
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXCHANGEABILITY OF GNN REPRESENTATIONS
WITH APPLICATIONS TO GRAPH RETRIEVAL

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we discover a probabilistic symmetry, called exchangeability, in
graph neural networks (GNNs). Specifically, we show that the trained node em-
bedding computed using a large family of graph neural networks, learned under
standard optimization tools, are exchangeable random variables. This implies that
the probability density of the node embeddings remains invariant with respect to a
permutation applied on their dimension axis. This results in identical distribution
across the elements of the graph representations. Such a property enables approxi-
mation of transportation-based graph similarities by Euclidean similarities between
the sorted embedding elements in fixed dimension. This allows us to propose a
unified locality-sensitive hashing (LSH) framework that supports diverse relevance
measures for graphs, e.g., subgraph matching, graph edit distance, etc. Experiments
show that our method provides more effective LSH than baselines.

1 INTRODUCTION

In their seminal work, Hecht-Nielsen (1990) first demonstrated that the output of multi-layer per-
ceptrons (MLPs) remains invariant under suitable permutations of the weight matrices across layers.
Since then, such weight-space symmetries have been widely recognized, and have resurfaced with
the advent of deep learning (Neyshabur et al., 2015b; Freeman et al., 2016; Brea et al., 2019). Recent
works (Bui Thi Mai et al., 2020; Godfrey et al., 2022) characterized such symmetries for different
activation functions. Beyond academic interest, weight space symmetries underpin several practical
advances: for example, they enhance model training (Neyshabur et al., 2015b), equivariant architec-
ture design (Cohen et al., 2016; Maron et al., 2019; Navon et al., 2023), enable model merging (Peña
et al., 2022; Ainsworth et al., 2022), motivate data augmentation (Schürholt et al., 2021), etc. They
also yield deeper characterizations of geometry and loss landscapes (Brea et al., 2019; Simsek et al.,
2021; Entezari et al., 2021). These works focus on algebraic symmetry largely for MLPs, and treat
them in isolation from training. This leaves unaddressed the probabilistic symmetry structures that
emerge naturally during standard training, starting with random model initialization.
Our contributions Instead of working on well-explored algebraic symmetries, we analyze the
probabilistic symmetries within trained embedding vectors which appear to exist in a broad class
of neural architectures. We move beyond simple MLPs and extend to the more complex setting of
graph neural networks (GNNs). As will gradually unfold, such an analysis for GNNs has significant
implications for applications including locality-sensitive hashing and efficient neural graph retrieval.

— Characterization of exchangeability: We establish a new property of GNNs: under standard
conditions, the elements of node embeddings computed by a trained GNN are exchangeable random
variables, where the randomness is induced by the initialization of model parameters. Let x(u) ∈ RD

denote the embedding of node u, produced by a trained GNN. Then, the joint distribution of its
components x(u)[1], . . . ,x(u)[D] is invariant under any permutation of the embedding dimensions
d ∈ [D]. This has a significant consequence: the components x(u)[1], . . . ,x(u)[D] are identically
distributed random variables. Therefore, when averaged across multiple random seeds, the expected
embedding matrix E[[x(u)]u∈V] collapses to a rank one matrix.

We would like to highlight that, we show such exchangeability holds for a wide spectrum of GNNs and
graph transformers; and several optimizers, e.g., SGD, Adam. In view of GNNs’ known propensity
for spatial oversmoothing (Roth et al., 2024) and recent discoveries of output rank collapse of
transformers (Dong et al., 2023; Naderi et al., 2025), and sequential state space models (Joseph et al.,
2025), this result is of independent interest.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

— Applications to graph retrieval: In neural graph retrieval, the goal is to find corpus graphs
C =

{
Gc

}
most relevant to a query graph Gq . Recent studies (Jain et al., 2024; Zhuo et al., 2022; Fey

et al., 2020) make it clear that optimal transport-based (also called transportation-based) relevance
distance between node embeddings performs significantly better than single-vector aggregation and
graph kernels (Roy et al., 2022; Zhuo et al., 2022). Exchangeability enables efficient graph retrieval
in two steps:
(1) Approximating transportation similarity with 1-D Euclidean approximations: Consider
embeddings in one dimension (D = 1). In this case, the transportation distance between two sets
can be solved exactly by sorting the points in each set and matching them in order. For example,
suppose we use a GNN to produce one-dimensional embeddings x(u) ∈ R. Then, given two
graphs Gq and Gc, each with n nodes, the transportation distance between their embedding sets is
Transport

(
{x(q)(u)}, {x(c)(u)}

)
= ∥SORT({x(q)(u)})− SORT({x(c)(u)})∥. In higher dimensions

(D > 1), however, computing transportation-based distance (or transportation-based similarity) is
substantially more complex, with exact algorithms scaling for n nodes as O(n3) and often requiring
O(n2) approximations such as Sinkhorn iterations. Exchangeability provides a way around this: since
embedding coordinates are identically distributed, each dimension yields a concentrated estimate
of the underlying transportation-based similarity. Instead of solving the full high-dimensional
transportation-based similarity, we approximate it by aggregating D simple Euclidean similarities
across dimensions, thereby reducing “transportation distance between high dimensional vector sets”
to an estimate based on per-dimension sorted orders, which is more amenable to indexing.
(2) Locality sensitive hashing (LSH) for graphs: LSH enables sublinear-time retrieval by
hashing similar objects into the same bucket (Gionis et al.; Indyk et al., 1998; Charikar, 2002).
Exchangeability lets us approximate costly transportation-based similarity with simple Euclidean
similarity across embedding dimensions, making existing LSH schemes directly applicable. Notably,
LSH for asymmetric transportation-based similarity has remained unexplored; our approximation
provides the first principled approach, leveraging Roy et al. (2023). This yields a unified LSH
framework that supports diverse graph relevance measures, from subgraph matching to graph edit
distance with general costs.

2 PRELIMINARIES

Notation For a graph G = (V,E), we denote A as its n × n adjacency matrix. We write
[·]+ = max{·, 0} as the hinge or ReLU function, Pn as the set of n× n permutation matrices and
[n] =

{
1, .., n

}
for any integer n. We denote P and π to indicate n and D dimensional permutation

matrices, respectively, which are applied on the nodes and their embedding vectors respectively.
J•K ∈

{
0, 1
}

is indicator function. In the context of graph retrieval, we denote a query graph as Gq , a
corpus graph as Gc with |Vq| = |Vc| = n after padding with suitable number of nodes; and, the set
of corpus graphs as C. We also use Aq and Ac to denote their n× n adjacency matrices. We use
p(·) to denote the density of any random variable. Given a group G, a function f is G-equivariant
(G-invariant) if f(gx) = gf(x) (resp., f(gx) = f(x)) for all g ∈ G.
Node embedding computation using GNN Given the number of message passing steps (or
layers) K and the dimension of node embeddings D, a graph neural network (GNNθ) computes
node embeddings xk(u) = GNNθ(G) ∈ RD for u ∈ V using K message passing steps. For
brevity, we drop K to write x(u) = xK(u). We compute the embedding matrices X ∈ Rn×D as
X = [x(u)]u∈[n]. X[:, d] ∈ Rn denotes the d-th column of X . The operator SORT(·) sorts an input
vector in decreasing order. In the context of graph retrieval, we denote x(q)(u) and x(c)(u′) to denote
embeddings of node u ∈ [n] and u′ ∈ [n] in the query and corpus graphs Gq and Gc, respectively.
Similarly, we use X(q) = [x(q)(u)]u∈[n] ∈ Rn×D and X(c) = [x(c)(u′)]u′∈[n] ∈ Rn×D to denote
the embedding matrices.

The parameters θ of the GNN are learned by minimizing a task specific loss function, which we denote
as loss(θ). We assume that weights in θ are initialized via iid sampling from popular distributions,
and then some popular gradient-based update recipes are used for training.
Exchangeability Exchangeability implies that the joint density of the elements within a vector is
permutation invariant with respect to the ordering of the elements.

Definition 1 (Exchangeability (Aldous, 1985)). Let Yd ∈ Rn be random vectors for d ∈ [D]. We
say Y1, ...,YD are exchangeable, if for all permutations π : [D] → [D], the probability density

2

https://en.m.wikipedia.org/wiki/Rearrangement_inequality

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

functions of the sequence of vectors {Y1, ...,YD} is the same as that of {Yπ(1), ...,Yπ(D)}, i.e.,
p

Y1,...,YD
(y1, ...yD) = p

Yπ(1),...,Yπ(D)
(y1, ...yD) for all realizations: Yd = yd for d ∈ [D].

Order statistics For a vector a, we denote its order statistics by SORT(a), obtained by sorting its
entries in decreasing order. For the node embedding matrix X , we will frequently use SORT(X[:, d])—
the order statistics of the d-th embedding dimension across all nodes.
Overview of our analysis (1) Distinct from algebraic symmetry, we characterize a new type
of probabilistic symmetry in the node embeddings X of a graph G, which is computed using a
trained GNN starting with random model initialization. Specifically, we show that X[:, 1], ...,X[:, D]
are exchangeable random variables, where the randomness is induced by the initialization of the
model. (2) Given a query–corpus graph pair (Gq, Gc), we exploit this property to approximate
the transportation-based similarity between X(q) and X(c) using Euclidean similarity between the
order statistics SORT(X(q)[:, d]) and SORT(X(c)[:, d]) for d ∈ [D]. (3) Building upon the proposal
of Roy et al. (2023), we develop a unified LSH (Charikar, 2002) method for several graph relevance
measures using the Fourier transform on the order statistics vectors. We further show that the resulting
algorithm is a valid LSH for the original transportation-based graph similarity.

3 EXCHANGEABILITY OF GNN REPRESENTATIONS

In this section, we characterize the probabilistic symmetry of node representations, explicitly
incorporating the effect of model training. Specifically, given the node representation matrix
X = [x(u)]u∈[n] ∈ Rn×D = GNNθ(G), we show that X[:, 1], ...,X[:, D] are exchangeable random
variables (Definition 1) across the axis of the embedding dimension, where X[:, d] = [x(u)[d]]u∈[n].
We first describe the setting for our analysis, followed by a high level explanation on why exchange-
ability will hold. Finally, we present the formal characterization.

3.1 SETTING

We provide the four components of our settings. We emphasize that they are presented primarily for
technical completeness. They are not restrictive and, in fact, capture a broad class of settings.
(1) Broad class of GNN architectures We consider the a wide variety of GNN architectures, which
are listed in Appendix F. This list includes gated GNN (Gilmer et al., 2017), GIN (Xu et al., 2019),
GAT (Veličković et al., 2018), GCN (Kipf et al., 2017). Our analysis is likely to extend beyond these
cases, and also applies to graph transformers (Appendix F).
(2) IID initialization of the parameters within a layer The entries of the parameter matrix within
each layer are initialized in an i.i.d manner. This covers standard model initialization schemes,
including Kaiming (He et al., 2015) and Xavier initialization (Glorot et al., 2010).
(3) Permutation invariance of loss function We consider loss functions that are invariant to
permutations of elements in the node embedding vectors. This condition holds naturally in several
settings, including graph retrieval. Here, the loss, whether binary cross-entropy or pairwise ranking,
depends on the similarity between (Gq, Gc) via the transportation plan between X(q) and X(c).
Since this similarity is invariant under permutations of embedding elements, the loss is likewise
permutation-invariant. This also applies to link prediction, when the similarity between nodes u and
v is computed as the dot product x(u)⊤x(v), which is permutation invariant w.r.t. elements of x.
(4) Broad class of optimizers Our results hold for a broad class of gradient-based optimizers, viz.,
SGD (Zhang, 2004), Adam (Kingma et al., 2015), etc.

3.2 WHY EXCHANGEABILITY HOLDS: A HIGH LEVEL EXPLANATION

Exchangeability among initialized model parameters Training begins with i.i.d. initialization of
the parameter matrices. Formally, consider a weight matrix Θ whose entries are drawn i.i.d. from a
common distribution. Its joint distribution is invariant to column permutations: for any permutation
matrix π, p(Θ) = p(Θπ). When Θ is applied to an input row vector x, the output x′ = xΘ is
equivariant to column permutations of Θ: Θ 7→ Θπ =⇒ x′ 7→ x′π. Although permuting Θ
changes the values of x′, an i.i.d. initialization ensures that all permutations are equally likely, so the
distribution of x′ is invariant: p(x′) = p(x′π). This statistical symmetry is precisely what we mean
by exchangeability of hidden units at initialization. Nonlinear activations σ, such as sigmoid or tanh,
being identical and applied pointwise, preserve this symmetry.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Exchangeability in MLP Training Consider a two-layer MLP with weights Ψ,Θ and nonlinear
activations σ, which maps an input row feature vector feat to an output representation x via
x = σ(σ(featΨ)Θ). As discussed, at initialization (t = 0), exchangeability holds by construction:
the entries of Θ0 (Θ at t = 0) are i.i.d., so p(Θ0) = p(Θ0π), and consequently p(x) = p(xπ).

As noted in Section 3.1 (3), the loss function is invariant to permutations of the embedding dimensions.
With all other randomness fixed by seeding, permuting the columns of Θ0 yields identical losses
and hence equivariant gradients. Consequently, the training trajectories are permutation-equivariant:
for any π, Θ0 7→ Θ0π =⇒ Θt 7→ Θtπ for all epochs t. Combining p(Θ0) = p(Θ0π) at
initialization, with permutation-equivariant training dynamics, we obtain p(Θt) = p(Θtπ) and
hence p(x) = p(xπ) for all t ≥ 0.

3.3 FORMAL CHARACTERIZATION OF EXCHANGEABILITY

Overview Here, we seek to establish the afore-mentioned arguments for GNN to prove the ex-
changeability of the elements of the node embeddings. We prove this using four steps:

(1) Permutation induced parameter transformation on GNN (Lemma 2): Given GNNθ with parame-
ter set θ, consider any permutation π ∈ PD. We show that there exists a bijective transformation
Γπ on θ such that, for θ′ = Γπ(θ), the elements of the node embeddings are permuted by π, i.e.,
X 7→ Xπ. We refer to Γπ as a permutation-inducing transformation corresponding to π.
(2) Gradient equivariance (Lemma 3): We show that the gradient of loss is equivariant with respect
to a permutation inducing transformation Γπ .
(3) Invariance of the probability density of model parameters (Lemma 4): We show that at any
stage of training, the model parameters are exchangeable— the probability density of the parameters
θ remains invariant to the transformation Γπ .
(4) Result on exchangeability (Theorem 5): Using (1–3), we show that X[:, 1], ..X[:, D] are
exchangeable.
Warmup: Constructing Γπ for 2-layer MLP We are given an MLP of the form x =
σ(σ(featΨ)Θ). If we want to reorder x by a given permutation π, we will transform Θ 7→ Θπ,
which will result in x 7→ xπ. Equivalently, suppose we write θ = [Ψ⊤,Θ], then, we can introduce a
bijection Γπ by Γπ(θ) := θDiag(I,π), which will result in output equivariance x 7→ xπ.
Permutation induced parameter transformation on GNN Constructing a similar transformation
Γπ is more involved for GNNs. The difficulty stems from the iterative message passing protocol:
permutations of parameters in one layer propagate through neighborhood aggregations, which can
entangle the symmetry across layers and makes it hard to identify Γπ for popular GNNs, e.g., gated
GNN (Li et al., 2016), (Gilmer et al., 2017) which is widely used in graph retrieval (Li et al., 2019;
Roy et al., 2022; Jain et al., 2024). Nevertheless, in the following, we formally establish that such
transformations can indeed be derived for GNNs (proven in Appendix E).
Lemma 2. Given a graph G and a GNN architecture GNNθ described in Appendix F, let the
node embedding matrix of G be X = GNNθ(G) ∈ Rn×D. Then, for any permutation matrix
π ∈ PD, there exists a bijective transformation Γπ with |Det (∂Γπ(θ)/∂θ)| = 1 such that Xπ =
GNNΓπ(θ)(G). We call Γπ a model transformation induced by permutation π.

Given this characterization, we seek to reduce the problem of establishing exchangeability to estab-
lishing probabilistic symmetries in the model parameters θ with respect to the transformation Γπ .
Equivariance of gradient under permutation induced parameter transformation Since the
loss function is invariant to any permutation π of the node embeddings, it is also invariant to the
transformation Γπ on θ (Lemma 2). As a result, the corresponding loss landscape exhibits symmetry
under Γπ. This symmetry, in turn, implies an equivariance property for the gradient, as formalized
below (proven in Appendix E).
Lemma 3 (Gradient equivariance). Given the setting described in Section 3.1. Let Γπ be the
transformation on the GNN parameters θ, induced by a permutation π, as introduced in Lemma 2.
We denote the loss function as loss(θ). Then the gradient of the loss ∇θloss(θ) is equivariant under
transformation Γπ of the parameters θ.

Invariance of probability density of model parameters under the transformation Γπ Suppose
we shuffle the initial parameters within a layer. Then, from the gradient equivariance property
(Lemma 3) the resultant trajectory

{
θt | t ≥ 0

}
of θ at different epochs t, will undergo an equivariant

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

transformation with respect to a permutation-induced bijection Γπ. Since p(θ0) = p(Γπ(θ0)), the
observation will lead to invariance of the probability density of θt for t ≥ 0 too, as stated below
(proven in Appendix E).

Lemma 4 (Invariance of density of Γπ(θ)). Given the setting described in Section 3.1. Let
{
θt | t ≥

0
}

be the trajectory of the parameter θ of a GNN across different training epochs t ≥ 0. Then, we
have: p(θt) = p(Γπ(θt)) for all t ≥ 0.

Key results on exchangeability Using Lemmas 2–4, we can show our key exchangeability results,
stated as follows (proven in Appendix E).

Theorem 5 (Exchangeability of embedding elements). Given the setting described in Section 3.1.
Then, X = GNNθ(G) are exchangeable random variables, where the randomness is induced by the
model initialization prior to training. That is, p(X) = p(Xπ).

Note that the above theorem can also be generalized for a joint distribution over multiple graphs.
For example, in graph retrieval, is necessary to compute the joint distribution of the embeddings of
the query and corpus graph pairs (Gq, Gc). In such cases, we have the following result (proven in
Appendix E).

Proposition 6. Given two graphs Gq, Gc, let the settings in Section 3.1 hold true. Specifically, let us
assume that the loss function be invariant to simultaneous permutations of the embeddings X(q) =
GNNθ(Gq) and X(c) = GNNθ(Gc). Then, Y = [X(q);X(c)] ∈ R2n×D satisfies p(Y) = p(Y π).

Scope of the result We imposed a few simplifying assumptions only for brevity. In fact, our
exchangeability results continue to hold even when these conditions are not explicitly met, including
architectures that incorporate more complex operations such as normalization layers. Moreover, our
results remain valid even when the loss itself is not permutation-invariant. This is because such
losses may still exhibit invariance under a joint transformation consisting of (i) a permutation of
intermediate representations; and, (ii) a corresponding permutation-induced transformation of the
parameters in the subsequent layer (Appendix E.1.6).

4 APPLICATIONS TO GRAPH RETRIEVAL

Graph retrieval In graph retrieval, we are given a large number of corpus graphs C =
{
Gc

}
and the goal is to efficiently find out top-b graphs that are relevant to a given query Gq. In a
typical real-world application, the corpus database contains large number of graphs, necessitating
efficient indexing and retrieval mechanisms, akin to other retrieval tasks. In this section, we exploit
exchangeability to design a locality-sensitive hashing (LSH) method (Gionis et al.; Indyk et al., 1998;
Charikar, 2002) that accommodates a wide variety of transportation-based graph distance measures
in a unified framework. This would allow us to return the set of relevant items in a query time that is
sublinear in the number of corpus items |C|.
We proceed in two steps: (1) We leverage our results on exchangeability (Theorem 5 and Proposition 6)
to approximate the transportation-based graph similarity using Euclidean similarity, which is suited
for LSH. (2) We build upon the proposal of (Roy et al., 2023) to design LSH for such approximate
Euclidean similarity, which is also a valid LSH for the true transportation-based Euclidean similarity.

4.1 USE OF EXCHANGEABILITY TO DERIVE SIMILARITY OF GRAPHS IN EUCLIDEAN SPACE

Transportation-based relevance distance between graphs It is well established in the literature
(Roy et al., 2022; Zhuo et al., 2022; Fey et al., 2020; Jain et al., 2024; Bommakanti et al., 2024) that
transport distance between sets of node embeddings across query and corpus graphs results in better
accuracy than graph kernels or pooled single-vector representation. These works have proposed
different notions of transportation distances, e.g., hinge distance for subgraph matching (Roy et al.,
2022), graph edit distance (Jain et al., 2024; Zhuo et al., 2022, GED), etc. We unify these distances
under a common relevance distance, computed using a function ρ convex, potentially asymmetric
and decomposable between dimensions, i.e., ρ(x) =

∑
d∈[D] ρ(x[d]).

∆(Gc, Gq) = min
P∈Pn

∑

u,u′

∑

d∈[D]

ρ
(
x(q)(u)[d]− x(c)(u′)[d]

)
· P [u, u′] (1)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

If ρ(•) = [•]+, then ∆(Gc, Gq) captures the hinge distance for subgraph isomorphism (Roy et al.,
2022); if ρ(•) = e⊖ × [•]+ + e⊕ × [−•]+ for some e⊖, e⊕ > 0, then ∆(Gc, Gq) captures GED,
where e⊖ and e⊕ denote the costs of edge deletion and addition, respectively (Jain et al., 2024).
Distance to similarity Suppose the elements of the node embeddings are bounded by xmax. Given
cost function ρ, we compute ρmax = maxx,x′∈[−xmax,xmax] ρ(x − x′). We define a score function
s(x) = ρmax − ρ(x), which converts the transportation-based distance in Eq. (1) to the following
transportation-based similarity measure.

sim(Gc, Gq) = max
P∈Pn

∑

u,u′

∑

d∈[D]

s
(
x(q)(u)[d]− x(c)(u′)[d]

)
· P [u, u′]. (2)

Approximation of transportation-based similarity into Euclidean similarity Owing to the
random initialization of the parameters θ, x(q)(u) and x(c)(u′) are random variables, which makes
sim(Gc, Gq) a random scalar. Now, sim(Gc, Gq) is not amenable to indexing and search. To tackle
this, we approximate this similarity using a simpler Euclidean similarity simd(Gc, Gq), focusing on
a single dimension d. This approximate similarity is also a random variable, due to the parameter
initialization, but more amenable to approximate nearest neighbor search. As we will see shortly,
simd(Gc, Gq) serves as a scaled approximation of sim(Gc, Gq) with high probability.

Proposition 6 suggests that the node embedding pairs of Gq and Gc are exchangeable across dimen-
sions i.e., if Y = [X(q);X(c)], then we have: p(Y) = p(Y π) for any permutation π. This means
that the elements of the embeddings have an identical distribution across different dimensions. This
also yields an identical distribution in the output of the score function s(·) across different embedding
dimensions. This, in turn, allows us to approximate the score by evaluating it in any one dimension d:

simd(Gc, Gq) = max
P∈Pn

∑

u,u′

s
(
x(q)(u)[d]− x(c)(u′)[d]

)
· P [u, u′] (3)

By restricting Eq. (3) to a single dimension d ∈ [D], the problem reduces to transportation cost
between scalars. This — together with the property that s(·) is concave (as ρ is convex) — allows us
to simplify Eq. (3) (Appendix E) into a similarity function between the order statistics or the sorted
vector of the node embedding elements in a fixed dimension. Specifically, we compute the order
statistics: SORT(X(q)[:, d]) and SORT(X(c)[:, d]) and express the similarity function for dimension
d in Eq. (3) as the similarity between these order statistics:

simd(Gc, Gq) = s
(

SORT(X(q)[:, d])− SORT(X(c)[:, d])
)

(4)

As the distance function ρ is decomposable ρ(x) =
∑

d ρ(x[d]), the score function satisfies: s(x) =∑
d s(x[d]). Hence, we overload s(•) as a function on scalars in Eq. (3), as well as vectors in Eq. (4).

As exchangeability results in an identical distribution of the above similarity across the dimension d,
we will have the following concentrations (Proven in Appendix E):

Proposition 7. For any ϵ > 0, δ > 0, setting D > 1
ϵ2δ ensures that, for some β0 = OD(1), we have:

Pr
(∣∣sim(Gc, Gq)/D − simd(Gc, Gq)

∣∣ ≤ ϵ
)
≥ 1− β0δ. (5)

4.2 LOCALITY SENSITIVE HASHING OF GRAPHS

Locality sensitive hashing Locality Sensitive Hashing (LSH) maps queries and corpus items to the
same bucket with high probability when they are similar, and with low probability otherwise (Gionis
et al.; Indyk et al., 1998; Charikar, 2002; Neyshabur et al., 2015a). This enables retrieving relevant
graphs from {Gc} by searching only within the bucket where Gq gets hashed.
Why will existing approaches not work? If s(·) in Eq. (4) were a symmetric Euclidean distance,
we could directly apply existing LSH methods, such as grid-based projections for L1 (Andoni et al.,
2006) or line projections for L2 (Datar et al., 2004). However, various common graph similarities are
inherently asymmetric (refer to the examples below Eq. (1)). To address this limitation, we propose a
new framework for LSH of graphs, starting with the definition of asymmetric-LSH for graphs under
a general similarity measure (Neyshabur et al., 2015a).

Definition 8. Given Q,C, the domain of query and corpus graphs and a similarity measure sim :
C ×Q → R. A distribution over mappings F : Q → N and H : C → N is called a (S0, γS0, p, p

′)-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

asymmetric LSH (ALSH) if, with p > p′ and γ ∈ (0, 1), the following conditions are satisfied.
(1) Pr f∼F,h∼H(f(Gq) = h(Gc)) ≥ p, if sim(Gc, Gq) ≥ S0, (6)

(2) Pr f∼F,h∼H(f(Gq) = h(Gc)) ≤ p′, if sim(Gc, Gq) ≤ γS0.

Intuition behind our approach Suppose we estimate two vectors T̂q,d and T̂c,d, such that the
Euclidean similarity for dimension d in Eq. (4) can be expressed as simd(Gq, Gc) ∝ cos(T̂q,d, T̂c,d).
Then, the random hyperplane projections given by f(Gq) = sign(w⊤T̂q,d) and h(Gc) =

sign(w⊤T̂c,d) with w ∼ N (0, I), will be a valid LSH for simd (Charikar, 2002; Neyshabur et al.,
2015a). Since this Euclidean similarity is only a scaled approximation of the transportation-based
similarity sim(Gc, Gq) (Proposition 7), the same random hyperplane projection is a valid LSH for
sim(Gc, Gq). Hence, we now focus on obtaining such vectors T̂q,d and T̂c,d whose inner product
approximates simd.
GRAPHHASH: Our approach for LSH for graphs In their seminal work, Rahimi et al. (2007)
showed that kernels of the form κ(x−x′) can be approximated using a product of finite-dimensional
Fourier features. Our approximate similarity simd(Gc, Gq) = s(SORT(X(q)[:, d]) − SORT(X(c)[:
, d])) has a similar structure. However, s(·) is generally not a kernel, because the underlying distance
measure can involve complex asymmetric structure (see examples following Eq. (1)). Hence, their
method cannot be directly applied. Roy et al. (2023) extended the approach to hinge-based similarities.
We build on their idea and generalize it to arbitrary graph similarity functions. Specifically, we
express simd(Gc, Gq) as an integral over dot products of two real vectors.

