing steps. Here, we initialize xo(u) using node
features feat(u) and keep updating xj, using two neural networks upd, and msg, having parameters
0.

xo(u) = inity(feat(u)), (10)

@j11(u) = updy (T (u), 2wy e M58g (T (w), xi,(v))), fork < K. (11)

In the above: inity, msg, are multilayer perceptron (MLP) networks of the form of Linear(m>) o

ollmax=1) o ... 0 ¢(1) o Linear™™, where Linear® is a linear layer and o(¥) is an activation function
that applies pointwise. upd, can be (a) an MLP network or, (b) one layer of GRU (Gilmer et al.,
2017). In the current analysis, we omit step index ¢, since we are focusing on only one step.

Gated GNN with MLP based updy: Proof Sketch. In particular, we assume that each of

U teat X x) ([x) %) N Cm o) e ®
(K‘V_.teat(\)—»‘C(a(\w—rx((:(v) x,/\,(V) — [k ‘ @(1) — @(2) —&P —»‘ @(3) —>®(4) ‘—»x,\+1(1)
{ feat(w) xo(w) xkEW) K[x]((v) xk(w)] —_— XL+1(tt)

T T
& " o 2] msgg
v xgwm x(u)mw /rx (ll)ﬂ' X (L)ﬂ'] ST I\ w)rm
feat(s k k Xt 1
}“g‘:t“)_’@(o)ﬁx()(‘!)” xk(v)ﬂ'—-{ 7(; 21—]@(1)—» @(2)-’ ‘S)(?)—»@(‘U@}_’xk (V)ﬂ'
feat(w) " xo(w)n' x,\(w)ﬂ' \ka(») ﬂ' xk(w)n'] L Y, updg X/\H(w) V3

initg, msgy, updy is a simple MLP with 1, 2, and 2 layers, respectively. The figure shows initialization
and recursive propagation from layer & to k+ 1. To induce the transformation x k (u) — @k (u)7w, we
modify the final layer of updy as 0™ — W, which also changes all intermediate outputs of updy:
@ (u) — xp(u)m. This change affects msg, inputs. We undo the “side-effect” by transforming oM
to Diag(w ", 7")OO, Finally, we update ©(®) — O 7 to ensure that the initial input to msg,,
namely x((u), aligns with the transformed flow. Since the rest of the network remains unchanged,
this transformation is agnostic to the depths of init, msg, and upd, affecting only the last layers of
init and upd and the first layer of msg.

Detailed Proof. Firstly, we re-index the network weights for readability, as — (I) init: Let
the last weight of init be @), (II) msg: Given (u,v) € E, and the propagation layer k, let

X, ©) - = [z} (u), =] (v)] be the input to the message propagation layer after the node embeddings
are concatenated according to the edges in the graph. The weight matrix in the first propagation layer

of msg is O, Let X be the output of @), j.e., X = X @) (III) upd: Let the final
layer of upd be ®2). The transformation is defined as follows:

[(@) = @), (12)
T o

@) = [ﬂ’o n-T] e, (13)

) (@) = @f)x (14)

21

Under review as a conference paper at ICLR 2026

While the remaining transformations are identity, i.e., F,(f) = Ijim@) forall £ ¢ {EO, 41, Eg}. We
shall show that the output of the network is permuted in columns by 7r, by tracing the effect of the trans-
formation from the input to the output. We show this inductively on the number of propagation steps.

Base case. For k = 0. As @) s @) we have: X, — Xor.

Inductive Step. Suppose that X — X7 for some k. Then X',go) = [z] (u), =} (v)] —
x 7(; ?r under 0 +— T (6).

. T 0 = (0 ~(0) |7 0 Ny
Since we transform © (1) — [0 T ®“) and X s XV 0 |- the quantity x\"

S (x 0]
0 Tr

T _
[7\'0 ﬂ_OT] o) = XIEO)Q(&) remains unchanged as 7" = 1I.

Due to this, X ,gzl) remains invariant to I';. Until the final layer of updates, all transformations F,(f)
are identity and therefore, the resultant intermediate embeddings also remain invariant. At the final
layer, we have ®(“2) s @(“2) 7t (from Eq. (14)). This will give: Xj41 — Xpq17.

Gated GNN with GRU based upd,: (I) Let ©(0) @) X,EO), X,gel) bear the same
meaning as before. (II) upd,: We introduce the hidden state encoding of the GRU:
X ,ireset), X ,gupdate), X ,ghldden). The corresponding weights are indexed by finp, ¢ OF lhiq,e, Here,
the update steps considered in the GRU at the k*" round of propagation are:

e _ o (Xk@amp,l) +X}ge1)@<em,1>> (15)
X}gupdate) — 0y (Xk@(&np,z) + X—gl)@(éhid,z)) (16)
x(hidden) _ (oo (Xk@(eh,p,g) (X e X}gupdme))@(zhid,3)) (17)

Xppr = (1— X]ireset)) © Xy + X}greset) o X}ghidden) (18)

‘We define our transformation as

' 0
FO (@) — @y T)(@) - { j WT} o) (19)
FT(finp,o)(@(fsnp,.)) — 7.‘.'l'(.a(&np,.)ﬂ. I‘\T(fhid,-)<®ehid,o> _ @(ehid.o)ﬂ- (20)

While the remaining transformations are identity.

Like the previous proof, we trace the computations in the network
inductively over the propagation rounds.

Buase case. For k = 0, this is true just like the previous case. X — X7 as @) s @),

V= (2] (u), 2l (v)] -

Inductive Step. Suppose X +— X7 for a value of k. Then X lgo =
ﬂ_OT ©) and XV —

O REN '
™

X, 0 under 6 — T;(0). Since, we transform el

=) |[m 0 ool o[o] [xT o0 (0 .
Xlg) [0 ﬂ_], the quantity X, N X,i) [O 71-} { 0 ﬂ.T} o) — X,g)©1) remains un-

changed as 7w ' = I.

Due to the transformations in Eq. (20), we have: (1) Xk(j)(e‘npﬂ') = X @i —
X,©Unri) g foreachi = 1,2, 3; and, (2) X €)@ Wniai) oy X (O @Uniai)gr foreach i = 1, 2.

22

Under review as a conference paper at ICLR 2026

Consequently X(reset)’ X(update)’X(hidden) —)_((reset)ﬂ.7 X(update)ﬂ.’ X(hidden)ﬂ., resulting in
Xi+1 — Xy as follows:

X (reset) |, (Xk@(fanp,l)ﬂ. + X(fl)@(fhid,l)ﬂ> (21)
= o (X, @) 4 X()@Uia)) = et (22)

X (update) _, (X0 me2) 4 X(m@wm,zm) (23)
., (X, @) | X(m@(zhid@) & = X (update) o (24)

§(hidden) |, (o0 (X, @) 4 (X o X(upda‘ce)ﬂ.)@(fhid,s)ﬂ) (25)

= tanh (Xk@(fmp,?,) + (X(él) ® X(uPdate))e(éhid,S)) 7 = X (hidden) . (26)

Therefore we will have:

Xk+1 — (1 _ X(reset)ﬂ_) O Xpm+ X(reset)ﬂ_ ® X(hidden)ﬂ_ (27)
_ ((1 _ X(reset)) ® Xk + X(reset) ® X(hidden)) T = Xk+17r (28)
|

E.1.2 PROOF OF LEMMA 3

Lemma 3. Given the setting described in Section 3.1. Let Iy be the transformation on the GNN
parameters 0, induced by a permutation ™ € R, as introduced in Lemma 2. Then the gradient of
the loss is equivariant under transformation Uy of the parameters.

Proof: Outline. We assume that the loss is differentiable with respect to each parameter. We shall
work with a finite difference of A as a proxy for the gradient. We show that that equivariance holds
for this setup. Thus, the equivariance holds in the limiting case A — 0, hence in the case of gradients.

We shall make the following observation in order to prove the lemma: For every layer, the transfor-
mation consists of a permutation of its entries. This also makes I';; linear.

Additional Notation to Facilitate the Proof. Corresponding to each layer ¢ and each scalar
parameter @EZ) [4,k], we shall consider a perturbation of the parameter by A € R — {0}.

Within this proof, A is a perturbation and not relevance distance. Finally, da (1) is defined as the
matrix of appropriate dimensions with all zeros except for a A at the (k, [)-th position.

We write 0y +¢ O, (j.x) = (@)gé/) +0a,6.0) [0 = Z]])Z . This indicates the perturbation only
'€ [lmax
at (j, k)-th entry of @Ef') at ¢’ = ¢. We define the matrix of discrete differences as LE?A as
) 1
LAl K = ~ [lossi (6 +¢ 0 (5.5)) — losse(0:)] - (29)

First, we show that when 6; — I'x.(6;), the transformation £; — I'x(£;) will hold true. To show this,
we derive that for a general £ € [{iax], L',S)A T (L',gp)A) Let us characterize the permutation on

the entries of the parameter corresponding to Y by introducing a permutation map 7 : [m] X [n] —

[m] x [n]. For any @Ee), there exists 7 defined as above, such that: T\’ (@ﬁ“)[%(j, k)] = @122) [7, k]
Here, 7 depends on £. However, we omit this for the sake of readability.

Proof. Note the following identities that hold as a consequence:
e For all j, k, we have:
L(©9)[), k] = @O [F(j, k)] (30)

» Consider the (a, b)™ entry of the following matrix: F,(f)é"A,(M) [a,b] = da, (k) [771(a,b)], which
is Aif a, b = 7(j, k) and 0, otherwise. Then, by definition of da (s,4), We have:

L8A (k) = Oa. (i) (31)

23

Under review as a conference paper at ICLR 2026

The transformation T’ is linear, which implies that I'x (0 +¢ 04 (e)) = T'x(0) +¢ F,(f)(éA,(.)).

Consider the (a7 b)-th entry of ZEZ)A = L',EZ)A Dot (61) which is the loss:
t—=>1lx (0
A(f)
LAl E [losst (01) +20a,(a)) — losst(]f‘,f(et))] (32)
1
=X [losst (0:) +¢ F(/) o F(é) 6A,(a,b)) — losst(l",r(et))} (33)
1
=X [losst (0 +¢ I‘(‘Z) (JA,(a,b)))) — 1osst(I’,,9t)} (34)
1
=X [losst (0, +¢ FU (Oa (ap))) —losst(et)} (as the loss is invariant of Tx) (35)
1
=X [loss: (0 44 8a (7-1(ap))) — loss¢(6;)] from Eq. (31) (36)
= LA 7 (a,0)] = TP (£{Y)[a,b] from Eg. (30) 37)
Thus = 7(7) Ege)A) Now, lima_,q E(= gradgl). Hence, we have:
; @) (r®
ilino ‘Ct AT ilino (L4 A) (38)
M ONT) (0)
IS (glino L',t,A> (T is a smooth map) (39)
=T¥) (grad?) (40)
Therefore as @ T (©Y), we have grad! " (grad!). Hence, grad, = [grad!], —
[r“><grad‘>]f = Tr((grad;]e) = Tx (grad,). u

E.1.3 PROOF OF LEMMA 4

Lemma 4. Given the setting described in Section 3.1. Let {Gt [t > O} be the trajectory of the

parameter 0 of a GNN across different training epochs t > 0. Then, we have: p(6;) = p(Ix(6:)) for
allt > 0.

Proof: For iter = 0, we have p(6y) = p(I'x(6y)) by the i.i.d. initialization of parameters. For
iter > 0, we use two key conditions: (1) The loss function is invariant under I'x (which holds, as our
loss is permutation invariant in the GNN output). (2) The gradient and update steps are equivariant
under I;. We first note that:

p(et) = /j < « j ltH p iter | 9<1ter) d9<t (41)
%,_/

er=1

First, to build up intuition, consider a simpler setup which, instead of using an advanced optimizer
like Adam/SGD, uses simple full batch gradient descent. Assuming the learning rate is 1, we will
have:
0) ¢
O}k = O, —grad’|g_go “2)
Hence, p(Oiter | O<iter) is given by:
p(eiter | 9<iter) = 5(9iter - eiterfl + graditerfl) (43)
(0)

Since I’z is a linear homeomorphism, we have
rO@©) =r©) - 1 (grad’[g_gw) (44)
F(e)(@fter 1) — grad |e IO (Lemma 3) (45)
Given T () = @, TV (@)
Tr(Oiter) = T (Biter—1) — grad|9=1,ﬂ(9iteril) (46)
This allows us to write:
P(Lr (Biter) | T (O<iter)) = 0(Lr (Biter) — D (Giter—1) + I (gradipe, 1)) (47)

24

Under review as a conference paper at ICLR 2026

Now, since Eq. (42) and Eq. (46) are equivalent, we have
p(eiter | 9<iter) = p(l—‘fr (eiter) | 1—‘7'r (9<iter)) (48)
The above relationship suggests Eq. (41) is equivalent to

p(et) :/ H P 1tcr |F (0<1tcr)) deitcr (49)
j X 1ter 1
times »
06;

H p 1ter | F (9<1ter)) d(Fﬂ' (eiter)) Det T 9 (50)

(TroJ)t iter=0 (1ter)
= p(I'x (01)) (51)
‘Det BF?f)(ietircr)) = 1 because I consists only of permutation matrices. Here, we proved that

Eq. (42) and Eq. (46) are equivalent for full batch gradient descent. This relationship also holds for
other standard optimizers (such as listed in E.1.5), which is shown below. We may abstract the update
step as follows —

o® _

iter

= Updatey iter ((@l(f) | b< iter) , (gradl(f) | b< iter)) (52)

This gives: p(Biter | O<iter) = H 0 ([@i(fe)r — Updatey jter ((@l(f) | b< iter) , (gradl(f) | b< iter))D
¢

(53)
According to Lemma 10, Eq. (52) is equivalent to:

Ffp(@@) = Updateg iter ((F,@(@lﬂe)) | b< iter) , (F,(f) (gradl(f)) | b< iter)) (54

iter

as long as D(f) is a permutation matrix (which is the case according to Lemma 2). This implies that
P(biter | O<iter) (53) is the same as:

p(F (eiter) | I (9<iter))
= H 5 (T0(®£0),) — Updaterier ((TL(04) | b < iter) , (T (grad(’) | b < iter)))
(55)

E.1.4 PROOF OF THEOREM 5 AND PROPOSITION 6

We state both the results.

Theorem 5. Given the setting described in Section 3.1. Then, X = GNNy(G) are exchangeable
random variables, where the randomness is induced by the model initialization prior to training. That
is, p(X) = p(X).

Proposition 6. Given two graphs G, G, let the settings in Section 3.1 hold true. Specifically, let us

assume that the loss function be invariant to simultaneous permutations of the embeddings X (9 =
GNNy(G,) and X(©) = GNNg(G,.). Then, Y = [X@; X ()] € R?"*D satisfies p(Y) = p(Y 7).

We shall prove both of these in one go, as the latter implies the former.
X(q)}

Proof: LetY denote the concatenation of the query and corpus embeddings, i.e., Y = [x©

where X (®) € R™*D_ We need to show that:
p(Y) =p(Ym). (56)

25

Under review as a conference paper at ICLR 2026

This is precisely the condition for exchangeability as stated in Definition 1. We first observe that:

p(Y)Z/ p(Y |6;) p(6:) df; (marginalization) (57)
J
—/Jp(Yﬂ-|F7r(9t))p(0t)d9t (using p(Y' | 0;) = p(Y 7 [T (6:))) (58)
=/JP(YW|Fw(9t))29(1“7r(9t))d9t (using p(6;) = p(T'x(0:))) (59)
00,

= [T e 6 | 5

(Random variable transform 6, +— I';6;) (60)

= / p(Y7 | T (0:)p(Tr (6:))d(Tr (6:)) - 1 = p(Y7r) (marginalization) (61)
J
Justifications of Eqs (57), (61) are trivial. We now provide justifications for the claims in Eq. (58)
and Eq. (59) are as follows.

