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Abstract

Recent advancements in Large Language Mod-001
els (LLMs) underscore the necessity of Re-002
trieval Augmented Generation (RAG) to lever-003
age external information. However, LLMs are004
sensitive to the position of relevant informa-005
tion within contexts and tend to generate incor-006
rect responses when such information is placed007
in the middle, known as ‘Lost in the Middle’008
phenomenon. In this paper, we introduce a009
framework that generates consistent outputs for010
decoder-only models, irrespective of the input011
context order. Experimental results for three012
open domain question answering tasks demon-013
strate position invariance, where the model is014
not sensitive to input context order, and supe-015
rior robustness to irrelevent passages compared016
to prevailing approaches for RAG pipelines.017

1 Introduction018

In Retrieval Augmented Generation (RAG) (Guu019

et al., 2020; Lewis et al., 2021; Izacard et al.,020

2022), models first extract relevant information021

from a knowledge base and then incorporate this ex-022

tracted information with its parameteric knowledge023

to generate the response. This two-step approach024

is the de-facto approach for knowledge-intensive025

tasks (Lewis et al., 2021; Petroni et al., 2021).026

However, decoder-only models exhibit an intrin-027

sic positional bias, assigning more attention to to-028

kens at the beginning or end of the input sequence029

while often overlooking relevant context located030

in the middle, a problem known as the ‘Lost in031

the Middle’ (Liu et al., 2023). Previous works to032

address this issue involves training with specific033

prompt (He et al., 2024) or data-intensive training034

(An et al., 2024). Other works aimed at modifying035

positional embeddings (Hsieh et al., 2024b) or re-036

ducing positional attention bias in LLMs (Yu et al.,037

2024a). Yet, none of these methods fully guarantee038

a solution to this intrinsic bias in LLMs for RAG.039
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Figure 1: Illustration of the KV-Fusion model: Gener-
ated tokens remain consistent even when the retrieved
passages are shuffled.

In this paper, we introduce a framework for 040

decoder-only models, called Key Value Fusion 041

(KV Fusion), to generate consistent outcomes re- 042

gardless of input order as illustrated in Figure 1. 043

KV Fusion consists of two components: a prefill 044

decoder that extract key-values caches in paral- 045

lel and a trainable decoder that utilizes extracted 046

key value caches to produce consistent outcome. 047

This architecture injects uniform positional infor- 048

mation to each input contexts, ensuring consistent 049

output generation even when the input order varies. 050

Experiments on open domain question answering 051

datasets, including NQ (Kwiatkowski et al., 2019), 052

TriviaQA (Joshi et al., 2017), and POPQA (Mallen 053

et al., 2023), demonstrate KV-Fusion’s position- 054

invariant nature, achieving accuracy improvements 055

of 21.4%, 6.4%, and 6.6% over baseline models 056

in shuffled settings. Furthermore, KV-Fusion mod- 057

els exhibit robust and stable accuracies even with 058

additional contexts compared to other approaches. 059

2 Method 060

Notation Our KV-Fusion architecture is illus- 061

trated in Figure 2. For clarity, we refer to this 062

prefill decoder as Dp, which is characterized by the 063
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Figure 2: Overview of KV-Fusion Architecture. Dp denotes Prefill decoder and Dt represents Trainable decoder.
We employ the off-the-shelf LLM to extract the key and value states of the retrieved contexts independently. Then
reshaping these caches to train the LLM with task instructions along with questions to generate answers.