Proposition 9. For each u ∈ [n], there exist vectors Fq,d(ιωu), Fc,d(ιωu) ∈ R4 with different
Fourier frequency ωu for each node u, such that: simd(Gc, Gq) (Eq. (4)) can be expressed as:

simd(Gc, Gq) =
∑

u∈[n]

∫

ωu∈R
F q,d(ιωu)

⊤F c,d(ιωu) dωu (7)

To approximate the above integral into finite terms, we design the frequency sampling distribution
as p(ωu) ∝ |S(ιωu)|, where S(ιω) is the Fourier transform of the scoring function s(•) when
applied on scalars. Given ω = [ω1, .., ωn], we use T•,d(ω) = [F•,d(ιωu)/

√
p(ωu)]u∈[n] to obtain

an equivalent expression for Eq. (7), as follows:
simd(Gc, Gq) = Eω1,..,ωn∼p(•)[T q,d(ω)⊤T c,d(ω)] (8)

We prove it in Appendix E. One can show that ||T q,d(ω)||2 = ||T c,d(ω)||2 for all Gq and Gc. Next,

we draw {ω(m)} iid∼ p(ω) to compute T̂•,d (∈ R4nM)
∆
= [T•,d(ω

(m))]m∈[M], which will give:

simd(Gc, Gq) ∝ cos(T̂ q,d, T̂ c,d) (9)

Overall routine (GRAPHHASH) Finally, we use the random hyperplane method to compute hash
codes f(Gq) and h(Gc). Given dimT , the dimension of T̂•,d and dimh, the size of a hashcode,

we first draw W ∈ Rdimh×dimT with W [r, t]
iid∼ N (0, 1) and then set h(d)(Gc) = sign(WT̂ c,d)

(Algorithm 1). During query execution, we return top-b corpus graphs {Gc} which belong to the
hash bucket f (d)(Gq) where, f (d)(Gq) = sign(WT̂ q,d) (Algorithm 2) The family of these hash
functions gives a valid LSH. We call our method as GRAPHHASH. We provide LSH guarantees for
GRAPHHASH in Appendix E.

Algorithm 1 Indexing phase of GRAPHHASH

Require: Corpus
{
Gc

}
, score function s(•)

frequency samples {ω(m)}.
1: W [i, j] ∼ N (0, 1), i ∈ [dimh], j ∈ [dimT].
2: for all Gc and d ∈ [D] do
3: Use s(·) to compute Fc,d(ιω

(m)
u) from

SORT(X(c)[:, d]) for all d,m

4: Compute T̂c,d from
{Fc,d(ιω

(m)
u)} and {pλ(ω(m)

u)}
5: h(d)(Gc) = sign(WT̂c,d)

6: Store Gc in the bucket indexed by h(d)(Gc)
7: Store W for use in the query phase

Algorithm 2 Query phase of GRAPHHASH

Require: Query Gq , stored hyperplanes W ,
frequency samples {ω(m)}Mm=1

1: R ← ∅
2: for d ∈ [D] do
3: Given s(·), compute Fq,d(ιω

(m)
u) from

SORT(X(q)[:, d]) for all d,m

4: Compute T̂q,d from
{Fc,d(ιω

(m)
u)} and {pλ(ω(m)

u)}
5: f (d)(Gq) = sign(WT̂q,d)

6: R← R∪ {Gc : Gc ∈ Bucket(f (d)(Gq))}
7: Return Top-b graphs fromR

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Gc, v

−1 0 1
XXX(c)[v, d] −→0.

00

0.
25

0.
50

0.
75

D
e
n

si
ty
−→

d = 1

d = 5

d = 10

(b) Initialization

−1 0 1
XXX(c)[v, d] −→

0.
0

0.
5

1.
0

1.
5

D
e
n

si
ty
−→

d = 1

d = 5

d = 10

(c) Epoch 8

−1 0 1
XXX(c)[v, d] −→

0

1

2

D
e
n

si
ty
−→

d = 1

d = 5

d = 10

(d) Epoch 20
Figure 1: Empirical probability density of X(c)[v, d] the highlighted node v in the example corpus
graph Gc in cox2, obtained using 5000 independently trained instances of the GNN model for
Subgraph Matching based graph retrieval. Panels (b)–(d) show the density of X(c)[v, d] after model
initialization and different stages of training.

5 EXPERIMENTS

We organize our experiments in two parts: first, we empirically validate the exchangeability property
of GNN-based graph embeddings (Theorem 5); second, we evaluate the retrieval effectiveness of
GRAPHHASH across multiple datasets. Appendix H shows additional experiments.

5.1 EMPIRICAL VALIDATION OF EMBEDDING EXCHANGEABILITY

Validation using marginal distribution We verify a necessary condition of exchangeability in the
following experiments: identical marginal distribution of the embedding elements for a fixed node
across independently initialized and trained models. For this setup, we train 5,000 independently
initialized GNN models on a small subset of the cox2 dataset, consisting of 1,024 query-corpus
graph pairs. Each model is trained for 20 epochs using the Adam optimizer with an embedding size
D = 10, by minimizing a ranking loss for a subgraph matching based graph retrieval task. For each
trained model, we extract the embedding vector for a fixed, node v from one graph Gc and record the
scalar values X(c)[v, d] for d ∈ [D]. This yields an empirical distribution of X(c)[v, d] across model
instances for each d ∈ [D].

Figure 1 shows the empirical probability density of X(c)[v, d] for three representative dimensions
d = 1, 5, 10, at three points in training: initialization, epoch 8, and epoch 20. We observe that the
distributions remain identical across the embedding dimensions throughout training. This validates
the necessary condition of our result that the embedding dimensions are exchangeable under random
initialization and remain so despite backpropagation, non-convex losses.

cox2 (GED) −3.89× 10−5 ± 2.69× 10−5

cox2 (SM) −1.18× 10−6 ± 3.28× 10−5

Table 2: Estimator for unbiased MMD2 for pX
and pXπ for cox2 dataset

Direct test for exchangeability The marginal
distributions do not capture more complex de-
pendencies between dimensions, which is why
we make use of the maximum mean discrepancy
to quantify the gap between the distribution of
X and Xπ. We sample 100 different permutations and compute the estimator of MMD2 for each
permutation, and report the average over these 100 observations. Note that estimator of MMD2

can be negative. Table 2 shows that the MMD values are extremely small for cox2dataset for
both GED and subgraph matching (SM). These results strongly support that pX and pXπ are close.

101 103

Initializations −→

0.90

0.95

1.00

σ
2 1
/
∑
i
σ

2 i
−→

(a) Graph from cox2 (SM)

101 103

Initializations −→

0.90

0.92

0.94

σ
2 1
/
∑
i
σ

2 i
−→

(b) Graph from cox2 (GED)
Figure 3: The relative size of the top singular value of the
mean (trained) embedding across model initializations.

Rank of E[X] Another conse-
quence of exchangeability is that the
expectation of the graph embedding
matrix E[X] is rank one. Conse-
quently, we expect the leading singu-
lar value of the sample mean graph
embedding matrix to be significantly
larger than the rest. Figure 3 shows
how the ratio σ2

1∑
i σ

2
i

varies over multi-
ple runs, where σ1, ..σn are the singu-
lar values of E[X], sorted in decreas-
ing order. We observe that this frac-
tion converges to one, which indicates that the rank of the embedding matrix is 1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.2 EVALUATION OF GRAPHHASH’S RETRIEVAL PERFORMANCE

We evaluate GRAPHHASH against existing baselines on four datasets to assess retrieval accuracy-
efficiency trade-offs across indexing strategies.
Setup We construct retrieval datasets using four real-world benchmarks from the TUDatasets (Mor-
ris et al., 2020): ptc-fr, ptc-fm, cox2, and ptc-mr. Each dataset consists of 500 query graphs
and a corpus of 100,000 graphs, following related work (Roy et al., 2022; Lou et al., 2020). We
generate binary relevance labels under two asymmetric graph similarity signals: (1) Subgraph
Matching (SM): Relevance is determined using the VF2 subgraph matching algorithm (Hagberg
et al., 2020). Here, we set binary relevance rel(Gc, Gq) = JGq ⊂ GcK, where J•K is the indicator
function. (2) GED: We use the GEDLIB toolkit (Blumenthal et al., 2019) to compute edit distances
with asymmetric costs e⊕ = 1 (insertion) and e⊖ = 2 (deletion), followed by thresholding to obtain
binary relevance. Here, we set rel(Gc, Gq) = JGED(Gc, Gq) ≤ τK, where τ is a threshold. For each
supervision type, we train a separate transport-based scoring model using the relevance distances for
Subgraph Matching and for GED. The model is trained using a pairwise ranking loss (Roy et al., 2022;
Jain et al., 2024) of the form

∑
q

∑
c:rel(Gc,Gq)=1,c′:rel(Gc′ ,Gq)=0[∆(Gc, Gq) − ∆(Gc′ , Gq) + γ]+

where γ is a fixed margin, and ∆(·, ·) denotes the transport-based relevance distance (Eq. (1)). We
evaluate retrieval performance using both MAP and NDCG. The analysis presented below focuses on
MAP, while NDCG results and additional experiments are in Appendix H.

We benchmark GRAPHHASH against five competitive ANN methods adapted to graph retrieval. These
include single-vector and multi-vector indexing paradigms. (I) FourierHashNet (Roy et al., 2023): It
implements an LSH tailored for shift-invariant asymmetric distances by projecting graph emnbeddings
into the Fourier space. Each graph G• is represented as a single vector z• = 1

|V•|
∑

u∈V•
x(u),

where X = [x(u)]u∈[n]. (II) Random Hyperplanes (RH) (Charikar, 2002; Indyk et al., 1997):
It serves as a classic LSH baseline, where we directly hash mean pooled graph representations using
random linear projections. (III) IVF (Douze et al., 2024): It follows the FAISS-based ColBERT-
style approach, constructing a dense inverted index over the collection of corpus node embeddings,
and probes with individual query node vectors, followed by aggregating the hits at the graph level.
(IV) DiskANN (Simhadri et al., 2023) follows a similar multi-vector setup but leverages an HNSW
index over corpus node embeddings. Lastly, we include a Random baseline that retrieves a uniformly
sampled subset of corpus graphs. Appendix G contains additional details about the setup.

GraphHash FourierHashNet RH (Subsampled) DiskANN IVF Random

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

M
A

P
−→

(a) ptc-fm (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

M
A

P
−→

(b) cox2 (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

M
A

P
−→

(c) ptc-fr (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

M
A

P
−→

(d) ptc-mr (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.1

0.2

0.3

M
A

P
−→

(e) ptc-fm (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.1

0.2

M
A

P
−→

(f) cox2 (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.1

0.2

0.3

0.4

M
A

P
−→

(g) ptc-fr (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.1

0.2

0.3

0.4

M
A

P
−→

(h) ptc-mr (GED)
Figure 4: Trade-off between mean average precision (MAP) and number of retrieved graphs, for
GRAPHHASH, FourierHashNet (Roy et al., 2023), Random Hyperplane (RH) (Charikar, 2002; Indyk
et al., 1997), IVF (Douze et al., 2024),DiskANN (Simhadri et al., 2023) and Random, across all
datasets. Top row: Retrieval based on Subgraph Matching (SM); Bottom row: Retrieval based on
GED. Horizontal red line denotes 50% of exhaustive MAP. Our method shows a better trade-off than
others in majority of the cases.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Results We vary hyperparameters in each method to produce different retrieval set sizes, yielding
MAP vs. # retrieved graphs trade-offs shown in Figure 4. The key observations are as follows.
(1) GRAPHHASH consistently outperforms all baselines across both Subgraph Matching (SM)
and Graph Edit Distance (GED), with FourierHashNet emerging as the next-best method overall.
(2) FourierHashNet fails to span the full selectivity spectrum, particularly on SM tasks—most notably
on ptc-fr and ptc-mr, where its MAP plateaus below 50% of the exhaustive MAP. (3) RH
hashing performs reasonably well on GED, occasionally matching GRAPHHASH in MAP. However,
it exhibits high variance at fixed selectivity levels, complicating hyperparameter tuning. On SM tasks,
RH performs worse than random, which is expected since cosine similarity over pooled vectors is
ill-suited to the asymmetric nature of containment queries. (4) DiskANN and IVF, despite using
multi-vector indexing, perform poorly due to their reliance on symmetric similarity metrics like L2

and cosine, which are incompatible with the asymmetric transport-based supervision. (5) Random
sampling yields substantially lower MAP compared to both GRAPHHASH and FourierHashNet,
highlighting the non-trivial structure captured by learned or LSH-based methods.

Next, we vary dimh (number of hash bits) and obtain different trade-off curve between MAP and #no
of retrieved graphs. We plot the variation of AUC against dimh, which shows at around dimh = 10,
we obtain an optimal trade-off.

0 25 50
dimh −→

0.1

0.2

0.3

A
U

C
−→

(a) ptc-fm (SM)

0 25 50
dimh −→

0.1

0.2

0.3

A
U

C
−→

(b) cox2 (SM)

0 25 50
dimh −→

0.1

0.2

0.3

A
U

C
−→

(c) ptc-fr (SM)

0 25 50
dimh −→

0.1

0.2

0.3

A
U

C
−→

(d) ptc-mr (SM)

0 25 50
dimh −→

0.05

0.10

0.15

0.20

0.25

0.30

A
U

C
−→

(e) ptc-fm (GED)

0 25 50
dimh −→

0.05

0.10

0.15

0.20

A
U

C
−→

(f) cox2 (GED)

0 25 50
dimh −→

0.1

0.2

0.3

A
U

C
−→

(g) ptc-fr (GED)

0 25 50
dimh −→

0.1

0.2

0.3

A
U

C
−→

(h) ptc-mr (GED)
Figure 5: Performance of GRAPHHASH across different choices for dimh, the size of the hashcode.
We summarize the trade-off plot between MAP and the number of retrieved graphs by computing
the area under the curve after normalizing the x-axis. We observe that the optimal size is around
dimh = 10 across datasets and tasks.

6 CONCLUSIONS

Taking a step beyond existing notions of algebraic symmetries in neural architectures and losses, we
introduce the property of exchangeability over neural graph embeddings. We show that this property
is exhibited by a broad class of graph neural networks across a broad class of loss functions and
optimizers. We utilize this property to obtain a concentration bound for reducing transport problems
on node embeddings, culminating in GRAPHHASH, a unified and theoretically grounded framework
for approximate graph retrieval using general transport-based distances. We experimentally validate
exchangeability, and GRAPHHASH consistently outperforms strong baselines in retrieval performance
under both subgraph matching and edit distance supervision. Future work might explore other
consequences of the phenomenon on learning and training dynamics. It may be worthwhile to extend
the framework to similarities over a richer class of similarity functions between three dimensional
molecular structures, 3D objects, etc.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work makes an algorithmic contribution and uses only publicly available, non-proprietary graph
datasets under their original licenses. No human subjects or sensitive data are involved. We believe
our results advance understanding of graph retrieval without raising additional ethical concerns.

REPRODUCIBILITY STATEMENT

We provide code, configuration files, and dataset splits to fully reproduce all experiments. Hyper-
parameters, training settings, and evaluation protocols are documented, and scripts are included
to regenerate the reported figures and tables. In addition, all theorems are stated formally with
accompanying proofs in the appendix to allow independent verification of our theoretical claims.

REFERENCES

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. arXiv preprint arXiv:2209.04836, 2022.

David J. Aldous. Exchangeability and related topics, pp. 1–198. Springer Berlin Heidelberg, 1985.
ISBN 9783540393160. doi: 10.1007/bfb0099421. URL http://dx.doi.org/10.1007/
BFb0099421.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. In Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’2006), pp. 459–468, 2006.

Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Earth mover distance over high-dimensional
spaces. In Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms (SODA ’2008),
pp. 343–352, 2008.

Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David Woodruff. Efficient sketches for earth-mover
distance, with applications. In Proceedings of the 50th Annual IEEE Symposium on Foundations
of Computer Science (FOCS ’2009), 2009.

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. Simgnn: A neural
network approach to fast graph similarity computation. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, pp. 384–392, 2019.

Benjamin Bloem-Reddy, Yee Whye, et al. Probabilistic symmetries and invariant neural networks.
Journal of Machine Learning Research, 21(90):1–61, 2020.

David B. Blumenthal, Sébastien Bougleux, Johann Gamper, and Luc Brun. Gedlib: A c++ library
for graph edit distance computation. In Donatello Conte, Jean-Yves Ramel, and Pasquale Foggia
(eds.), Graph-Based Representations in Pattern Recognition, pp. 14–24, Cham, 2019. Springer
International Publishing. ISBN 978-3-030-20081-7.

Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks meet
transformers. 2023.

Salomon Bochner and Komaravolu Chandrasekharan. Fourier transforms. (AM-19), volume 19.
Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, July 1949.

Aditya Bommakanti, Harshith R Vonteri, Konstantinos Skitsas, Sayan Ranu, Davide Mottin, and
Panagiotis Karras. Fugal: Feature-fortified unrestricted graph alignment. Advances in Neural
Information Processing Systems, 37:19523–19546, 2024.

Johanni Brea, Berfin Simsek, Bernd Illing, and Wulfram Gerstner. Weight-space symmetry in
deep networks gives rise to permutation saddles, connected by equal-loss valleys across the loss
landscape. arXiv preprint arXiv:1907.02911, 2019.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint, 2017.

Phuong Bui Thi Mai and Christoph Lampert. Functional vs. parametric equivalence of relu networks.
In 8th International Conference on Learning Representations, 2020.

11

http://dx.doi.org/10.1007/BFb0099421
http://dx.doi.org/10.1007/BFb0099421

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. A comprehensive survey of graph
embedding: Problems, techniques, and applications. IEEE transactions on knowledge and data
engineering, 30(9):1616–1637, 2018.

Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings
of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC ’02, pp. 380–388.
Association for Computing Machinery, 2002. ISBN 1581134959. doi: 10.1145/509907.509965.
URL https://doi.org/10.1145/509907.509965.

Xi Chen, Rajesh Jayaram, Amit Levi, and Erik Waingarten. An improved analysis of the quadtree for
high-dimensional emd. 2020.

Xi Chen, Rajesh Jayaram, Amit Levi, and Erik Waingarten. New streaming algorithms for high
dimensional emd and mst. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory
of Computing, pp. 222–233, 2022.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International conference
on machine learning, pp. 2990–2999. PMLR, 2016.

John M. Danskin. The Theory of Max-Min and its Application to Weapons Allocation Problems.
Springer Berlin Heidelberg, 1967. ISBN 9783642460920. doi: 10.1007/978-3-642-46092-0. URL
http://dx.doi.org/10.1007/978-3-642-46092-0.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the 20th ACM Symposium on Computa-
tional Geometry (SoCG ’2004), pp. 253–262, 2004.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems
(NeurIPS), 2016.

Ishan Deshpande, Ziyu Zhang, and Alexander G Schwing. Generative modeling using the sliced
wasserstein distance. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3483–3491, 2018.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth, 2023. URL https://arxiv.org/abs/
2103.03404.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv preprint
arXiv:2401.08281, 2024.

Jian Du, Shanghang Zhang, Guanhang Wu, José MF Moura, and Soummya Kar. Topology adaptive
graph convolutional networks. arXiv preprint arXiv:1710.10370, 2017.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

Chi Thang Duong. Graph Embedding for Retrieval. PhD thesis, EPFL, 2022.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Tim-
othy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs for
learning molecular fingerprints. 2015.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. arXiv preprint arXiv:2110.06296, 2021.

Matthias Fey, Jan Eric Lenssen, Christopher Morris, Jonathan Masci, and Nils M. Kriege. Deep
graph matching consensus. In 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://
openreview.net/forum?id=HyeJf1HKvS.

12

https://doi.org/10.1145/509907.509965
http://dx.doi.org/10.1007/978-3-642-46092-0
https://arxiv.org/abs/2103.03404
https://arxiv.org/abs/2103.03404
https://openreview.net/forum?id=HyeJf1HKvS
https://openreview.net/forum?id=HyeJf1HKvS

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C Daniel Freeman and Joan Bruna. Topology and geometry of half-rectified network optimization.
arXiv preprint arXiv:1611.01540, 2016.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Emma J Gerritse, Faegheh Hasibi, and Arjen P de Vries. Graph-embedding empowered entity
retrieval. In Advances in Information Retrieval: 42nd European Conference on IR Research, ECIR
2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part I 42, pp. 97–110. Springer, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via hashing.
In Proceedings of the 25th International Conference on Very Large Data Bases (VLDB ’1999).

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Charles Godfrey, Davis Brown, Tegan Emerson, and Henry Kvinge. On the symmetries of deep
learning models and their internal representations. arXiv preprint arXiv:2205.14258, 2022.

Aric Hagberg and Drew Conway. Networkx: Network analysis with python. URL: https://networkx.
github. io, 2020.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems (NeurIPS), 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In Advanced
Neural Computers, pp. 129–135. Elsevier, 1990.

Piotr Indyk. Algorithms for dynamic geometric problems over data streams. In Proceedings of the
36th ACM Symposium on the Theory of Computing (STOC ’2004), pp. 373–380, 2004.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse
of dimensionality. In Proceedings of the 30th ACM Symposium on the Theory of Computing
(STOC ’1998), pp. 604–613, 1998.

Piotr Indyk and Nitin Thaper. Fast color image retrieval via embeddings. In Workshop on Statistical
and Computational Theories of Vision (at ICCV), 2003.

Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and Santosh Vempala. Locality-preserving
hashing in multidimensional spaces. In Proceedings of the twenty-ninth annual ACM symposium
on Theory of computing, pp. 618–625, 1997.

Eeshaan Jain, Indradyumna Roy, Saswat Meher, Soumen Chakrabarti, and Abir De. Graph edit
distance with general costs using neural set divergence. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

Rajesh Jayaram, Erik Waingarten, and Tian Zhang. Data-dependent lsh for the earth mover’s distance.
In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, pp. 800–811, 2024.

Federico Arangath Joseph, Jerome Sieber, Melanie Zeilinger, and Carmen Amo Alonso. Lambda-
skip connections: the architectural component that prevents rank collapse. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=1yJP5TVWih.

13

https://openreview.net/forum?id=1yJP5TVWih
https://openreview.net/forum?id=1yJP5TVWih

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014. URL https://api.semanticscholar.org/CorpusID:
6628106.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, and Gustavo Rohde. Generalized
sliced wasserstein distances. Advances in neural information processing systems, 32, 2019.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, and Yee Whye Teh.
Set transformer: A framework for attention-based permutation-invariant neural networks. In
International Conference on Machine Learning (ICML), 2019.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. In International Conference on Learning Representations (ICLR), 2016.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching networks
for learning the similarity of graph structured objects. In International conference on machine
learning, pp. 3835–3845. PMLR, 2019. URL https://arxiv.org/abs/1904.12787.

Zihao Li, Yuyi Ao, and Jingrui He. Sphere: Expressive and interpretable knowledge graph embedding
for set retrieval. In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2629–2634, 2024.

Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes Canedo, Jure Leskovec, et al. Neural subgraph
matching. arXiv preprint arXiv:2007.03092, 2020.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In 7th International Conference on Learning Representations, ICLR, 2019.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs, 2020.

Alireza Naderi, Thiziri Nait Saada, and Jared Tanner. Mind the gap: a spectral analysis of rank
collapse and signal propagation in attention layers, 2025. URL https://arxiv.org/abs/
2410.07799.

Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and Haggai Maron. Equiv-
ariant architectures for learning in deep weight spaces. In International Conference on Machine
Learning, pp. 25790–25816. PMLR, 2023.

Behnam Neyshabur and Nathan Srebro. On symmetric and asymmetric lshs for inner product search.
In International Conference on Machine Learning, pp. 1926–1934. PMLR, 2015a.

Behnam Neyshabur, Russ R Salakhutdinov, and Nati Srebro. Path-sgd: Path-normalized optimization
in deep neural networks. Advances in neural information processing systems, 28, 2015b.

Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen, Xinying Song,
and Rabab Ward. Deep sentence embedding using long short-term memory networks: Analysis
and application to information retrieval. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 24(4):694–707, 2016.

Fidel A Guerrero Peña, Heitor Rapela Medeiros, Thomas Dubail, Masih Aminbeidokhti, Eric
Granger, and Marco Pedersoli. Re-basin via implicit sinkhorn differentiation. arXiv preprint
arXiv:2212.12042, 2022.

14

https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://arxiv.org/abs/1904.12787
https://arxiv.org/abs/2410.07799
https://arxiv.org/abs/2410.07799

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
neural information processing systems, 20, 2007.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Rishabh Ranjan, Siddharth Grover, Sourav Medya, Venkatesan Chakaravarthy, Yogish Sabharwal,
and Sayan Ranu. Greed: A neural framework for learning graph distance functions. In Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, November 29-Decemer 1, 2022, 2022.

Andreas Roth and Thomas Liebig. Rank collapse causes over-smoothing and over-correlation in
graph neural networks, 2024. URL https://arxiv.org/abs/2308.16800.

Indradyumna Roy, Venkata Sai Baba Reddy Velugoti, Soumen Chakrabarti, and Abir De. Interpretable
neural subgraph matching for graph retrieval. In Proceedings of the AAAI conference on artificial
intelligence, volume 36, pp. 8115–8123, 2022.

Indradyumna Roy, Rishi Agarwal, Soumen Chakrabarti, Anirban Dasgupta, and Abir De. Locality
sensitive hashing in fourier frequency domain for soft set containment search. Advances in Neural
Information Processing Systems, 36:56352–56383, 2023.

Yuki Saito, Takuma Nakamura, Hirotaka Hachiya, and Kenji Fukumizu. Exchangeable deep neural
networks for set-to-set matching and learning. In European Conference on Computer Vision, pp.
626–646. Springer, 2020.

Filippo Santambrogio. Optimal transport for applied mathematicians, volume 87. Springer, 2015.

Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Self-supervised representation learning
on neural network weights for model characteristic prediction. Advances in Neural Information
Processing Systems, 34:16481–16493, 2021.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.
Exphormer: Sparse transformers for graphs. In International Conference on Machine Learning,
pp. 31613–31632. PMLR, 2023.

Harsha Vardhan Simhadri, Ravishankar Krishnaswamy, Gopal Srinivasa, Suhas Jayaram Subramanya,
Andrija Antonijevic, Dax Pryce, David Kaczynski, Shane Williams, Siddarth Gollapudi, Varun
Sivashankar, Neel Karia, Aditi Singh, Shikhar Jaiswal, Neelam Mahapatro, Philip Adams, Bryan
Tower, and Yash Patel. DiskANN: Graph-structured indices for scalable, fast, fresh and filtered
approximate nearest neighbor search, 2023. URL https://github.com/Microsoft/
DiskANN.