Justification for p(Y |6;) = p(Y 7 | Tz (0;)) used in Eq. (58): As the network output is determin-
istic, p(Y | 0;) can be written in terms of the network output GNNj and the Dirac delta function as

follows:
GNNy, (G
p(Y |6;) =6 <Y - [GNNZtEGgD (62)
Here §(e) is the Diract delta functional. 5(e) = o ifZ=0 and [0(Z)dZ =1
' ~ 10 otherwise J -
Since the following relation holds: ¥ = gﬁﬁii Egiﬂ iff Yr = [ggﬁggi;ggiﬂ , we have

p(Y'|6;) = p(Y 7| Tx(6:)). Justification for p(6;) = p(I'x(6;)) in Eq. (59) occurs due to Lemma 4.

Here, we note that our result holds even in the presence of additional sources of randomness in the
training process, such as data shuffling or batching. Since these sources are independent of parameter
initialization, the proof extends by conditioning on the training randomness and then marginalizing,
yielding the same conclusion.

26

Under review as a conference paper at ICLR 2026

E.1.5 EQUIVARIANCE OF THE UPDATE STEP

We shall present a general lemma that states the precise update step equivariance property. Later, we
will prove it for optimizers such as Adam, SGD, AdaGrad, RMSProp, followed by a more general
general formulation.

Lemma 10 (Equivariance of update step). The update steps of the optimizer follow the functional
form and equivariance property. Specifically Eq. (63) holds true iff Eq. (64) holds true.

(9([= Updatey ((wor | €T < t) (gradmzr | iter < t)) (63)

W1®§e)772 = Updatey ((71'1 @i(fgrﬂ'g | iter < t) , (ﬂlgradlterﬂg | iter < t)) (64)

Note that this means that the update step is equivariant with respect to a transformation that permutes
the rows and columns of each parameter matrix. The transformation 7r; permutes the rows of the
parameter matrix, while 79 permutes the columns.

Proof for Adam (Kingma et al., 2015) We first descrlbe the Adam update steps — For layer
¢ at time ¢, we refer to the momentum of the gradients m?, and the squared gradlents vf. The
corresponding bias-corrected terms which used by Adam are denoted by 712/ and o! respectively.

The hyperparameters for Adam are defined as follows: 8, and 3, are scalar coefficients that control
the exponential moving averages of the gradient and its square. « denotes the learning rate. € is a
small positive constant added for numerical stability. A is the weight decay parameter.

The Adam optimizer (Kingma et al., 2014) updates each parameter as follows:

—/
ol —e, — o (65)
vl +e
g!" = grad!” + 20", (66)
¢
—~y My
= (67)
mi=pm! | +(1-pB)g" (68)
ol = Y (69)
P16
vf = Bovf_y + (1 Ba)(g!” © g (70)

Where m§ = v§ = 0.

Eq (63) can be represented by simply inductively writing out the update steps in terms of the previous

steps using e! s) and grad . Similarly for Eq. (64), we can show that each v, and mlter are
permutation equivariant Wlth respect to the gradients, and consequently even mY,,. and o’,,,. We
shall work this out here—
. . ¢ ¢
Consider the transformation ©" Z oy (@2)71'2,
grad 2 — Ty grad(<2ﬂ'2 (assumption, shown in Lemma 3) (71)
We show equivariance for v and m} by induction—
¢ ¢
g = (g;")m (72)
¢
vf = (1-B2)(g” © gé) (L= o) (] go o © gy m) (73)
=l (1=)(gy” © g5”)m2 =] wimy (4)
¢ 4 (e 14
vf = Bovi 1 + (1= B2)(9)” © 91") = Boml wi_yma bl (1= Ba) (g © 0)m (79)
= 7] vim, (76)

27

Under review as a conference paper at ICLR 2026

= (1= B)(g") = (1= B)(r] g m2) (77)

=7/ (1-p1)(g))m2 = m] mfm (78)

= fimi_y + (1 - B1)(g\") = il mi_ o+] (1— B1) (gt (79)
= mim, (80)

o = 11}){5; — 7;;_”22 = 7] Bl 81)

it = me — ”me? = 7] mim, (82)

Finally, from (65), @iz) is permutation equivariant with respect to @Eé_)l and the gradients.

= T
0 =0\ —a—t— s 1[0 my — a— LT (83)
VU t+ € T VT + €
me
(0) (€)

—71'1 <@t 1— \F)71' =m @ o (84)

+ €
|

Proof for SGD SGD has hyperparameters for learning rate «, and weight decay A. For layer ¢ at
time ¢, the update step of SGD with weight decay is given by:
e = e}?, - ag” (85)
g\ = grad” + \@", (86)
Where) is the weight decay term and « is the learning rate.

Here, the gradient is computed over a point/mini-batch of points sampled at time ¢. We can fix the
randomness of the sampling by conditioning on the “trajectory” of sampled points(or mini-batches).

Thus, we can treat grady) as a deterministic function of G)(fz

Furthermore, this gradient also follows the gradient equivariance property from Lemma 3.

Consider the transformation ®'”, 7] ("),), and grad!” — =] (grad!")m,. Then:

g = w] (grad(")m; + Ax] (©{2)m> = m[g{" (87)
0" — w0 m —an] gVn (88)
=m (@y)l - agzg)) = 7"1T®1(5Z)7T2 (39)

Thus, the SGD update is equivariant with respect to the transformation. By conditioning on the
trajectory, we actually show a stronger result for equivariance. We may show the equivariance without
conditioning on the trajectory, by considering the expectation of the above result over the randomness
of the sampling.]
Proof for AdaGrad (Duchi et al., 2011) AdaGrad has hyperparameters for (time dependent)
learning rate «v;, weight decay A, and a small constant ¢ for stability. For layer ¢ at time ¢, we refer to

the accumulated squared gradients as GEZ) (which is defined below). The update steps for AdaGrad

28

Under review as a conference paper at ICLR 2026

are given by:

=0 - 2 og4® (90)
G(e + €

() = grad + A@t 1 1)

G“’ GO+ (9" 0" (92)

Where Gée) =
Consider the transformation ') 7| (@), and grad) — = (grad’))m,. We show that

ng) is equivariant by induction:

g = ! (g;")ms (93)

Gge =0—m 10wy =0= ™ G(e)ﬂ'g (94)

¢ =a + (9" 0g") (95)

=T G7(5)17"2 + (7] (e)ﬂ'Q © ﬂfgt() 2) (96)

= Gy + 7] (g © g)mo 97

=] (G +9" ©.g{")ms = 7] &'y 98)

Finally, for the weight update:
0" — 6%, - 2o ")
G’y) +€
— wf@i@lwz S O] Tr;rgt(e)ﬂg (100)

WIGEZ)TFQ +e€

O m—w] [0 g | m (101)
G’EZ) +€
— (0)
=7, t 1 — 0O gt Ty = 7, ©))y (102)
VG —|— €
Thus, the AdaGrad update is equivariant with respect to the transformation.]

Proof for RMSProp (Tieleman et al., 2012) RMSProp has hyperparameters for learning rate c,
weight decay A, momentum [, and a small constant € for stability, and an additional mode if the

square averages are centered. For layer { at time ¢, we refer to the moving average of squared gradients

dVC

as vy, the « average > gradient as g, (which is required if the square averages are centered), and

the buffer bt , which are all defined below. The update steps for RMSProp are given by:

el =e!Y, —ab! (103)
b = ubl?, + e’ (104)
Vol +e
gt(z) = grady) + A@ﬁ‘) (105)
vl = pol_ | + (1 - 5)(g; 2¥0! g(l)) (if not centered) (106)
vl = Bvl_ +(1-8)(g!” ©) — g © g (if centered) (107)
@ = Bg™ 4+ (1-B)gl” (if centered) (108)
Where gdve(z) 0,v5 =0, b(z = 0. Note that in the absense of momentum (x = 0), the buffer by)
is not required, and the update step will simplify to (-)([) @EZ)l — a2 ;!

'Uf+e

29

Under review as a conference paper at ICLR 2026

0 £)

Consider the transformation ") 7| (@), and grad) — = (grad’))m,. We show that

the other variables are equivariant by induction:

(5) (5))

= Ty (Qt
vO:0»—>7710772:0:7rIvg7r2
vf = Bof 4 +(1-B)(g” ©g”)
= Bl wf o + (1— B)(n] g\ my © 7] g{ o)
= Bl vl yma+ (1 - B)] (91" © g)ms
! (Bvf_y + (1 B) (g © gi"))m = w] vfm

ggve(e) =0 71';'—071'2 =0= ﬁ;gave(ﬁ)ﬂ'g
ave(l ve(l 4
g™ = 8g"") + (1- B)g”
— Bl gy + (1 - B)m] gy

ve (£ 4 ve (£
=7 (Bg” + (1 - B)gi)ymy = w] g
£ =Bl + (1 - B)(g; ® o g(z)) ave(z) ©g ave(@) (if centered)

Uy
= B vf_yma + (1 - B)(n] g)ﬂ'z o gt(Vo) — 7} g™ Oy o) g™y
= ﬁwlva_lﬂ-g +(1 -8~ T((Z) (6)) (ave() @gave(Z))ﬂ_Q
=7 (Bvf_, +(1-B)(g” © g“)) P ANNO g“‘“(‘”)ﬂ2 T, -
bé@ =0 7 0my =0 =, b(e)

(€)
Vvl +e

— /m'lTb,Ez_)lﬂ'g +

O — if?, +

7"1Tgt(€)7f2

T 4,0
T, Uy + €

(€)
= /m'irbgz_)le + 71';'— <g;))
vy te€

Finally, for the weight update:

(0)

@(Z) — @({) gt
t t—1 \/74-6
T (f)
— W;r@g{)lﬂ'g -« ﬂ-ngte 2

T, VT + €

g(f)
= ﬂ';r@()171'2 —7] |a—Z—

Vi)

()
=3 (@Ez)l J¢) ™ = 71'—'—@(6)

TVl e

Thus, the RMSProp update is equivariant with respect to the transformation.

(109)
(110)
(111)
(112)
(113)
(114)
(115)
(116)
(117)
(118)
(119)
(120)
(121)
(122)
(123)

(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)

]

Proof for a general case We can show that a general optimizer leads to equivariance under the

transformation if the update step can be separated for each scalar entry of the parameters.

30

Under review as a conference paper at ICLR 2026

Lemma 11 (Update Equivariance of a separable optimizer). Let the parameters be updated by the
Sfunction f, such that for any step t,

9t+1 = f({eiter s iter S t}v {giter : iter S t}777t, Zt) (132)
where, giter based on the optimizer may be the gradient (which may also be clipped and/or normalized
gradient) w.r.t. the parameters it which is equivariant under T'y.

Let n; be the set of hyperparameters of the optimizer (this may include learning rate, momentum, etc.)
at update step t, and Z be a latent random variable representing any stochasticity in the update step
(such as data selection for SGD/mini-batch).

We call f to be separable over each scalar, if we can write for any parameter @O, for all of its
entries entries i, j,

O\,li] = FOUOLL) - iter < t}, {g{hli,j] : iter < t},m, Z) (133)
where {9 is an appropriate function which may be different for each layer £ € d.

Then, the update step is equivariant (conditioned on (Z; : i < t)) to any transformation Uy applied
Jointly to each of {Oiter, Giter } for iter < t.

Note that this functional form is quite general despite the separability condition, as it subsumes
commonly used optimizers - GD,SGD, Momentum, RMSProp, Adam, AdamW, Adagrad, etc. The
conditioning on the latent random variables implies that the equivariance also holds in expectation
over the randomness.

Proof:

The proof follows from the fact that the transformation I’ is composed of permutations in each of
the weights. Consider a layer ¢ with parameters 8(©), of size d; x dy. We may find a permutation

7+ [d1] x [d2] — [d1] x [dz] such that for any entry (7, j) of a matrix A, F,(,E)(A)[i,j] = A[7(4,7)]-
To reiterate, under the transformation I, V¢ V(i, 7) € [di] x [da], ® O[3, 5] — ©O[7(i,)] and
9, 51 = g [7 (i, 5))-
Then, for any step ¢, under the action of I'; on {6iter, giter } for iter < ¢,
FOUOLLL) «iter <t} {glorli,i] = iter <)., Z)
= FOUOLLIF(,)] « iter <t} Aglo,[7(i,5)] < iter < t}.m:, Z1)
(134)
= O [#(i,)] = T ()i,] (135)
Thus @gf_)l [i,7] — F,(f)(@ﬁ)l)[i,j]. Since this holds for all entries (4,75), we have @g?l —
) (@Ei)l) Finally, since this holds for all layers ¢, we have 0,1 — T (6¢41).
]

E.1.6 ADDITIONAL RESULTS ON EXCHANGEABILITY

Loss functions without permutation equivariance In this paper, we take the loss to be a direct
function of the embeddings, which necessitates that the loss function be permutation invariant.

When we consider settings where the loss is not permutation invariant, for example a classification
task, the 'representations’ exist within the middle of the network rather than at the end. Moreover,
such representations can be shown to be exchangeable.

For this analysis, we may partition the network into two, which could be referred to as the ‘embedding’
network and the ‘classifier head‘. e may write X = NN(G) where we refer to X as the embeddings
and y = CIf(X) where y is the prediction label vector across nodes. We can characterize and prove
the exchangeability of X for this setting.

Let the parameters of the entire network at ¢ timesteps be represented by 6 = (Oxn, cit), corespond-
ing to the parameters of either network. Let us also define the permutation inducing transformation
asTr =T'nnor @ Dt 162 T (0) = (D, (Onn), T e (Ocir))-

Given the dataset, we may reparameterise the loss function as £(X, CIf), or equivalently, £(X, 6¢¢).

31

Under review as a conference paper at ICLR 2026

The new condition for the transformation boils down to

* X — X7 under I'ny
* the loss is invariant under (7, I'cyt), i..
L(X,0ci) = L(X7, Ly (Ocie)) (136)

Under these conditions, exchangeability follows with the same steps - exchangeability at initialisation,
equivariance of gradient, equivariance of update step.

To illustrate this, consider a three class classification task with a single layer for both NN and
Clf. Let the input feature be feat. Let us focus on one channel/node of X denoted as x =
X]:,o] and y[e] = y. We have: x = NN(feat) = o(feat®nn). Hence, we will have: § =
Softmax ([(x - w1), (x - Wa), (x - w3)]).

The transformation I'yy . can then represented as, Onny — Oxn7 and [wi, wo, W3] —
[7Twy,m"wo, 7 ws]. Under this transformation x ~ x7 but ¢ remains invariant—therefore,

the loss is invariant.
Effect of normalization Batch norm, layer norm, etc. do not break exchangeability condition. If

the network without the norm layers can be shown to give exchangeable embeddings, the same will
hold for the embeddings for the network with batch norm or layer norm.

We denote a normalization layer as N L g, where «v and 3 are parameters. Such layers allow us to
extend permutation inducing transformation -y, to .. For simplicity, assume that the normalization
layer N L~ g is applied on one layer £. Suppose, 8 — v (6) gives Z — Zm in that ¢ layer (where
Z < R™*dm=) Then we can obtain a transformation ~/. such that 6 U {~, 3} — v~ (0 U {~,8})
will also give Z — Zr.