Berfin Simsek, François Ged, Arthur Jacot, Francesco Spadaro, Clément Hongler, Wulfram Gerstner,
and Johanni Brea. Geometry of the loss landscape in overparameterized neural networks: Symme-
tries and invariances. In International Conference on Machine Learning, pp. 9722–9732. PMLR,
2021.

Kiran K. Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. Attention-based graph
neural network for semi-supervised learning, 2018. URL https://arxiv.org/abs/1803.
03735.

Tijmen Tieleman and Geoffrey Hinton. Neural networks for machine learning, lecture 6.5—rmsprop.
http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf, 2012.
Coursera lecture slides.

Titouan Vayer, Rémi Flamary, Romain Tavenard, Laetitia Chapel, and Nicolas Courty. Sliced
gromov-wasserstein. arXiv preprint arXiv:1905.10124, 2019.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018.

15

https://arxiv.org/abs/2308.16800
https://github.com/Microsoft/DiskANN
https://github.com/Microsoft/DiskANN
https://arxiv.org/abs/1803.03735
https://arxiv.org/abs/1803.03735
http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey of
approaches and applications. IEEE transactions on knowledge and data engineering, 29(12):
2724–2743, 2017.

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr., Christopher Fifty, Tao Yu, and Kilian Q.
Weinberger. Simplifying graph convolutional networks. arXiv preprint, 2019.

Qitian Wu, Wentao Zhao, Zenan Li, David Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification, 2023. URL https://arxiv.org/abs/
2306.08385.

Wah Chai Wu. On rearrangement inequalities for multiple sequences. 2020. https://arxiv.
org/abs/2002.10514v10.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov, and
Alexander Smola. Deep sets. In Advances in Neural Information Processing Systems (NeurIPS),
2017.

Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the Twenty-First International Conference on Machine Learning
(ICML), 2004.

Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie, and Yanfang
Ye. Gophormer: Ego-graph transformer for node classification. 2021.

Xixi Zhou, Yang Gao, Xin Jie, Xiaoxu Cai, Jiajun Bu, and Haishuai Wang. Ease-dr: Enhanced
sentence embeddings for dense retrieval. In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 2374–2378, 2024.

Hao Zhu and Piotr Koniusz. Simple spectral graph convolution. In ICLR, 2021.

Wei Zhuo and Guang Tan. Efficient graph similarity computation with alignment regularization.
Advances in Neural Information Processing Systems, 35:30181–30193, 2022.

16

https://arxiv.org/abs/2306.08385
https://arxiv.org/abs/2306.08385
https://arxiv.org/abs/2002.10514v10
https://arxiv.org/abs/2002.10514v10

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Exchangeability of GNN Representations
with Applications to Graph Retrieval

(Appendix)
CONTENTS

A Broader Impact 18

B Limitations 18

C LLM Usage 18

D Related work 18

E Proofs and other technical details 20
E.1 Proofs of the results of exchangeability presented in Section 3 20

E.1.1 Proof of Lemma 2 . 21
E.1.2 Proof of Lemma 3 . 23
E.1.3 Proof of Lemma 4 . 24
E.1.4 Proof of Theorem 5 and Proposition 6 . 25
E.1.5 Equivariance of the Update Step . 27
E.1.6 Additional Results on Exchangeability . 31

E.2 Proofs of the technical results in Section 4 . 33
E.2.1 Proof of Proposition 7 . 33
E.2.2 Proof of the fact that Eq. (3) and Eq. (4) are equivalent 35
E.2.3 Auxiliary Results used to prove Lemmas in Appendix E.2 36
E.2.4 Proofs of LSH results . 38
E.2.5 Auxiliary results used to prove results in this subsection E.2.4 43

F List of GNNs 45
F.1 Graph Neural Network . 45
F.2 Graph Transformers . 47
F.3 Set-based Neural Network . 49

G Additional details about experiments 50
G.1 Datasets . 50
G.2 Embedding model architecture . 50
G.3 Fourier-map and hashcode training . 51
G.4 Baselines . 51
G.5 Evaluation Metrics . 52
G.6 Hardware and Licenses . 53

H Additional Experiments 54
H.1 Additional Exchangeability Results . 54
H.2 Further Evaluation of GRAPHHASH’s Retrieval Performance 55

H.2.1 MAP on Equal-Cost GED . 55
H.2.2 Evaluation using NDCG . 56
H.2.3 Clarification on RH (Subsampled) . 57
H.2.4 Evaluation on Larger Graphs . 59
H.2.5 Evaluation on larger corpus . 59
H.2.6 Ablation Studies . 60
H.2.7 Comparison of sim and simd . 63
H.2.8 Evaluation of LSH Methods under Aligned Scoring Functions 64

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A BROADER IMPACT

Our work is the first of its kind within the space of distributional symmetries in neural architectures,
as it moves the focus towards the distribution of embeddings over randomness in initialization. Our
work may also be adapted to other classes of neural networks. Probabilistic symmetries may have
other consequences to training and learning dynamics, like our concentration bound.

GRAPHHASH also offers an efficient way to retrieve graphs from a large database of graphs. It can
help in identifying a subset of molecules which is similar to some other molecule, from a large corpus.
It can also help in video or image retrieval by specifically focusing on scene graphs. Thus, our work
has the potential to reduce computational cost and carbon footprint of large search systems.

B LIMITATIONS

(1) We only restrict ourselves to exchangeability as probabilistic symmetry of GNN, which is
symmetry induced by permutations in the weight space. In this work, we do not consider how other
types of symmetry can affect the probability density function of the embeddings. However, our work
can be seen as a stepping stone to characterize such cases. (2) It is well known that the exchangeable
sequence (Y1, ..., YD) tends to become an i.i.d. sequence as D → ∞. However, this does not apply to
our setting because the values of the embedding elements also depend on D. It would be interesting
to discover asymptotic characterization of embedding values. (3) Exact graph distance involves
solving a quadratic assignment problem, whereas its surrogate used in Eq. (1) approximates graphs
using sets. This gives a first order approximation, which allows us to leverage exchangeability to
approximate transportation distance between two embedding sets using Euclidean distance. One
can provide more accurate approximation using distance between edge embeddings. We did not
provide this formulation in our paper. However, our work can be easily extended to such setting, by
considering joint distribution between node pairs.

C LLM USAGE

We used an LLM primarily for correction of grammar and polishing text. Very occasionally, we
used it to supplement bibliographic search. No LLM was used to generate ideas, design experiments,
analyze data, implement algorithms, or produce results. We carefully reviewed and revised any
response provided by LLM.

D RELATED WORK

Representation learning Representation using dense embeddings of structured objects has been a
much-studied area of research, e.g. for, sets (Lee et al., 2019; Zaheer et al., 2017), sequences (Palangi
et al., 2016; Zhou et al., 2024), and graphs (Cai et al., 2018; Wang et al., 2017). Relatively fewer
results focus on the question of retrieval using these embeddings (Li et al., 2024; Duong, 2022;
Gerritse et al., 2020). Prior works on graph retrieval predominantly aggregate node embeddings
from each graph into a single, pre-computable embedding vector (Li et al., 2019; Bai et al., 2019;
Ranjan et al., 2022). This allows for the use of standard indexing methods for vector similarity search.
However, this reduces accuracy due to compressing the entire graph into one embedding.
Transportation distance in graphs More recent techniques for graph embedding employ node-
based vectors and then define relevance scores of the corpus graphs with respect to the query by using
transportation distance between the two sets of vectors (Roy et al., 2022; Zhuo et al., 2022; Fey et al.,
2020). The cost within the transportation framework models various notions of relevance measure,
including asymmetric measures for subgraph matching, graph edit distance with non-uniform costs,
etc., which results in enhanced accuracy, as compared to aggregation to single vectors.
Locality sensitive hashing After obtaining the embedding (or set of embeddings), there still
remains the question of finding out the most relevant object using this representation. For traditional
vector databases, locality sensitive hashing (LSH), Indyk et al. (1998) pioneered a celebrated method
for approximate near neighbor search. The benefit of LSH over comparable techniques, e.g., IVF, and
graph-based techniques, e.g., HNSW, is the faster indexing time while giving comparable or slightly
worse recall times.
LSH for transportation distance A key contribution of the current work is to propose an LSH for
transportation distance, in context of GNN. Nearest neighbor methods has been studied extensively in

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

the theory community (Indyk et al., 2003; Andoni et al., 2009; Chen et al., 2022; 2020; Indyk, 2004;
Andoni et al., 2008; Jayaram et al., 2024). They first embed a set similarity into Euclidean space with
some distortion factor, and then use this reduction to design an LSH. However, the similarity measure
in these existing works is always symmetric, whereas in graph retrieval, it is often asymmetric, such
as in subgraph matching or Graph Edit Distance (GED) with non-uniform costs.
Sliced Wasserstein distance While transportation distance is computationally expensive, recent
studies have explored approximations that are cheaper (Kolouri et al., 2019; Deshpande et al., 2018;
Vayer et al., 2019). The most well-known one, perhaps, is the sliced Wasserstein (SW) distance,
which is the average of the Wasserstein distance over multiple 1D random projections. Deshpande
et al. (2018) show the efficacy of the SW distance for GAN training. Kolouri et al. (2019) demonstrate
the connection of SW distance to the Radon transform, and Vayer et al. (2019) propose sliced Gromov
Wasserstein, a similar approximation for the Gromov-Wasserstein distance, also used for optimal
transport. However, none of them study the question of efficient retrieval under such distances, or the
connection with dimension exchangeability of representations produced by common neural networks.

Transportation distance has also been studied in the average case: Jayaram et al. (2024) give a
O(log n) approximate data-dependent LSH in the distributional case. In our setting, this problem is
tackled by showing the exchangeability of embedding dimensions of GNNS. Our result is incom-
parable to (Jayaram et al., 2024), since their posited distribution is not exchangeable, and our set
of exchangeable distributions is broader than what (Jayaram et al., 2024) assumed. The notion of
exchangeability has been studied before for neural networks, but in different contexts and toward
different goals. Set transformers famously utilized permutation invariance to give set embeddings,
exchangeable networks for set-to-set matching were described by Saito et al. (2020), while Bloem-
Reddy et al. (2020) characterized invariant network architectures for a particular symmetry property,
including exchangeability, of the input. However, none of these results have characterized the ex-
changeability property of the embedding dimensions, as is done in our work. In Introduction, we have
already mentioned works that recognized various symmetries of loss surfaces with respect to hidden
units of some standard networks. In those works, such symmetry is usually an impediment to fast
optimization, remedied by advanced optimization techniques. In contrast, we use such symmetries to
establish exchangeability, in the service of efficient LSH indexes.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E PROOFS AND OTHER TECHNICAL DETAILS

In this section, we present the proofs of the technical results presented in Section 3 and Section 4.

E.1 PROOFS OF THE RESULTS OF EXCHANGEABILITY PRESENTED IN SECTION 3

Here, we prove Lemma 2, Lemma 3, Lemma 4, Theorem 5 and Proposition 6. To achieve this goal,
we first restate the setting:
(1) Broad class of GNN architectures We consider the a wide variety of GNN architectures, which
are enlisted in Appendix F. This list encompasses a wide range of GNN architectures, including gated
GNN (Gilmer et al., 2017), GIN (Xu et al., 2019), GAT (Veličković et al., 2018), GCN (Kipf et al.,
2017). Note that, our analysis is likely to extend beyond these cases, and can also be applied in Graph
transformers, as shown in Appendix F
(2) IID intialization of the parameters within a layer The entries of the parameter matrix Θ(ℓ)

in each layer of are initialized in an i.i.d manner. Parameters across different layers are initialized
independently, but not necessarily identically. This covers standard model initialization schemes,
such as Kaiming initialization (He et al., 2015) and Xavier initialization (Glorot et al., 2010), both of
which yield i.i.d. initialization of the parameters within a layer.
(3) Permutation invariance of loss function We consider the loss function is invariant to the
permutations of elements in the node embeddings. This holds naturally in several settings including
our graph retrieval. Here, the loss, whether binary cross-entropy or pairwise ranking, depends on the
similarity between (Gq, Gc) via the transportation plan between X(q) and X(c) (Roy et al., 2022;
Zhuo et al., 2022). Since this similarity is invariant under permutations of embedding elements, the
loss is likewise permutation-invariant. In link prediction, the similarity between two nodes u and v is
often computed as the dot product x(u)⊤x(v), which is invariant to permutations of the elements of
x. Consequently, the associated loss is also permutation-invariant.
(4) Broad class of optimizers The optimizer for training can be SGD (Zhang, 2004),
Adam (Kingma et al., 2015), etc. This pertains to standard optimizers, which are routinely em-
ployed across learning settings.
Additional Notation We further introduce supplementary notation.

(1) We use Θ
(ℓ)
t to denote the parameter matrix of the ℓ-th layer at the tth update step. We shall

index our weights using the set [ℓmax] = {0, 1, . . . , ℓmax}, which shall implicitly cover each of the
components (embedding initialization, message passing and update step). We will typically use ℓ to
denote the layer index.
(2) Θ

(ℓ)
<t denotes the collection of parameters Θ(ℓ)

iter for iter = 0, 1, . . . , t− 1.
(3) θ<t denotes the collection of all parameters θiter for iter = 0, 1, . . . , t− 1.
(4) Γ

(ℓ)
π is a transformation on the parameters of the ℓ-th layer. Γπ is a global transformation on

all parameters. We take Γπ to be separable across layers (this holds for the permutation-based
transformations considered by us). That is, Γπ may be written as Γπ =

⊕
ℓ∈[ℓmax]

Γ
(ℓ)
π . This means

that Γπ(θ) =
(
Γ
(ℓ)
π (Θ(ℓ)) | ℓ ∈ [ℓmax]

)
.

(5) I2 refers to the domain of the parameters, which is Rp where p is the number of parameters in
the network.
(6) We refer to the loss function at the tth update step as losst, which a function of the parameters of
the network, i.e., losst(θ); thus the index t encodes the batching/data used for that update step. When
it is clear from context, we may write losst(θt) simply as losst.
(7) δ∆,(k,l) is defined as the matrix of appropriate dimensions with all zeros except for a ∆ at the
(k, l)-th position. Note that this is different from Dirac delta function δ(•) — we will alert the reader
if we use δ as Dirac delta function.
(8) We denote the gradient of the loss function with respect to the parameters θt as the collection
gradt

∆
= (grad

(ℓ)
t |ℓ ∈ [ℓmax]), where ℓ is the layer index. Here, grad(ℓ)

t is a matrix of the same
dimensions as Θ(ℓ)

t which has the corresponding gradients. As set by earlier convention, grad(ℓ)
<t

denotes the collection of gradients grad
(ℓ)
iter for iter = 0, 1, . . . , t − 1, and grad<t denotes the

collection of all gradients graditer for iter = 0, 1, . . . , t− 1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E.1.1 PROOF OF LEMMA 2

Lemma 2. Given a graph G and a GNN architecture GNNθ enlisted in Appendix F, let the node
embedding matrix of G be X = GNNθ(G) ∈ Rn×D. Then, for any permutation matrix π ∈
PD, there exists a bijective transformation Γπ with |Det (∂Γπ(θ)/∂θ)| = 1 such that Xπ =
GNNΓπ(θ)(G). We call Γπ as a permutation induced transformation, for π.

Proof: Overview. In this section, we focus on two architectures, which covers the intricacy
involved in designing the permutation inducing transformation. For other GNN architectures, we
provide the reader with building blocks for transformations involving other common GNN layers in
Appendix F.

In this proof, we consider the GNN in the form of gated GNN used by Li et al. (2016); Gilmer et al.
(2017).

Architecture. Given integers K and D, a graph neural network (GNNθ) computes node embeddings
xk(u) ∈ RD for u ∈ V using K message passing steps. Here, we initialize x0(u) using node
features feat(u) and keep updating xk using two neural networks updθ and msgθ having parameters
θ.

x0(u) = initθ(feat(u)), (10)

xk+1(u) = updθ
(
xk(u),

∑
v:(u,v)∈E msgθ(xk(u),xk(v))

)
, for k < K. (11)

In the above: initθ,msgθ are multilayer perceptron (MLP) networks of the form of Linear(ℓmax) ◦
σ(ℓmax−1) ◦ · · · ◦ σ(1) ◦ Linear(1), where Linear(ℓ) is a linear layer and σ(ℓ) is an activation function
that applies pointwise. updθ can be (a) an MLP network or, (b) one layer of GRU (Gilmer et al.,
2017). In the current analysis, we omit step index t, since we are focusing on only one step.
Gated GNN with MLP based updθ: Proof Sketch. In particular, we assume that each of

Θ(0)

πΘ(0)

Θ(1) Θ(2)feat(u)
feat(v)
feat(w)

⊕x0(u)
x0(v)
x0(w)

xk(u) xk(v)
[]xk(v) xk(w)

initθ
Θ(1)0][π⊤ π

xk(u)
xk(v)
xk(w)

feat(u)
feat(v)
feat(w)

πx0(u)
x0(v)
x0(w)

π
π

xk(u)
xk(v)
xk(w)

π
π
π

Θ(2) ⊕
msgθ

xk+1(u)
xk+1(v)
xk+1(w)

Θ(3) Θ(4)

updθ

Θ(3) Θ(4)

π π

u

v
w

u

v
w

[]

[]xk(v) xk(w)
πxk(u) xk(v)[]π

ππ

π
π
π

xk+1(u)
xk+1(v)
xk+1(w)

π⊤ 0
0][π⊤

π⊤
0

initθ,msgθ,updθ is a simple MLP with 1, 2, and 2 layers, respectively. The figure shows initialization
and recursive propagation from layer k to k+1. To induce the transformation xK(u) 7→ xK(u)π, we
modify the final layer of updθ as Θ(4) 7→ Θ(4)π, which also changes all intermediate outputs of updθ:
xk(u) 7→ xk(u)π. This change affects msgθ inputs. We undo the “side-effect” by transforming Θ(1)

to Diag(π⊤,π⊤)Θ(1). Finally, we update Θ(0) 7→ Θ(0)π to ensure that the initial input to msgθ,
namely x0(u)π, aligns with the transformed flow. Since the rest of the network remains unchanged,
this transformation is agnostic to the depths of init, msg, and upd, affecting only the last layers of
init and upd and the first layer of msg.

Detailed Proof. Firstly, we re-index the network weights for readability, as — (I) init: Let
the last weight of init be Θ(ℓ0). (II) msg: Given (u, v) ∈ E, and the propagation layer k, let
X̄

(0)
k = [x⊤

k (u), x
⊤
k (v)] be the input to the message propagation layer after the node embeddings

are concatenated according to the edges in the graph. The weight matrix in the first propagation layer
of msg is Θ(ℓ1). Let X̄(ℓ1)

k be the output of Θ(ℓ1), i.e., X̄(ℓ1)
k = X̄

(0)
k Θ(ℓ1) (III) upd: Let the final

layer of upd be Θ(ℓ2). The transformation is defined as follows:

Γ(ℓ0)
π (Θ(ℓ0)) = Θ(ℓ0)π, (12)

Γ(ℓ1)
π (Θ(ℓ1)) =

[
π⊤ 0
0 π⊤

]
Θ(ℓ1), (13)

Γ(ℓ2)
π (Θ(ℓ2)) = Θ(ℓ2)π (14)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

While the remaining transformations are identity, i.e., Γ(ℓ)
π = Idim(Θ(ℓ)) for all ℓ ̸∈

{
ℓ0, ℓ1, ℓ2

}
. We

shall show that the output of the network is permuted in columns by π, by tracing the effect of the trans-
formation from the input to the output. We show this inductively on the number of propagation steps.

Base case. For k = 0. As Θ(ℓ0) 7→ Θ(ℓ0)π, we have: X0 7→ X0π.

Inductive Step. Suppose that Xk 7→ Xkπ for some k. Then X̄
(0)
k = [x⊤

k (u), x⊤
k (v)] 7→

X̄
(0)
k

[
π 0
0 π

]
under θ 7→ Γπ(θ).

Since we transform Θ(ℓ1) 7→
[
π⊤ 0
0 π⊤

]
Θ(ℓ1) and X̄

(0)
k 7→ X̄

(0)
k

[
π 0
0 π

]
, the quantity X̄

(ℓ1)
k 7→

X̄
(0)
k

[
π 0
0 π

] [
π⊤ 0
0 π⊤

]
Θ(ℓ1) = X̄

(0)
k Θ(ℓ1) remains unchanged as ππ⊤ = I .

Due to this, X̄(ℓ1)
k remains invariant to Γπ . Until the final layer of updates, all transformations Γ(ℓ)

π

are identity and therefore, the resultant intermediate embeddings also remain invariant. At the final
layer, we have Θ(ℓ2) 7→ Θ(ℓ2)π (from Eq. (14)). This will give: Xk+1 7→ Xk+1π.

Gated GNN with GRU based updθ: (I) Let Θ(ℓ0),Θ(ℓ1), X̄
(0)
k , X̄

(ℓ1)
k bear the same

meaning as before. (II) updθ: We introduce the hidden state encoding of the GRU:
X̄

(reset)
k , X̄

(update)
k , X̄

(hidden)
k . The corresponding weights are indexed by ℓinp,• or ℓhid,•, Here,

the update steps considered in the GRU at the kth round of propagation are:

X̄
(reset)
k = σ

(
XkΘ

(ℓinp,1) + X̄
(ℓ1)
k Θ(ℓhid,1)

)
(15)

X̄
(update)
k = σ

(
XkΘ

(ℓinp,2) + X̄
(ℓ1)
k Θ(ℓhid,2)

)
(16)

X̄(hidden) = tanh
(
XkΘ

(ℓinp,3) + (X̄
(ℓ1)
k ⊙ X̄

(update)
k)Θ(ℓhid,3)

)
(17)

Xk+1 = (1− X̄
(reset)
k)⊙Xk + X̄

(reset)
k ⊙ X̄

(hidden)
k (18)

We define our transformation as

Γ(0)
π (Θ(ℓ0)) = Θ(ℓ0)π Γ(ℓ1)

π (Θ(ℓ1)) =

[
π⊤ 0
0 π⊤

]
Θ(ℓ1) (19)

Γ
(ℓinp,•)
π (Θ(ℓinp,•)) = π⊤Θ(ℓinp,•)π Γ

(ℓhid,•)
π (Θℓhid,•) = Θ(ℓhid,•)π (20)

While the remaining transformations are identity.

Like the previous proof, we trace the computations in the network
inductively over the propagation rounds.

Base case. For k = 0, this is true just like the previous case. X0 7→ X0π as Θ(ℓ0) 7→ Θ(ℓ0)π.

Inductive Step. Suppose Xk 7→ Xkπ for a value of k. Then X̄
(0)
k = [x⊤

k (u), x⊤
k (v)] 7→

X̄
(0)
k

[
π 0
0 π

]
under θ 7→ Γπ(θ). Since, we transform Θ(ℓ1) 7→

[
π⊤ 0
0 π⊤

]
Θ(ℓ1) and X̄

(0)
k 7→

X̄
(0)
k

[
π 0
0 π

]
, the quantity X̄

(ℓ1)
k 7→ X̄

(0)
k

[
π 0
0 π

] [
π⊤ 0
0 π⊤

]
Θ(ℓ1) = X̄

(0)
k Θ(ℓ1) remains un-

changed as ππ⊤ = I .

Due to the transformations in Eq. (20), we have: (1) XkΘ
(ℓinp,i) 7→ Xkππ

⊤Θ(ℓinp,i)π =
XkΘ

(ℓinp,i)π, for each i = 1, 2, 3; and, (2) X̄(ℓi)Θ(ℓhid,i) 7→ X̄(ℓ)Θ(ℓhid,i)π for each i = 1, 2.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Consequently X̄(reset), X̄(update), X̄(hidden) 7→ X̄(reset)π, X̄(update)π, X̄(hidden)π, resulting in
Xk+1 7→ Xk+1π as follows:

X̄(reset) 7→ σ
(
XkΘ

(ℓinp,1)π + X̄(ℓ1)Θ(ℓhid,1)π
)

(21)

= σ
(
XkΘ

(ℓinp,1) + X̄(ℓ1)Θ(ℓhid,1)
)
π = X̄(reset)π (22)

X̄(update) 7→ σ
(
XkΘ

(ℓinp,2)π + X̄(ℓ1)Θ(ℓhid,2)π
)

(23)

= σ
(
XkΘ

(ℓinp,2) + X̄(ℓ1)Θ(ℓhid,2)
)
π = X̄(update)π (24)

X̄(hidden) 7→ tanh
(
XkΘ

(ℓinp,3)π + (X̄(ℓ1) ⊙ X̄(update)π)Θ(ℓhid,3)π
)

(25)

= tanh
(
XkΘ

(ℓinp,3) + (X̄(ℓ1) ⊙ X̄(update))Θ(ℓhid,3)
)
π = X̄(hidden)π (26)

Therefore we will have:
Xk+1 7→ (1− X̄(reset)π)⊙Xkπ + X̄(reset)π ⊙ X̄(hidden)π (27)

=
(
(1− X̄(reset))⊙Xk + X̄(reset) ⊙ X̄(hidden)

)
π = Xk+1π (28)

■

E.1.2 PROOF OF LEMMA 3

Lemma 3. Given the setting described in Section 3.1. Let Γπ be the transformation on the GNN
parameters θ, induced by a permutation π ∈ RD, as introduced in Lemma 2. Then the gradient of
the loss is equivariant under transformation Γπ of the parameters.

Proof: Outline. We assume that the loss is differentiable with respect to each parameter. We shall
work with a finite difference of ∆ as a proxy for the gradient. We show that that equivariance holds
for this setup. Thus, the equivariance holds in the limiting case ∆ → 0, hence in the case of gradients.

We shall make the following observation in order to prove the lemma: For every layer, the transfor-
mation consists of a permutation of its entries. This also makes Γπ linear.

Additional Notation to Facilitate the Proof. Corresponding to each layer ℓ and each scalar
parameter Θ

(ℓ)
t [j, k], we shall consider a perturbation of the parameter by ∆ ∈ R − {0}.

Within this proof, ∆ is a perturbation and not relevance distance. Finally, δ∆,(k,l) is defined as the
matrix of appropriate dimensions with all zeros except for a ∆ at the (k, l)-th position.

We write θt +ℓ δ∆,(j,k) =
(
Θ

(ℓ′)
t + δ∆,(j,k)Jℓ′ = ℓK

)
ℓ′∈[ℓmax]

. This indicates the perturbation only

at (j, k)-th entry of Θ(ℓ′)
t at ℓ′ = ℓ. We define the matrix of discrete differences as L(ℓ)

t,∆ as

L(ℓ)
t,∆[j, k] =

1

∆

[
losst(θt +ℓ δ∆,(j,k))− losst(θt)

]
. (29)

First, we show that when θt 7→ Γπ(θt), the transformation Lt 7→ Γπ(Lt) will hold true. To show this,
we derive that for a general ℓ ∈ [ℓmax], L(ℓ)

t,∆ 7→ Γ
(ℓ)
π (L(ℓ)

t,∆). Let us characterize the permutation on

the entries of the parameter corresponding to Γ
(ℓ)
π by introducing a permutation map π̂ : [m]× [n] →

[m]× [n]. For any Θ
(ℓ)
t , there exists π̂ defined as above, such that: Γ(ℓ)

π (Θ
(ℓ)
t)[π̂(j, k)] = Θ

(ℓ)
t [j, k].

Here, π̂ depends on ℓ. However, we omit this for the sake of readability.

Proof. Note the following identities that hold as a consequence:

• For all j, k, we have:

Γ(ℓ)
π (Θ(ℓ))[j, k] = Θ(ℓ)[π̂−1(j, k)] (30)

• Consider the (a, b)th entry of the following matrix: Γ(ℓ)
π δ∆,(j,k)[a, b] = δ∆,(j,k)[π̂

−1(a, b)], which
is ∆ if a, b = π̂(j, k) and 0, otherwise. Then, by definition of δ∆,(•,•), we have:

Γ(ℓ)
π δ∆,(j,k) = δ∆,(π̂(j,k)) (31)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

The transformation Γπ is linear, which implies that Γπ(θ +ℓ δ∆,(•)) = Γπ(θ) +ℓ Γ
(ℓ)
π (δ∆,(•)).

Consider the (a, b)-th entry of L̂(ℓ)

t,∆ = L(ℓ)
t,∆

∣∣∣
θt 7→Γπ(θt)

which is the loss:

L̂(ℓ)

t,∆[a, b] =
1

∆

[
losst(Γπ(θt) +ℓ δ∆,(a,b))− losst(Γπ(θt))

]
(32)

=
1

∆

[
losst(Γπ(θt) +ℓ Γ

(ℓ)
π ◦ Γ(ℓ)

π

−1
δ∆,(a,b))− losst(Γπ(θt))

]
(33)

=
1

∆

[
losst(Γπ(θt +ℓ Γ

(ℓ)
π

−1
(δ∆,(a,b))))− losst(Γπθt)

]
(34)

=
1

∆

[
losst(θt +ℓ Γ

(ℓ)
π

−1
(δ∆,(a,b)))− losst(θt)

]
(as the loss is invariant of Γπ) (35)

=
1

∆

[
losst(θt +ℓ δ∆,(π̂−1(a,b)))− losst(θt)

]
from Eq. (31) (36)

= L(ℓ)
t,∆[π̂

−1(a, b)] = Γ(ℓ)
π (L(ℓ)

t,∆)[a, b] from Eq. (30) (37)

Thus, L̂(ℓ)

t,∆ = Γ
(ℓ)
π (L(ℓ)

t,∆). Now, lim∆→0 L(ℓ)
t,∆ = grad

(ℓ)
t . Hence, we have:

lim
∆→0

L̂(ℓ)

t,∆ = lim
∆→0

Γ(ℓ)
π (L(ℓ)

t,∆) (38)

= Γ(ℓ)
π

(
lim
∆→0

L(ℓ)
t,∆

)
(Γ(ℓ)

π is a smooth map) (39)

= Γ(ℓ)
π (gradℓ

t) (40)

Therefore as Θ
(ℓ)
t 7→ Γ

(ℓ)
π (Θℓ

t), we have gradℓ
t 7→ Γ

(ℓ)
π (gradℓ

t). Hence, gradt = [gradℓ
t]ℓ 7→

[Γ
(ℓ)
π (gradℓ

t)]ℓ = Γπ([grad
ℓ
t]ℓ) = Γπ(gradt). ■

E.1.3 PROOF OF LEMMA 4

Lemma 4. Given the setting described in Section 3.1. Let
{
θt | t ≥ 0

}
be the trajectory of the

parameter θ of a GNN across different training epochs t ≥ 0. Then, we have: p(θt) = p(Γπ(θt)) for
all t ≥ 0.

Proof: For iter = 0, we have p(θ0) = p(Γπ(θ0)) by the i.i.d. initialization of parameters. For
iter > 0, we use two key conditions: (1) The loss function is invariant under Γπ (which holds, as our
loss is permutation invariant in the GNN output). (2) The gradient and update steps are equivariant
under Γπ . We first note that:

p(θt) =

∫

J × . . .× J︸ ︷︷ ︸
t times

t∏

iter=1

p(θiter | θ<iter) dθ<t (41)

First, to build up intuition, consider a simpler setup which, instead of using an advanced optimizer
like Adam/SGD, uses simple full batch gradient descent. Assuming the learning rate is 1, we will
have:

Θ
(ℓ)
iter = Θ

(ℓ)
iter−1 − gradℓ

∣∣
Θ=Θ

(ℓ)
iter−1

(42)

Hence, p(θiter | θ<iter) is given by:
p(θiter | θ<iter) = δ(θiter − θiter−1 + graditer−1) (43)

Since Γ
(ℓ)
π is a linear homeomorphism, we have

Γ(ℓ)
π (Θ

(ℓ)
iter) = Γ(ℓ)

π (Θ
(ℓ)
iter−1)− Γ(ℓ)

π

(
gradℓ

∣∣
Θ=Θ

(ℓ)
iter−1

)
(44)

= Γ(ℓ)
π (Θ

(ℓ)
iter−1)− gradℓ

∣∣
Θ=Γ

(ℓ)
π (Θ

(ℓ)
iter−1)

(Lemma 3) (45)

Given Γπ(θ) =
⊕

ℓ Γ
(ℓ)
π (Θ(ℓ))

Γπ(θiter) = Γπ(θiter−1)− grad
∣∣
θ=Γπ(θiter−1)

(46)

This allows us to write:
p(Γπ(θiter) |Γπ(θ<iter)) = δ(Γπ(θiter)− Γπ(θiter−1) + Γπ(graditer−1)) (47)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Now, since Eq. (42) and Eq. (46) are equivalent, we have

p(θiter | θ<iter) = p(Γπ(θiter) |Γπ(θ<iter)) (48)

The above relationship suggests Eq. (41) is equivalent to

p(θt) =

∫

J × . . .× J︸ ︷︷ ︸
t times

t∏

iter=1

p(Γπ(θiter) |Γπ(θ<iter)) dθiter (49)

=

∫

(Γπ◦J)t

t∏

iter=0

p(Γπ(θiter) |Γπ(θ<iter)) d(Γπ(θiter))
���������∣∣∣∣Det

(
∂θiter

∂Γπ(θiter)

)∣∣∣∣
=1

(50)

= p(Γπ(θt)) (51)

∣∣∣Det
(

∂θiter
∂Γπ(θiter)

)∣∣∣ = 1 because Γπ consists only of permutation matrices. Here, we proved that
Eq. (42) and Eq. (46) are equivalent for full batch gradient descent. This relationship also holds for
other standard optimizers (such as listed in E.1.5), which is shown below. We may abstract the update
step as follows –

Θ
(ℓ)
iter = Updateℓ,iter

((
Θ

(ℓ)
b | b < iter

)
,
(
grad

(ℓ)
b | b < iter

))
(52)

This gives: p(θiter | θ<iter) =
∏

ℓ

δ
([

Θ
(ℓ)
iter −Updateℓ,iter

((
Θ

(ℓ)
b | b < iter

)
,
(
grad

(ℓ)
b | b < iter

))])

(53)
According to Lemma 10, Eq. (52) is equivalent to:

Γ(ℓ)
π (Θ

(ℓ)
iter) = Updateℓ,iter

((
Γ(ℓ)
π (Θ

(ℓ)
b) | b < iter

)
,
(
Γ(ℓ)
π (grad

(ℓ)
b) | b < iter

))
(54)

as long as Γ(ℓ)
π is a permutation matrix (which is the case according to Lemma 2). This implies that

p(θiter | θ<iter) (53) is the same as:

p(Γπ(θiter) |Γπ(θ<iter))

=
∏

ℓ

δ
(
Γ(ℓ)
π (Θ

(ℓ)
iter)−Updateℓ,iter

((
Γ(ℓ)
π (Θ

(ℓ)
b) | b < iter

)
,
(
Γ(ℓ)
π (grad

(ℓ)
b) | b < iter

)))

(55)

E.1.4 PROOF OF THEOREM 5 AND PROPOSITION 6

We state both the results.

Theorem 5. Given the setting described in Section 3.1. Then, X = GNNθ(G) are exchangeable
random variables, where the randomness is induced by the model initialization prior to training. That
is, p(X) = p(Xπ).

Proposition 6. Given two graphs Gq, Gc, let the settings in Section 3.1 hold true. Specifically, let us
assume that the loss function be invariant to simultaneous permutations of the embeddings X(q) =
GNNθ(Gq) and X(c) = GNNθ(Gc). Then, Y = [X(q);X(c)] ∈ R2n×D satisfies p(Y) = p(Y π).

We shall prove both of these in one go, as the latter implies the former.

Proof: Let Y denote the concatenation of the query and corpus embeddings, i.e., Y =

[
X(q)

X(c)

]
,

where X(•) ∈ Rm×D. We need to show that:

p(Y) = p(Y π). (56)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

This is precisely the condition for exchangeability as stated in Definition 1. We first observe that:

p(Y) =

∫

J
p(Y | θt) p(θt) dθt (marginalization) (57)

=

∫

J
p(Y π |Γπ(θt)) p(θt)dθt (using p(Y | θt) = p(Y π |Γπ(θt))) (58)

=

∫

J
p(Y π |Γπ(θt))p(Γπ(θt))dθt (using p(θt) = p(Γπ(θt))) (59)

=

∫

Γπ◦J=J
p(Y π |Γπ(θt))p(Γπ(θt))d(Γπ(θt))

∣∣∣∣
∂θt

∂Γπ(θt)

∣∣∣∣
(Random variable transform θt 7→ Γπθt) (60)

=

∫

J
p(Y π |Γπ(θt))p(Γπ(θt))d(Γπ(θt)) · 1 = p(Y π) (marginalization) (61)

Justifications of Eqs (57), (61) are trivial. We now provide justifications for the claims in Eq. (58)
and Eq. (59) are as follows.
Justification for p(Y | θt) = p(Y π |Γπ(θt)) used in Eq. (58): As the network output is determin-
istic, p(Y | θt) can be written in terms of the network output GNNθ and the Dirac delta function as
follows:

p(Y | θt) = δ

(
Y −

[
GNNθt(Gq)
GNNθt(Gc)

])
(62)

Here δ(•) is the Diract delta functional. δ(•) =
{
∞ if Z = 0

0 otherwise
and

∫
J δ(Z)dZ = 1.

Since the following relation holds: Y =

[
GNNθt(Gq)
GNNθt(Gc)

]
iff Y π =

[
GNNΓπ(θt)(Gq)
GNNΓπ(θt)(Gc)

]
, we have

p(Y | θt) = p(Y π |Γπ(θt)). Justification for p(θt) = p(Γπ(θt)) in Eq. (59) occurs due to Lemma 4.

Here, we note that our result holds even in the presence of additional sources of randomness in the
training process, such as data shuffling or batching. Since these sources are independent of parameter
initialization, the proof extends by conditioning on the training randomness and then marginalizing,
yielding the same conclusion.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E.1.5 EQUIVARIANCE OF THE UPDATE STEP

We shall present a general lemma that states the precise update step equivariance property. Later, we
will prove it for optimizers such as Adam, SGD, AdaGrad, RMSProp, followed by a more general
general formulation.

Lemma 10 (Equivariance of update step). The update steps of the optimizer follow the functional
form and equivariance property. Specifically Eq. (63) holds true iff Eq. (64) holds true.

Θ
(ℓ)
t

∆
= Updateℓ,t

((
Θ

(ℓ)
iter | iter < t

)
,
(
grad

(ℓ)
iter | iter < t

))
(63)

π1Θ
(ℓ)
t π2 = Updateℓ,t

((
π1Θ

(ℓ)
iterπ2 | iter < t

)
,
(
π1grad

(ℓ)
iterπ2 | iter < t

))
(64)

Note that this means that the update step is equivariant with respect to a transformation that permutes
the rows and columns of each parameter matrix. The transformation π1 permutes the rows of the
parameter matrix, while π2 permutes the columns.
Proof for Adam (Kingma et al., 2015) We first describe the Adam update steps — For layer
ℓ at time t, we refer to the momentum of the gradients mℓ

t , and the squared gradients vℓ
t . The

corresponding bias-corrected terms which used by Adam are denoted by m̂ℓ
t and v̂ℓ

t respectively.

The hyperparameters for Adam are defined as follows: β1 and β2 are scalar coefficients that control
the exponential moving averages of the gradient and its square. α denotes the learning rate. ϵ is a
small positive constant added for numerical stability. λ is the weight decay parameter.

The Adam optimizer (Kingma et al., 2014) updates each parameter as follows:

Θ
(ℓ)
t = Θ

(ℓ)
t−1 − α

m̂ℓ
t√

v̂ℓ
t + ϵ

(65)

g
(ℓ)
t = grad

(ℓ)
t + λΘ

(ℓ)
t−1 (66)

m̂ℓ
t =

mℓ
t

1− n⊤ (67)

mℓ
t = β1m

ℓ
t−1 + (1− β1)g

(ℓ)
t (68)

v̂ℓ
t =

vℓ
t

1− β⊤
2

(69)

vℓ
t = β2v

ℓ
t−1 + (1− β2)(g

(ℓ)
t ⊙ g

(ℓ)
t) (70)

Where mℓ
0 = vℓ

0 = 0.

Eq (63) can be represented by simply inductively writing out the update steps in terms of the previous
steps using Θ

(ℓ)
<t and grad

(ℓ)
<t . Similarly for Eq. (64), we can show that each vℓ

iter and mℓ
iter are

permutation equivariant with respect to the gradients, and consequently even m̂ℓ
iter and v̂ℓ

iter. We
shall work this out here–

Consider the transformation Θ
(ℓ)
<t 7→ π⊤

1 (Θ
(ℓ)
<t)π2,

grad
(ℓ)
<t 7→ π⊤

1 grad
(ℓ)
<tπ2 (assumption, shown in Lemma 3) (71)

We show equivariance for vℓ
t and mℓ

t by induction–

g
(ℓ)
t 7→ π⊤

1 (g
(ℓ)
t)π2 (72)

vℓ
0 = (1− β2)(g

(ℓ)
0 ⊙ g

(ℓ)
0) 7→ (1− β2)(π

⊤
1 g

(ℓ)
0 π2 ⊙ π⊤

1 g
(ℓ)
0 π2) (73)

= π⊤
1 (1− β2)(g

(ℓ)
0 ⊙ g

(ℓ)
0)π2 = π⊤

1 v
ℓ
0π2 (74)

vℓ
t = β2v

ℓ
t−1 + (1− β2)(g

(ℓ)
t ⊙ g

(ℓ)
t) 7→ β2π

⊤
1 v

ℓ
t−1π2 + π⊤

1 (1− β2)(g
(ℓ)
t ⊙ g

(ℓ)
t)π2 (75)

= π⊤
1 v

ℓ
tπ2 (76)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

mℓ
0 = (1− β1)(g

(ℓ)
0) 7→ (1− β1)(π

⊤
1 g

(ℓ)
0 π2) (77)

= π⊤
1 (1− β1)(g

(ℓ)
0)π2 = π⊤

1 m
ℓ
0π2 (78)

mℓ
t = β1m

ℓ
t−1 + (1− β1)(g

(ℓ)
t) 7→ β1π

⊤
1 m

ℓ
t−1π2 + π⊤

1 (1− β1)(g
(ℓ)
t)π2 (79)

= π⊤
1 m

ℓ
tπ2 (80)

v̂ℓ
t =

vℓ
t

1− β⊤
2

7→ π⊤
1 v

ℓ
tπ2

1− β⊤
2

= π⊤
1 v̂

ℓ
tπ2 (81)

m̂ℓ
t =

mℓ
t

1− β⊤
1

7→ π⊤
1 m

ℓ
tπ2

1− β⊤
1

= π⊤
1 m̂

ℓ
tπ2 (82)

Finally, from (65), Θ(ℓ)
t is permutation equivariant with respect to Θ

(ℓ)
t−1 and the gradients.

Θ
(ℓ)
t = Θ

(ℓ)
t−1 − α

m̂ℓ
t√

v̂ℓ
t + ϵ

7→ π⊤
1 Θ

(ℓ)
t−1π2 − α

π⊤
1 m̂

ℓ
tπ2√

π⊤
1 v̂

ℓ
tπ2 + ϵ

(83)

= π⊤
1

(
Θ

(ℓ)
t−1 − α

m̂ℓ
t√

v̂ℓ
t + ϵ

)
π2 = π⊤

1 Θ
(ℓ)
t π2 (84)

■

Proof for SGD SGD has hyperparameters for learning rate α, and weight decay λ. For layer ℓ at
time t, the update step of SGD with weight decay is given by:

Θ
(ℓ)
t = Θ

(ℓ)
t−1 − αg

(ℓ)
t (85)

g
(ℓ)
t = grad

(ℓ)
t + λΘ

(ℓ)
t−1 (86)

Where λ is the weight decay term and α is the learning rate.

Here, the gradient is computed over a point/mini-batch of points sampled at time t. We can fix the
randomness of the sampling by conditioning on the “trajectory” of sampled points(or mini-batches).
Thus, we can treat grad(ℓ)

t as a deterministic function of Θ(ℓ)
<t .

Furthermore, this gradient also follows the gradient equivariance property from Lemma 3.

Consider the transformation Θ
(ℓ)
t−1 7→ π⊤

1 (Θ
(ℓ)
t−1)π2 and grad

(ℓ)
t 7→ π⊤

1 (grad
(ℓ)
t)π2. Then:

g
(ℓ)
t 7→ π⊤

1 (grad
(ℓ)
t)π2 + λπ⊤

1 (Θ
(ℓ)
t−1)π2 = π⊤

1 g
(ℓ)
t π2 (87)

Θ
(ℓ)
t 7→ π⊤

1 Θ
(ℓ)
t−1π2 − απ⊤

1 g
(ℓ)
t π2 (88)

= π⊤
1 (Θ

(ℓ)
t−1 − αg

(ℓ)
t)π2 = π⊤

1 Θ
(ℓ)
t π2 (89)

Thus, the SGD update is equivariant with respect to the transformation. By conditioning on the
trajectory, we actually show a stronger result for equivariance. We may show the equivariance without
conditioning on the trajectory, by considering the expectation of the above result over the randomness
of the sampling. □

Proof for AdaGrad (Duchi et al., 2011) AdaGrad has hyperparameters for (time dependent)
learning rate αt, weight decay λ, and a small constant ϵ for stability. For layer ℓ at time t, we refer to
the accumulated squared gradients as G(ℓ)

t (which is defined below). The update steps for AdaGrad

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

are given by:

Θ
(ℓ)
t = Θ

(ℓ)
t−1 −

αt√
G

(ℓ)
t + ϵ

⊙ g
(ℓ)
t (90)

g
(ℓ)
t = grad

(ℓ)
t + λΘ

(ℓ)
t−1 (91)

G
(ℓ)
t = G

(ℓ)
t−1 + (g

(ℓ)
t ⊙ g

(ℓ)
t) (92)

Where G
(ℓ)
0 = 0.

Consider the transformation Θ
(ℓ)
<t 7→ π⊤

1 (Θ
(ℓ)
<t)π2 and grad

(ℓ)
<t 7→ π⊤

1 (grad
(ℓ)
<t)π2. We show that

G
(ℓ)
t is equivariant by induction:

g
(ℓ)
t 7→ π⊤

1 (g
(ℓ)
t)π2 (93)

G
(ℓ)
0 ‘ = 0 7→ π⊤

1 0π2 = 0 = π⊤
1 G

(ℓ)
0 π2 (94)

G
(ℓ)
t = G

(ℓ)
t−1 + (g

(ℓ)
t ⊙ g

(ℓ)
t) (95)

7→ π⊤
1 G

(ℓ)
t−1π2 + (π⊤

1 g
(ℓ)
t π2 ⊙ π⊤

1 g
(ℓ)
t π2) (96)

= π⊤
1 G

(ℓ)
t−1π2 + π⊤

1 (g
(ℓ)
t ⊙ g

(ℓ)
t)π2 (97)

= π⊤
1 (G

(ℓ)
t−1 + g

(ℓ)
t ⊙ g

(ℓ)
t)π2 = π⊤

1 G
(ℓ)
t π2 (98)

Finally, for the weight update:

Θ
(ℓ)
t = Θ

(ℓ)
t−1 −

αt√
G

(ℓ)
t + ϵ

⊙ g
(ℓ)
t (99)

7→ π⊤
1 Θ

(ℓ)
t−1π2 −

αt√
π⊤
1 G

(ℓ)
t π2 + ϵ

⊙ π⊤
1 g

(ℓ)
t π2 (100)

= π⊤
1 Θ

(ℓ)
t−1π2 − π⊤

1


 αt√

G
(ℓ)
t + ϵ

⊙ g
(ℓ)
t


π2 (101)

= π⊤
1


Θ

(ℓ)
t−1 −

αt√
G

(ℓ)
t + ϵ

⊙ g
(ℓ)
t


π2 = π⊤

1 Θ
(ℓ)
t π2 (102)

Thus, the AdaGrad update is equivariant with respect to the transformation. □

Proof for RMSProp (Tieleman et al., 2012) RMSProp has hyperparameters for learning rate α,
weight decay λ, momentum β, and a small constant ϵ for stability, and an additional mode if the
square averages are centered. For layer ℓ at time t, we refer to the moving average of squared gradients
as vℓ

t , the “average” gradient as gave(ℓ)
t (which is required if the square averages are centered), and

the buffer b(ℓ)t , which are all defined below. The update steps for RMSProp are given by:

Θ
(ℓ)
t = Θ

(ℓ)
t−1 − αbℓt (103)

b
(ℓ)
t = µb

(ℓ)
t−1 +

g
(ℓ)
t√

vℓ
t + ϵ

(104)

g
(ℓ)
t = grad

(ℓ)
t + λΘ

(ℓ)
t−1 (105)

vℓ
t = βvℓ

t−1 + (1− β)(g
(ℓ)
t ⊙ g

(ℓ)
t) (if not centered) (106)

vℓ
t = βvℓ

t−1 + (1− β)(g
(ℓ)
t ⊙ g

(ℓ)
t)− g

ave(ℓ)
t ⊙ g

ave(ℓ)
t (if centered) (107)

g
ave(ℓ)
t = βg

ave(ℓ)
t−1 + (1− β)g

(ℓ)
t (if centered) (108)

Where g
ave(ℓ)
0 = 0,vℓ

0 = 0, b
(ℓ)
0 = 0. Note that in the absense of momentum (µ = 0), the buffer b(ℓ)t

is not required, and the update step will simplify to Θ
(ℓ)
t = Θ

(ℓ)
t−1 − α

g
(ℓ)
t√
vℓ
t+ϵ

.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Consider the transformation Θ
(ℓ)
<t 7→ π⊤

1 (Θ
(ℓ)
<t)π2 and grad

(ℓ)
<t 7→ π⊤

1 (grad
(ℓ)
<t)π2. We show that

the other variables are equivariant by induction:

g
(ℓ)
t 7→ π⊤

1 (g
(ℓ)
t)π2 (109)

vℓ
0 = 0 7→ π⊤

1 0π2 = 0 = π⊤
1 v

ℓ
0π2 (110)

vℓ
t = βvℓ

t−1 + (1− β)(g
(ℓ)
t ⊙ g

(ℓ)
t) (111)

7→ βπ⊤
1 v

ℓ
t−1π2 + (1− β)(π⊤

1 g
(ℓ)
t π2 ⊙ π⊤

1 g
(ℓ)
t π2) (112)

= βπ⊤
1 v

ℓ
t−1π2 + (1− β)π⊤

1 (g
(ℓ)
t ⊙ g

(ℓ)
t)π2 (113)

= π⊤
1 (βv

ℓ
t−1 + (1− β)(g

(ℓ)
t ⊙ g

(ℓ)
t))π2 = π⊤

1 v
ℓ
tπ2 (114)

g
ave(ℓ)
0 = 0 7→ π⊤

1 0π2 = 0 = π⊤
1 g

ave(ℓ)
0 π2 (115)

g
ave(ℓ)
t = βg

ave(ℓ)
t−1 + (1− β)g

(ℓ)
t (116)

7→ βπ⊤
1 g

ave(ℓ)
t−1 π2 + (1− β)π⊤

1 g
(ℓ)
t π2 (117)

= π⊤
1 (βg

ave(ℓ)
t−1 + (1− β)g

(ℓ)
t)π2 = π⊤

1 g
ave(ℓ)
t π2 (118)

vℓ
t = βvℓ

t−1 + (1− β)(g
(ℓ)
t ⊙ g

(ℓ)
t)− g

ave(ℓ)
t ⊙ g

ave(ℓ)
t (if centered) (119)

7→ βπ⊤
1 v

ℓ
t−1π2 + (1− β)(π⊤

1 g
(ℓ)
t π2 ⊙ π⊤

1 g
(ℓ)
t π2)− π⊤

1 g
ave(ℓ)
t π2 ⊙ π⊤

1 g
ave(ℓ)
t π2 (120)

= βπ⊤
1 v

ℓ
t−1π2 + (1− β)π⊤

1 (g
(ℓ)
t ⊙ g

(ℓ)
t)π2 − π⊤

1 (g
ave(ℓ)
t ⊙ g

ave(ℓ)
t)π2 (121)

= π⊤
1 (βv

ℓ
t−1 + (1− β)(g

(ℓ)
t ⊙ g

(ℓ)
t)− g

ave(ℓ)
t ⊙ g

ave(ℓ)
t)π2 = π⊤

1 v
ℓ
tπ2 (122)

b
(ℓ)
0 = 0 7→ π⊤

1 0π2 = 0 = π⊤
1 b

(ℓ)
0 π2 (123)

b
(ℓ)
t = µb

(ℓ)
t−1 +

g
(ℓ)
t√

vℓ
t + ϵ

(124)

7→ µπ⊤
1 b

(ℓ)
t−1π2 +

π⊤
1 g

(ℓ)
t π2√

π⊤
1 v

ℓ
tπ2 + ϵ

(125)

= µπ⊤
1 b

(ℓ)
t−1π2 + π⊤

1

(
g
(ℓ)
t√

vℓ
t + ϵ

)
π2 (126)

= π⊤
1

(
µb

(ℓ)
t−1 +

g
(ℓ)
t√

vℓ
t + ϵ

)
π2 = π⊤

1 b
(ℓ)
t π2 (127)

Finally, for the weight update:

Θ
(ℓ)
t = Θ

(ℓ)
t−1 − α

g
(ℓ)
t√

vℓ
t + ϵ

(128)

7→ π⊤
1 Θ

(ℓ)
t−1π2 − α

π⊤
1 g

(ℓ)
t π2√

π⊤
1 v

ℓ
tπ2 + ϵ

(129)

= π⊤
1 Θ

(ℓ)
t−1π2 − π⊤

1

(
α

g
(ℓ)
t√

vℓ
t + ϵ

)
π2 (130)

= π⊤
1

(
Θ

(ℓ)
t−1 − α

g
(ℓ)
t√

vℓ
t + ϵ

)
π2 = π⊤

1 Θ
(ℓ)
t π2 (131)

Thus, the RMSProp update is equivariant with respect to the transformation. □

Proof for a general case We can show that a general optimizer leads to equivariance under the
transformation if the update step can be separated for each scalar entry of the parameters.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Lemma 11 (Update Equivariance of a separable optimizer). Let the parameters be updated by the
function f , such that for any step t,

θt+1 = f({θiter : iter ≤ t}, {giter : iter ≤ t}, ηt, Zt) (132)
where, giter based on the optimizer may be the gradient (which may also be clipped and/or normalized
gradient) w.r.t. the parameters θiter which is equivariant under Γπ .