Let the batch of inputs be G1,Gs,---,Gp and a single batch norm layer, with the cor-
responding inputs Yq,Ys,---,Yp to the layer. Then, we have: Z;,Zs,---,Zp =

BatchNorm(Y1,Ys, -, Yg;v,8). Suppose: Y = — 12Xz ¥51-¥ (here ¥ s the batch
/Var(Y1,Y Yg)+
ar(¥i1,Y¥Y2, -, Y p)TE€

mean. Then, we have: Z1,Zo,--- ,Zp = Yo ~ + 3. Now, suppose § — v (0) gives Y — Y.
This would give Y — Y. Suppose, we now transform v — ~m and 8 — (Bw. Then,
Z1,Zs, - \Zp > YO (ym)+ B = (YO v+ 08)7w =Zyw, Lo, -+ ,ZpT.

Consider layer norm. Assume the corresponding input is y and output in one channel is z =

LayerNorm(y; -, 3). Suppose: y = ﬁ where y is the feature mean. Then, we have:

z =y ®~ + B. Now, suppose 6 — v () gives y — ym. This would give ¥ — yr. Suppose, we
now transform v — v and 8 — Bx. Then, z — y © (&) + Bw = zm.

Hence, v, (0 U {7, 8}) = (V= (0),y7, B7). Therefore, Lemma 2 holds true even when we apply
Batch norm or Layer norm on each layer/feature. Since Lemma 2 is used to prove Lemma 3, 4 and
these lemmas are used to prove the final result in Theorem 5, our results of exchangeability remain
the same, regardless of normalization layer.

32

Under review as a conference paper at ICLR 2026

E.2 PROOFS OF THE TECHNICAL RESULTS IN SECTION 4

Here, we first prove Proposition 7, and then derive the equivalence of Egs. (3) and (4).

E.2.1 PROOF OF PROPOSITION 7

Proposition 7. Foranye > 0, > 0, setting D > % ensures that, for some By = Op(1), we have:

Pr Qésim(Gc, Gq) —simg(Ge, Gg)| < 6) >1—Bod (137)

Proof: For the purposes of the proof, we introduce a new similarity measure sim(G., G,),
Sim(G., Gy) = E[s(z@ (u)[d] — ') (u)[d])] P[u, '] 138
sim(Ge, Gq) = max Y Els@(w)d] - & W)[d)|Plu,] (138)

n

' w,u’ €[n]x[n]
We use the above to prove two results:

Pr (%sim(Gc,Gq) —sim(Ge, Gy)| < 6) >1-p0 (139)

Pr (|sima(Ge, Gq) — sim(Ge, Gq)| <€) > 1— 36§ (140)
where 5 = Op(1). Finally, we will use the union bound to get the desired result. In addition to
sim(G., G4), we also introduce additional notation to facilitate the proofs:

(1) Z is a matrix indexed by the pair of nodes, and the embedding dimension. In particular,

Z[(u, '), d) = (2 (u)[d] — 2 (u')[d]) (141)
(2) We define the vector Z; by fixing the value at dimension d.
Z 2 (Z[(u,), d)) .4 (142)

Zq =1 Z[(u,), d)) 0y (143)

(3) Z is the expectation value of Z; with respect to the initialization of the embedding model. As it
follows from the exchangeability of the dimensions in Theorem 15, we have: E[Z] = E[Z3] =

... =E[Zp].
Z = E[Z4) (144)
(4) Our estimator is denoted by the vector Z.
D
Z=— Z 145
5 ; 4 (145)
Thus, our similarity can be written as
1 ~
Bsim(Gc,Gq) = max Z Z|(u,u")| Plu,u’] (146)

" w,u’ €[n]x[n]

Suppose R is any matrix in R™*™. Then, we define the following quantities:

ARP)E Y Rl(uu)|Plu,] (147)
w,u’ €[n]x[n]
P*(R) £ argmax A(R, P) (148)
PcP,
A*(R) = max A(R, P) = A(R. P*(Z)) (149)
e n
Thus we have: 5sim(G.,G,) = A*(Z) and simy(G., G,) = A*(Z,). Therefore, we first establish
that if D > 5, then
Pr (‘A*(Z) - A*(?)‘ > e) < B6. (150)

We begin by showing that A* is y/n-Lipschitz. Convexity of A* follows from the convexity of A(-, P)
and Danskin’s Theorem (Theorem 13). By Danskin’s theorem, the semi-derivative of A* with respect
to R is given by

OrA*(R) = VRA(R, P (151)

) ’P:P*(R)

33

Under review as a conference paper at ICLR 2026

From Eq. (147), we have: |0rA*(R)| < ||vec(P)||2 = v/n. This gives us:
A™(Ry) — A" ()| < Vi [[vee(Ry) — vec(Ro) (152)
<Vn||Ri - Ryl (153)
This proves that A* is Lipschitz, from which it follows that for any €, |[A*(Ry) — A*(R2)| > ¢ =
Vn|[Ry — Rsl|, > e. This gives us: We now use this fact in proving Eq. (139).

Pr (A (Z) — A*(?)‘ > e) <Pr <||2 —Z|s > \}ﬁe> (Eq. (153)) (154)
, Var(Z w, u
< Zuu Elnlx[n] 2(I) (Chebyshev’s Inequality)
(%)
n
= ez Z Var sz u,u') (155)
w,u’ €[n]x[n] de[D]
B
=53 (156)

Here, /3 is computed using the variance bound computed by Lemma 16: 3 = n - 4L2B? - n?. To
prove Eq. (140), we directly invoke the Lipschitz condition for A* from Eq. (153).

Pr(|A*(Z:) - A*(Z)] >)SPT<|Zz'—Z||2 > jﬁ) (Eq. (153)) (157)
Zu,u/e[1% [}Var(ilu, u'])

(5)

< (Chebyshev’s Inequality)

412 B?
< % . SD (From variance bound, Lemma 17)
€
"€[n]x[n]
(158)
= %, where (3 :7”L-4L§B2 -n2. (159)
€

Using the results in Egs. (139) and (140), we now prove the main result (5), using the union bound
Pr(|sim(G., G4) — simq(G., G4)| > €)

< Pr([sim(Ge, Gy) — sim(Ge, Gy)| > g)
+ Pr(Jsimg(Ge, Gy) — sim(Ge, Gy)| > g) (160)
43 43 88
< L
= De2 T De D2 De
Bo
= — 1 1
De? (161)
|

34

Under review as a conference paper at ICLR 2026

E.2.2 PROOF OF THE FACT THAT EQ. (3) AND EQ. (4) ARE EQUIVALENT

Here, we will show that if we have:
i - (a) — 20 P ! 162
simg(Ge, Gyg) = max uEUIS(w (w)[d] — &) [d]) Pu,], (162)

then simy can also be written as:
simg(Ge, G4) = s(SORT(X V[:, d]) — sSORT(X “)[:, d])) (163)
In the following, we provide this result, in terms of any two vectors and y.
Theorem 12 (Rearrangement for s). Given a convex function p : RP — [0, 00), which is not
necessarily symmetric and satisfies p(x) = . p(x[i]), and a score function s that is of the form
5(:) = pmax — p()Y, for all z,y with ||| s, |Y]lco < Tmax, we have:
—y[u']) Plu,u'] = s (SORT(x) — SORT 164
gg;iZS(w[U] y[u']) Plu,u'] = s (SORT(x) (y)) (164)

u,u’

Proof This is a well known result for L,, metric. For optimal transport between distributions, such
result exists for convex distances (Santambrogio, 2015, Proposition 2.17). We still provide the proof
for self containment. Here, we will apply Lemma 14. But that requires some conditions on s(e —)
(stated as (e, @) therein). We will prove that as long as p is convex, s satisfies those conditions
required to apply Lemma 14.

Those conditions requires us to show the following: For a1, as,b1,bs € R with a; > a9, by > bs,

plar —b2) + plaz —b1) = p(ar —b1) + p(az — b2) (165)
To show this, we invoke the convexity of p (+). For any z,y, z € R with z > y and z > 0, consider
thecasez > y,thenx + 2 > x >y, z + 2z > y + z > y. Convexity of p gives us:

(z —y)p(x +2) +zply) o(z)

> (166)
r+z—y

a2+ @=yel) o o (167)
T+z—-y

Summing both inequalities, we have: p(z + z) + p(y) > p(x) + p(y + z). W.lo.g. consider
ai,as, by, ba € Rwith a; > ag, by > bo, of the following form:

a1:b1+x
az =b1 +y
bg:blfz

This gives us Eq. (165).
To finish proving the theorem, we notice that: due to maxpep, >, 8 (z[u] — y[u']) Plu,v'] =
maxpep, Oy S ((P'x)[u] —y[u']) Plu, '] for any permutation P’, we have:
—y[u']) Plu,u'] = SORT —y[u']) Plu, v’ 168
B ulS(w[U] ylu']) Plu, '] &%;8((@)[u] — ylu']) Plu,] (168)
Now, thanks to Eq. (165), s(e) satisfies the conditions in Lemma 14 with u(x,y) in that Lemma
satisfies p(x,y) = s(x — y). This gives us: maxpep, y_, .5 (x[u] — y[u']) Plu,v'] =
s (SORT(x) — SORT(y)). []

'as designed before introducing Eq. 2.

35

https://en.wikipedia.org/wiki/Wasserstein_metric#One_dimension

Under review as a conference paper at ICLR 2026

E.2.3 AUXILIARY RESULTS USED TO PROVE LEMMAS IN APPENDIX E.2

Lemma 13 (Danskin’s Theorem (Danskin, 1967)). Let g : R™ x Z — R be a continuous function of
two arguments where Z C R! is a compact set. Let f(x) = max,cz g(x, 2), then

o fis convex if g(-, z) is convex for any z € Z.
o f is differentiable at x if the arg max, is a single possible element.
* The semi-differential of f in the direction of v is given by

Oy f(z) = max g "(x, z|v) (169)

where ¢'(x, z|v) is the derivative of g in the direction v, and Z* is the set of maximising

points of g(+, z)
 If f is differentiable at x, then the gradient of f is given by Vg f(x) = Vazg(x,2*) =
Vig(x, z*) (gradient in the first argument).

Lemma 14 (Rearrangement Inequality). (Wu, 2020, Theorem 7) Let u be a real-valued function of 2
variables defined on 1, x Iy. If

w(xe,y2) — w2, y1) — p(z1, y2) + pu(r,y1) >0
forallzy < zsinl, and y1 < ys in Iy, then
Z (@i, by—igr) < Z plas, briy) < Z p(ai, b;) (170)
i€[n] 1€[n] 1€[n]

for all sequences a; < as < -+ < aninly, by < by < -+ < by, in Iy, and all permutations 7 of [n).

Theorem 15. If the columns of X are distrbuted exchangeably, then for any d,d’ € [D] and
u,v € [n]

Ewu[d],wv[d]s (:Bu[d] — Iy [dD =]Ewu[d/]@v [d/]s (.’I}u[d/} — mv[d/]) (171)

Proof As columns of X are distributed exchangeably, the joint distribution of (x,,,) is also
exchangeable. Thus the marginals are also the same, px.,[d],¢,[d] = Pw.[d],@.[d']- Lherefore,

B, (d),2,[4)S (Tuld] — 2, [d]) = / 5(2,Y) Doy [d), 2o [4) (2,) d dy (172)
]R2

:/ 5(2,Y) P [d),0] (T,) dv dy (173)
]R2

=Eo)20 (Tu[d] — o[d]). (174)

|

Lemma 16 (Variance Bound for > de[D) Z3). Let Z; be defined as in Eq. (143). Given that
|2 (u)]|2,]|2D (u)||2 < B, then we can bound

Var [Y Zg[(u,v')] | <4L2DB. (175)
de[D]

Proof We write the variance as follows:

Var sz u,u)

de[D]
= Z Cov(Z4[(u,u")], Za[(u,u)]) (176)
d,d’€[D]x[D]
= Y E[(s@P@l] - 2 w)i) - Bls@ ()] - 2 w)[i])])
d,d’e[D]x[D]
(s @] - 29 @) [j)) ~ Els(@? ()] - = @)[i])]) | a7

36

Under review as a conference paper at ICLR 2026

We refer to (9 (u)[i] — () (u/)[i] as J,4 so that Eq. (177) can be rewritten as

= Y E[(s(da) — E[s(52)])(5(0a) — E[s(50)])] (178)
d,d’€[D]x[D]

= Z E[(s(0q) — s(0) — E[s(da) — s(0)])(s(dar) — s(0) — E[s(dar) — s(0)])] (179)
d,d’€[D]x[D]

= Z E[(s(da) — 5(0))(s(0ar) — 5(0))] — E[(s(dq) — 5(0))]E[(s(dar) — s(0))] (180)
d,d'€[D]x[D]

= Z E[(s(0q) — 5(0))(s(da) — 5(0))] — (Z E[(s(dq) — 8(0))]) : (181)
d,d'€[D]x[D] de[D]

We can write [s(54) — 5(0)] < |22

|04| = Ls|d4|. Thus Eq. (181) can be reduced to

|maX(—QB,QB)

Y. El(s(8a) = s(0))(s(dar) — 5(0))] — (> El(s(6a) - 3(0))])

d,d’ €[D]x[D] de[D]
< D El(s(da) — 5(0)(s(0a) — 5(0))] (182)
d,d’€[D]x D]
<L). Ellddlowl] = LIE]]3] (183)
d,d’€[D]x[D]
< L -E[D|35] < 4L7- D - B (184)
Where the final bound in Eq. (184) uses the bound on x(®) (u). []

Lemma 17 (Variance Bound for Z;). Let Z; be defined as in Eq. (143). Given that
H.’B(C)(UI)HQ,HZB(q) (u)|l2 < B, then we can bound

2 p2
Var(Zal(u,) < 227 (185)
D

Proof for the Variance Bound We follow similar steps as the proof for Lemma 16.
Var(Za[(u,u)]) < E[(s(0a) — E[s(6a)])(s(6a) — E[s(da)])] (186)
< E [(s(6a) — 5(0))?] — E[s(da) — s(0)] (187)
<E((5(3,) ~ 5(0))? (188)
< L?E| 1 Z E[6 as E[0?] = E[02] = --- = E[63] (189)

de[D]
L2

- 12 (153]) Loap (190)
Here, the final bound in Eq. (190) uses the bound on =(*) (u).]

37

Under review as a conference paper at ICLR 2026

E.2.4 PROOFS OF LSH RESULTS

We show that our random hyperplane hashing on fq,d and fc,d used in Eq. (9) gives us produce a
valid LSH for the similarity measure sim4(G., G,) and sim(G., G4). We first establish some key
details of our procedure.

Augmentation of Low Pass Filter with scoring function s(-) Since s(+) is bounded and absolutely
convergent, its Fourier transform S(w) = 5= [cr 8(7) exp(—wr)dz is finite. This allows us

to write s(z) = [_p S(w) exp(wz)dw. However, for simple scoring functions, S(«w) imparts

significant amount of high frequency signals, which leads to divergence of the integral of |S(:w)|. To

tackle this problem, we multiply a smooth low pass filter LPF (w) = 55 _i‘w with S(ww) to obtain

Sx(w) = LPF)(w)S(ww) which is absolutely integrable, i.e., [, _p [Sx(w)]dw < oo.

We first demonstrate that the integral [. [Re(S(ww))| 4 [Tm(S(ww))| dw may diverge in the absence

of smoothing. Consider p as the hinge function, p(x) = [z]+. Applying the construction, we obtain
s(e) and S(e) similar to the formulation in (Roy et al., 2023).