Let ηt be the set of hyperparameters of the optimizer (this may include learning rate, momentum, etc.)
at update step t, and Zt be a latent random variable representing any stochasticity in the update step
(such as data selection for SGD/mini-batch).

We call f to be separable over each scalar, if we can write for any parameter Θ(ℓ), for all of its
entries entries i, j,

Θ
(ℓ)
t+1[i, j] = f (ℓ)({Θ(ℓ)

iter[i, j] : iter ≤ t}, {g(ℓ)
iter[i, j] : iter ≤ t}, ηt, Zt) (133)

where f (ℓ) is an appropriate function which may be different for each layer ℓ ∈ d.

Then, the update step is equivariant (conditioned on (Zi : i ≤ t)) to any transformation Γπ applied
jointly to each of {θiter, giter} for iter ≤ t.

Note that this functional form is quite general despite the separability condition, as it subsumes
commonly used optimizers - GD,SGD, Momentum, RMSProp, Adam, AdamW, Adagrad, etc. The
conditioning on the latent random variables implies that the equivariance also holds in expectation
over the randomness.

Proof :

The proof follows from the fact that the transformation Γπ is composed of permutations in each of
the weights. Consider a layer ℓ with parameters θ(ℓ), of size d1 × d2. We may find a permutation
π̂ : [d1]× [d2] 7→ [d1]× [d2] such that for any entry (i, j) of a matrix A, Γ(ℓ)

π (A)[i, j] = A[π̂(i, j)].
To reiterate, under the transformation Γπ, ∀t∀(i, j) ∈ [d1] × [d2], Θ(ℓ)[i, j] 7→ Θ(ℓ)[π̂(i, j)] and
g(ℓ)[i, j] 7→ g(ℓ)[π̂(i, j)].

Then, for any step t, under the action of Γπ on {θiter, giter} for iter ≤ t,

f (ℓ)({Θ(ℓ)
iter[i, j] : iter ≤ t}, {g(ℓ)

iter[i, j] : iter ≤ t}, ηt, Zt)

7→ f (ℓ)({Θ(ℓ)
iter[π̂(i, j)] : iter ≤ t}, {g(ℓ)

iter[π̂(i, j)] : iter ≤ t}, ηt, Zt)
(134)

= Θ
(ℓ)
t+1[π̂(i, j)] = Γ(ℓ)

π (Θ
(ℓ)
t+1)[i, j] (135)

Thus Θ
(ℓ)
t+1[i, j] 7→ Γ

(ℓ)
π (Θ

(ℓ)
t+1)[i, j]. Since this holds for all entries (i, j), we have Θ

(ℓ)
t+1 7→

Γ
(ℓ)
π (Θ

(ℓ)
t+1). Finally, since this holds for all layers ℓ, we have θt+1 7→ Γπ(θt+1).

■

E.1.6 ADDITIONAL RESULTS ON EXCHANGEABILITY

Loss functions without permutation equivariance In this paper, we take the loss to be a direct
function of the embeddings, which necessitates that the loss function be permutation invariant.

When we consider settings where the loss is not permutation invariant, for example a classification
task, the ’representations’ exist within the middle of the network rather than at the end. Moreover,
such representations can be shown to be exchangeable.

For this analysis, we may partition the network into two, which could be referred to as the ‘embedding’
network and the ‘classifier head‘. e may write X = NN(G) where we refer to X as the embeddings
and ŷ = Clf(X) where ŷ is the prediction label vector across nodes. We can characterize and prove
the exchangeability of X for this setting.

Let the parameters of the entire network at t timesteps be represented by θ = (θNN, θClf), corespond-
ing to the parameters of either network. Let us also define the permutation inducing transformation
as Γπ = ΓNN,π ⊗ ΓClf,π , i.e. Γπ(θ) = (ΓNN,π(θNN),ΓClf,π(θClf)).

Given the dataset, we may reparameterise the loss function as L(X,Clf), or equivalently, L(X, θClf).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

The new condition for the transformation boils down to

• X 7→ Xπ under ΓNN,π

• the loss is invariant under (π,ΓClf,π), i.e.
L(X, θClf) = L(Xπ,ΓClf,π(θClf)) (136)

Under these conditions, exchangeability follows with the same steps - exchangeability at initialisation,
equivariance of gradient, equivariance of update step.

To illustrate this, consider a three class classification task with a single layer for both NN and
Clf . Let the input feature be feat. Let us focus on one channel/node of X denoted as x =
X[:, •] and ŷ[•] = y. We have: x = NN(feat) = σ(featΘNN). Hence, we will have: ŷ =
Softmax ([(x ·w1), (x ·w2), (x ·w3)]).

The transformation ΓNN,π can then represented as, ΘNN 7→ ΘNNπ and [w1,w2,w3] 7→
[π⊤w1, π

⊤w2, π
⊤w3]. Under this transformation x 7→ xπ but ŷ remains invariant—therefore,

the loss is invariant.
Effect of normalization Batch norm, layer norm, etc. do not break exchangeability condition. If
the network without the norm layers can be shown to give exchangeable embeddings, the same will
hold for the embeddings for the network with batch norm or layer norm.

We denote a normalization layer as NLγ,β, where γ and β are parameters. Such layers allow us to
extend permutation inducing transformation γπ to γ′

π . For simplicity, assume that the normalization
layer NLγ,β is applied on one layer ℓ. Suppose, θ → γπ(θ) gives Z → Zπ in that ℓ layer (where
Z ∈ Rn×dimz). Then we can obtain a transformation γ′

π such that θ ∪ {γ,β} → γ′
π(θ ∪ {γ,β})

will also give Z → Zπ.

Let the batch of inputs be G1, G2, · · · , GB and a single batch norm layer, with the cor-
responding inputs Y1,Y2, · · · ,YB to the layer. Then, we have: Z1,Z2, · · · ,ZB =

BatchNorm(Y1,Y2, · · · ,YB ;γ,β). Suppose: Ŷ = [Y1,Y2,··· ,YB]−Y√
Var(Y1,Y2,··· ,YB)+ϵ

where Y is the batch

mean. Then, we have: Z1,Z2, · · · ,ZB = Ŷ ⊙ γ + β. Now, suppose θ → γπ(θ) gives Y → Yπ.
This would give Ŷ → Ŷπ. Suppose, we now transform γ → γπ and β → βπ. Then,
Z1,Z2, · · · ,ZB → Ŷπ ⊙ (γπ) + βπ = (Ŷ ⊙ γ + β)π = Z1π,Z2π, · · · ,ZBπ.

Consider layer norm. Assume the corresponding input is y and output in one channel is z =
LayerNorm(y;γ,β). Suppose: ŷ = y−y1√

Var(y)+ϵ
where y is the feature mean. Then, we have:

z = ŷ ⊙ γ + β. Now, suppose θ → γπ(θ) gives y → yπ. This would give ŷ → ŷπ. Suppose, we
now transform γ → γπ and β → βπ. Then, z → ŷ ⊙ (γπ) + βπ = zπ.

Hence, γ′
π(θ ∪ {γ,β}) = (γπ(θ),γπ,βπ). Therefore, Lemma 2 holds true even when we apply

Batch norm or Layer norm on each layer/feature. Since Lemma 2 is used to prove Lemma 3, 4 and
these lemmas are used to prove the final result in Theorem 5, our results of exchangeability remain
the same, regardless of normalization layer.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

E.2 PROOFS OF THE TECHNICAL RESULTS IN SECTION 4

Here, we first prove Proposition 7, and then derive the equivalence of Eqs. (3) and (4).

E.2.1 PROOF OF PROPOSITION 7

Proposition 7. For any ϵ > 0, δ > 0, setting D > 1
ϵ2δ ensures that, for some β0 = OD(1), we have:

Pr

(∣∣∣∣
1

D
sim(Gc, Gq)− simd(Gc, Gq)

∣∣∣∣ ≤ ϵ

)
≥ 1− β0δ (137)

Proof: For the purposes of the proof, we introduce a new similarity measure sim(Gc, Gq),

sim(Gc, Gq) = max
P∈Pn

∑

u,u′∈[n]×[n]

E[s(x(q)(u)[d]− x(c)(u′)[d])]P [u, u′]. (138)

We use the above to prove two results:

Pr

(∣∣∣∣
1

D
sim(Gc, Gq)− sim(Gc, Gq)

∣∣∣∣ ≤ ϵ

)
≥ 1− βδ (139)

Pr
(∣∣simd(Gc, Gq)− sim(Gc, Gq)

∣∣ ≤ ϵ
)
≥ 1− βδ (140)

where β = OD(1). Finally, we will use the union bound to get the desired result. In addition to
sim(Gc, Gq), we also introduce additional notation to facilitate the proofs:

(1) Z is a matrix indexed by the pair of nodes, and the embedding dimension. In particular,

Z[(u, u′), d]
∆
= s(x(q)(u)[d]− x(c)(u′)[d]) (141)

(2) We define the vector Zd by fixing the value at dimension d.

Z
∆
= [Z[(u, u′), d]](u,u′),d (142)

Zd
∆
= [Z[(u, u′), d]](u,u′) (143)

(3) Z is the expectation value of Zd with respect to the initialization of the embedding model. As it
follows from the exchangeability of the dimensions in Theorem 15, we have: E[Z1] = E[Z2] =
· · · = E[ZD].

Z = E[Zd] (144)
(4) Our estimator is denoted by the vector Ẑ.

Ẑ
∆
=

1

D

D∑

i=1

Zd (145)

Thus, our similarity can be written as
1

D
sim(Gc, Gq) = max

P∈Pn

∑

u,u′∈[n]×[n]

Ẑ[(u, u′)]P [u, u′] (146)

Suppose R is any matrix in Rn×n. Then, we define the following quantities:

Λ(R,P)
∆
=

∑

u,u′∈[n]×[n]

R[(u, u′)]P [u, u′] (147)

P ∗(R)
∆
= argmax

P∈Pn

Λ(R,P) (148)

Λ∗(R)
∆
= max

P∈Pn

Λ(R,P) = Λ(R,P ∗(Z)) (149)

Thus we have: 1
D sim(Gc, Gq) = Λ∗(Ẑ) and simd(Gc, Gq) = Λ∗(Zd). Therefore, we first establish

that if D > 1
ϵ2δ , then

Pr
(∣∣∣Λ∗(Ẑ)− Λ∗(Z)

∣∣∣ ≥ ϵ
)
≤ βδ. (150)

We begin by showing that Λ∗ is
√
n-Lipschitz. Convexity of Λ∗ follows from the convexity of Λ(·,P)

and Danskin’s Theorem (Theorem 13). By Danskin’s theorem, the semi-derivative of Λ∗ with respect
to R is given by

∂RΛ∗(R) = ∇RΛ(R,P)
∣∣
P=P ∗(R)

(151)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

From Eq. (147), we have: |∂RΛ∗(R)| ≤ ||vec(P)||2 =
√
n. This gives us:

|Λ∗(R1)− Λ∗(R2)| ≤
√
n ∥vec(R1)− vec(R2)∥2 (152)

≤
√
n ∥R1 −R2∥F (153)

This proves that Λ∗ is Lipschitz, from which it follows that for any ϵ, |Λ∗(R1)− Λ∗(R2)| ≥ ϵ =⇒√
n ∥R1 −R2∥2 ≥ ϵ. This gives us: We now use this fact in proving Eq. (139).

Pr
(∣∣∣Λ∗(Ẑ)− Λ∗(Z)

∣∣∣ ≥ ϵ
)
≤ Pr

(
∥Ẑ −Z∥2 ≥ 1√

n
ϵ

)
(Eq. (153)) (154)

≤
∑

u,u′∈[n]×[n] Var(Ẑ[(u, u′)])
(

ϵ√
n

)2 (Chebyshev’s Inequality)

=
n

D2ϵ2

∑

u,u′∈[n]×[n]

Var


∑

d∈[D]

Zd[(u, u
′)]


 (155)

=
β

Dϵ2
(156)

Here, β is computed using the variance bound computed by Lemma 16: β = n · 4L2
sB

2 · n2. To
prove Eq. (140), we directly invoke the Lipschitz condition for Λ∗ from Eq. (153).

Pr
(∣∣Λ∗(Zi)− Λ∗(Z)

∣∣ ≥ ϵ
)
≤ Pr

(
∥Zi −Z∥2 ≥ ϵ√

n

)
(Eq. (153)) (157)

≤
∑

u,u′∈[n]×[n] Var(Zi[u, u
′])

(
ϵ√
n

)2 (Chebyshev’s Inequality)

≤
∑

u,u′∈[n]×[n]

n

ϵ2
· 4L

2
sB

2

D
(From variance bound, Lemma 17)

(158)

=
β

Dϵ2
, where β = n · 4L2

sB
2 · n2. (159)

Using the results in Eqs. (139) and (140), we now prove the main result (5), using the union bound
Pr(|sim(Gc, Gq)− simd(Gc, Gq)| ≥ ϵ)

≤ Pr(|sim(Gc, Gq)− sim(Gc, Gq)| ≥
ϵ

2
)

+ Pr(|simd(Gc, Gq)− sim(Gc, Gq)| ≥
ϵ

2
) (160)

≤ 4β

Dϵ2
+

4β

Dϵ2
=

8β

Dϵ2

=:
β0

Dϵ2
(161)

■

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

E.2.2 PROOF OF THE FACT THAT EQ. (3) AND EQ. (4) ARE EQUIVALENT

Here, we will show that if we have:
simd(Gc, Gq) = max

P∈Pn

∑

u,u′

s(x(q)(u)[d]− x(c)(u′)[d])P [u, u′], (162)

then simd can also be written as:
simd(Gc, Gq) = s

(
SORT(X(q)[:, d])− SORT(X(c)[:, d])

)
(163)

In the following, we provide this result, in terms of any two vectors x and y.
Theorem 12 (Rearrangement for s). Given a convex function ρ : RD → [0,∞), which is not
necessarily symmetric and satisfies ρ(x) =

∑
i ρ(x[i]), and a score function s that is of the form

s(·) = ρmax − ρ(·)1, for all x,y with ∥x∥∞, ∥y∥∞ ≤ xmax, we have:

max
P∈Pn

∑

u,u′

s (x[u]− y[u′])P [u, u′] = s (SORT(x)− SORT(y)) (164)

Proof This is a well known result for Lp metric. For optimal transport between distributions, such
result exists for convex distances (Santambrogio, 2015, Proposition 2.17). We still provide the proof
for self containment. Here, we will apply Lemma 14. But that requires some conditions on s(• − •)
(stated as µ(•, •) therein). We will prove that as long as ρ is convex, s satisfies those conditions
required to apply Lemma 14.

Those conditions requires us to show the following: For a1, a2, b1, b2 ∈ R with a1 ≥ a2, b1 ≥ b2,
ρ (a1 − b2) + ρ (a2 − b1) ≥ ρ (a1 − b1) + ρ (a2 − b2) (165)

To show this, we invoke the convexity of ρ (·). For any x, y, z ∈ R with x ≥ y and z ≥ 0, consider
the case x ≥ y, then x+ z ≥ x ≥ y, x+ z ≥ y + z ≥ y. Convexity of ρ gives us:

(x− y)ρ(x+ z) + zρ(y)

x+ z − y
≥ ρ(x) (166)

zρ(x+ z) + (x− y)ρ(y)

x+ z − y
≥ ρ(y + z) (167)

Summing both inequalities, we have: ρ(x + z) + ρ(y) ≥ ρ(x) + ρ(y + z). W.l.o.g. consider
a1, a2, b1, b2 ∈ R with a1 ≥ a2, b1 ≥ b2, of the following form:

a1 = b1 + x

a2 = b1 + y

b2 = b1 − z
This gives us Eq. (165).
To finish proving the theorem, we notice that: due to maxP∈Pn

∑
u,u′ s (x[u]− y[u′])P [u, u′] =

maxP∈Pn

∑
u,u′ s ((P ′x)[u]− y[u′])P [u, u′] for any permutation P ′, we have:

max
P∈Pn

∑

u,u′

s (x[u]− y[u′])P [u, u′] = max
P∈Pn

∑

u,u′

s (SORT(x)[u]− y[u′])P [u, u′] (168)

Now, thanks to Eq. (165), s(•) satisfies the conditions in Lemma 14 with µ(x, y) in that Lemma
satisfies µ(x, y) = s(x − y). This gives us: maxP∈Pn

∑
u,u′ s (x[u]− y[u′])P [u, u′] =

s (SORT(x)− SORT(y)). ■

1as designed before introducing Eq. 2.

35

https://en.wikipedia.org/wiki/Wasserstein_metric#One_dimension

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

E.2.3 AUXILIARY RESULTS USED TO PROVE LEMMAS IN APPENDIX E.2

Lemma 13 (Danskin’s Theorem (Danskin, 1967)). Let g : Rm ×Z → R be a continuous function of
two arguments where Z ⊂ Rl is a compact set. Let f(x) = maxz∈Z g(x, z), then

• f is convex if g(·, z) is convex for any z ∈ Z.
• f is differentiable at x if the argmaxz is a single possible element.
• The semi-differential of f in the direction of v is given by

∂vf(x) = max
z∈Z∗

g′(x, z|v) (169)

where g′(x, z|v) is the derivative of g in the direction v, and Z∗ is the set of maximising
points of g(·, z)

• If f is differentiable at x, then the gradient of f is given by ∇xf(x) = ∇xg(x, z
∗) =

∇1g(x, z
∗) (gradient in the first argument).

Lemma 14 (Rearrangement Inequality). (Wu, 2020, Theorem 7) Let µ be a real-valued function of 2
variables defined on Ia × Ib. If

µ(x2, y2)− µ(x2, y1)− µ(x1, y2) + µ(x1, y1) ≥ 0

for all x1 ≤ x2 in Ia and y1 ≤ y2 in Ib, then
∑

i∈[n]

µ(ai, bn−i+1) ≤
∑

i∈[n]

µ(ai, bπ(i)) ≤
∑

i∈[n]

µ(ai, bi) (170)

for all sequences a1 ≤ a2 ≤ · · · ≤ an in Ia, b1 ≤ b2 ≤ · · · ≤ bn in Ib, and all permutations π of [n].

Theorem 15. If the columns of X are distrbuted exchangeably, then for any d, d′ ∈ [D] and
u, v ∈ [n]

Exu[d],xv [d]s (xu[d]− xv[d]) = Exu[d′],xv[d′]s (xu[d
′]− xv[d

′]) (171)

Proof As columns of X are distributed exchangeably, the joint distribution of (xu,xv) is also
exchangeable. Thus the marginals are also the same, pxu[d],xv[d] = pxu[d′],xv [d′]. Therefore,

Exu[d],xv[d]s (xu[d]− xv[d]) =

∫

R2

s (x, y) pxu[d],xv [d] (x, y) dx dy (172)

=

∫

R2

s (x, y) pxu[d′],xv [d′] (x, y) dx dy (173)

= Exu[d′],xv [d′]s (xu[d
′]− xv[d

′]) . (174)

■

Lemma 16 (Variance Bound for
∑

d∈[D] Zd). Let Zd be defined as in Eq. (143). Given that
∥x(c)(u′)∥2,∥x(q)(u)∥2 ≤ B, then we can bound

Var


∑

d∈[D]

Zd[(u, u
′)]


 ≤ 4L2

sDB2. (175)

Proof We write the variance as follows:

Var


∑

d∈[D]

Zd[(u, u
′)]




=
∑

d,d′∈[D]×[D]

Cov(Zd[(u, u
′)],Zd′ [(u, u′)]) (176)

=
∑

d,d′∈[D]×[D]

E
[(

s(x(q)(u)[i]− x(c)(u′)[i])− E[s(x(q)(u)[i]− x(c)(u′)[i])]
)

·
(
s(x(q)(u)[j]− x(c)(u′)[j])− E[s(x(q)(u)[j]− x(c)(u′)[j])]

)]
(177)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

We refer to x(q)(u)[i]− x(c)(u′)[i] as δd so that Eq. (177) can be rewritten as

=
∑

d,d′∈[D]×[D]

E [(s(δd)− E[s(δd)])(s(δd′)− E[s(δd′)])] (178)

=
∑

d,d′∈[D]×[D]

E [(s(δd)− s(0)− E[s(δd)− s(0)])(s(δd′)− s(0)− E[s(δd′)− s(0)])] (179)

=
∑

d,d′∈[D]×[D]

E[(s(δd)− s(0))(s(δd′)− s(0))]− E[(s(δd)− s(0))]E[(s(δd′)− s(0))] (180)

=
∑

d,d′∈[D]×[D]

E[(s(δd)− s(0))(s(δd′)− s(0))]−


∑

d∈[D]

E[(s(δd)− s(0))]




2

. (181)

We can write |s(δd)− s(0)| ≤
∣∣∂s
∂δ

∣∣
max(−2B,2B)

|δd| = Ls|δd|. Thus Eq. (181) can be reduced to

∑

d,d′∈[D]×[D]

E[(s(δd)− s(0))(s(δd′)− s(0))]−


∑

d∈[D]

E[(s(δd)− s(0))]




2

≤
∑

d,d′∈[D]×[D]

E[(s(δd)− s(0))(s(δd′)− s(0))] (182)

≤ L2
s

∑

d,d′∈[D]×[D]

E [|δd||δd′ |] = L2
sE[∥δ∥21] (183)

≤ L2
s · E[D∥δ∥22] ≤ 4L2

s ·D ·B2 (184)
Where the final bound in Eq. (184) uses the bound on x(•)(u). ■

Lemma 17 (Variance Bound for Zd). Let Zd be defined as in Eq. (143). Given that
∥x(c)(u′)∥2,∥x(q)(u)∥2 ≤ B, then we can bound

Var(Zd[(u, u
′)]) ≤ 4L2

sB
2

D
(185)

Proof for the Variance Bound We follow similar steps as the proof for Lemma 16.
Var(Zd[(u, u

′)]) ≤ E [(s(δd)− E[s(δd)])(s(δd)− E[s(δd)])] (186)

≤ E
[
(s(δd)− s(0))2

]
− E[s(δd)− s(0)]2 (187)

≤ E
[
(s(δd)− s(0))2

]
(188)

≤ L2
sE[δ2d] = L2

s


 1

D

∑

d∈[D]

E[δ2d]


 as E[δ21] = E[δ22] = · · · = E[δ2D] (189)

= L2
s

(
1

D
E[||δ||22]

)
≤ L2

s

D
· 4B2. (190)

Here, the final bound in Eq. (190) uses the bound on x(•)(u). ■

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

E.2.4 PROOFS OF LSH RESULTS

We show that our random hyperplane hashing on T̂q,d and T̂c,d used in Eq. (9) gives us produce a
valid LSH for the similarity measure simd(Gc, Gq) and sim(Gc, Gq). We first establish some key
details of our procedure.
Augmentation of Low Pass Filter with scoring function s(·) Since s(·) is bounded and absolutely
convergent, its Fourier transform S(ιω) = 1

2π

∫
x∈R s(x) exp(−ιωx)dx is finite. This allows us

to write s(x) =
∫
ω∈R S(ιω) exp(ιωx)dω. However, for simple scoring functions, S(ιω) imparts

significant amount of high frequency signals, which leads to divergence of the integral of |S(ιω)|. To
tackle this problem, we multiply a smooth low pass filter LPFλ(ω) =

1
2π

λ
λ+ιω with S(ιω) to obtain

Sλ(ιω) = LPFλ(ω)S(ιω) which is absolutely integrable, i.e.,
∫
ω∈R |Sλ(ιω)|dω < ∞.

We first demonstrate that the integral
∫
ω∈R |Re(S(ιω))|+ |Im(S(ιω))| dω may diverge in the absence

of smoothing. Consider ρ as the hinge function, ρ(x) = [x]+. Applying the construction, we obtain
s(•) and S(•) similar to the formulation in (Roy et al., 2023).

s(x) =





xmax −xmax ≤ x ≤ 0

xmax − x 0 < x ≤ xmax

0 otherwise
(191)

S(ιω) =

[
xmax

sinωxmax

2πω
+ 2

sin2(ωxmax

2)

2πω2

]
+ ι

[
sinωxmax

2πω2
− xmax cosωxmax

2πω

]
(192)

In order to show that the integral diverges, it suffices to show that the +ve tail diverges–
∫ ∞

ω0

|Re(S(ιω))|+ |Im(S(ιω))| dω ≥
∫ ∞

ω0

|Re(S(ιω)) + Im(S(ιω))| dω using |a+ b| ≤ |a|+ |b|

(193)

=

∫ ∞

ω0

∣∣∣∣∣xmax
sinωxmax

2πω
+ 2

sin2(ωxmax

2)

2πω2
+

sinωxmax

2πω2
− xmax cosωxmax

2πω

∣∣∣∣∣ dω (194)

=

∫ ∞

ω0

∣∣∣∣∣

(
xmax

sinωxmax

2πω
− xmax cosωxmax

2πω

)
+

(
2
sin2(ωxmax

2)

2πω2
+

sinωxmax

2πω2

)∣∣∣∣∣ dω (195)

≥
∫ ∞

ω0

∣∣∣∣xmax
sinωxmax

2πω
− xmax cosωxmax

2πω

∣∣∣∣ dω −
∫ ∞

ω0

∣∣∣∣∣2
sin2(ωxmax

2)

2πω2
+

sinωxmax

2πω2

∣∣∣∣∣ dω (196)

The second term is finite; hence we focus on the first term. Choose ω0xmax = 2πn0+
π
4 for a natural

number n0. This allows us to write
∫ ∞

ω0

∣∣∣∣xmax
sinωxmax

2πω
− xmax cosωxmax

2πω

∣∣∣∣ dω =

∫ ∞

ω0

xmax

√
2

2πω

∣∣sin(ωxmax − π
4)
∣∣ dω (197)

=

∫ ∞

2πn0+
π
4

√
2

2πω

∣∣sin(t− π
4)
∣∣ dt substituting t = ωxmax. (198)

=

∞∑

n=2n0

∫ π(n+1)+
π
4

πn+π
4

√
2

2πω

∣∣sin(t− π
4)
∣∣ dt (199)

≥
∞∑

n=2n0

√
2

2π(π(n+ 1) + π
4)

∫ π(n+1)+π
4

πn+
π
4

∣∣sin(t− π
4)
∣∣ dt (200)

=

∞∑

n=2n0

√
2

2π(π(n+ 1) + π
4)

· 2 >

∞∑

n=2n0

√
2

π2(n+ 2)
= ∞ (201)

Finally, we show that that after the low pass filter is applied, the resultant integral is∫
ω∈R |Re(Sλ(ιω))| + |Im(Sλ(ιω))| dω < ∞ integrable for the general s function considered in

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

this paper.
|Re(Sλ(ιω))|+ |Im(Sλ(ιω))| ≤

√
2|Sλ(ιω)| Modulus of the complex number (202)

=
√
2|S(ιω)| · |LPFλ(ω)| (203)

As s(•) is a measurable, bounded, absolutely integrable function, we know that limω→±∞ |S(ιω)| =
0 by the Riemann-Lebesgue Lemma (Bochner et al., 1949).

Thus, |S(ιω)| is o(1). |LPFλ(ω)| = 1
2π

λ√
λ2+ω2

∼ 1
|ω| . Thus, |Sλ(ιω)| = o(1

|ω|), and thus,∫∞
−∞ |Sλ(ιω)|dω < ∞.∫

ω∈R
|Re(Sλ(ιω))|+ |Im(Sλ(ιω))| dω ≤

∫

ω∈R

√
2|Sλ(ιω)|dω < ∞ (204)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Proof that RH on the approximate Fourier vectors T̂q,d and T̂c,d give LSH Finally, we show
our results which shows that the above Algorithms result in valid LSH.

Theorem 18. Let sim(•, •) and simd(•, •) be defined as in Eq. (2) and Eq. (3) respectively. We
compute h(d)(Gc) = sign(w⊤T̂q,d) with w ∈ N (0, I). Then we have the following results:

1. (LSH for simd(•, •)) For ϵ > 0, there exist p, p′, λmin(ϵ) > 0 and Mmin(ϵ) > 0 such that
the above random hyperplane hashing will give a (S0, γS0, p, p

′)-ALSH for simd(•, •) when
λ > λmin(ϵ), M > Mmin(ϵ).

2. (LSH for sim(•, •)) For ϵ, ϵ′ > 0, there exists p̂, p̂′, λmin(ϵ, ϵ
′) > 0 and Mmin(ϵ, ϵ

′) > 0
such that the above random hyperplane hashing will give a (S1, γS1, p̂, p̂

′)-ALSH for
sim(•, •) when λ > λmin(ϵ, ϵ

′), M > Mmin(ϵ, ϵ
′) and D > 1/ϵ2ϵ′.

Proof of (1) Assume Ls is the Lipschitz constant for s(•) and Lcos is Lipschitz constant for cos−1;
δmax

∆
= maxc,q ||SORT(x(q))− SORT(x(c))||∞ and xmax = max{||X(q)||∞,∞, ||X(c)||∞,∞}. Out

random projection hashing is finally based on the similarity measure ŝimd from Section 4, which is
the Monte Carlo estimate of simd:

ŝimd(Gc, Gq)
∆
=

1

M
T̂⊤
q,dT̂c,d (205)

In the following proofs, we shall trace back the approximations from sim leading up to ŝimd, and
appropriately bound the differences. Let Iλ

∆
=
∫
R |Re(Sλ(ιω))|+ |Im(Sλ(ιω))|dω. Then,

||T•,d(ω)||22 =
|Re(Sλ(ιω))|+ |Im(Sλ(ιω))|

|Re(Sλ(ιω))|+|Im(Sλ(ιω))|
Iλ

= Iλ (206)

We also observe that ||T•,d(ω)||22 = nIλ and ||T̂•,d||22 = MnIλ. From now on we drop d from
f (d)(Gq) and h(d)(Gc).

Pr f,h (f(Gq) = h(Gc)|ω) = 1− 1

π
cos−1

(
T̂⊤
q,dT̂c,d

∥T̂q,d∥2 · ∥T̂c,d∥2

)
(207)

= 1− 1

π
cos−1

(
T̂⊤
q,dT̂c,d

∥T̂q,d∥2 · ∥T̂c,d∥2

)

+
1

π
cos−1

(
simd(Gc, Gq)∫

R ∥Tq,d(ω)∥2 · ∥Tc,d(ω)∥2pλ(ω)dω

)
(208)

− 1

π
cos−1

(
simd(Gc, Gq)∫

R ∥Tq,d(ω)∥2 · ∥Tc,d(ω)∥2pλ(ω)dω

)
(209)

= 1 − 1

π
cos−1

(
ŝimd(Gc, Gq)

nIλ

)
+

1

π
cos−1

(
simd(Gc, Gq)

nIλ

)

︸ ︷︷ ︸
I1

− 1

π
cos−1

(
simd(Gc, Gq)

nIλ

)
+

1

π
cos−1

(
simd(Gc, Gq)

nIλ

)

︸ ︷︷ ︸
I2

− 1

π
cos−1

(
simd(Gc, Gq)

nIλ

)
(210)

Note that the argument simd(Gc, Gq)/nIλ in the final term must reside within the domain of cos−1.
Since Iλ is monotonically increasing in λ, it suffices to require λ > infλ{λ : Iλ > smax/n}.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

We shall now bound each of the terms in Eq. (210)

|I1| ≤
1

π
Lcos

1

nIλ

∣∣∣ŝimd(Gc, Gq)− simd(Gc, Gq)
∣∣∣ (211)

Eω[|I1|] ≤
Lcos

πnIλ
E
∣∣∣ŝimd(Gc, Gq)− simd(Gc, Gq)

∣∣∣ (212)

≤ Lcos

πnIλ

√
n

M
E (||Tq,d(ωu)||22||Tc,d(ωu)||22) (Lemma 19) (213)

=
Lcos

πnIλ

√
nI2λ
M

=
Lcos

π
√
Mn

(214)

As cos−1 is monotonically decreasing, and Lipschitz in our context, we can use the bound in
Lemma 20, i.e.,

−Lcos

πIλ

(
Ls

λ
+

smax

λ

e−1

xmax − δmax

)
≤ I2 ≤ Lcos

πIλ

Ls

λ
(215)

Thus,

Pr f,h(f(Gq) = h(Gc)) ≤ 1− 1

π
cos−1

(
simd(Gc, Gq)

nIλ

)
+

Lcos

π
√
Mn

+
Lcos

πIλ

Ls

λ
(216)

Pr f,h(f(Gq) = h(Gc)) ≥ 1− 1

π
cos−1

(
simd(Gc, Gq)

nIλ

)
− Lcos

π
√
Mn

(217)

− Lcos

πλIλ

(
Ls + smax

e−1

xmax − δmax

)
(218)

Using Lagrange’s mean value theorem, we have:
1

π

[
cos−1

(
γS0

nIλ

)
− cos−1

(
S0

nIλ

)]
=

1

π

(
(γ − 1)S0

nIλ

)[
(cos−1)′(t)

]
t ∈

(
γS0

nIλ
,
S0

nIλ

)

(219)

≥ (1− γ)S0

πnIλ
as (cos−1)′(t) ≤ −1 (220)

Using Eq. (220) on the bounds obtained in Eq. (216) and Eq. (218), we have

p′ = 1− 1

π
cos−1

(
γS0

nIλ

)
+

Lcos

π
√
Mn

+
Lcos

πIλ

Ls

λ
(221)

p = 1− 1

π
cos−1

(
S0

nIλ

)
− Lcos

π
√
Mn

− Lcos

πλIλ

(
Ls + smax

e−1

xmax − δmax

)
(222)

We have p > p′ if
1

π

[
cos−1

(
γS0

nIλ

)
− cos−1

(
S0

nIλ

)]
>

2Lcos

π
√
Mn

+
Lcos

πλIλ

(
2Ls + smax

e−1

xmax − δmax

)
(223)

The sufficient conditions for the above equation is:
(1− γ)S0

2πnIλ
>

2Lcos

π
√
Mn

(224)

This gives us:
(1− γ)S0

2πnIλ
>

Lcos

πλIλ

(
2Ls + smax

e−1

xmax − δmax

)
(225)

We obtain

λ >
2Lcosn

(
2Ls + smax

e−1

xmax−δmax

)

(1− γ)S0
M >

8L2
cosnI

2
λ

(1− γ)2S2
0

(226)

■
This is a sufficient condition for the LSH to hold that denotes the existence of appropriate nmin, λmin

such that the LSH holds. We can also choose other bounds on M and λ such that the above conditions
are satisfied, and the LSH is valid. We now show the second part of the theorem.
Proof for (2) Now that we have shown that we have a (S0, γS0, p, p

′)-ALSH for simd, we show that
it is a hash for sim. We shall use the concentration result in Proposition 7. Given | 1D sim(Gc, Gq)−

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

simd(Gc, Gq)| ≤ ϵ with probability 1− β0δ, we can express this as:

−ϵ ≤ 1

D
sim(Gc, Gq)− simd(Gc, Gq) ≤ ϵ (227)

with probability 1− β0δ. Here, the randomness arises from simd. This can be rewritten as:

−ϵ ≤ 1

D
sim(Gc, Gq)− simd(Gc, Gq) ≤ ϵ (228)

=⇒
{
simd(Gc, Gq) ≤ 1

D sim(Gc, Gq) + ϵ (condition 1),
simd(Gc, Gq) ≥ 1

D sim(Gc, Gq)− ϵ (condition 2).
(229)

Both condition 1 and condition 2 have probability ≥ 1− β0δ. Here, p and p′ are computed in the
proof of (1).

1. Condition 1 implies that if 1
D sim(Gc, Gq) ≤ γS0 − ϵ, then simd(Gc, Gq) ≤ γS0 with

probability ≥ 1− β0δ. Therefore, when 1
D sim(Gc, Gq) ≤ γS0 − ϵ

Pr f,h(f(Gq) = h(Gc))

= Pr(f(Gq) = h(Gc) | simd(Gc, Gq) ≤ γS0) · Pr(simd(Gc, Gq) ≤ γS0)

+ Pr(f(Gq) = h(Gc) | simd(Gc, Gq) > γS0) · Pr(simd(Gc, Gq) > γS0)
(230)

≤ p′(1− β0δ) + 1 · β0δ (231)
2. Condition 2 implies that if 1

D sim(Gc, Gq) ≥ S0 + ϵ, then simd(Gc, Gq) ≥ S0 with
probability ≥ 1− β0δ. Therefore, when 1

D sim(Gc, Gq) ≥ S0 + ϵ

Pr f,h(f(Gq) = h(Gc))

= Pr(f(Gq) = h(Gc) | simd(Gc, Gq) ≥ S0) · Pr(simd(Gc, Gq) ≥ S0)

+ Pr(f(Gq) = h(Gc) | simd(Gc, Gq) < S0) · Pr(simd(Gc, Gq) < S0) (232)
≥ Pr(f(Gq) = h(Gc) | simd(Gc, Gq) ≥ S0) Pr(simd(Gc, Gq) ≥ S0) (233)
≥ p(1− β0δ) (234)

Then, we have a (D(S0 + ϵ), D(γS0 − ϵ), p(1− β0δ), p
′(1− β0δ) + β0δ)-ALSH if

p(1− β0δ) > p′(1− β0δ) + β0δ (235)

p > p′ +
β0δ

1− β0δ
(236)

We shall find a sufficient condition for Eq. (236) to hold. We use the expressions in the previous
results. Finally, we reparameterize the problem with S1

∆
= D(S0+ϵ), γ1S1

∆
= D(γS0−ϵ) with γ1 =

γ − ϵ
S0

< γ < 1, p̂ = p(1− β0δ) and p̂′ = p′(1− β0δ) + β0δ

For pλ(ω) ∝ |Re(Sλ(ω))|+ |Im(Sλ(ω))|, the above criteria are achieved by taking

M > n

(
2Lcos

(1−γ)S0

2Iλ
+ nπβ0δ

1−β0δ

)2

(237)

for the same λ. Reparameterizing with S1, γ1, we obtain

M > n




2Lcos

(1−γ1)S1/D − 2ϵ
2Iλ

+
nπβ0δ

1− β0δ




2

, D >
1

δϵ2
, λ >

2Lcosn
(
2Ls + smax

e−1

xmax−δmax

)

(1− γ1)S1/D − 2ϵ

(238)
As before, we pick Mmin, λmin such that the above conditions are satisfied. We can also choose other
bounds on M and λ such that the above conditions are satisfied, and the LSH is valid. ■
Note that here we have considered the randomness of model initialization to be part of the randomness
of the hashing routine.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

E.2.5 AUXILIARY RESULTS USED TO PROVE RESULTS IN THIS SUBSECTION E.2.4

Lemma 19. Suppose simd is defined as Eq. (7) and ŝimd is defined as Eq. (9). Then, we have the
following concentration bound:

E
∣∣∣ŝimd(Gc, Gq)− simd(Gc, Gq)

∣∣∣ ≤
√

n

M
E
[(

Tq,d(ωu)
⊤
Tc,d(ωu)

)2]
(239)

Proof We observe that:

E
∣∣∣ŝimd(Gc, Gq)− simd(Gc, Gq)

∣∣∣

≤
√
E
∣∣∣ŝimd(Gc, Gq)− simd(Gc, Gq)

∣∣∣
2

=

√
Var
(
ŝimd(Gc, Gq)

)
(240)

=

√√√√√Var


 1

M

∑

m∈[M]

∑

u∈[n]

Tq,d(ωu)
⊤
Tc,d(ωu)


 (241)

=

√
n

M
Var (Tq,d(ωu)⊤Tc,d(ωu)) =

√
n

M
E
[(
Tq,d(ωu)⊤Tc,d(ωu)

)2]
(242)

Here, Eq. (242) follows from the i.i.d sampling of ωu.

Lemma 20. Suppose simd is defined as Eq. (7) and ŝimd is defined as Eq. (3). Then, we have the
following concentration bound:

−
(
nLs

λ
+

nsmax

λ

e−1

xmax − δmax

)
≤ simd(Gc, Gq)− simd(Gc, Gq) ≤

nLs

λ
(243)

where Ls is the Lipschitz constant for s; δmax
∆
= maxc,q ||SORT(x(q)) − SORT(x(c))||∞; and

max{||X(q)||∞,∞, ||X(c)||∞,∞} < xmax

Proof. Let sλ denote the fourier inverse of Sλ.

simd(Gc, Gq) =
∑

u∈[n]

∫

R
Sλ(ιω)e

ιω(x(q)(u)[d]−x(q)(u)[d])dω (244)

=
∑

u∈[n]

sλ(x
(q)(u)[d]− x(q)(u)[d]) (245)

We shall bound the deviation of the smoothed score function sλ from the original score function

sλ(x) =

∫

R
s(x− t)F−1[LPFλ](t)dt using F−1[fg] = F−1[f] ∗ F−1[g] (246)

=

∫

R
s(x− t)λeλtH(−t)dt =

∫ 0

−∞
s(x− t)λeλtdt (247)

(where H(·) is the Heaviside step function)

=

∫ ∞

0

s(x+
t

λ
)e−tdt substitution with t 7→ −λt (248)

=

∫ ∞

0

s(x)e−tdt+

∫ ∞

0

(s(x+
t

λ
)− s(x))e−tdt (249)

= s(x) +

∫ ∞

0

(s(x+
t

λ
)− s(x))e−tdt

︸ ︷︷ ︸
I1

(250)

We shall use the fact that s is clipped within [−xmax, xmax]. We have the following possible cases:

Case 1 x+ t
λ > xmax =⇒ t > λ(xmax − x)

Case 2 xmax ≥ x+ t
λ ≥ −xmax =⇒ λ(xmax − x) ≥ t > 0 > λ(−xmax − x)

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

This lets us split the integral in I1 into two in order to bound the term.∫ ∞

0

(s(x+
t

λ
)− s(x))e−tdt =

∫ λ(xmax−x)

0

(s(x+
t

λ
)− s(x))e−tdt

+

∫ ∞

λ(xmax−x)

(0− s(x))e−tdt (251)

=

[∫ λ(xmax−x)

0

(s(x+
t

λ
)− s(x))e−tdt

]

︸ ︷︷ ︸
I2

−s(x)e−λ(xmax−x)

(252)
We now bound |I2| as follows:

|I2| ≤
∫ λ(xmax−x)

0

Ls
t

λ
e−tdt (s is Lipschitz with constant Ls) (253)

=
Ls

λ

[
−(t+ 1)e−t

]λ(xmax−x)

t=0
≤ Ls

λ

[
−(t+ 1)e−t

]λ(xmax+max ||x||∞)

t=0
(254)

=
Ls

λ

(
1− e−λ(xmax+δmax) − λ(xmax + δmax)e

−λ(xmax+δmax)
)

(255)

≤ Ls

λ

[
−(t+ 1)e−t

]∞
t=0

=
Ls

λ
· 1 (256)

The bound in (254) relies on integrating over a larger domain. This yields the bound Eq. (255).
However, for purposes of this proof, we use the looser bound Eq. (256) by integrating over (0,∞).

Using the fact that 0 ≤ s(·) ≤ smax in Eq (252)
−|I2| − smaxe

−λ(xmax−x) ≤I1 ≤ |I2| (257)

−Ls

λ
− smaxe

−1

λ(xmax − x)
≤I1 ≤ Ls

λ
(258)

−Ls

λ
− smaxe

−1

λ(xmax − δmax)
≤I1 ≤ Ls

λ
(259)

■

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

F LIST OF GNNS

We collect the following list from Pytorch Geometric.

1. GNN
(1) Gated GNN (Li et al., 2016; Gilmer et al., 2017) (Already showed)
(2) GCN (Kipf et al., 2017)
(3) ChebConv (Defferrard et al., 2016)
(4) SAGE (Hamilton et al., 2017)
(5) ResGatedGraphConv (Bresson et al., 2017)
(6) GAT (Veličković et al., 2018)
(7) AGNNConv (Thekumparampil et al., 2018)
(8) GIN (Xu et al., 2019)
(9) SGConv (Wu et al., 2019)

(10) TAGConv (Du et al., 2017)
(11) APPNP (Gasteiger et al., 2018)
(12) SSGConv (Zhu et al., 2021)
(13) MFConv (Duvenaud et al., 2015)

2. Graph Transformers
(1) Graph Transformer (GraphGPS-style) (Rampášek et al., 2022)
(2) Graphormer (Ying et al., 2021)
(3) Spectral Attention Network (SAN) (Kreuzer et al., 2021)
(4) Exphormer (Shirzad et al., 2023)
(5) NodeFormer (Wu et al., 2023)

Here, we will take node embeddings x to be column vectors, but the graph embedding X to have x
along rows. As such we will use Θ for the parameters right multiplied and W for left multiplied.
D,A,L refer to the degree, adjacency and Laplacian matrices respectively. Similarly, D̂, Â, L̂ refer
to the normalized degree, adjacency and Laplacian matrices respectively.

We demonstrate transformations for various graph layers that can be used to maintain/induce permu-
tations in the output, which would be required for showing exchangeability at a certain layer. Where
applicable, we may take arbitrary permutation π2 on the input and a corresponding π1 in the output.
For some cases the permutations are more restrictive (such as π1 = π2).

These transformations can then be composed to generate the permutation inducing transformation for
the entire network.

We have shown transformation for architectures such as the MLP (FF) and GRU (GRU). For a given
permutation (where it is clear from context), we define the transformed versions as follows:

GRU∗(Xπ,Hπ) = GRU(X,H)π

FF∗(Xπ) = FF(X)π

or if the input and output permutations are different:

FF∗(Xπ2) = FF(X)π1

F.1 GRAPH NEURAL NETWORK

Based on the original formulation, x can be row or column vector and therefore π is pre-multiplied
or post-multiplied.

(1) GCN (Kipf et al., 2017):

X ′ = D̂−1/2ÂD̂−1/2XΘ (260)

X ′π = D̂−1/2ÂD̂−1/2X(Θπ) (261)

X ′π1 = D̂−1/2ÂD̂−1/2(Xπ2)(π
⊤
2 Θπ1) (262)

(2) ChebConv (Defferrard et al., 2016): It uses Chebyshev polynomial filters on the rescaled
Laplacian. The Chebyshev polynomials are defined as T0(x) = 1, T1(x) = x and Tk(x) =
2xTk−1(x)− Tk−2(x) for k ≥ 2.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

X(k) =

K∑

ℓ=0

Tℓ(L̃)X
(k−1)Θℓ (263)

X(k)π1 =

K∑

ℓ=0

Tℓ(L̃) (X
(k−1)π2)(π

⊤
2 Θℓπ1) (264)

(3) SAGEConv (Hamilton et al., 2017): We take the aggregate function to be permutation equivari-
ant (eg. mean/sum).

x
(k)
i = σ

(
W1x

(k−1)
i +W2 ·AGGREGATE({x(k−1)

j })
)

(265)

πx
(k)
i = σ

(
(πW1π

⊤)πx
(k−1)
i + (πW2π

⊤) ·AGGREGATE({πx(k−1)
j })

)
(266)

or, there may be a layer before the aggregation (allowing for more flexibility in the transforma-
tion):

x
(k)
i = σ

(
W1x

(k−1)
i +W2 ·AGGREGATE({FF(x(k−1)

j)})
)

(267)

π1x
(k)
i = σ

(
(π1W1π

⊤
2)π2x

(k−1)
i + (π1W2π

⊤
2) ·AGGREGATE({FF∗(π2x

(k−1)
j)})

)

(268)
(4) ResGatedGraphConv (Bresson et al., 2017): Adds a residual connection over a gated convolu-

tion mechanism.
x
(k)
i = W1x

(k−1)
i +

∑

j∈N (i)

W2x
(k−1)
j ⊙ σ(W3x

(k−1)
i +W4x

(k−1)
j) (269)

π1x
(k)
i = (π1W1π

⊤
2)(π2x

(k−1)
i)

+
∑

j∈N (i)

(π1W2π
⊤
2)(π2x

(k−1)
j)⊙ σ((π1W3π

⊤
2)(π2x

(k−1)
i)

+ (π1W4π
⊤
2)(π2x

(k−1)
j)) (270)

(5) GAT (Veličković et al., 2018): The attention score α can be made invariant.

x
(k)
i =

∑

j∈N (i)

α
(h)
ij W (h)x

(k−1)
j (271)

πx
(k)
i =

∑

j∈N (i)

α
(h)
ij (πhW

(h)π⊤)πx
(k−1)
j (272)

αij =
exp

(
LeakyReLU

(
aT [Wxi∥Wxj]

))
∑

k∈N (i)∪{i} exp (LeakyReLU (aT [Wxi∥Wxk]))
(273)

αij =
exp

(
LeakyReLU

(
aT [Wπ⊤πxi∥Wπ⊤πxj]

))
∑

k∈N (i)∪{i} exp (LeakyReLU (aT [Wπ⊤πxi∥Wπ⊤πxk]))
(274)

If the aggregation is concatenation instead of sum, the output will not be exchangeable for all
dimensions. rather, each block of dimensions corresponding to a head will be exchangeable.

(6) AGNNConv (Thekumparampil et al., 2018):
X ′ = PX (275)

Where,

Pi,j =
exp(β · cos(xi,xj))∑

k∈N (i)∪{i} exp(β · cos(xi,xk))
=

exp
(
β · (πxi)

⊤πxj

∥πxi∥∥πxj∥

)

∑
k∈N (i)∪{i} exp

(
β · (πxi)⊤πxk

∥πxi∥∥πxk∥

) (276)

So this layer is equivarient to any permutation π.
(7) GIN (Xu et al., 2019):

X ′ = FF ((1 + ϵ) ·X +AX) (277)

X ′π1 = FF∗ ((1 + ϵ) · (Xπ2) +A(Xπ2)) (278)
A powerful injective update via MLP which combines self-feature (with learnable epsilon) plus
neighbor sum.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

(8) SGConv (Wu et al., 2019): A K-step precomputed propagation that simplifies convolution.

X ′ =
(
D−1/2 ÂD−1/2

)K
XΘ, Â = A+ I (279)

X ′π1 =
(
D−1/2 ÂD−1/2

)K
(Xπ2)(π

⊤
2 Θπ1) (280)

(281)
(9) TAGConv (Du et al., 2017):

X ′ =

K∑

k=0

(
D−1/2 AD−1/2

)k
XΘk (282)

X ′π1 =

K∑

k=0

(
D−1/2 AD−1/2

)k
(Xπ2)(π

⊤
2 Θkπ1) (283)

(10) APPNP (Gasteiger et al., 2018):
X(0) = X (284)

X(k) = (1− α)D̂−1/2ÂD̂−1/2X(k−1) + αX(0) (285)

X ′ = X(K) (286)
This layer is equivariant to any permutation π.

X(0)π = Xπ (287)

X(k)π = (1− α)D̂−1/2ÂD̂−1/2X(k−1)π + αX(0)π (288)

X ′π = X(K)π (289)
(11) SSGConv (Zhu et al., 2021):

X ′ = (1− α)
(
D−1/2 ÂD−1/2

)K
XΘ1 + αXΘ2 (290)

X ′π1 = (1− α)
(
D−1/2 ÂD−1/2

)K
Xπ2 π

⊤
2 Θ1π1 + αXπ2 π

⊤
2 Θ2π1 (291)

Skip-connection version of SGConv with initial-feature mixing via α.
(12) MFConv (Duvenaud et al., 2015): This has a distinct weight matrix for nodes of each degree.

x′
i = Wdeg(i) xi +

∑

j∈N (i)

1√
didj

Ŵdeg(i) xj (292)

π1x
′
i = (π1Wdeg(i)π

⊤
2)(π2x1) +

∑

j∈N (1)

1√
π2d1π2dj

(π1Ŵdeg(i)π
⊤
2)(π2xj) (293)

F.2 GRAPH TRANSFORMERS

Multi-Head Attention (MHA) Before examining specific Graph Transformer architectures, we
first establish the standard Multi-Head Attention (MHA) mechanism that forms the foundation of
most transformer-based models. The MHA operation transforms input representations H(ℓ) ∈ Rn×d

through learned query (Q), key (K), and value (V) projections:

Q(h) = H(ℓ)W
(h)
Q , K(h) = H(ℓ)W

(h)
K , V (h) = H(ℓ)W

(h)
V (294)

α
(h)
ij = softmaxj

(
Q

(h)
i (K

(h)
j)⊤

√
dk

+Bij

)
(295)

Z(h) = α(h)V (h) (296)

MHAB(H
(ℓ)) = Concat(Z(1), . . . ,Z(ℓ))WO (297)

where each attention head h ∈ {1, . . . , ℓ} computes scaled dot-product attention independently, and
WO projects the concatenated multi-head output. Given the input H 7→ Hπ2, we can transform
W

(h)
Q , W (h)

K , and W
(h)
V as W (h) 7→ π⊤

2 W
(h). And the output of MHA can be transformed by π1

by WO 7→ WOπ1.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Using the above, we define MHA∗
B such that MHA∗

B(Xπ) = MHAB(X)π.