Tmax —Tmax S z S O
S(JU) = Tmax — T 0< 2 < Tpax (191)
0 otherwise
. : 2/ WTms .
SIN WTmax sin (M) S WX max Tmax COS WTmax
S = | Tmax = 2 2 - — = 192
(1) lx " ore 2nw?] [2nw? 27w } (192)
In order to show that the integral diverges, it suffices to show that the +ve tail diverges—
/ [Re(S(tw))| + Im(S(w))| dw > / [Re(S(tw)) + Im(S(w))| dw using |a 4+ b| < |a| + [b]
wo wo
(193)
_ /°° . Sin Wxmax N 2sin2(7"””’§“"“‘) N sin wz?ax _ Tmax COS Wmax | (194)
wo 27w 27w 27w 27w
_ / > (xmax SIN Womax Tmax COS wafmax) N 281112(%2‘”‘*) N sin wxr;ax do (195)
wo 27w 2w 27w 27w

: 2 . .
sin”(F8e) Sin Wemax
2mw? 2mw?

Y

2 dw (196)

o0 SIN WZmax Lmax COS WTmax
Tmax -
w 27w 27w

dw—/
wo

The second term is finite; hence we focus on the first term. Choose woTmax = 27ng + 7 for a natural
number ng. This allows us to write

/'OO
wo

0

SINWxmax Lmax COS WLmax

xrnax

*° max 2 .
dw = / 957\[}sm(wxmax — %)| dw (197)
wo

2w 2mw 2mw

*° 2
= / 7\[|sin(t — %)’ dt substituting t = WXy ax. (198)
2

- Z/ = Jsin(t —)| at (199)

pusy
n=2ng n+g

o \@ w(n+1)+5

> lt — TV de ,

> n:zz;zo 2r(r(n+1) + 7) /’Tn+f{ |sin(t — F)| d (200)

- 2 2t 201
ngz;lo 2r(r(n+1)+ %) ~ n;;m 2n+2) (201)

Finally, we show that that after the low pass filter is applied, the resultant integral is
Joer IRe(Sx(w))] + [Tm(Sx(ww))| dw < oo integrable for the general s function considered in

38

Under review as a conference paper at ICLR 2026

this paper.
[Re(Sx(tw))] 4 [Tm(Sy (:w))| < v2|Sx(w)| Modulus of the complex number (202)
= V/2|S(w)| - |LPF,(w)] (203)

As s(e) is a measurable, bounded, absolutely integrable function, we know that lim,,_, 1 oo |S(w)| =
0 by the Riemann-Lebesgue Lemma (Bochner et al., 1949).

Thus, |S(w)] is o(1). |LPF)(w)
J75 1 (w)|dw < oc.

Thus, [S)(w)| = o(y;), and thus,

_ 1 A 1
| = s Ll

/ [Re(Sx(tw))] + Tm(Sx(tw))] dw < V2|85 (w)|dw < oo (204)
w€eR w€eR

39

Under review as a conference paper at ICLR 2026

Proof that RH on the approximate Fourier vectors fq,d and fc’d give LSH Finally, we show
our results which shows that the above Algorithms result in valid LSH.

Theorem 18. Let sim(e, o) and simy(e, ®) be defined as in Eq. (2) and Eq. (3) respectively. We
compute W'D (G.) = sign(w ' T, 4) with w € N(0,1). Then we have the following results:

1. (LSH for simg(e,e)) For € > 0, there exist p,p’, Amin(€) > 0 and Myin(€) > 0 such that
the above random hyperplane hashing will give a (So, vSo, p, p’)-ALSH for sim(e, ®) when
A >)\min(e); M > Mmin(e).

2. (LSH for sim(e,e)) For €,¢' > 0, there exists P, D', Amin(€,€') > 0 and Myin(e,€') > 0
such that the above random hyperplane hashing will give a (S1,vS1,D,p’)-ALSH for
sim(e, ®) when A\ > Apin (€, €'), M > Myin(e,€') and D > 1/e%¢.

Proof of (1) Assume L, is the Lipschitz constant for s(e) and L is Lipschitz constant for cos™1;

)

Omax 2 maxe g ||SORT(ac(q>) - SORT()HOO and T, = max{||X ||OO 00 ||X(C)||OO oot Out

random projection hashing is finally based on the similarity measure simg from Section 4, which is
the Monte Carlo estimate of simy:

- Al &7 5
simg(Ge, Go) = 77 T, ,T.q (205)
In the following proofs, we shall trace back the approximations from sim leading up to ﬁd, and
appropriately bound the differences. Let I = Jz IRe(Sx(tw))| 4+ Tm(Sy (w))|dw. Then,

HT ()|| |RQ(S)\(L(U))| + |Im(S>\(Lw))|
*.d 2= [Re(Sa (w))|+[Im(Sx (tw))]

Ix

-1, (206)

We also observe that ||T, 4(w)||3 = nl, and \|1A“.d||§ = MwnlI,. From now on we drop d from

f9(G,) and hD(G.).

Prin(f(Gq) = hGe)|w) ! cos™* < @T’dﬁ’d) (207)
f.h q) = c =1—— —_— =
m 175, d||2 N Te.all2
—1- = < q, dTCd)
™ I Tyallz - |1 Te.all2
simg(Ge, Gy))
(208)
<fR 1Tq.a(w)l2 - |1 Te.a(w)ll2pa(w)d
simg(G., Gy))
(209)
7" (fR 1Tg.a(w)ll2 - [ITe.a(w)[2px(w)d
_ —lcos_l (sund(Gc,Gq)) 41 1 cos- ! (sund(Gc,G))
s nly s nly
I
—lcos_l (sund(Gc,Gq)) N lcos_l (sund(Gc,Gq))
T nly m nly
s
L cos ™! (Slmd(Gc’Gq)> (210)
TLI)\

Note that the argument sim, (G, G,)/nl, in the final term must reside within the domain of cos™*.
Since I is monotonically increasing in J, it suffices to require A > infx{\ : Ix > Smax/n}.

40

Under review as a conference paper at ICLR 2026

We shall now bound each of the terms in Eq. (210)

1 1 |— .
71| < ;LCOSE simg(G., Gq) — simy(Ge, Gy) (211)
LCOS .
BBl < E |simg(Ge, Gy) — snnd(Gc,Gq)’ (212)
< o8 T L 1 21
< mh\/M (Tl BT a@l}) Lemma1sy — @13)
_ Leos nl3 __Leos (214)

7TTLI,\ M W\/m

As cos™" is monotonically decreasing, and Lipschitz in our context, we can use the bound in
Lemma 20, i.e.,

—1

-1
_7ch]0: (L; Sn)l\ax xmaxei 5max> <7 =~ % 215)

Thus,
- 7f)\§,\ <LS * S“‘a"xmjjgm) (218)

Using Lagrange’s mean value theorem, we have:

o G G2 v e (220)

(219)
1—
> d=7)% as (cos 1) (t) < —1 (220)
7mI,\
Using Eq. (220) on the bounds obtained in Eq. (216) and Eq. (218), we have
1 _1{7vSo L L L
/ _ 1 - 1 20 cos cos 221
p WCOS (nb\>+7ﬁ/ + wly A (221)
1 — So Leos Lcos e !
=1—=—cos }|{—)— — Ly max————— 222
P ™ o8 (n-[)\> T Mn 71—)\[)\ T ¢ Tmax — 5max ()

We have p > p’ if

1 -1 ~¥So 1 So 2Lcos Leos e !
LN Ceos—1 (S0 9Ly + Smax————— | (223
- [cos (TLI)\ cos ol > T —|— VA + Sma T o (223)

The sufficient conditions for the above equatlon is:
(1 — ’Y)SO > 2Lcos

224
2mnd)y, v/ Mn 220
This gives us:
(1 - 7)50 Lcos e_l
9L, R — 225
2mnl)y - 7\ te max — Omax (225)
We obtain
2Lcosn (QLS + Smax%) 8L2 7?/]2
\ s Tmax ~Omax M > ———cos A (226)
(1 - ’7)50 ()258
|

This is a sufficient condition for the LSH to hold that denotes the existence of appropriate 7min, Amin
such that the LSH holds. We can also choose other bounds on M and A such that the above conditions
are satisfied, and the LSH is valid. We now show the second part of the theorem.

Proof for (2) Now that we have shown that we have a (S, 7S, p, p’)-ALSH for sim, we show that
it is a hash for sim. We shall use the concentration result in Proposition 7. Given |%sim(Gc, Gy) —

41

Under review as a conference paper at ICLR 2026

simq(G., G4)| < e with probability 1 — 8yd, we can express this as:

1
—e< Bsim(Gc7 Gq) —simy(Ge, Gy) < ¢ (227)
with probability 1 — 3yd. Here, the randomness arises from simg. This can be rewritten as:
1
—e< Esim(Gc, Gq) —simg(Ge, Gg) <€ (228)

{Simd(Gc, Gq) < %Sim(Gca Gq) + ¢ (condition 1), (229)

simg(Ge, Gg) > %sim(Gc, G4) — ¢ (condition 2).
Both condition 1 and condition 2 have probability > 1 — 8yd. Here, p and p’ are computed in the
proof of (1).
1. Condition 1 implies that if %sim(Gc,Gq) < Sy — €, then simy (G, Gy) < Sy with
probability > 1 — Byd. Therefore, when %sim(Ge, Gq) < 7S — €
Prpa(£(Gy) = h(G.))
=Pr(f(Gq) = hM(G.) | simq(Ge, Gy) < vSo) - Pr(simy(Ge, Gy) < vS0)
+ Pr(f(Gy) = h(Ge) | simg(Ge, G4) > ¥So) - Pr(simy(Ge, G4) > 7S0)
(230)
<P(1—Bod) +1- Bod (231)
2. Condition 2 implies that if sun(GC,G) > So + ¢, then simy(G.,G,) > Sp with
probability > 1 — 3y4. Therefore, when Lsim(G.,G,) > S + €
Pryn(f(Gq) = h(Ge))
=Pr(f(Gy) = h(G,) | simq(Ge, Gq) > Sp) - Pr(simg(G., G4) > So)
+ Pr(f(Gq) = h(G.) | simg(Ge, G4) < Sp) - Pr(simgq(Ge, G,) < So) (232)
> Pr(f(Gq) = h(G.) |simgq(Ge, Gq) > So) Pr(simg(G., G4) > So) (233)

> p(1 — Bod) (234)
Then, we have a (D(Sg + €), D(vSo — €),p(1 — 806),p’ (1 — Bod) + Bod)-ALSH if
p(1 = Bod) > p'(1 — Bod) + Bod (235)
/ ﬁO(S
R (236)

We shall find a sufficient condition for Eq. (236) to hold. We use the expressions in the previous

results. Finally, we reparameterize the problem with S 2 D(So+¢€), 1151 = D(ySy—e¢) withy; =
— 5 <7 <Lp=p(l—PBod)andp’ = p'(1 - Bod) + Bod

For py(w) |[Re(Sx(w))| + |[Im(Sx(w))|, the above criteria are achieved by taking

2
2'[/COS
M >n ((17)30 n nﬂ,@gé) (237)
21 T—Boo
for the same \. Reparameterizing with S1, 1, we obtain
2
2Lcos 1 2Lcosn (2Ls + Smax zmai,;max)
Mo G0s D=2 s | P75 N T s /D -2
2 1 —Bod
(238)
As before, we pick M,in, Amin Such that the above conditions are satisfied. We can also choose other
bounds on M and A such that the above conditions are satisfied, and the LSH is valid. |

Note that here we have considered the randomness of model initialization to be part of the randomness
of the hashing routine.

42

Under review as a conference paper at ICLR 2026

E.2.5 AUXILIARY RESULTS USED TO PROVE RESULTS IN THIS SUBSECTION E.2.4

Lemma 19. Suppose simy is defined as Eq. (7) and s/iIEd is defined as Eq. (9). Then, we have the

following concentration bound.:
2
< \/ —E [(qu(oju)TTc)d(wu)) } (239)

E |simg(Ge, Gy) — simg(Ge, Gq)

Proof We observe that:
E |simg(Ge, G) — simg(Ge, Gy)

ﬁ

IN

— 2 —
sima(Ge, G) — simg(Ge, G’q)’ = \/Var (Simd(Gc, Gq)) (240)

Z > Thalwn) Tea(wn) (241)

me[l\/l] u€[n]

= \/MVar wd(wu) TTe g(wy)) \/M Ty a(wy) " Tc,d(wu))ﬂ (242)

Here, Eq. (242) follows from the i.i.d sampling of wy,.

Lemma 20. Suppose simy is defined as Eq. (7) and s/iIEd is defined as Eq. (3). Then, we have the
following concentration bound.:

L‘:’ max 71 . . LS’
_ <n ° 4+ ns € 5) < simg(Ge, Gq) — simgy(Ge, Gy) < ns

A

243
A A Tmax — ()

where L is the Lipschitz constant for s; Omax 2 max, , ||SORT(z(?)) — SORT(x(?))||, and
max{|| X (4 ||oo 00> ||X(c)||oo oo} < Tmax

Proof. Let sy denote the fourier inverse of S.

simd(Gc,Gq) /S)\ Lw Lw(m(q) (u)[d]—2(D (u)[d])d (244)
u€[n]

= Z sx (2D (u)[d] — 2D (u)[d]) (245)
ue[n]

We shall bound the deviation of the smoothed score function s, from the original score function

sx(z) = /Rs(a: —t) FYLPFE,](t)dt using F~'[fg] = F[f] * F'[g] (246)

0
= / s(z — t) M H (—t)dt = / s(z — t) e Mdt (247)
R —o0
(where H(-) is the Heaviside step function)
= / s(x + ;)e_tdt substitution with ¢ — — A\t (248)
0
= / s(z)e " dt +/ (s(z+ ;) — s(z))e tdt (249)
0 0
= s(x) +/ (s(xz + %) — s(z))e tdt (250)
0
vy

We shall use the fact that s is clipped within [—Zax, Tmax].- We have the following possible cases:

Case 1 24 § > Zmax = t > AM@max —)
Case 2 Tmax Z T + % Z —Tmax — A(xmax -]3) Z t>0> /\(_xmax - I)

43

Under review as a conference paper at ICLR 2026

This lets us split the integral in Z; into two in order to bound the term.

[e%e) >\(Imax_w)
/0 (s(z + %) — s(@))etdt = /0 (s(z + %) — o(w))etdt

+ / (0 — s(z))e "dt (251)
A Zmax—)
A(Zmax—) ¢
= / (s(z+ X) — s(z))e tdt| —s(z)e N @max—2)
0
I
(252)
We now bound |Z| as follows:
AZmax—) ¢
|Z5| < / Lsxe_tdt (s is Lipschitz with constant L) (253)
0
L, _ 1M Zmax—) Ly _ 1 M@ max+tmax ||z||oo)
=5 [+ DT <5 DTS (254)
L
_ s (1 — e~ MTmax+omax) _ /\(fmax + 5max)e—/\(wmax+5max)) (255)
L, _ Ly
< T e, = S (256)

The bound in (254) relies on integrating over a larger domain. This yields the bound Eq. (255).
However, for purposes of this proof, we use the looser bound Eq. (256) by integrating over (0, 00).

Using the fact that 0 < s(+) < $yax in Eq (252)

—|T2| — Smaxe M) < T) < | T (257)
L Smax€ ! L
- - T <= 258
A A@max —2) T A (258)
L max€ " L
L Smexf T g L (259)

A)\(l'max - 5max) - 7
]

44

Under review as a conference paper at ICLR 2026

F LisT OF GNNS

We collect the following list from Pytorch Geometric.

1. GNN

(1) Gated GNN (Li et al., 2016; Gilmer et al., 2017) (Already showed)
(2) GCN (Kipf et al., 2017)
(3) ChebConv (Defferrard et al., 2016)
(4) SAGE (Hamilton et al., 2017)
(5) ResGatedGraphConv (Bresson et al., 2017)
(6) GAT (Velickovi¢ et al., 2018)
(7) AGNNConv (Thekumparampil et al., 2018)
(8) GIN (Xu et al., 2019)
(9) SGConv (Wu et al., 2019)

(10) TAGConv (Du et al., 2017)

(11) APPNP (Gasteiger et al., 2018)

(12) SSGConv (Zhu et al., 2021)

(13) MFConv (Duvenaud et al., 2015)

2. Graph Transformers

(1) Graph Transformer (GraphGPS-style) (Rampasek et al., 2022)
(2) Graphormer (Ying et al., 2021)
(3) Spectral Attention Network (SAN) (Kreuzer et al., 2021)
(4) Exphormer (Shirzad et al., 2023)
(5) NodeFormer (Wu et al., 2023)

Here, we will take node embeddings « to be column vectors, but the graph embedding X to have x
along rows. As such we will use © for the parameters right multiplied and W for left multiplied.

D, A, L refer to the degree, adjacency and Laplacian matrices respectively. Similarly, D, fl, L refer
to the normalized degree, adjacency and Laplacian matrices respectively.

We demonstrate transformations for various graph layers that can be used to maintain/induce permu-
tations in the output, which would be required for showing exchangeability at a certain layer. Where
applicable, we may take arbitrary permutation 72 on the input and a corresponding 7r; in the output.
For some cases the permutations are more restrictive (such as 7 = 7).

These transformations can then be composed to generate the permutation inducing transformation for
the entire network.

We have shown transformation for architectures such as the MLP (FF) and GRU (GRU). For a given
permutation (where it is clear from context), we define the transformed versions as follows:

GRU*(Xw,Hw) = GRU(X,H)=w
FF*(X=w) =FF(X)w
or if the input and output permutations are different:
FF* (X ms) = FF(X)m

F.1 GRAPH NEURAL NETWORK

Based on the original formulation, can be row or column vector and therefore 7 is pre-multiplied
or post-multiplied.

(1) GCN (Kipf et al., 2017):

X' =D Y2AD2X®© (260)
X'mr=D"2AD 2 X (On) (261)
X'm =D V2AD V(X1 (m] Omry) (262)

(2) ChebConv (Defferrard et al., 2016): It uses Chebyshev polynomial filters on the rescaled
Laplacian. The Chebyshev polynomials are defined as Ty(z) = 1, T1(x) = z and Ty (z) =
QJITk_l(J}) — Tk_z(l‘) for k > 2.

45

Under review as a conference paper at ICLR 2026

x) —ZT@ L) x k=1 (263)

X F) g ZTL;) (X EDy) (1) ©p7r1) (264)

(3) SAGEConv (Hamilton et al., 2017). We take the aggregate function to be permutation equivari-
ant (eg. mean/sum).

e = o(Wiz!" ™" + W, - AGGREGATE({z!*~"})) (265)

ma”) = o(xWin)ma* ™Y + (nWarT) - AGGREGATE({mz!""})) (266)
or, there may be a layer before the aggregation (allowing for more flexibility in the transforma-

tion):
2" = o(Wizl* ™" + W, - AGGREGATE({FF(z{"")})) (267)
ﬁlxgk) o((m Wiy)ﬂ'gw(k Dy (1 Wamy) ~AGGREGATE({FF*(ﬁg:c;k_l))}))
(268)

(4) ResGatedGraphConv (Bresson et al., 2017): Adds a residual connection over a gated convolu-
tion mechanism.

(k) =W a:(k Dy Z W, m(k Vo o(Ws :c(k V4w, :c(k 1)) (269)

JEN (i)
7T1:131(»k) = (7I'1W17T;—)(7\'2:13(k 1))
+ Z (1 Wam,)(7T2585k)) ® O’((7T1W37T;)(71'2:Bz(»k_1))
JEN(9)
+ (mWamy) (maz't) (270)
(5) GAT (Velickovi¢ et al., 2018): The attention score « can be made invariant.
a = 3 allwtg Y 271)
JEN (1)
mzl” = 3 o (m, WP T)ral Y (272)
JEN ()
exp (LeakyReLU (a” [Wx;|Wx;])) 73
Qi =
! 2 oren(iugiy €xp (LeakyReLU (a” [Wa; || Wzy]))
o = exp (LeakyReLU (a” [Wr " wa; | W T mwa;])) 7

Yken(iyuiiy ©xp (LeakyReLU (al (W T, || Wrr T way]))
If the aggregation is concatenation instead of sum, the output will not be exchangeable for all
dimensions. rather, each block of dimensions corresponding to a head will be exchangeable.

(6) AGNNConv (Thekumparampil et al., 2018):

X' =PX (275)
Where,
. (rax;) | 7w)
P exp(B - cos(@i, x))) _ xp (5 ENE 276)
%3 T o . - T sy
Zke/\/(l)u{l} eXp(ﬁ'COb(fﬂuiUk)) ZkEN(L)U{L} exp (6 %)

[ECHIEEN

So this layer is equivarient to any permutation 7.
(7) GIN (Xu et al., 2019):

X' =FF((1+¢)-X+AX) (277)
X'm =FF* (1 +¢) - (Xm) + A(Xm)) (278)

A powerful injective update via MLP which combines self-feature (with learnable epsilon) plus
neighbor sum.

46

Under review as a conference paper at ICLR 2026

(8) SGConv (Wu et al., 2019): A K-step precomputed propagation that simplifies convolution.

o K R
X' = (D*1/2AD*1/2) X0, A=A+I (279)
. K
X'm = (D*1/2AD*1/2) (X75) (] ©1) (280)
(281)
(9) TAGConv (Du et al., 2017):
K k

= (D‘1/2 AD—1/2) X0, (282)

k=0

K k

-y (D*l/2 AD*W) (X75) (7] ©pr) (283)

k=0

(10) APPNP (Gasteiger et al., 2018):
x©0 — x (284)
XH® = (1—a)D"V2AD2 X1 4 o X (©) (285)
X =x® (286)

This layer is equivariant to any permutation 7.
XOr=Xnr (287)
XP g =1-—a)DV2AD2XFVr 4 X7 (288)
X'm=X®g (289)
(11) SSGConv (Zhu et al., 2021):
N K

X' =(1-a) (D*W’AD*/?) X0, +aX0O, (290)

“ K
X'm =(1-a) (D*1/2AD*1/2) Xmym) O + aXmom) @ym (291

Skip-connection version of SGConv with initial-feature mixing via a.
(12) MFConv (Duvenaud et al., 2015): This has a distinct weight matrix for nodes of each degree.

Wdeg(z) x (292)
JEN (i) V

m12; = (11 Waeg(iy 3) (T2m1) + Z

JEN(L) \/ﬂ'gdlﬂ'gd

x; = Wieo(iy Ti +
(71 Waeg(iyTa)(m2z;) (293)

F.2 GRAPH TRANSFORMERS

Multi-Head Attention (MHA) Before examining specific Graph Transformer architectures, we
first establish the standard Multi-Head Attention (MHA) mechanism that forms the foundation of
most transformer-based models. The MHA operation transforms input representations H () ¢ R"*¢
through learned query (Q), key (K), and value (V') projections:

QW =HOWS, K®=gHOW} v®=HOWD (294

al(-?) = softmax; (W + Bi‘,») (295)

z0h) — Wy () (296)

MHAp(H®) = Concat(ZW, ..., ZOYW, (297)

where each attention head h € {1,. .., ¢} computes scaled dot-product attention independently, and

Wy projects the concatenated multi-head output. Given the input H — H 1y, we can transform
chh), W and W as W® — n] W And the output of MHA can be transformed by 7
by WO — W07T1.

47

Under review as a conference paper at ICLR 2026

Using the above, we define MHA; such that MHA L (X) = MHA (X)) .

Note that in general, different attention mechanisms are dealt with similarly - the attention parameters
can be used to undo the effect of a preceding permutation, hence the attention score computation
remains unchanged.

Transformer layers also typically include Layer Normalization, that we will largely omit here, as it is
straightforward to see that it is permutation equivariant.

@

(2)

3

C))

(5

(6)

Graph Transformer (Rampasek et al., 2022):

QW = HOWP, KW - HOWD v - HOWD (298)

() (g (P T
M _ goftmax, (FB5) g 299
;= softmax; NGA U) (299)
Z(h) — a(h)v(h) (300)
HED — g 4 MHAB(H(D) (301)
H"D = gD L pr(E) (302)

‘We observe the transformat{ons,

H" Vg = HOx 4+ MHA%L(H) (303)
H" Y = Y7 L PR (H V) (304)

Graphormer (Ying et al., 2021): Firstly, the graphormer adds centrality encodings to the node
embedding z(*). Hence these encoding require the same permutation as that of the input node
features. The graphormer adds spatial and edge encodings as attention biases B;;. As our
transformation does not affect the Q-K dot product, it does not affect the attention scores.

QW =HOWY, K®=HOW K v®=gOW (305)
() (g T

) = softmax; W + BSPP(SPD(4, 7)) + b23E (edge-path(i, j))) (306)

Z(h) —)y (307)

H"Y = FF(HY + MHA(H")) (308)

Hence, the same transformations as the graph transformer follow, as ag?

Spectral Attention Network (SAN) (Kreuzer et al., 2021):

remains unchanged.

HY =g® + 8§ (309)
QM =HaOW), KW -gOWP v - FOW (310)
(h) (g (T
ozl(.;l) = softmax; Q7(\/dl)> (311)
k
zHh) — oMy) (312)

Graph Transformer variant using learned Laplacian spectral positional encodings (LPE) added
to node features.
If H is permuted, the transformation of the Laplacian spectral positioning architecture to induce
a permutation of the input features that is consistent with the learned encoding.
HO9r=HOYx + Sn (314)
Exphormer (Shirzad et al., 2023): The changes here pertain to the expander graph and the
global virtual nodes. As these can be regarded as structural changes to the graph before applying
the graph transformer, we can take the same transformations as the graph transformer.
NodeFormer (Wu et al., 2023): Notably, the modification over the base graph transformer is
related to the computation of the attention. As the above outlined transformation ensures that
the QK W.x — VV.ﬂ'QT mox = W.x is invariant, the same transformation also holds for the
NodeFormer.
Gophormer (Zhao et al., 2021): The proximity score term in the attention can be seen as a
structural bias that is not affected by the permutations along the embedding dimension. Once

48

Under review as a conference paper at ICLR 2026

again, by transforming the Wy, Wi, Wy matrices accordingly, we ensure that the same
transformations as the graph transformer follow.

QW =aHOWP, K®-gOWP v® - gOw 315)
() (g (R)\ T
(1) — Qu (Kv) | poron
ay,y) = softmax,es, (NG + 6P (w, v)) (316)
Z =" al)v (317)
VES;
H{™ = FF(H{) + MHA(HS))) (318)

(7) SpecFormer (Bo et al., 2023): This extracts spectral information from the attention. Once again,
by transforming the Wg, Wi, Wy, matrices accordingly, we ensure that the same attention
scores. A permutation can also be induced in the MLP FF. Then by additionally permuting W,
accordingly, we can ensure that the output is permuted by 7r; .

F.3 SET-BASED NEURAL NETWORK

DeepSets (Zaheer et al., 2017):

y=p (Z ¢(wi>> (319)

¢ encodes elements, p decodes aggregated representation.

It is sufficient that (1) a permutation can be induced in p, such as if p is an MLP or any other admissible
architecture. (2) if p is permutation equivariant (such as a sum) and ¢ admits a permutation inducing
transformation.

Set Transformer (Lee et al., 2019):

Y = ISAB(X) = MAB(X,MAB(I, X)) (320)

where
MAB(Q, K) = LayerNorm(H + FF(H)) (321)
H = LayerNorm(Q + MHA(Q, K, K)) (322)

The Set Transformer uses Multihead Attention Blocks (MAB), Set Attention Blocks (SAB), Induced
Set Attention Blocks (ISAB), and Pooling by Multihead Attention (PMA) blocks. The encoder
consists of two ISAB blocks, and the decoder consists of an SAB block followed by a PMA block.

Enc(X) = ISAB,,(ISAB,, (X)) (323)
Decoder(Z) = FF(SAB(PMA(Z))) (324)

m-inducing transformation For the final output: T\ (@(FF)) = @(FF)

For intermediate layers:

F‘IE_O,PMA)(@) — O E(rz,PMA)(@) —7'Orn (325)
r(@OPMA) (@) = zT@ TWWMA (@) =Onr (326)

F7(r1,SAB)(@) —a'er D(T&SAB)(@) - On (327)

F,,(‘_(Q’i)’SAB)(@) —7'e E(r(K,i),SAB)(@) —1'e E(T(v,z‘),SAB)(@) —7'e (328)

It uses Induced Set Attention Blocks (ISAB) with learnable inducing points I for efficient O(nm)
complexity vs O(n?).

49

Under review as a conference paper at ICLR 2026

G ADDITIONAL DETAILS ABOUT EXPERIMENTS

G.1 DATASETS

We build retrieval datasets from four benchmarks in the TU Graph Dataset collection (Morris et al.,
2020): ptc—£fr, ptc-£fm, cox2, and pt c-mr. Each dataset contains 500 queries and a corpus of
100,000 graphs, following the setup in (Roy et al., 2022; Lou et al., 2020). To sample graphs, we
adopt the BFS-based extraction strategy introduced in (Lou et al., 2020): starting from a randomly
chosen node, a BFS traversal is performed until the induced subgraph spans between 5 and 25 nodes.
This method is applied independently to construct both query and corpus graphs.

For subgraph matching (SM), binary relevance labels are generated using the VF2 subgraph
isomorphism algorithm (Hagberg et al., 2020). A corpus graph G is marked relevant to a query G,
if G, is a subgraph of G, i.e., rel(G,., Gy) = [G, C G.], where [-] denotes the indicator function.

For graph edit distance (GED), we use the GEDLIB solver (Blumenthal et al., 2019), setting
insertion cost ey = 1 and deletion cost e = 2. Relevance is determined by thresholding the
computed GED: rel(G., G4) = [GED(G,, G4) < Thrs], for a fixed threshold Thrs. Results under
a symmetric cost setting (Eq. cost GED) with eqy = e = 1 are also reported in Appendix.

For all datasets, we partition the 500 queries into 60% train, 20% validation, and 20% test splits.
Dataset statistics for the subgraph matching and GED tasks are summarized in Table 6 and Table 7,
respectively.

Table 6: Graph statistics for each dataset generated for Subgraph Matching (SM).

Dataset Query Graphs Corpus Graphs ‘ E[Izj}}]
Nodes Edges Nodes Edges Label
(min/max /avg) (min/max/avg) | (min/max/avg) (min/max/avg) Ratio
PTC-FR (6/15/12.65) (6/15/12.41) (16/25/18.68) (15/28/20.17) 0.13
PTC-FM (7/15/12.58) (7/15/712.35) (16/25/18.70) (15/28/20.14) 0.12
COox2 (6/15/13.21) (6/16/12.82) (16/25/19.65) (15/26/20.24) 0.12
PTC-MR | (6/15/12.66) (7/15/712.41) (16/25/18.72) (15/28/20.18) 0.12
Table 7: Graph statistics for each dataset generated for GED.
Dataset Query Graphs Corpus Graphs ‘ E[Izié}]
Nodes Edges Nodes Edges Label
(min/ max /avg) (min/max/avg) | (min/max/avg) (min/max/avg) Ratio
PTC-FR (9/14/11.14) (8/16/12.25) (6/20/14.66) (5/24/15.77) 0.07
PTC-FM (9/14/11.09) (8/15/12.08) (6/20/ 14.64) (5/2417115.73) 0.07
COox2 9/15/11.61) (8/17/12.90) (7/20/15.48) (6/20/15.79) 0.04
PTC-MR | (9/14/10.90) 8/15/11.71) (6/20/14.67) (5/24/15.80) 0.08

G.2 EMBEDDING MODEL ARCHITECTURE

To supervise retrieval with transport-based distances, we train a neural scoring model composed of
a GNN encoder and a Gumbel-Sinkhorn aligner, optimized using pairwise ranking loss (Roy et al.,
2022; Jain et al., 2024). Here, inity is an LRL implemented as a single-layer MLP that maps node
features to a 10-dimensional embedding space. msg, is a message passing block consisting of two
linear message functions (forward and reverse), each mapping concatenated node-edge features to a
20-dimensional hidden state, followed by a GRU with hidden size 10 to aggregate incoming messages.
upd, is a two-layer aggregation MLP: the first layer expands the node embedding to 20 dimensions,
and the second reduces it back to 10 dimensions to produce the final node representation. To compute
the permutation matrix P, we solve a linear assignment problem via 10 Sinkhorn iterations at a
temperature of 0.1.