Note that in general, different attention mechanisms are dealt with similarly - the attention parameters
can be used to undo the effect of a preceding permutation, hence the attention score computation
remains unchanged.

Transformer layers also typically include Layer Normalization, that we will largely omit here, as it is
straightforward to see that it is permutation equivariant.

(1) Graph Transformer (Rampášek et al., 2022):

Q(h) = H(ℓ)W
(h)
Q , K(h) = H(ℓ)W

(h)
K , V (h) = H(ℓ)W

(h)
V (298)

α
(h)
ij = softmaxj

(Q(h)
i (K

(h)
j)⊤

√
dk

+Bij

)
(299)

Z(h) = α(h)V (h) (300)

H̃(ℓ+1) = H(ℓ) +MHAB(H
(ℓ)) (301)

H(ℓ+1) = H̃(ℓ+1) + FF(H̃(ℓ+1)) (302)
We observe the transformations,

H̃(ℓ+1)π = H(ℓ)π +MHA∗
B(H

(ℓ)π) (303)

H(ℓ+1)π = H̃(ℓ+1)π + FF∗(H̃(ℓ+1)π) (304)
(2) Graphormer (Ying et al., 2021): Firstly, the graphormer adds centrality encodings to the node

embedding x(0). Hence these encoding require the same permutation as that of the input node
features. The graphormer adds spatial and edge encodings as attention biases Bij . As our
transformation does not affect the Q-K dot product, it does not affect the attention scores.

Q(h) = H(ℓ)W
(h)
Q , K(h) = H(ℓ)W

(h)
K , V (h) = H(ℓ)W

(h)
V (305)

α
(h)
ij = softmaxj

(Q(h)
i (K

(h)
j)⊤

√
dk

+ bSPD
enc (SPD(i, j)) + bedge

enc (edge-path(i, j))
)

(306)

Z(h) = α(h)V (h) (307)

H(ℓ+1) = FF
(
H(ℓ) +MHA(H(ℓ))

)
(308)

Hence, the same transformations as the graph transformer follow, as α(h)
i,j remains unchanged.

(3) Spectral Attention Network (SAN) (Kreuzer et al., 2021):
H̃(ℓ) = H(ℓ) + S (309)

Q(h) = H̃(ℓ)W
(h)
Q , K(h) = H̃(ℓ)W

(h)
K , V (h) = H̃(ℓ)W

(h)
V (310)

α
(h)
ij = softmaxj

(Q(h)
i (K

(h)
j)⊤

√
dk

)
(311)

Z(h) = α(h)V (h) (312)

H(ℓ+1) = FF
(
H(ℓ) +MHA(H̃(ℓ))

)
(313)

Graph Transformer variant using learned Laplacian spectral positional encodings (LPE) added
to node features.
If H is permuted, the transformation of the Laplacian spectral positioning architecture to induce
a permutation of the input features that is consistent with the learned encoding.

H̃(ℓ)π = H(ℓ)π + Sπ (314)
(4) Exphormer (Shirzad et al., 2023): The changes here pertain to the expander graph and the

global virtual nodes. As these can be regarded as structural changes to the graph before applying
the graph transformer, we can take the same transformations as the graph transformer.

(5) NodeFormer (Wu et al., 2023): Notably, the modification over the base graph transformer is
related to the computation of the attention. As the above outlined transformation ensures that
the QK W·x 7→ W·π

⊤
2 π2x = W·x is invariant, the same transformation also holds for the

NodeFormer.
(6) Gophormer (Zhao et al., 2021): The proximity score term in the attention can be seen as a

structural bias that is not affected by the permutations along the embedding dimension. Once

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

again, by transforming the WQ,WK ,WV matrices accordingly, we ensure that the same
transformations as the graph transformer follow.

Q(h) = H(ℓ)W
(h)
Q , K(h) = H(ℓ)W

(h)
K , V (h) = H(ℓ)W

(h)
V (315)

α(h)
uv = softmaxv∈Si

(Q(h)
u (K

(h)
v)⊤√

dk
+ bprox(u, v)

)
(316)

Z(h)
u =

∑

v∈Si

α(h)
uv V

(h)
v (317)

H
(ℓ+1)
Si

= FF
(
H

(ℓ)
Si

+MHA(H
(ℓ)
Si

)
)

(318)
(7) SpecFormer (Bo et al., 2023): This extracts spectral information from the attention. Once again,

by transforming the WQ,WK ,WV matrices accordingly, we ensure that the same attention
scores. A permutation can also be induced in the MLP FF. Then by additionally permuting W ·

x
accordingly, we can ensure that the output is permuted by π1.

F.3 SET-BASED NEURAL NETWORK

DeepSets (Zaheer et al., 2017):

y = ρ

(
n∑

i=1

ϕ(xi)

)
(319)

ϕ encodes elements, ρ decodes aggregated representation.

It is sufficient that (1) a permutation can be induced in ρ, such as if ρ is an MLP or any other admissible
architecture. (2) if ρ is permutation equivariant (such as a sum) and ϕ admits a permutation inducing
transformation.

Set Transformer (Lee et al., 2019):
Y = ISAB(X) = MAB(X,MAB(I,X)) (320)

where
MAB(Q,K) = LayerNorm(H + FF(H)) (321)

H = LayerNorm(Q+MHA(Q,K,K)) (322)

The Set Transformer uses Multihead Attention Blocks (MAB), Set Attention Blocks (SAB), Induced
Set Attention Blocks (ISAB), and Pooling by Multihead Attention (PMA) blocks. The encoder
consists of two ISAB blocks, and the decoder consists of an SAB block followed by a PMA block.

Enc(X) = ISABm(ISABm(X)) (323)
Decoder(Z) = FF(SAB(PMAk(Z))) (324)

π-inducing transformation For the final output: Γ(FF)
π (Θ(FF)) = Θ(FF)π.

For intermediate layers:
Γ(0,PMA)
π (Θ) = Θπ Γ(2,PMA)

π (Θ) = π⊤Θπ (325)

Γ((Q,i),PMA)
π (Θ) = π⊤Θ Γ(4,PMA)

π (Θ) = Θπ (326)

Γ(1,SAB)
π (Θ) = π⊤Θπ Γ(3,SAB)

π (Θ) = Θπ (327)

Γ((Q,i),SAB)
π (Θ) = π⊤Θ Γ((K,i),SAB)

π (Θ) = π⊤Θ Γ((V,i),SAB)
π (Θ) = π⊤Θ (328)

It uses Induced Set Attention Blocks (ISAB) with learnable inducing points I for efficient O(nm)
complexity vs O(n2).

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

G ADDITIONAL DETAILS ABOUT EXPERIMENTS

G.1 DATASETS

We build retrieval datasets from four benchmarks in the TU Graph Dataset collection (Morris et al.,
2020): ptc-fr, ptc-fm, cox2, and ptc-mr. Each dataset contains 500 queries and a corpus of
100,000 graphs, following the setup in (Roy et al., 2022; Lou et al., 2020). To sample graphs, we
adopt the BFS-based extraction strategy introduced in (Lou et al., 2020): starting from a randomly
chosen node, a BFS traversal is performed until the induced subgraph spans between 5 and 25 nodes.
This method is applied independently to construct both query and corpus graphs.

For subgraph matching (SM), binary relevance labels are generated using the VF2 subgraph
isomorphism algorithm (Hagberg et al., 2020). A corpus graph Gc is marked relevant to a query Gq

if Gq is a subgraph of Gc, i.e., rel(Gc, Gq) = JGq ⊂ GcK, where J·K denotes the indicator function.

For graph edit distance (GED), we use the GEDLIB solver (Blumenthal et al., 2019), setting
insertion cost e⊕ = 1 and deletion cost e⊖ = 2. Relevance is determined by thresholding the
computed GED: rel(Gc, Gq) = JGED(Gc, Gq) ≤ ThrsK, for a fixed threshold Thrs. Results under
a symmetric cost setting (Eq. cost GED) with e⊕ = e⊖ = 1 are also reported in Appendix.

For all datasets, we partition the 500 queries into 60% train, 20% validation, and 20% test splits.
Dataset statistics for the subgraph matching and GED tasks are summarized in Table 6 and Table 7,
respectively.

Table 6: Graph statistics for each dataset generated for Subgraph Matching (SM).

Dataset Query Graphs Corpus Graphs E[|y=1|
|y=0|]

Nodes Edges Nodes Edges Label
(min / max / avg) (min / max / avg) (min / max / avg) (min / max / avg) Ratio

PTC-FR (6 / 15 / 12.65) (6 / 15 / 12.41) (16 / 25 / 18.68) (15 / 28 / 20.17) 0.13
PTC-FM (7 / 15 / 12.58) (7 / 15 / 12.35) (16 / 25 / 18.70) (15 / 28 / 20.14) 0.12
COX2 (6 / 15 / 13.21) (6 / 16 / 12.82) (16 / 25 / 19.65) (15 / 26 / 20.24) 0.12
PTC-MR (6 / 15 / 12.66) (7 / 15 / 12.41) (16 / 25 / 18.72) (15 / 28 / 20.18) 0.12

Table 7: Graph statistics for each dataset generated for GED.

Dataset Query Graphs Corpus Graphs E[|y=1|
|y=0|]

Nodes Edges Nodes Edges Label
(min / max / avg) (min / max / avg) (min / max / avg) (min / max / avg) Ratio

PTC-FR (9 / 14 / 11.14) (8 / 16 / 12.25) (6 / 20 / 14.66) (5 / 24 / 15.77) 0.07
PTC-FM (9 / 14 / 11.09) (8 / 15 / 12.08) (6 / 20 / 14.64) (5 / 24 / 15.73) 0.07
COX2 (9 / 15 / 11.61) (8 / 17 / 12.90) (7 / 20 / 15.48) (6 / 20 / 15.79) 0.04
PTC-MR (9 / 14 / 10.90) (8 / 15 / 11.71) (6 / 20 / 14.67) (5 / 24 / 15.80) 0.08

G.2 EMBEDDING MODEL ARCHITECTURE

To supervise retrieval with transport-based distances, we train a neural scoring model composed of
a GNN encoder and a Gumbel-Sinkhorn aligner, optimized using pairwise ranking loss (Roy et al.,
2022; Jain et al., 2024). Here, initθ is an LRL implemented as a single-layer MLP that maps node
features to a 10-dimensional embedding space. msgθ is a message passing block consisting of two
linear message functions (forward and reverse), each mapping concatenated node-edge features to a
20-dimensional hidden state, followed by a GRU with hidden size 10 to aggregate incoming messages.
updθ is a two-layer aggregation MLP: the first layer expands the node embedding to 20 dimensions,
and the second reduces it back to 10 dimensions to produce the final node representation. To compute
the permutation matrix P , we solve a linear assignment problem via 10 Sinkhorn iterations at a
temperature of 0.1.

Separate models are trained for each supervision type—Subgraph Matching (SM) and Graph Edit
Distance (GED)—based on their respective distance formulations using Eq. (1). The model is trained

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

to assign lower distance scores to relevant corpus graphs compared to irrelevant ones, using the
following hinge-based loss:∑

q

∑

c:rel(Gc,Gq)=1

c′:rel(Gc′ ,Gq)=0

[∆(Gc, Gq)−∆(Gc′ , Gq) + γ]+,

where γ ∈ {0.1, 0.5} is a fixed margin, and ∆(·, ·) is the transport-based distance (Eq. (1)). We set
the node embedding dimensionality to D = 10 in all experiments.

G.3 FOURIER-MAP AND HASHCODE TRAINING

We adopt the training framework proposed by Roy et al. (2023) to improve the quality of Fourier-
based representations and optimize the hashcodes derived from them. Specifically, we apply two
neural networks Ψq and Ψc that take as input the Fourier representations T̂q,d and T̂c,d of query and
corpus graphs respectively, and output transformed feature vectors:

zq = Ψq(T̂q,d), zc = Ψc(T̂c,d). (329)

These transformed vectors are trained using a binary cross-entropy loss that promotes high cosine
similarity between relevant query-corpus pairs:
min
ϕq,ϕc

∑

(Gq,Gc)

−rel(Gc, Gq) log(1 + cos(zq, zc))− (1− rel(Gc, Gq)) log(1− cos(zq, zc)). (330)

To generate binary hashcodes from the transformed fourier feature vectors, we use a learned projection
matrix W ∈ Rdimh×dimT and apply the random hyperplane method:

f (d)(Gq) = sign(Wzq), h(d)(Gc) = sign(Wzc). (331)
for each d ∈ [D] = [10]. In practice dimT = 10,dimh = 64. We set the number of ω samples
M = 10. We use the frequency cutoff λ in the low pass filter as 100. During training, we use
tanh(Wz) as a differentiable approximation to sign(Wz), and optimize W using the following
composite loss:

Lhash = λ1∆1 + λ2µ2 + λ3µ3, (332)
where:

• ∆1: Collision Minimizer — Encourages higher hashcode overlap between Gq and its most
relevant corpus graphs compared to irrelevant ones.

• ∆2: Fence-Sitting Penalty — Penalizes intermediate values of tanh(Wz) to enforce hash
bits near ±1.

• ∆3: Bit Balance — Promotes equal usage of +1 and −1 bits across all corpus hashcodes.

We use the default hyperparameters and network configurations proposed in FourierHashNet (Roy
et al., 2023) for Ψq , Ψc, and the loss weights µi.

This training process improves both retrieval relevance and the discriminability of learned hashcodes.
Algorithm 1 and 2 summarize the index construction and query retrieval procedures based on these
learned hashcodes.

G.4 BASELINES

We compare GRAPHHASH against a range of methods that fall into three broad categories: LSH-based
methods operating on single-vector graph embeddings, inverted index-based multi-vector retrieval
using FAISS, and graph-based ANN using DiskANN. We also include a naive random sampling
baseline for reference.
Hyperplane based hashing These methods rely on locality-sensitive hashing (LSH) applied to a
single-vector embedding for each graph, typically obtained via mean pooling over node representa-
tions.

• FourierHashNet (Roy et al., 2023): A learned LSH scheme that approximates hinge-based
dominance distances through Fourier transformation. It encodes asymmetric containment-style
similarities in a form suitable for efficient hash-based retrieval using random hyperplanes in the
frequency domain. We use the default hyperparameters and network configurations proposed
in FourierHashNet (Roy et al., 2023). Specifically, we use ω = 10 samples for the Fourier
features, a trainable Fourier map optimized using the BCE loss with embedding dimension 10, and

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

hashcodes of length 64. We train using the loss function defined in Eq. (332), sweeping across
all combinations of λ and other hyperparameters as described in their original paper. To evaluate
efficiency–effectiveness tradeoffs, we vary the number of hash table buckets from 21 to 260 during
retrieval.

• Random Hyperplane (RH) Hashing: A classical LSH method that applies cosine similarity
hashing to mean-pooled graph vectors. Since it uses symmetric cosine distance, it does not capture
subgraph asymmetry or node-level structure. We train the baseline using the same loss function as
in FourierHashNet (Eq. (332)), sweeping over all hyperparameter combinations reported in their
work. The hashcode dimension is set to 64, and we vary the number of selected hyperplanes (i.e.,
the subset size) from 21 to 260 to generate the tradeoff curves.

Inverted Index (IVF) We implement the inverted file index from FAISS (Douze et al., 2024) in
a multi-vector setup, where each corpus graph is decomposed into its node embeddings. These are
indexed independently, and during retrieval, each query node probes the index. Retrieved nodes are
then aggregated by graph ID to form the candidate set. This simulates node-level matching using
learned dense vectors.

For the FAISS baseline, we use the IVF-Flat indexing scheme with nlist = 128 clusters. The index
is built over node-level embeddings extracted from the corpus graphs. Depending on the specified
distance metric (cosine or l2), we use either inner product similarity or Euclidean distance. For
cosine similarity, all corpus embeddings are L2-normalized prior to indexing.
Graph-Based ANN (DiskANN) DiskANN (Simhadri et al., 2023) builds compact HNSW-style
proximity graphs for approximate nearest neighbor retrieval at scale. In our setting, each node
embedding from the corpus is indexed independently, and the query node embeddings probe this
graph. Retrieved node hits are aggregated to rank corpus graphs. DiskANN offers scalability and
fast retrieval, but operates with symmetric distances (e.g., L2, cosine) which may not align well with
asymmetric retrieval objectives.

We employ the StaticMemoryIndex implementation with cosine or Euclidean distance as the retrieval
metric. The memory-based index is built using a graph degree of 16, build-time complexity of 32, and
a search-time initial complexity of 221. We disable product quantization (PQ) and OPQ refinements
by setting use_pq_build=False and use_opq=False, respectively, opting for full-precision vectors.
During index construction, we set alpha=1.2 and filter_complexity=32, with multi-threading enabled
using 16 threads. We vary the top-K parameter during querying to generate the efficiency–accuracy
tradeoff plots.
Random Sampling This baseline selects a fixed number of graphs uniformly at random from the
corpus, without using any learned embeddings or indexing structure. It serves as a lower-bound
reference to contextualize retrieval performance. Here, we simulate retrieval by uniformly sampling a
fixed number of corpus items for each query. We sweep over the number of retrieved items using
the set: {10, 100, 1000, 2000} ∪ {5000, 10000, . . . , 95000}, to generate efficiency-accuracy tradeoff
curves.

G.5 EVALUATION METRICS

MAP To assess the trade-off between retrieval accuracy and candidate set size, we compute the
Mean Average Precision (MAP). For a query graph Gq ∈ Q, let Cq⊕ ⊆ C denote the set of relevant
corpus graphs. Given a retrieved ranking Πq over retrieved candidate set Rq, the average precision
(AP) is computed as:

AP(Gq) =
1

|Cq⊕|

|πq|∑

r=1

Prec@r · I[Πq(r) ∈ Cq⊕],

where Prec@r is the precision at rank r, and I[·] is the indicator function. We compute MAP by
averaging AP across all test queries in Qtest:

MAP =
1

|Qtest|
∑

Gq∈Qtest

AP(Gq).

This formulation penalizes high precision with low recall, ensuring models are rewarded only when
most number of relevant items are retrieved with high retrieval accuracy.
AUC To summarize the trade-off between accuracy and candidate set size, we convert the MAP
vs. candidate set size curve into a single scalar metric by computing the area under the trade-curve.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

We normalize the candidate set size by the total corpus size |C|, and numerically integrate the MAP
values over the normalized x-axis.
Normalized Discounted Cumulative Gain (NDCG) We also report NDCG to evaluate the quality
of ranked lists. For each query Gq , let relq(r) ∈ {0, 1} denote the relevance label of the item ranked
at position r in Πq . The DCG at rank k is given by:

DCG@k =

k∑

r=1

2relq(r) − 1

log2(r + 1)
,

and the corresponding ideal DCG (IDCG) is computed from a perfect ranking. The NDCG is then:

NDCG@k =
DCG@k

IDCG@k
.

We average NDCG over all test queries to obtain a corpus-level evaluation. This metric does not
penalize high precision with low recall. We set k = 1000.

G.6 HARDWARE AND LICENSES

All experiments were run on a local NAS server configured with seven NVIDIA RTX A6000 GPUs
(48GB each), a 96-core processor, and 20TB of storage, operating under Debian 6.1. All model
components, including GNN encoders and hash function training, were executed on GPU memory
without resource bottlenecks.

Regarding licensing, GMN (Li et al., 2019) is distributed under the MIT license. The implementations
of Isonet (Roy et al., 2022) and FourierHashNet (Roy et al., 2023) are open source and have been
cited appropriately in our work. Our full codebase and datasets will be released for public use upon
publication.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

H ADDITIONAL EXPERIMENTS

We present supplementary experimental results to support the findings in the main paper. These
include validations of embedding exchangeability on additional datasets and evaluation of retrieval
performance under alternate metrics and supervision settings. Our goal is to assess whether the trends
observed in the main experiments persist across diverse configurations.

H.1 ADDITIONAL EXCHANGEABILITY RESULTS

The following experiments reuse the same setup as before: 5,000 GNNs are trained independently on
a subset of 1,024 query-corpus graph pairs, each with D = 10 embedding dimensions, and trained
for 20 epochs using a pairwise ranking loss. For a fixed node in one corpus graph, we collect the
scalar embedding values across dimensions d ∈ [D] from all models.
Covariance of Node embeddings Another consequence of exchangeability is the symmetry of
higher order moments of the embedding. Specifically, we expect the covariance between two
dimensions to remain constant across all pairs of dimensions, which is a stronger demonstration of
symmetry in the joint distribution.

0 2 4 6 8

0
1

2
3

4
5

6
7

8
9

0.071 0.005 0.005 0.004 0.003 0.005 0.003 0.004 0.004 0.003

0.005 0.071 0.004 0.003 0.005 0.005 0.004 0.004 0.002 0.005

0.005 0.004 0.071 0.006 0.004 0.005 0.004 0.004 0.002 0.005

0.004 0.003 0.006 0.069 0.005 0.005 0.005 0.003 0.004 0.005

0.003 0.005 0.004 0.005 0.068 0.006 0.004 0.004 0.002 0.004

0.005 0.005 0.005 0.005 0.006 0.071 0.005 0.005 0.004 0.005

0.003 0.004 0.004 0.005 0.004 0.005 0.069 0.005 0.003 0.004

0.004 0.004 0.004 0.003 0.004 0.005 0.005 0.071 0.005 0.004

0.004 0.002 0.002 0.004 0.002 0.004 0.003 0.005 0.074 0.003

0.003 0.005 0.005 0.005 0.004 0.005 0.004 0.004 0.003 0.069

Covariance Matrix (single node)

0.02

0.04

0.06

(a) cox2 (SM)

0 2 4 6 8

0
1

2
3

4
5

6
7

8
9

0.203 -0.002 -0.001 -0.006 -0.004 0.002 0.001 -0.000 0.003 0.002

-0.002 0.202 0.004 -0.002 0.006 -0.003 -0.001 0.000 -0.000 -0.000

-0.001 0.004 0.204 -0.002 -0.006 -0.001 0.001 -0.004 0.002 0.002

-0.006 -0.002 -0.002 0.203 -0.001 0.005 0.003 0.002 0.004 0.001

-0.004 0.006 -0.006 -0.001 0.204 -0.001 0.004 -0.002 -0.002 -0.003

0.002 -0.003 -0.001 0.005 -0.001 0.200 0.004 -0.000 -0.002 -0.001

0.001 -0.001 0.001 0.003 0.004 0.004 0.202 -0.005 0.001 0.004

-0.000 0.000 -0.004 0.002 -0.002 -0.000 -0.005 0.206 0.003 -0.001

0.003 -0.000 0.002 0.004 -0.002 -0.002 0.001 0.003 0.203 -0.004

0.002 -0.000 0.002 0.001 -0.003 -0.001 0.004 -0.001 -0.004 0.202

Covariance Matrix (single node)

0.00

0.05

0.10

0.15

0.20

(b) cox2 (GED)
Figure 8: Sample covariance matrix for the X(c)[v, d] for the highlighted nodes in Figures 1,9. The
figure shows that the off-diagonal covariances are roughly, which strongly indicates that the coupling
between dimensions is symmetric.

Figure 8 shows the covariance matrices for two nodes from different graphs. The [i, j]th entry of
each matrix matrix represents the estimate for Cov(X(c)[v, i],X(c)[v, j]). We observe that all the
off diagonal elements are close to one another, and similarly, all diagonal elements too are close to
one another, which indicates that there is symmetry in the coupling between dimensions.

(a) Gc, v

−1 0 1
XXX(c)[v, d] −→0.

00

0.
25

0.
50

0.
75

D
e
n

si
ty
−→

d = 1

d = 5

d = 10

(b) Initialization

−1 0 1
XXX(c)[v, d] −→0.

00
0.
25

0.
50

0.
75

D
e
n

si
ty
−→

d = 1

d = 5

d = 10

(c) Epoch 8

−1 0 1
XXX(c)[v, d] −→0.

00

0.
25

0.
50

0.
75

D
e
n

si
ty
−→

d = 1

d = 5

d = 10

(d) Epoch 20

Figure 9: Empirical probability density of X(c)[v, d] for the highlighted node v in the example
corpus graph Gc in ptc-fr, obtained using 5,000 independently trained instances of the GNN
model under GED-based supervision. Panels (b)–(d) show the density of X(c)[v, d] at initialization
and at intermediate stages of training. The observed similarity of distributions across embedding
dimensions reaffirms the exchangeability result (Theorem 5) in a different dataset and task setting.

Marginal distributions on a different dataset In Section 5.1, we validated the exchangeability
of embedding dimensions by examining the marginal distributions of node embeddings across
dimensions, under repeated training runs. Here, we present an additional experiment on a different
dataset (PTC-FR) and a different supervision signal (GED with asymmetric costs), to confirm the
generality of our claims. Figure 9 shows the distribution of X(c)[v, d] for three representative
dimensions (d = 1, 5, 10) at three points during training. Similar to the findings on cox2(main
paper), the distributions remain near-identical across dimensions and throughout training. This
supports the robustness of Theorem 5, even under varied datasets and training objectives.
Remark. For the distribution plots of node embeddings (Figure 1 and Figure 9), we use histograms
with 25 bins and apply kernel density estimation for smoothing. These visualizations are generated
using the built-in functionality of the seaborn library.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

H.2 FURTHER EVALUATION OF GRAPHHASH’S RETRIEVAL PERFORMANCE

In the main paper (Section 5.2), we evaluated GRAPHHASH under two supervision signals—Subgraph
Matching (SM) and asymmetric GED—using conservative MAP as the primary evaluation metric.
Here, we extend that analysis along two axes.

First, we report additional results on a more commonly used GED variant, where both insertion and
deletion costs are set to e⊕ = e⊖ = 1. This equal-cost GED setting alters the notion of relevance and
allows us to assess the generality of our approach under a different supervision signal.

Second, we evaluate retrieval performance using NDCG, a position-sensitive ranking metric that
complements MAP. These additional results evaluate whether the trends observed in the main paper
persist under both metric and supervision signal variations.

H.2.1 MAP ON EQUAL-COST GED

In the main paper, we evaluated retrieval performance under asymmetric GED costs (e⊕ = 1, e⊖ = 2).
Here, we assess whether the key trends persist under the equal-cost variant where e⊕ = e⊖ = 1, a
widely used formulation in the literature.

Figure 10 shows the MAP vs. retrieved graphs trade-off curves for all baselines under equal-cost
GED supervision. We summarize our observations below:

1. GRAPHHASH and FourierHashNet remain the strongest performers across all datasets.
Even under equal-cost supervision, both methods consistently outperform other baselines in MAP
across retrieval budgets.

2. FourierHashNet shows marginal improvement in this regime, particularly on ptc-fr, where
it slightly surpasses GRAPHHASH, and on cox2 and ptc-mr, where its MAP approaches that
of GRAPHHASH at lower candidate counts. However, FourierHashNet often fails to span the
full selectivity spectrum, unlike GRAPHHASH, which yields a smoother and more complete
accuracy-efficiency trade-off.

3. RH Hashing remains unstable. While it occasionally matches GRAPHHASH on cox2 and
ptc-mr, its high variance limits its practical utility.