Separate models are trained for each supervision type—Subgraph Matching (SM) and Graph Edit
Distance (GED)—based on their respective distance formulations using Eq. (1). The model is trained

50

Under review as a conference paper at ICLR 2026

to assign lower distance scores to relevant corpus graphs compared to irrelevant ones, using the
following hinge-based loss:

YooY [AGeGy) — A(Ge, Go) ++
q crel(Ge,Gq)=1
crel(G.r,Gq)=0
where v € {0.1,0.5} is a fixed margin, and A(-, -) is the transport-based distance (Eq. (1)). We set
the node embedding dimensionality to D = 10 in all experiments.

G.3 FOURIER-MAP AND HASHCODE TRAINING

We adopt the training framework proposed by Roy et al. (2023) to improve the quality of Fourier-
based representations and optimize the hashcodes derived from them. Specifically, we apply two
neural networks W, and W, that take as input the Fourier representations 717, 4 and T, 4 of query and
corpus graphs respectively, and output transformed feature vectors:

2q = q’q(fq,d)’ Ze = \IIC<T\C7d)- (329)

These transformed vectors are trained using a binary cross-entropy loss that promotes high cosine
similarity between relevant query-corpus pairs:

min —rel(Ge, Gg) log(1 + cos(zy, 2c)) — (1 —rel(Ge, Gg)) log(1 — cos(zq, z¢)). (330)

To generate binary hashcodes from the transformed fourier feature vectors, we use a learned projection
matrix W € Réim»xdimz and apply the random hyperplane method:

f9G,) =sign(Wz,), h9G.) =sign(Wz,). (331)
for each d € [D] = [10]. In practice dimy = 10, dim; = 64. We set the number of w samples
M = 10. We use the frequency cutoff X in the low pass filter as 100. During training, we use
tanh(W z) as a differentiable approximation to sign(W z), and optimize W using the following
composite loss:

Lhash = A1 A1 + Azp + Aszpia, (332)

where:

* A;: Collision Minimizer — Encourages higher hashcode overlap between G, and its most
relevant corpus graphs compared to irrelevant ones.

* As: Fence-Sitting Penalty — Penalizes intermediate values of tanh(W z) to enforce hash
bits near +1.

* Ags: Bit Balance — Promotes equal usage of +1 and —1 bits across all corpus hashcodes.

We use the default hyperparameters and network configurations proposed in FourierHashNet (Roy
et al., 2023) for ¥, ¥, and the loss weights ;.

This training process improves both retrieval relevance and the discriminability of learned hashcodes.
Algorithm 1 and 2 summarize the index construction and query retrieval procedures based on these
learned hashcodes.

G.4 BASELINES

We compare GRAPHHASH against a range of methods that fall into three broad categories: LSH-based
methods operating on single-vector graph embeddings, inverted index-based multi-vector retrieval
using FAISS, and graph-based ANN using Disk ANN. We also include a naive random sampling
baseline for reference.

Hyperplane based hashing These methods rely on locality-sensitive hashing (LSH) applied to a
single-vector embedding for each graph, typically obtained via mean pooling over node representa-
tions.

* FourierHashNet (Roy et al., 2023): A learned LSH scheme that approximates hinge-based
dominance distances through Fourier transformation. It encodes asymmetric containment-style
similarities in a form suitable for efficient hash-based retrieval using random hyperplanes in the
frequency domain. We use the default hyperparameters and network configurations proposed
in FourierHashNet (Roy et al., 2023). Specifically, we use w = 10 samples for the Fourier
features, a trainable Fourier map optimized using the BCE loss with embedding dimension 10, and

51

Under review as a conference paper at ICLR 2026

hashcodes of length 64. We train using the loss function defined in Eq. (332), sweeping across
all combinations of A and other hyperparameters as described in their original paper. To evaluate
efficiency—effectiveness tradeoffs, we vary the number of hash table buckets from 2! to 260 during
retrieval.

* Random Hyperplane (RH) Hashing: A classical LSH method that applies cosine similarity
hashing to mean-pooled graph vectors. Since it uses symmetric cosine distance, it does not capture
subgraph asymmetry or node-level structure. We train the baseline using the same loss function as
in FourierHashNet (Eq. (332)), sweeping over all hyperparameter combinations reported in their
work. The hashcode dimension is set to 64, and we vary the number of selected hyperplanes (i.e.,
the subset size) from 2 to 29 to generate the tradeoff curves.

Inverted Index (IVF) We implement the inverted file index from FAISS (Douze et al., 2024) in
a multi-vector setup, where each corpus graph is decomposed into its node embeddings. These are
indexed independently, and during retrieval, each query node probes the index. Retrieved nodes are
then aggregated by graph ID to form the candidate set. This simulates node-level matching using
learned dense vectors.

For the FAISS baseline, we use the IVF-Flat indexing scheme with n1ist = 128 clusters. The index
is built over node-level embeddings extracted from the corpus graphs. Depending on the specified
distance metric (cosine or 12), we use either inner product similarity or Euclidean distance. For
cosine similarity, all corpus embeddings are L2-normalized prior to indexing.

Graph-Based ANN (DiskANN) DiskANN (Simhadri et al., 2023) builds compact HNSW-style
proximity graphs for approximate nearest neighbor retrieval at scale. In our setting, each node
embedding from the corpus is indexed independently, and the query node embeddings probe this
graph. Retrieved node hits are aggregated to rank corpus graphs. DiskANN offers scalability and
fast retrieval, but operates with symmetric distances (e.g., Lo, cosine) which may not align well with
asymmetric retrieval objectives.

We employ the StaticMemorylIndex implementation with cosine or Euclidean distance as the retrieval
metric. The memory-based index is built using a graph degree of 16, build-time complexity of 32, and
a search-time initial complexity of 22!, We disable product quantization (PQ) and OPQ refinements
by setting use_pq_build=False and use_opq=False, respectively, opting for full-precision vectors.
During index construction, we set alpha=1.2 and filter_complexity=32, with multi-threading enabled
using 16 threads. We vary the top- K parameter during querying to generate the efficiency—accuracy
tradeoff plots.

Random Sampling This baseline selects a fixed number of graphs uniformly at random from the
corpus, without using any learned embeddings or indexing structure. It serves as a lower-bound
reference to contextualize retrieval performance. Here, we simulate retrieval by uniformly sampling a
fixed number of corpus items for each query. We sweep over the number of retrieved items using
the set: {10, 100, 1000, 2000} U {5000, 10000, . . ., 95000}, to generate efficiency-accuracy tradeoff
curves.

G.5 EVALUATION METRICS

MAP To assess the trade-off between retrieval accuracy and candidate set size, we compute the
Mean Average Precision (MAP). For a query graph G, € Q, let Cy4e C C denote the set of relevant
corpus graphs. Given a retrieved ranking II, over retrieved candidate set R, the average precision
(AP) is computed as:

1 [7ql

= [Z; Prec@r - I[II,(7) € Cyo],

where Prec@r is the precision at rank r, and I[] is the indicator function. We compute MAP by
averaging AP across all test queries in Qyeg:

AP(Gy)

MAP =

1
AP(G,).
‘ Qlem' Gq € Qeest

This formulation penalizes high precision with low recall, ensuring models are rewarded only when
most number of relevant items are retrieved with high retrieval accuracy.

AUC To summarize the trade-off between accuracy and candidate set size, we convert the MAP
vs. candidate set size curve into a single scalar metric by computing the area under the trade-curve.

52

Under review as a conference paper at ICLR 2026

We normalize the candidate set size by the total corpus size |C
values over the normalized x-axis.

Normalized Discounted Cumulative Gain (NDCG) We also report NDCG to evaluate the quality
of ranked lists. For each query Gy, letrel,(r) € {0, 1} denote the relevance label of the item ranked
at position r in II;. The DCG at rank % is given by:

, and numerically integrate the MAP

and the corresponding ideal DCG (IDCG) is con;puted from a perfect ranking. The NDCG is then:

DCGQk

We average NDCG over all test queries to obtain a corpus-level evaluation. This metric does not
penalize high precision with low recall. We set £ = 1000.

G.6 HARDWARE AND LICENSES

All experiments were run on a local NAS server configured with seven NVIDIA RTX A6000 GPUs
(48GB each), a 96-core processor, and 20TB of storage, operating under Debian 6.1. All model
components, including GNN encoders and hash function training, were executed on GPU memory
without resource bottlenecks.

Regarding licensing, GMN (Li et al., 2019) is distributed under the MIT license. The implementations
of Isonet (Roy et al., 2022) and FourierHashNet (Roy et al., 2023) are open source and have been
cited appropriately in our work. Our full codebase and datasets will be released for public use upon
publication.

53

Under review as a conference paper at ICLR 2026

H ADDITIONAL EXPERIMENTS

We present supplementary experimental results to support the findings in the main paper. These
include validations of embedding exchangeability on additional datasets and evaluation of retrieval
performance under alternate metrics and supervision settings. Our goal is to assess whether the trends
observed in the main experiments persist across diverse configurations.

H.1 ADDITIONAL EXCHANGEABILITY RESULTS

The following experiments reuse the same setup as before: 5,000 GNNs are trained independently on
a subset of 1,024 query-corpus graph pairs, each with D = 10 embedding dimensions, and trained
for 20 epochs using a pairwise ranking loss. For a fixed node in one corpus graph, we collect the
scalar embedding values across dimensions d € [D] from all models.

Covariance of Node embeddings Another consequence of exchangeability is the symmetry of
higher order moments of the embedding. Specifically, we expect the covariance between two
dimensions to remain constant across all pairs of dimensions, which is a stronger demonstration of
symmetry in the joint distribution.
.! 10.20
= |0.15
-0.10

1 0.06
0.04

89

10.02 - -0.05

:n oz
0

-0.00

24 0 8
(a) cox2 (SM) (b) cox2 (GED)
Figure 8: Sample covariance matrix for the X (°)[v, d] for the highlighted nodes in Figures 1,9. The

figure shows that the off-diagonal covariances are roughly, which strongly indicates that the coupling
between dimensions is symmetric.

Figure 8 shows the covariance matrices for two nodes from different graphs. The [i, j]*h entry of
each matrix matrix represents the estimate for Cov(X (©)[v, 4], X(©)[v, j]). We observe that all the
off diagonal elements are close to one another, and similarly, all diagonal elements too are close to
one another, which indicates that there is symmetry in the coupling between dimensions.

Y o

Yo Lo T N
>

/"‘\:\/ 2 @Q

R A Y E e

e \11 . ALY

N

oD

XOv,d] —

(a) G¢,v (b) Initialization (c) Epoch 8 (d) Epoch 20

Figure 9: Empirical probability density of X (¢)[v, d] for the highlighted node v in the example
corpus graph G, in ptc—fr, obtained using 5,000 independently trained instances of the GNN
model under GED-based supervision. Panels (b)—(d) show the density of X (e) [v, d] at initialization
and at intermediate stages of training. The observed similarity of distributions across embedding
dimensions reaffirms the exchangeability result (Theorem 5) in a different dataset and task setting.

Marginal distributions on a different dataset In Section 5.1, we validated the exchangeability
of embedding dimensions by examining the marginal distributions of node embeddings across
dimensions, under repeated training runs. Here, we present an additional experiment on a different
dataset (PTC-FR) and a different supervision signal (GED with asymmetric costs), to confirm the
generality of our claims. Figure 9 shows the distribution of X (¢) [v,d] for three representative
dimensions (d = 1,5, 10) at three points during training. Similar to the findings on cox2(main
paper), the distributions remain near-identical across dimensions and throughout training. This
supports the robustness of Theorem 5, even under varied datasets and training objectives.

Remark. For the distribution plots of node embeddings (Figure 1 and Figure 9), we use histograms
with 25 bins and apply kernel density estimation for smoothing. These visualizations are generated
using the built-in functionality of the seaborn library.

54

Under review as a conference paper at ICLR 2026

H.2 FURTHER EVALUATION OF GRAPHHASH’S RETRIEVAL PERFORMANCE

In the main paper (Section 5.2), we evaluated GRAPHHASH under two supervision signals—Subgraph
Matching (SM) and asymmetric GED—using conservative MAP as the primary evaluation metric.
Here, we extend that analysis along two axes.

First, we report additional results on a more commonly used GED variant, where both insertion and
deletion costs are set to eqy = e = 1. This equal-cost GED setting alters the notion of relevance and
allows us to assess the generality of our approach under a different supervision signal.

Second, we evaluate retrieval performance using NDCG, a position-sensitive ranking metric that
complements MAP. These additional results evaluate whether the trends observed in the main paper
persist under both metric and supervision signal variations.

H.2.1 MAP oN EQUAL-CoST GED

In the main paper, we evaluated retrieval performance under asymmetric GED costs (eg = 1, eg = 2).
Here, we assess whether the key trends persist under the equal-cost variant where e, = eg = 1,
widely used formulation in the literature.

Figure 10 shows the MAP vs. retrieved graphs trade-off curves for all baselines under equal-cost
GED supervision. We summarize our observations below:

1. GRAPHHASH and FourierHashNet remain the strongest performers across all datasets.
Even under equal-cost supervision, both methods consistently outperform other baselines in MAP
across retrieval budgets.

2. FourierHashNet shows marginal improvement in this regime, particularly on pt c—fr, where
it slightly surpasses GRAPHHASH, and on cox2 and pt c—mr, where its MAP approaches that
of GRAPHHASH at lower candidate counts. However, FourierHashNet often fails to span the
full selectivity spectrum, unlike GRAPHHASH, which yields a smoother and more complete
accuracy-efficiency trade-off.

3. RH Hashing remains unstable. While it occasionally matches GRAPHHASH on cox2 and
ptc-mr, its high variance limits its practical utility.

4. DiskANN, IVF, and Random sampling continue to underperform. As in the asymmetric
setting, these methods yield substantially lower MAP, highlighting the advantage of trainable
indexing strategies like GRAPHHASH and FourierHashNet.

These trends are consistent with our findings from the main paper and further validate the generality
of GRAPHHASH across different supervision regimes.

@ GraphHash B FourierHashNet B RH (Subsampled) Disk ANN A IVF ® Random
0.8 apgiEgEEe :- r;{z__“ 0.8 paneee 'ihﬁ.‘:?"! 0.8 HOVPIDIN g (B lt:;g;l‘_A 0.8 .-!I.l".i' o) ..I f..Ei.-‘ a
- ®) e
. 0.6 L 06
", T K T X I ",
nmg LX) n 0
° ule H =
no0.4 - 0.4 T
< < e
= 0.2 = 0.2 s

0.0 € 0.0 | ¢ ¢
0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K
Retrieved Graphs — # Retrieved Graphs — # Retrieved Graphs — # Retrieved Graphs —

(a) ptc—£fm (Eq. cost GED) (b) cox2 (Eq. cost GED) (c) ptc—£fr (Eq. cost GED)(d) pt c—mr (Eq. cost GED)

Figure 10: Trade-off between mean average precision (MAP) and number of retrieved graphs,
for all the methods, viz., GRAPHHASH, FourierHashNet (Roy et al., 2023), Random Hyperplane
(RH) (Charikar, 2002; Indyk et al., 1997), IVF (Douze et al., 2024),DiskANN (Simhadri et al., 2023)
and Random, across all datasets. Retrieval based on Equal cost GED (e, = 1). Horizontal red line
denotes 50% of exhaustive MAP. Our method shows a better trade-off than others in majority of the
cases.

55

Under review as a conference paper at ICLR 2026

@ GraphHash B FourierHashNet B RH (Subsampled) Disk ANN A IVF ® Random
%8 I Enes Arppassedespenst
2 0.6|% % 5 M0.6(5
- s = f
Coalt Co.4|3
(ORI [Cht
Q H Q .
a 0.2 g A 0.2 H]
Z00ld Z i :
0.0 |2 0.0 % £
0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K
Retrieved Graphs — Retrieved Graphs — Retrieved Graphs — Retrieved Graphs —
p P P P
(a) ptc—£fm (SM) (b) cox2 (SM) (c) ptc—fr (SM) (d) ptc—mr (SM)
A Y 4 4
T 0.8 T @ 5 =: .
0.6] X
N 0.6 M & JFaFewateseen
- 0.4 &
©o0.4| Che @ H
Qo.2lt Qo0.2|3
(=Rt a |z X H
4 : z i 4 P
0.0 0.0 * .
0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K
Retrieved Graphs — Retrieved Graphs — Retrieved Graphs — Retrieved Graphs —
p P P p
(e) ptc—£fm (GED) (f) cox2 (GED) (g) ptc—£fr (GED) (h) ptc—mr (GED)
1.00 o)
T T asev seeeien 1.00 e emad: 1.00 S —— 1.00 eeeTene sww
0.75 T0.75 T" T0.75 : T 0.75 |
= X X -
©0.50 |+ ©0.50 © 0.50 |+ © 0.50 |4
O i CH v | v |
Qo.25|4 00.25 Qo.25* Q0.25 |4
&l S o B
'y H i N
0.00 | * 0.00 | * 0.00 0.00
0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K
Retrieved Graphs — # Retrieved Graphs — # Retrieved Graphs — # Retrieved Graphs —

(1) ptc—£fm (Eq. cost GED) (j) cox2 (Eq. cost GED) (k) ptc—-fr (Eq. cost(l) ptc-mr (Eq. cost

GED) GED)
Figure 11: Trade-off between NDCG at top 1000 and number of retrieved graphs, for all the methods,
viz., GRAPHHASH, FourierHashNet (Roy et al., 2023), Random Hyperplane (RH) (Charikar, 2002;
Indyk et al., 1997), IVF (Douze et al., 2024),DiskANN (Simhadri et al., 2023) and Random, across
all datasets. Top row: Retrieval based on Subgraph Matching (SM); Middle row: Retrieval based
on GED; Bottom row: Retrieval based on Equal cost GED (e, = 1). Our method shows a better
trade-off than others in majority of the cases.

H.2.2 EVALUATION USING NDCG

To complement our MAP-based evaluation, we assess ranking quality using NDCG across all datasets
and relevance definitions. Figure 11 reports results for Subgraph Matching, unequal-cost GED, and
equal-cost GED.

1. GRAPHHASH consistently achieves the highest or near-highest NDCG across all datasets
and relevance settings. This confirms that GRAPHHASH not only retrieves more relevant graphs
overall, but also ranks them effectively near the top of the candidate list.

2. Relative gains over baselines are smaller compared to MAP. While GRAPHHASH leads in
most cases, RH hashing performs competitively under unequal-cost GED, and nearly all baselines
exhibit similar performance under equal-cost GED. This suggests that some methods manage to
prioritize a few relevant graphs early, even if overall recall is limited.

3. DiskANN and IVF show competitive NDCG despite low MAP. These methods often retrieve a
handful of highly relevant graphs early in the ranking, which boosts NDCG but fails to capture the
full relevant set.

4. Random sampling yields flat and significantly lower NDCG. This reinforces the importance of
structured indexing and learning-based methods for meaningful ranked retrieval.

Overall, NDCG results validate our MAP findings and demonstrate that GRAPHHASH excels at not
just retrieving relevant graphs but also ranking them effectively within large candidate pools.

56

Under review as a conference paper at ICLR 2026

H.2.3 CLARIFICATION ON RH (SUBSAMPLED)

In Figure 4 of the main paper and Figures 10 and 11 in the appendix, we display retrieval performance
as scatter plots, as described in Section 5.2. The label “RH (Subsampled)” in these figures refers to a
subsampling of the full set of trade-off points obtained for the Random Hyperplane (RH) method.
This subsampling was performed solely to prevent visual clutter and improve readability of the main
figures.

To ensure full transparency, Figures 12 and 13 present the complete set of RH performance points
generated via a comprehensive hyperparameter sweep. Specifically, we vary the hash table size and
the loss weights in Eq. (332), following the experimental protocol recommended in the FourierHash-
Net (Roy et al., 2023). These figures show retrieval performance for all datasets across all three
supervision signals (Subgraph Matching, GED, and Equal-cost GED), evaluated using both MAP
and NDCG at top 1000.

We make the following observations:

1. Consistency with main trends: Even with the full set of hyperparameter configurations, the
qualitative findings from the earlier results remain consistent—GRAPHHASH outperforms RH on
both MAP and NDCG for Subgraph Matching (SM), and also on MAP for GED. RH achieves
comparable performance only on NDCG for GED, but remains less reliable overall.

2. Pronounced variability: With more points shown, the performance of RH appears highly
scattered, especially at fixed retrieval sizes. This reinforces its sensitivity to hyperparameter
selection.

3. Practical tuning challenge: The high variance observed for RH across sweeps suggests that
achieving consistently strong performance would require extensive tuning, which may not be
practical in real-world deployments.

57

Under review as a conference paper at ICLR 2026

=
0 25K 50K 75K 100K

Retrieved Graphs —

0 25K 50K 75K 100K
Retrieved Graphs —

@® GraphHash B RH
)
0.4
o -
<02|
= F
2
0.0[¢
25K 50K 75K 100K 25K 50K 75K 100K 0 25K 50K 75K 100K
Retrieved Graphs — # Retrieved Graphs — # Retrieved Graphs —

(b) cox2 (SM)

(c) ptc—fr (SM)

0.4

(d) ptc—mr (SM)

0.4

i
0.0[%

0 25K 50K 75K 100K

Retrieved Graphs —

(f) cox2 (GED)

0 25K 50K 75K 100K
Retrieved Graphs —
(g) ptc—£fr (GED)

o

0 25K 50K 75K 100K

Retrieved Graphs —

(h) ptc—mr (GED)

0.8
T 06 T 0.6 T 0.6
%"»4 %0.4 :0.4 ————————————
02 202 20
0.0 0.0

0 25K 50K 75K 100K
Retrieved Graphs —

0 25K 50K 75K 100K
Retrieved Graphs —

0 25K 50K 75K 100K
Retrieved Graphs —

(i) ptc—£m (Eq. cost GED) (j) cox2 (Eq. cost GED) (k) ptc—£fr (Eq. cost GED)(1) pt c—mr (Eq. cost GED)
Figure 12: Trade-off between MAP and number of retrieved graphs taking all points. Top row:
Subgraph Matching (SM); Middle row: GED; Bottom row: Equal cost GED (e, = 1). Horizontal red
line denotes 50% of exhaustive MAP.

® GraphHash B RH

s H i
TO_S% To.s%, To.s? . T‘lsﬁ

55 P — H S remeerorngnn & WY W —
o |8t i - o068 Xo0.6|3 Moeld
— 0.6 : — - 7g - g =068 o
& Ll & 3 =) 3 H
|2 0. 0.4 o H
U()Aé UO4§ 0} ¢ L
SRl S o I SENNH
A go2|i goz2d oz}
Z0.2 é 4 Z | Z

0.0l8 0.0 H
0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K

Retrieved Graphs —
(c) ptc—fr (SM)

Retrieved Graphs —
(d) ptc—mr (SM)

Retrieved Graphs —
(b) cox2 (SM)

Retrieved Graphs —
(a) ptc—£fm (SM)

0.8 0.8|% 0.8
1 1 T3 1
§
X 06 : M o.6| & smmm 30.6 (8 N —
- mim»y. = o} é il = g L1
S a o -
o |z © o | ®
8"-4 5 v gos : goals
. .
%0-2 § %0 2 % % §
H : 0.2 0.2/8
0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K

Retrieved Graphs —
(g) ptc-£fr (GED)

Retrieved Graphs —
(h) ptc—mr (GED)

Retrieved Graphs —
(e) ptc—£fm (GED)

Retrieved Graphs —
(f) cox2 (GED)

T 0.94 To .
X M
C0.92 a 004
g 8
So.00 R 002
Z z

25K 50K 75K 100K : 0 25K 50K 75K 100K
Retrieved Graphs —

25K 50K 75K 100K]

0 25K 50K 75K 100K 0 5
Retrieved Graphs —

Retrieved Graphs — # Retrieved Graphs —
(i) ptc—£m (Eq. cost GED) (j) cox2 (Eq. cost GED) (k) ptc—fr (Eq. cost GED)(I) pt c—mr (Eq. cost GED)

Figure 13: Trade-off between NDCG at 1000 and number of retrieved graphs taking all points. Top
row: Subgraph Matching (SM); Middle row: GED; Bottom row: Equal cost GED (e, = 1).

58

Under review as a conference paper at ICLR 2026

H.2.4 EVALUATION ON LARGER GRAPHS

We synthetically generate larger versions of cox2 and pt c—fr by combining graphs in the original
datasets for the Subgraph Matching task. The gold relevance labels are approximated as the set of
graphs made up of relevant items of the original data. We generate 10* corpus items for either dataset,
and plot the tradeoff curves as in Figure 4. We observe that GRAPHHASH performs better than the

baselines in high accuracy regime

@® GraphHash B FourierHashNet B RH Disk ANN A IVF

7.5K 10K

2.5K 5K
Retrieved Graphs —

0 25K 5K 7.5K 10K 0
Retrieved Graphs —
(a) cox2 (SM) (b) ptc—£fr (SM)
Figure 14: Trade-off between mean average precision (MAP) and number of retrieved graphs, for
GRAPHHASH, FourierHashNet (Roy et al., 2023), Random Hyperplane (RH) (Charikar, 2002; Indyk
et al., 1997), IVF (Douze et al., 2024) and DiskANN (Simhadri et al., 2023), across two datasets with
synthetically generated large graphs under Subgraph Matching supervision.

H.2.5 EVALUATION ON LARGER CORPUS

In this set of experiments, we evaluate GRAPHHASH on a larger corpus of 1M items.

@® GraphHash B FourierHashNet B RH Disk ANN A IVF
_ge®d
.'a-"'.‘*@'::.
0.4 N 0.4
| -1
A~ E) ~
< 0.2 i;“‘i‘ - - <0.2
= ¥ =
® 4
0.0 g o 0.0
0 250K 500K 750K 1M

0 250K 500K 750K 1M
Retrieved Graphs —

(a) cox2 (SM)

i

e
©

e
=

MAP —»

2

0 250K 500K 750K 1M
Retrieved Graphs —
(b) ptc—fr (SM)

0.4

2l

w

0.0

0 250K 500K 750K 1M
Retrieved Graphs —

(c) ptc—£fm (SM)

Retrieved Graphs —
(d) ptc—mr (SM)

0.4 s

0.0

0.0
0 250K 500K 750K 1M
Retrieved Graphs —

(e) cox2 (GED)

0 250K 500K 750K 1M
Retrieved Graphs —

(f) ptc—-fr (GED)

0 250K 500K 750K 1M
Retrieved Graphs —

(g) ptc—£fm (GED)

0 250K 500K 750K 1M
Retrieved Graphs —

(h) ptc—mr (GED)

Figure 15: Trade-off between mean average precision (MAP) and number of retrieved graphs, for
GRAPHHASH, FourierHashNet (Roy et al., 2023), Random Hyperplane (RH) (Charikar, 2002; Indyk
et al., 1997), IVF (Douze et al., 2024), and DiskANN (Simhadri et al., 2023) across all datasets for a
million sized corpus. Top row: Retrieval based on Subgraph Matching (SM); Bottom row: Retrieval

based on GED

59

Under review as a conference paper at ICLR 2026

H.2.6 ABLATION STUDIES

Ablation on dim; Here, we present the trade-off curves for MAP versus number of retrieved
graphs for each choice of dimy,, the size of the hashcode. The below tradeoff has been summarised
to Figure 5 in the main paper. Owing to the larger number of values of dimj,, we use a colorscale for
the scatterplot.

® dimy,=0 ® dimp=5 ® dimy,=10 ® dimp=15 dimp =20 dimy =45
® dimy=1 ® dimy=6 ® dimp=11 ® dimy=16 dimp =25 dim, =50
® dimy=2 ® dimy=7 ® dimp=12 ® dim,=17 dimp =30 dimp =55
® dimy=3 ® dim,=8 ® dimy=13 ® dim,=18 dimp =35 dimp =60
® dimy=4 ® dimp=9 e dimy=14 e dimy=19 dimp =40
0.4 «.""" 0.4 0.4
’[) T 0.4 i T { T r
=9 g Ay o Ay Fa a9
< 0.2 <02 <0.2 < 0.2
= = = =
0.0 0.0 f 0.0 0.0
0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K
Retrieved Graphs — # Retrieved Graphs — # Retrieved Graphs — # Retrieved Graphs —
(a) ptc—fm (SM) (b) cox2 (SM) (c) ptc—fr (SM) (d) ptc—mr (SM)
pap— e aw 0.4) 0.4 g e
0.3 ‘?’WM il o AT
T ’ T 0.2 3 T 0.3 T 0.3
0,02 A .,: po02| . a,0.2
< <o < s <
Zo1) =] 2ol ¢ =01
0.0 0.0 0.0 0.0
0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K
Retrieved Graphs — # Retrieved Graphs — # Retrieved Graphs — # Retrieved Graphs —
(e) ptc—£fm (GED) (f) cox2 (GED) (g) ptc—£fr (GED) (h) ptc—mr (GED)

Figure 16: Trade-off between mean average precision (MAP) and number of retrieved graphs, for
GRAPHHASH for different values of the hashcode size dimy,

Ablation with D Here, we perform experiments ablating the embedding dimension of the netowrk,
and the number of hash tables used.

T 0.6 T 0.50
p, 05 — o, 045 ./
< / <
= 0.4 = 040
/ 0.35
0.3 Ld
25 10 15 20 30 25 10 15 20 30
D — D —
(a) cox2 (SM) (b) ptc—£fm (SM)

Figure 17: The exhaustive MAP achieved by an embedding model trained on the node aligned loss
with respect to the embedding dimension of the model.

We see that MAP increases monotonically with D, as is expected as the higher dimension allows for
richer feature representation without hitting the bottleneck in training requirements.

Ablation with number of hash tables We also perform ablation over the number of hash tables.
Note that for GRAPHHASH the number of hash tables corresponds to the number of dimensions of

60

Under review as a conference paper at ICLR 2026

the embedding utilised, which implies a monotone behavior in the performance. We seek to find if
the accuracy losses are comparatively low, which could help cut time and memory.