4. DiskANN, IVF, and Random sampling continue to underperform. As in the asymmetric
setting, these methods yield substantially lower MAP, highlighting the advantage of trainable
indexing strategies like GRAPHHASH and FourierHashNet.

These trends are consistent with our findings from the main paper and further validate the generality
of GRAPHHASH across different supervision regimes.

GraphHash FourierHashNet RH (Subsampled) DiskANN IVF Random

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

M
A

P
−→

(a) ptc-fm (Eq. cost GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

M
A

P
−→

(b) cox2 (Eq. cost GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

M
A

P
−→

(c) ptc-fr (Eq. cost GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

M
A

P
−→

(d) ptc-mr (Eq. cost GED)

Figure 10: Trade-off between mean average precision (MAP) and number of retrieved graphs,
for all the methods, viz., GRAPHHASH, FourierHashNet (Roy et al., 2023), Random Hyperplane
(RH) (Charikar, 2002; Indyk et al., 1997), IVF (Douze et al., 2024),DiskANN (Simhadri et al., 2023)
and Random, across all datasets. Retrieval based on Equal cost GED (e• = 1). Horizontal red line
denotes 50% of exhaustive MAP. Our method shows a better trade-off than others in majority of the
cases.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

GraphHash FourierHashNet RH (Subsampled) DiskANN IVF Random

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

N
D

C
G

@
1
K
−→

(a) ptc-fm (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

N
D

C
G

@
1
K
−→

(b) cox2 (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

N
D

C
G

@
1
K
−→

(c) ptc-fr (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.00

0.25

0.50

0.75

N
D

C
G

@
1
K
−→

(d) ptc-mr (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

N
D

C
G

@
1
K
−→

(e) ptc-fm (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6
N

D
C

G
@

1
K
−→

(f) cox2 (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

N
D

C
G

@
1
K
−→

(g) ptc-fr (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

N
D

C
G

@
1
K
−→

(h) ptc-mr (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.00

0.25

0.50

0.75

1.00

N
D

C
G

@
1
K
−→

(i) ptc-fm (Eq. cost GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.00

0.25

0.50

0.75

1.00

N
D

C
G

@
1
K
−→

(j) cox2 (Eq. cost GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.00

0.25

0.50

0.75

1.00

N
D

C
G

@
1
K
−→

(k) ptc-fr (Eq. cost
GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.00

0.25

0.50

0.75

1.00

N
D

C
G

@
1
K
−→

(l) ptc-mr (Eq. cost
GED)

Figure 11: Trade-off between NDCG at top 1000 and number of retrieved graphs, for all the methods,
viz., GRAPHHASH, FourierHashNet (Roy et al., 2023), Random Hyperplane (RH) (Charikar, 2002;
Indyk et al., 1997), IVF (Douze et al., 2024),DiskANN (Simhadri et al., 2023) and Random, across
all datasets. Top row: Retrieval based on Subgraph Matching (SM); Middle row: Retrieval based
on GED; Bottom row: Retrieval based on Equal cost GED (e• = 1). Our method shows a better
trade-off than others in majority of the cases.

H.2.2 EVALUATION USING NDCG

To complement our MAP-based evaluation, we assess ranking quality using NDCG across all datasets
and relevance definitions. Figure 11 reports results for Subgraph Matching, unequal-cost GED, and
equal-cost GED.

1. GRAPHHASH consistently achieves the highest or near-highest NDCG across all datasets
and relevance settings. This confirms that GRAPHHASH not only retrieves more relevant graphs
overall, but also ranks them effectively near the top of the candidate list.

2. Relative gains over baselines are smaller compared to MAP. While GRAPHHASH leads in
most cases, RH hashing performs competitively under unequal-cost GED, and nearly all baselines
exhibit similar performance under equal-cost GED. This suggests that some methods manage to
prioritize a few relevant graphs early, even if overall recall is limited.

3. DiskANN and IVF show competitive NDCG despite low MAP. These methods often retrieve a
handful of highly relevant graphs early in the ranking, which boosts NDCG but fails to capture the
full relevant set.

4. Random sampling yields flat and significantly lower NDCG. This reinforces the importance of
structured indexing and learning-based methods for meaningful ranked retrieval.

Overall, NDCG results validate our MAP findings and demonstrate that GRAPHHASH excels at not
just retrieving relevant graphs but also ranking them effectively within large candidate pools.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

H.2.3 CLARIFICATION ON RH (SUBSAMPLED)

In Figure 4 of the main paper and Figures 10 and 11 in the appendix, we display retrieval performance
as scatter plots, as described in Section 5.2. The label “RH (Subsampled)” in these figures refers to a
subsampling of the full set of trade-off points obtained for the Random Hyperplane (RH) method.
This subsampling was performed solely to prevent visual clutter and improve readability of the main
figures.

To ensure full transparency, Figures 12 and 13 present the complete set of RH performance points
generated via a comprehensive hyperparameter sweep. Specifically, we vary the hash table size and
the loss weights in Eq. (332), following the experimental protocol recommended in the FourierHash-
Net (Roy et al., 2023). These figures show retrieval performance for all datasets across all three
supervision signals (Subgraph Matching, GED, and Equal-cost GED), evaluated using both MAP
and NDCG at top 1000.

We make the following observations:

1. Consistency with main trends: Even with the full set of hyperparameter configurations, the
qualitative findings from the earlier results remain consistent—GRAPHHASH outperforms RH on
both MAP and NDCG for Subgraph Matching (SM), and also on MAP for GED. RH achieves
comparable performance only on NDCG for GED, but remains less reliable overall.

2. Pronounced variability: With more points shown, the performance of RH appears highly
scattered, especially at fixed retrieval sizes. This reinforces its sensitivity to hyperparameter
selection.

3. Practical tuning challenge: The high variance observed for RH across sweeps suggests that
achieving consistently strong performance would require extensive tuning, which may not be
practical in real-world deployments.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

GraphHash RH

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

M
A

P
−→

(a) ptc-fm (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

M
A

P
−→

(b) cox2 (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

M
A

P
−→

(c) ptc-fr (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

M
A

P
−→

(d) ptc-mr (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.1

0.2

0.3

M
A

P
−→

(e) ptc-fm (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.1

0.2

M
A

P
−→

(f) cox2 (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.1

0.2

0.3

0.4

M
A

P
−→

(g) ptc-fr (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.1

0.2

0.3

0.4

M
A

P
−→

(h) ptc-mr (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

M
A

P
−→

(i) ptc-fm (Eq. cost GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

M
A

P
−→

(j) cox2 (Eq. cost GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

M
A

P
−→

(k) ptc-fr (Eq. cost GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

M
A

P
−→

(l) ptc-mr (Eq. cost GED)
Figure 12: Trade-off between MAP and number of retrieved graphs taking all points. Top row:
Subgraph Matching (SM); Middle row: GED; Bottom row: Equal cost GED (e• = 1). Horizontal red
line denotes 50% of exhaustive MAP.

GraphHash RH

0 25K 50K 75K 100K
Retrieved Graphs −→

0.2

0.4

0.6

0.8

N
D

C
G

@
1
K
−→

(a) ptc-fm (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

N
D

C
G

@
1
K
−→

(b) cox2 (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

N
D

C
G

@
1
K
−→

(c) ptc-fr (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.2

0.4

0.6

0.8

N
D

C
G

@
1
K
−→

(d) ptc-mr (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.2

0.4

0.6

0.8

N
D

C
G

@
1
K
−→

(e) ptc-fm (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.2

0.4

0.6

N
D

C
G

@
1
K
−→

(f) cox2 (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.2

0.4

0.6

0.8

N
D

C
G

@
1
K
−→

(g) ptc-fr (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.2

0.4

0.6

0.8

N
D

C
G

@
1
K
−→

(h) ptc-mr (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.900

0.925

0.950

0.975

N
D

C
G

@
1
K
−→

(i) ptc-fm (Eq. cost GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.90

0.92

0.94

N
D

C
G

@
1
K
−→

(j) cox2 (Eq. cost GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.92

0.94

0.96

N
D

C
G

@
1
K
−→

(k) ptc-fr (Eq. cost GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.92

0.94

0.96

0.98

N
D

C
G

@
1
K
−→

(l) ptc-mr (Eq. cost GED)

Figure 13: Trade-off between NDCG at 1000 and number of retrieved graphs taking all points. Top
row: Subgraph Matching (SM); Middle row: GED; Bottom row: Equal cost GED (e• = 1).

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

H.2.4 EVALUATION ON LARGER GRAPHS

We synthetically generate larger versions of cox2 and ptc-fr by combining graphs in the original
datasets for the Subgraph Matching task. The gold relevance labels are approximated as the set of
graphs made up of relevant items of the original data. We generate 104 corpus items for either dataset,
and plot the tradeoff curves as in Figure 4. We observe that GRAPHHASH performs better than the
baselines in high accuracy regime

GraphHash FourierHashNet RH DiskANN IVF

0 2.5K 5K 7.5K 10K
Retrieved Graphs −→

0.0

0.1

0.2

0.3

0.4

M
A

P
−→

(a) cox2 (SM)

0 2.5K 5K 7.5K 10K
Retrieved Graphs −→

0.0

0.1

0.2

0.3

M
A

P
−→

(b) ptc-fr (SM)
Figure 14: Trade-off between mean average precision (MAP) and number of retrieved graphs, for
GRAPHHASH, FourierHashNet (Roy et al., 2023), Random Hyperplane (RH) (Charikar, 2002; Indyk
et al., 1997), IVF (Douze et al., 2024) and DiskANN (Simhadri et al., 2023), across two datasets with
synthetically generated large graphs under Subgraph Matching supervision.

H.2.5 EVALUATION ON LARGER CORPUS

In this set of experiments, we evaluate GRAPHHASH on a larger corpus of 1M items.

GraphHash FourierHashNet RH DiskANN IVF

0 250K 500K 750K 1M
Retrieved Graphs −→

0.0

0.2

0.4

M
A

P
−→

(a) cox2 (SM)

0 250K 500K 750K 1M
Retrieved Graphs −→

0.0

0.2

0.4

M
A

P
−→

(b) ptc-fr (SM)

0 250K 500K 750K 1M
Retrieved Graphs −→

0.0

0.2

0.4

M
A

P
−→

(c) ptc-fm (SM)

0 250K 500K 750K 1M
Retrieved Graphs −→

0.0

0.2

0.4

M
A

P
−→

(d) ptc-mr (SM)

0 250K 500K 750K 1M
Retrieved Graphs −→

0.0

0.1

0.2

M
A

P
−→

(e) cox2 (GED)

0 250K 500K 750K 1M
Retrieved Graphs −→

0.0

0.1

0.2

0.3

0.4

M
A

P
−→

(f) ptc-fr (GED)

0 250K 500K 750K 1M
Retrieved Graphs −→

0.0

0.1

0.2

0.3

M
A

P
−→

(g) ptc-fm (GED)

0 250K 500K 750K 1M
Retrieved Graphs −→

0.0

0.1

0.2

0.3

0.4

M
A

P
−→

(h) ptc-mr (GED)
Figure 15: Trade-off between mean average precision (MAP) and number of retrieved graphs, for
GRAPHHASH, FourierHashNet (Roy et al., 2023), Random Hyperplane (RH) (Charikar, 2002; Indyk
et al., 1997), IVF (Douze et al., 2024), and DiskANN (Simhadri et al., 2023) across all datasets for a
million sized corpus. Top row: Retrieval based on Subgraph Matching (SM); Bottom row: Retrieval
based on GED

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

H.2.6 ABLATION STUDIES

Ablation on dimh Here, we present the trade-off curves for MAP versus number of retrieved
graphs for each choice of dimh, the size of the hashcode. The below tradeoff has been summarised
to Figure 5 in the main paper. Owing to the larger number of values of dimh, we use a colorscale for
the scatterplot.

dimh = 0
dimh = 1
dimh = 2
dimh = 3
dimh = 4

dimh = 5
dimh = 6
dimh = 7
dimh = 8
dimh = 9

dimh = 10
dimh = 11
dimh = 12
dimh = 13
dimh = 14

dimh = 15
dimh = 16
dimh = 17
dimh = 18
dimh = 19

dimh = 20
dimh = 25
dimh = 30
dimh = 35
dimh = 40

dimh = 45
dimh = 50
dimh = 55
dimh = 60

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

M
A

P
−→

(a) ptc-fm (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

M
A

P
−→

(b) cox2 (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

M
A

P
−→

(c) ptc-fr (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

M
A

P
−→

(d) ptc-mr (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.1

0.2

0.3

M
A

P
−→

(e) ptc-fm (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.1

0.2

M
A

P
−→

(f) cox2 (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.1

0.2

0.3

0.4

M
A

P
−→

(g) ptc-fr (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.1

0.2

0.3

0.4

M
A

P
−→

(h) ptc-mr (GED)
Figure 16: Trade-off between mean average precision (MAP) and number of retrieved graphs, for
GRAPHHASH for different values of the hashcode size dimh

Ablation with D Here, we perform experiments ablating the embedding dimension of the netowrk,
and the number of hash tables used.

2 5 10 15 20 30
D −→

0.3

0.4

0.5

0.6

M
A

P
−→

(a) cox2 (SM)

2 5 10 15 20 30
D −→

0.35

0.40

0.45

0.50

M
A

P
−→

(b) ptc-fm (SM)
Figure 17: The exhaustive MAP achieved by an embedding model trained on the node aligned loss
with respect to the embedding dimension of the model.

We see that MAP increases monotonically with D, as is expected as the higher dimension allows for
richer feature representation without hitting the bottleneck in training requirements.
Ablation with number of hash tables We also perform ablation over the number of hash tables.
Note that for GRAPHHASH the number of hash tables corresponds to the number of dimensions of

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

the embedding utilised, which implies a monotone behavior in the performance. We seek to find if
the accuracy losses are comparatively low, which could help cut time and memory.

0.0 0.5 1.0
Retrieved Graphs×105

0.0

0.2

0.4

M
A

P

GraphHash

10 tables

7 tables

5 tables

(a) cox2 (SM)

0.0 0.5 1.0
Retrieved Graphs×105

0.0

0.2

0.4

M
A

P

GraphHash

D = 10

D = 7

D = 5

(b) ptc-fm (SM)
Figure 18: Trade of plot showing MAP vs the number of retrieved corpus items for different variants
of GRAPHHASH that uses a different number of hash tables for retrieving results.

We observe that the drop in performance is not too significant from 10 to 7, although it is noticeable
for 5. Ultimately, this vindicates our decision to use all 10 hash tables
Stability of random hyperplane seeding Next, we evaluate the stability of the random hyperplane
hashing scheme over multiple random seeds. In this setting, we set 10 different random seeds for
the hyperplanes, keeping the embeddings and fourier maps fixed. We then evaluate the retrieval
performance on the best hyperparameters found from GRAPHHASH.

We report the mean and standard devation in AUC over these 10 runs.

Dataset (Task) Mean AUC Std

ptc-fm (SM) 0.342685 0.006966
cox2 (SM) 0.369972 0.009179
ptc-fm (GED) 0.289546 0.007598
cox2 (GED) 0.238293 0.005878

Table 19: Mean and standard deviation of AUC over 10 different random seeds for RH seeding.

We also plot the tradeoff curves for the different random seeds, contrasting their performance with
the final version of GRAPHHASH. Each color denotes a different seed.

0.0 0.5 1.0
Retrieved Graphs×105

0.0

0.2

0.4

M
A

P

GraphHash

(a) cox2 (SM)

0.0 0.5 1.0
Retrieved Graphs×105

0.0

0.2

0.4

M
A

P

GraphHash

(b) ptc-fm (SM)

0.0 0.5 1.0
Retrieved Graphs×105

0.0

0.1

0.2

M
A

P

GraphHash

(c) cox2 (GED)

0.0 0.5 1.0
Retrieved Graphs×105

0.0

0.1

0.2

0.3

M
A

P

GraphHash

(d) ptc-fm (GED)
Figure 20: Tradeoff curves comparing GRAPHHASH (red) with different random seeds for Random
Hyperplane hashing across both tasks on cox2 and ptc-fm. Each color denotes a different seed.

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

We observe that the variation in performance between different seeds is very minimal, as the different
values coincide with the tradeoff trajectory of the best performing hyperparameters of GRAPHHASH.
Stability of fourier map dimension dimT We also ablate over the size of the fourier representation
dimT . In our formulation, we have reparameterized dimT = 4nM , where n is the size of the graphs.
In our experiment we ablate over M .

2 4 6 8 9 10
M −→

0.28

0.30

0.32

0.34

0.36

0.38

A
U

C
−→

(a) cox2 (SM)

2 4 6 8 9 10
M −→

0.18

0.20

0.22

0.24

A
U

C
−→

(b) cox2 (GED)

2 4 6 8 9 10
M −→

0.26

0.28

0.30

0.32

0.34

A
U

C
−→

(c) ptc-fm (SM)

2 4 6 8 9 10
M −→

0.200

0.225

0.250

0.275

0.300

A
U

C
−→

(d) ptc-fm (GED)
Figure 21: Comparison of AUC of the MAP vs retrieval ratio curve for different values of the
per-dimension-fourier frequencies M , across two datasets on both tasks.

We compare the AUC generated by the tradeoff curve generated for each value of M . We observe a
sharp decline in the performance when going down from 10 fourier frequencies per dimension.

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

H.2.7 COMPARISON OF sim AND simd

Direct comparison of sim vs. simd We compare the quality of the approximation by plotting the
scatter plots of the scores obtained by sim and simd for all the datasets and tasks. Specifically, we
compare the mean 1D score, i.e. 1

D

∑D
i=1 sim

(i)
d against the true score sim scaled by 1

D . For each
Gc, Gq pair in the test set, we compute these two values and plot them.

(a) cox2 (SM) (b) ptc-fr (SM) (c) ptc-fm (SM) (d) ptc-mr (SM)

(e) cox2 (GED) (f) ptc-fr (GED) (g) ptc-fm (GED) (h) ptc-mr (GED)
Figure 22: Scatter plots comparing the mean 1D similarity scores (y-axis) with the true similarity
scores (x-axis) computed with sinkhorn iterations, for the (top) Subgraph Matching and (bottom)
Graph Edit Distance task across different datasets.

Decay of |simd(Gc, Gq) − sim(Gc, Gq) with increasing D Next, we empirically validate the
concentration result from Proposition 7 by plotting the average absolute error |simd(Gc, Gq) −
sim(Gc, Gq)| over all pairs (Gc, Gq) in the test set as a function of D. We note that the deviation
decreases with increasing D, confirming the result.

2 5 10 15 20 30
D −→

1

2

∣ ∣1 D

∑
d

si
m
d
(G

c
,
G
q
)
−

1 D
si

m
(G

c
,
G
q
)∣ ∣

(a) cox2 (SM)

2 5 10 30
D −→

0.5

1.0

1.5

2.0

2.5

∣ ∣1 D

∑
d

si
m
d
(G

c
,
G
q
)
−

1 D
si

m
(G

c
,
G
q
)∣ ∣

(b) ptc-fm (SM)
Figure 23: Boxplot of average absolute error | 1D

∑
d simd(Gc, Gq)− sim(Gc, Gq)| as a function of

D for the Subgraph Matching task on different datasets.

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

H.2.8 EVALUATION OF LSH METHODS UNDER ALIGNED SCORING FUNCTIONS

To ensure a fair comparison across LSH-based retrieval strategies, we evaluate each method using
graph embeddings specifically trained to align with its intended scoring function. That is, while
GRAPHHASH is evaluated under transport-based supervision, FourierHashNet and Random Hy-
perplane (RH) methods are applied on embeddings trained for hinge and cosine-based scoring,
respectively.
GRAPHHASH: Transport-Based Scoring with GNN Embeddings. For GRAPHHASH, we use
node-level embeddings produced by a GNN encoder, trained using a pairwise ranking loss (Eq. (G.2))
based on the transport distance ∆(Gc, Gq) (Eq. (1)).

For the baselines that require a single-vector representation of graphs, we adopt the GEN architecture
from (Li et al., 2019), which aggregates node embeddings into a global graph-level vector via mean
pooling.
FourierHashNet: Hinge Distance over Aggregated Graph Embeddings (GEN + FourierHash-
Net). FourierHashNet is designed for asymmetric hinge-based distances over global graph em-
beddings. We apply it on GEN representations trained using the ranking loss in Eq. (G.2), where
rel(Gc, Gq) = ∥aq − ac∥+ , and aq,ac denote the pooled graph embeddings. Here, [·]+ is the
ReLU function.
RH: Cosine Similarity-Based Hashing (GEN + RH). To align with RH’s reliance on cosine simi-
larity, we again use GEN-pooled embeddings and train them with the ranking loss in Eq. (G.2), setting
rel(Gc, Gq) = − cos(aq,ac). This setup ensures that the learned representations are optimized for
RH’s angle-based locality-sensitive hashing.
Summary. Each method is thus benchmarked under conditions it was designed for: transport
distance with GRAPHHASH, hinge distance with FourierHashNet, and cosine similarity with RH.
This isolates the performance of the retrieval mechanism from mismatches in training objectives or
input embeddings.
Observations. Figures 24 and 25 present retrieval performance across all datasets and supervision
types. Figure 24 reports MAP trade-offs, while Figure 25 reports NDCG. We observe that:

1. Exhaustive scores reveal superiority of transport-based supervision. Across all datasets
and similarity signals, GRAPHHASH consistently achieves higher exhaustive MAP and NDCG
compared to both GEN + FourierHashNet and GEN + RH. This confirms that transport-based
supervision captures a more powerful and fine-grained notion of graph relevance.

2. RH shows significantly reduced variance when used with compatible supervision. Unlike
earlier results where RH was applied to transport-trained embeddings and exhibited high variability
(Figure 4), the GEN + RH setup shows much smoother and more stable trade-offs. This emphasizes
the importance of matching the embedding training signal to the retrieval method.

3. FourierHashNet benefits from hinge-compatible embeddings. When used with GEN-trained
embeddings under hinge distance supervision, FourierHashNet exhibits broader coverage of the
selectivity spectrum, yielding smoother MAP and NDCG trade-off curves. This again reinforces
the value of scoring-function alignment between embedding training and LSH mechanism.

4. Despite improvements, GRAPHHASH retains overall dominance. Even though GEN-based
variants show improved performance over their misaligned counterparts, they still fall short of
GRAPHHASH in nearly all retrieval settings. This underscores the strength of the transport scoring
model in both relevance estimation and downstream index quality.

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

GraphHash GEN + FourierHashNet GEN + RH

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4
M

A
P
−→

(a) ptc-fm (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

M
A

P
−→

(b) cox2 (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

M
A

P
−→

(c) ptc-fr (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

M
A

P
−→

(d) ptc-mr (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.1

0.2

0.3

M
A

P
−→

(e) ptc-fm (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.1

0.2

M
A

P
−→

(f) cox2 (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.1

0.2

0.3

0.4

M
A

P
−→

(g) ptc-fr (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.1

0.2

0.3

0.4

M
A

P
−→

(h) ptc-mr (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

M
A

P
−→

(i) ptc-fm (Eq. cost GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

M
A

P
−→

(j) cox2 (Eq. cost GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8
M

A
P
−→

(k) ptc-fr (Eq. cost GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

M
A

P
−→

(l) ptc-mr (Eq. cost GED)

Figure 24: Trade-off between mean average precision (MAP) and number of retrieved graphs, for
all the methods, viz., GRAPHHASH, FourierHashNet (Roy et al., 2023) using GEN embeddings,
Random Hyperplane (RH) (Charikar, 2002; Indyk et al., 1997) using GEN embeddings, across all
datasets. Top row: Retrieval based on Subgraph Matching (SM); Middle row: Retrieval based on
GED; Bottom row: Retrieval based on Equal cost GED (e• = 1). Horizontal red line denotes 50% of
exhaustive MAP. Our method shows a better trade-off than others in majority of the cases.

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

GraphHash GEN + FourierHashNet GEN + RH

0 25K 50K 75K 100K
Retrieved Graphs −→

0.2

0.4

0.6

0.8
N

D
C

G
@

1
K
−→

(a) ptc-fm (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

N
D

C
G

@
1
K
−→

(b) cox2 (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

N
D

C
G

@
1
K
−→

(c) ptc-fr (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.2

0.4

0.6

0.8

N
D

C
G

@
1
K
−→

(d) ptc-mr (SM)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

N
D

C
G

@
1
K
−→

(e) ptc-fm (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

N
D

C
G

@
1
K
−→

(f) cox2 (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

N
D

C
G

@
1
K
−→

(g) ptc-fr (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.0

0.2

0.4

0.6

0.8

N
D

C
G

@
1
K
−→

(h) ptc-mr (GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.00

0.25

0.50

0.75

1.00

N
D

C
G

@
1
K
−→

(i) ptc-fm (Eq. cost GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.00

0.25

0.50

0.75

N
D

C
G

@
1
K
−→

(j) cox2 (Eq. cost GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.00

0.25

0.50

0.75

1.00
N

D
C

G
@

1
K
−→

(k) ptc-fr (Eq. cost GED)

0 25K 50K 75K 100K
Retrieved Graphs −→

0.00

0.25

0.50

0.75

1.00

N
D

C
G

@
1
K
−→

(l) ptc-mr (Eq. cost GED)

Figure 25: Trade-off between NDCG at top 10000 and number of retrieved graphs, for all the methods,
viz., GRAPHHASH, FourierHashNet (Roy et al., 2023) using GEN embeddings, Random Hyperplane
(RH) (Charikar, 2002; Indyk et al., 1997) using GEN embeddings, across all datasets. Top row:
Retrieval based on Subgraph Matching (SM); Middle row: Retrieval based on GED; Bottom row:
Retrieval based on Equal cost GED (e• = 1). Our method shows a better trade-off than others in
majority of the cases.

66

	Broader Impact
	Limitations
	LLM Usage
	Related work
	Proofs and other technical details
	Proofs of the results of exchangeability presented in Section 3
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 5 and Proposition 6
	Equivariance of the Update Step
	Additional Results on Exchangeability

	Proofs of the technical results in Section 4
	Proof of Proposition 7
	Proof of the fact that Eq. (3) and Eq. (4) are equivalent
	Auxiliary Results used to prove Lemmas in Appendix E.2
	Proofs of LSH results
	Auxiliary results used to prove results in this subsection E.2.4

	List of GNNs
	Graph Neural Network
	Graph Transformers
	Set-based Neural Network

	Additional details about experiments
	Datasets
	Embedding model architecture
	Fourier-map and hashcode training
	Baselines
	Evaluation Metrics
	Hardware and Licenses

	Additional Experiments
	Additional Exchangeability Results
	Further Evaluation of GraphHash's Retrieval Performance
	 MAP on Equal-Cost GED
	Evaluation using NDCG
	Clarification on RH (Subsampled)
	Evaluation on Larger Graphs
	Evaluation on larger corpus
	Ablation Studies
	Comparison of sim and simd
	Evaluation of LSH Methods under Aligned Scoring Functions