0.4
ol
< Graph 1 Graph 3}
® GraphHash m GraphHash
E 0.2 e 10 tables e D=10
7 tables D=7
0.0 5 tables D=5
0.0 0.5 1.0 0.0 0.5 1.0

Retrieved Graphsx10®

Retrieved Graphsx10®

(a) cox2 (SM) (b) ptc—£fm (SM)
Figure 18: Trade of plot showing MAP vs the number of retrieved corpus items for different variants
of GRAPHHASH that uses a different number of hash tables for retrieving results.

We observe that the drop in performance is not too significant from 10 to 7, although it is noticeable
for 5. Ultimately, this vindicates our decision to use all 10 hash tables

Stability of random hyperplane seeding Next, we evaluate the stability of the random hyperplane
hashing scheme over multiple random seeds. In this setting, we set 10 different random seeds for
the hyperplanes, keeping the embeddings and fourier maps fixed. We then evaluate the retrieval
performance on the best hyperparameters found from GRAPHHASH.

We report the mean and standard devation in AUC over these 10 runs.

Dataset (Task) Mean AUC Std
ptc—fm (SM) 0.342685 0.006966
cox2 (SM) 0.369972 0.009179
ptc—fm (GED) 0.289546 0.007598
cox2 (GED) 0.238293 0.005878

Table 19: Mean and standard deviation of AUC over 10 different random seeds for RH seeding.

We also plot the tradeoff curves for the different random seeds, contrasting their performance with
the final version of GRAPHHASH. Each color denotes a different seed.

0.4
0.4
Ay [
< <
= 0.2 = 02
0.0 GraphHash 0.0 GraphHash
0.0 0.5 1.0 0.0 0.5 1.0
Retrieved Graphsx10°® # Retrieved Graphsx10°®
(a) cox2 (SM) (b) ptc—£fm (SM)
0.3
0.2
Ay [
< < 0.2
= 0.1 =
0.1
0.0 GraphHash 0.0 GraphHash
0.0 0.5 1.0 0.0 0.5 1.0

Retrieved Graphsx10°®

(c) cox2 (GED)

Retrieved Graphsx10°®

(d) ptc—£fm (GED)

Figure 20: Tradeoff curves comparing GRAPHHASH (red) with different random seeds for Random
Hyperplane hashing across both tasks on cox2 and pt c—£fm. Each color denotes a different seed.

61

Under review as a conference paper at ICLR 2026

We observe that the variation in performance between different seeds is very minimal, as the different
values coincide with the tradeoff trajectory of the best performing hyperparameters of GRAPHHASH.

Stability of fourier map dimension dim7 We also ablate over the size of the fourier representation
dim7. In our formulation, we have reparameterized dimp = 4nM, where n is the size of the graphs.
In our experiment we ablate over M.

[) []
0.38 0.24
0.36 0.22
0.34 T
8 80.20 * A
= 0.32 = .
0.30 /°\. Vi 0.18 /
0.28—° ? ¢
2 4 6 8910 2 4 6 8910
M —> M —
(a) cox2 (SM) (b) cox2 (GED)
7 0.300 7
0.34
T 0.32 T 0.275
0 0.30 O 0.250
) o -
< 0.28 / < 0.225 ?
0-26/* " 02007 /
2 4 6 8910 2 4 6 8910
M — M —
(c) ptc—fm (SM) (d) pt c—£m (GED)

Figure 21: Comparison of AUC of the MAP vs retrieval ratio curve for different values of the
per-dimension-fourier frequencies M, across two datasets on both tasks.

We compare the AUC generated by the tradeoff curve generated for each value of M. We observe a
sharp decline in the performance when going down from 10 fourier frequencies per dimension.

62

Under review as a conference paper at ICLR 2026

H.2.7 COMPARISON OF sim AND simg

Direct comparison of sim vs. sim; We compare the quality of the approximation by plotting the
scatter plots of the scores obtained by sim and simg for all the datasets and tasks. Specifically, we

compare the mean 1D score, i.e.% 21’;1 sim((ii) against the true score sim scaled by %. For each
G., G4 pair in the test set, we compute these two values and plot them.

[Average, p=0.300, r=0.575 Average, p=0.408, r=0.704 Average, p=0.351, r=0.631

(a) cox2 (SM) (b) ptc—-fr (SM) (c) ptc—£fm (SM) (d) ptc—mr (SM)

Average, p=0.662, r=0.665 Average, p=0.793, r=0.810 Average, p=

=0.800 Average, 20, r=0.828

(e) cox2 (GED) (f) ptc—-fr (GED) (g) ptc—£fm (GED) (h) ptc—mr (GED)
Figure 22: Scatter plots comparing the mean 1D similarity scores (y-axis) with the true similarity
scores (x-axis) computed with sinkhorn iterations, for the (top) Subgraph Matching and (bottom)
Graph Edit Distance task across different datasets.

Decay of |simq(G.,Gq) — sim(G., G,) with increasing D Next, we empirically validate the
concentration result from Proposition 7 by plotting the average absolute error |simg(G., G4) —
sim(G., G4)| over all pairs (G., G,) in the test set as a function of D. We note that the deviation
decreases with increasing D, confirming the result.

5 =
3 52.5
S S
E g
h2 §20
! T
> ~1.5
Wl im1 FEL T
] k)
31 — T Y10 =
i L I TEl g + T
i l + T H0.5 1 L
2 5 10 15 20 30 o 2 5 10 30
D — D—
(a) cox2 (SM) (b) ptc—£fm (SM)

Figure 23: Boxplot of average absolute error |+ >, simq(Ge, Gg) — sim(G., G,)| as a function of
D for the Subgraph Matching task on different datasets.

63

Under review as a conference paper at ICLR 2026

H.2.8 EVALUATION OF LSH METHODS UNDER ALIGNED SCORING FUNCTIONS

To ensure a fair comparison across LSH-based retrieval strategies, we evaluate each method using
graph embeddings specifically trained to align with its intended scoring function. That is, while
GRAPHHASH is evaluated under transport-based supervision, FourierHashNet and Random Hy-
perplane (RH) methods are applied on embeddings trained for hinge and cosine-based scoring,
respectively.

GRAPHHASH: Transport-Based Scoring with GNN Embeddings. For GRAPHHASH, we use
node-level embeddings produced by a GNN encoder, trained using a pairwise ranking loss (Eq. (G.2))
based on the transport distance A(G., G4) (Eq. (1)).

For the baselines that require a single-vector representation of graphs, we adopt the GEN architecture
from (Li et al., 2019), which aggregates node embeddings into a global graph-level vector via mean
pooling.

FourierHashNet: Hinge Distance over Aggregated Graph Embeddings (GEN + FourierHash-
Net). FourierHashNet is designed for asymmetric hinge-based distances over global graph em-
beddings. We apply it on GEN representations trained using the ranking loss in Eq. (G.2), where
rel(G., Gy) = |lag — acll, , and a,, a. denote the pooled graph embeddings. Here, [-] is the
ReLU function.

RH: Cosine Similarity-Based Hashing (GEN + RH). To align with RH’s reliance on cosine simi-
larity, we again use GEN-pooled embeddings and train them with the ranking loss in Eq. (G.2), setting
rel(G¢, G4) = — cos(ag, a.). This setup ensures that the learned representations are optimized for
RH’s angle-based locality-sensitive hashing.

Summary. Each method is thus benchmarked under conditions it was designed for: transport
distance with GRAPHHASH, hinge distance with FourierHashNet, and cosine similarity with RH.
This isolates the performance of the retrieval mechanism from mismatches in training objectives or
input embeddings.

Observations. Figures 24 and 25 present retrieval performance across all datasets and supervision
types. Figure 24 reports MAP trade-offs, while Figure 25 reports NDCG. We observe that:

1. Exhaustive scores reveal superiority of transport-based supervision. Across all datasets
and similarity signals, GRAPHHASH consistently achieves higher exhaustive MAP and NDCG
compared to both GEN + FourierHashNet and GEN + RH. This confirms that transport-based
supervision captures a more powerful and fine-grained notion of graph relevance.

2. RH shows significantly reduced variance when used with compatible supervision. Unlike
earlier results where RH was applied to transport-trained embeddings and exhibited high variability
(Figure 4), the GEN + RH setup shows much smoother and more stable trade-offs. This emphasizes
the importance of matching the embedding training signal to the retrieval method.

3. FourierHashNet benefits from hinge-compatible embeddings. When used with GEN-trained
embeddings under hinge distance supervision, FourierHashNet exhibits broader coverage of the
selectivity spectrum, yielding smoother MAP and NDCG trade-off curves. This again reinforces
the value of scoring-function alignment between embedding training and LSH mechanism.

4. Despite improvements, GRAPHHASH retains overall dominance. Even though GEN-based
variants show improved performance over their misaligned counterparts, they still fall short of
GRAPHHASH in nearly all retrieval settings. This underscores the strength of the transport scoring
model in both relevance estimation and downstream index quality.

64

Under review as a conference paper at ICLR 2026

B CEN +RH

@® GrArPHHASH GEN + FOURIERHASHNET

e e a P, e?
e 0

0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K
Retrieved Graphs — # Retrieved Graphs — # Retrieved Graphs — # Retrieved Graphs —

(c) ptc—fr (SM) (d) ptc—mr (SM)

(a) ptc—fm (SM) (b) cox2 (SM)
JRp—. JE—— 0.4 — 0.4 T
@:f ,,.959'!‘!"" ye ‘;@.‘(’m,ﬁgp o) w.,‘m o1 .‘%’g.. T Ol
w e, e aml m (L1 ; s I EE IEE
T 0.2 L T 0.3 -
—————————————————— % 1 S i o Rt pat o % 0.2 e et
0.1
= 01
0.0 0.0 E
0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K
Retrieved Graphs — # Retrieved Graphs — # Retrieved Graphs — # Retrieved Graphs —
(e) ptc—fm (GED) (f) cox2 (GED) (g) ptc—£fr (GED) (h) ptc—mr (GED)
0.8 1e®) <o to ° 0.8 ; (SWPENEO©® eNieds © 0.8 GONID 0 @W® ! [}
N g N mEEE ?ﬁé g ST EmEmE m mEm 0.8 B
T 0.6) T 0.6
Ao4fa R0
< H <
202 H E0.2 £
0.0 % 0.0|= . 0.0 %
0 25K 50K 75K 100K 25K 50K 75K 100K 0 25K 50K 75K 100K
Retrieved Graphs — # Retrieved Graphs —

0 25K 50K 75K 100K

Retrieved Graphs — # Retrieved Graphs —
(1) ptc—£fm (Eq. cost GED) (j) cox2 (Eq. cost GED) (k) ptc-fr (Eq. cost GED)(l) pt c—mr (Eq. cost GED)
Figure 24: Trade-off between mean average precision (MAP) and number of retrieved graphs, for
all the methods, viz., GRAPHHASH, FourierHashNet (Roy et al., 2023) using GEN embeddings,

Random Hyperplane (RH) (Charikar, 2002; Indyk et al., 1997) using GEN embeddings, across all
datasets. Top row: Retrieval based on Subgraph Matching (SM); Middle row: Retrieval based on
GED; Bottom row: Retrieval based on Equal cost GED (e, = 1). Horizontal red line denotes 50% of

exhaustive MAP. Our method shows a better trade-off than others in majority of the cases.

65

Under review as a conference paper at ICLR 2026

@ GrAPHHASH

GEN + FOURIERHASHNET

B CEN +RH

\ ‘\

0.8 T 0.8 sem@enIseeTemeNes T 0.8 5} T 0.8 ".
i eI R v e v Lurmesaarememesamen ¢ 2 Meneete@isrseetete
= 0.6 0.6 0.6 X 0.6
© < Q@ .) H I
S 5 © iy
U o4 R . U 0.4 U 0_4 U 0.4 !.
o o] O l& O |5
a Q0.2 Qo2¢ Ro2 §
202} Z Z |z Z |3

- 0. 0.0
0 25K 50K 75K 100K

0 25K 50K 75K 100K
Retrieved Graphs —

(a) ptc—fm (SM)

0
0 25K 50K 75K 100K
Retrieved Graphs —

(b) cox2 (SM)

Retrieved Graphs —

(c) ptc—fr (SM)

0 25K 50K 75K 100K
Retrieved Graphs —

(d) ptc—mr (SM)

082 0.8z
Tk 1 s
x 0.6 b 101103 0)0 6 (0140800) ©)80))9) i$)eer s ertencesiee M 0.6 Foselusmmaes wney
~ se I . [T TR — — H S U LR
©0.4|e ©0.4|2
v |d OB
Qo.2 (3 Qo.2|s
a H a
z Z
0.0 0.0

0 25K 50K 75K 100K
Retrieved Graphs —

(e) ptc—fm (GED)

0 25K 50K 75K 100K
Retrieved Graphs —

(f) cox2 (GED)

0 25K 50K 75K 100K
Retrieved Graphs —

(g) ptc—£fr (GED)

1.00 Do’ (48) 9P IONIES) €@ €0 . i swemmnersee enisce o 1.00 -.r!.‘ut.,‘mpmom wn e @we
i — =
©0.50 ®0-50 ©0.50
&) 0] o
Qo0.25 0 0.25 0 0.25
A a a
0.00 0.00 0.00

0 25K 50K 75K 100K

Retrieved Graphs —

0 25K 50K 75K 100K

Retrieved Graphs —

0 25K 50K 75K 100K

Retrieved Graphs —

0 25K 50K 75K 100K
Retrieved Graphs —

(h) ptc—mr (GED)

1.00 |5

» -
= | ® mEEE R

nd
o
=]

NDCG @ 1K —»
i

g
=3
=3

75K 100K

0 25K 50K
Retrieved Graphs —

(1) ptc—£fm (Eq. cost GED) (j) cox2 (Eq. cost GED) (k) ptc-fr (Eq. cost GED)(l) pt c—mr (Eq. cost GED)

Figure 25: Trade-off between NDCG at top 10000 and number of retrieved graphs, for all the methods,
viz., GRAPHHASH, FourierHashNet (Roy et al., 2023) using GEN embeddings, Random Hyperplane
(RH) (Charikar, 2002; Indyk et al., 1997) using GEN embeddings, across all datasets. Top row:
Retrieval based on Subgraph Matching (SM); Middle row: Retrieval based on GED; Bottom row:
Retrieval based on Equal cost GED (e, = 1). Our method shows a better trade-off than others in

majority of the cases.

66

	Broader Impact
	Limitations
	LLM Usage
	Related work
	Proofs and other technical details
	Proofs of the results of exchangeability presented in Section 3
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 5 and Proposition 6
	Equivariance of the Update Step
	Additional Results on Exchangeability

	Proofs of the technical results in Section 4
	Proof of Proposition 7
	Proof of the fact that Eq. (3) and Eq. (4) are equivalent
	Auxiliary Results used to prove Lemmas in Appendix E.2
	Proofs of LSH results
	Auxiliary results used to prove results in this subsection E.2.4

	List of GNNs
	Graph Neural Network
	Graph Transformers
	Set-based Neural Network

	Additional details about experiments
	Datasets
	Embedding model architecture
	Fourier-map and hashcode training
	Baselines
	Evaluation Metrics
	Hardware and Licenses

	Additional Experiments
	Additional Exchangeability Results
	Further Evaluation of GraphHash's Retrieval Performance
	 MAP on Equal-Cost GED
	Evaluation using NDCG
	Clarification on RH (Subsampled)
	Evaluation on Larger Graphs
	Evaluation on larger corpus
	Ablation Studies
	Comparison of sim and simd
	Evaluation of LSH Methods under Aligned Scoring Functions