number of key and value heads |H |, each with a064

dimension of dh. We denote the trainable decoder065

as Dt, and represent the set of input passages as066

C = {c1, c2, . . . , cN} with fixed token length n for067

each ci. This set of passages represents smaller068

chunks of a long document or retrieved contexts.069

Lastly, let L represent the total number of layers in070

Dp and Dt, and let l denote the lth layer.071

Prefill Decoder (Dp) extracts the KV cache from072

multiple input passages in parallel, resulting in the073

injection of identical local positional embeddings074

{p⃗1, p⃗2, . . . , p⃗n}. The layer-wise cache representa-075

tion for each ci is as follows:076

{kli, vli}Ll=1 = Dp(ci), kli, v
l
i ∈ R|H |×n×dh077

Next, we reshape layer-wise KV-caches by con-078

catenating along the token axis over N contexts,079

forming a single cache for each layer l:080

K l = RES({kli}Ni=1) V l = RES({vli}Ni=1)081

Here, K l, V l ∈ R|H |×(N×n)×dh are reshaped KV-082

cache for the corresonding layer over input pas-083

sages. These caches prefills and serve as grounding084

knowledge for training Dt.085

Trainable Decoder (Dt) takes two inputs: (1)086

reshaped KV-caches ({K l, V l}Ll=1) and (2) target087

tokens, which contain instruction queries, and an-088

swers with a length of m tokens. To ensure se-089

quential alignment of positional information with090

the KV-caches, position information starting from091

p⃗n+1 to p⃗n+m are assigned. We then train Dt using092

next-token prediction, conditioning on the reshaped093

KV-caches rather than previous tokens:094

Dt(y|q, C′) ≜ Dt(y|q, {K l, V l}Ll=1)095

Here, q denotes the instruction with query tokens096

and y is answer tokens. C′ represents the set of097

input passages tokens, and {K l, V l}Ll=1 is the re-098

shaped KV-cache corresponding to C′. We illustrate099

the details of KV-Fusion in Appendix A.1100

3 Experiment Setup 101

3.1 Datasets 102

We consider three open domain question answering 103

datasets: Natural Questions (Kwiatkowski et al., 104

2019), TriviaQA (Joshi et al., 2017), and POPQA 105

(Mallen et al., 2023) .1 For the base retrieval cor- 106

pus, we utilize a December 2018 Wikipedia snap- 107

shot consisting of 21 million passages, following 108

(Yen et al., 2024; Yu et al., 2024b). Lastly, we use 109

the DPR (Karpukhin et al., 2020) as our baseline 110

retriever to extract the top-40 passages for each 111

dataset. 2 112

Dataset Construction To enhance the robustness 113

in RAG, we train models with irrelevant contexts 114

(Fang et al., 2024; Yoran et al., 2024a). To this 115

end, we draw the best gold context and extract key 116

phrases among candidate passages by prompting 117

gpt-4o API with a fine-grained template. If all 118

responses are negative, the instance is discarded. 119

Otherwise, we retain the extracted key phrases as 120

evidence, which is later used for training. Negative 121

contexts are sampled from DPR-retrieved passages 122

that do not contain any answer. Each training in- 123

stance consists of one gold context and 19 negative 124

contexts. The prompt for this process and statistics 125

of all datasets are desribed in Appendix A.2. 126

Metric and Evaluations Exact Match (EM) Ac- 127

curacy is used for evaluation. (Asai et al., 2023; 128

Mallen et al., 2023). However, we observe that as 129

more documents are added to the input, baseline 130

models tend to generate instrinsic knowledge or 131

hallucinated responses (Hsieh et al., 2024a). To 132

address this, we incorporate answerability into the 133

prompt, requiring responses to be concise, and lim- 134

ited to a single sentence. Lastly, we set a 48-token 135

1Note that NQ and TriviaQA are filtered version from
DPR (Karpukhin et al., 2020)

2Note that we used DPR trained from scratch with its own
hard negatives on December 2018 Wikipedia snapshot
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(a) NQ - Llama3 (b) TQA - Llama3 (c) POPQA - Llama3

Figure 3: Comparison of EM Accuracy between KV-Llama3 and Llama3 across different gold context positions.
KV-Llama3 maintains its accuracy, while Llama3 shows a tendency for the ‘lost in the middle’ problem.

(a) NQ (b) TQA (c) POPQA

Figure 4: Accuracies of baseline and KV models in two scenarios: 1) POS1, where the gold context is positioned
first, and 2) Shuffled, where contexts are randomly ordered. KV models maintain their accuracy on both cases, while
baseline models struggle in shuffled setting, leading in a wider accuracy gap between the baseline and KV-models.

limit and use greedy-decoding (Huang et al., 2023a)136

for baselines and KV-Fusions. The template and ex-137

ample for baseline are illustrated in Appendix A.3.138

3.2 Training139

Input Formating Each input passage is for-140

matted with ‘Title:{title}’ and ‘Context:{text}’,141

followed by a document boundary, ‘====’. For142

target tokens, we preprend a signal token,143

<|question_answering|>, to guide the model’s be-144

havior during inference (Asai et al., 2023). Next,145

we append instruction and ‘Question:{question}’.146

Finally, we add answer tokens, which contain both147

answer string and a key phrase as evidence, as de-148

scribed in Section 3.1. We hypothesize that append-149

ing key phrases enhances the the model’s robust-150

ness (Thoppilan et al., 2022; Menick et al., 2022).151

Format examples are provided in Appendix A.4.152

Technical Details We initialize both Dp and Dt153

with the Llama3-8B model (Dubey et al., 2024).154

We fine-tune on each dataset with a maximum learn-155

ing rate of 2 × 10−5 using the AdamW. Across156

all dataset, we use a batch size of 64 on four157

A100(80G) GPUs. For the NQ and TQA datasets,158

models are trained for 2 epochs. For the POPQA159

dataset, we fine-tune it on top of TQA fine-tuned160

model due to its small training size. The same 161

procedure is applied to the Llama3.1-8B. Detail 162

hyperparameters are reported in Appendix A.5. 163

4 Results 164

Position Invariant RAG To demonstrate the 165

position-agnostic property, we test models with 166

the gold context placed at varying positions. For 167

each dev dataset, we construct 10 versions by in- 168

serting gold context at every alternate location (1st, 169

3rd, etc.), along with an additional dev set where 170

all 20 contexts are randomly shuffled. To manage 171

the increased inference time, we evaluate the first 172

500 instances. As shown in Figure 3, KV-Llama3 173

maintains consistent accuracy across all datasets, 174

regardless of the position of the gold context, while 175

conventional Llama3 shows varying accuracy. A 176

similar pattern is observed with KV-Llama3.1 and 177

Llama3.1 as shown in Appendix A.6. Figure 4 178

emphasizes this difference: the accuracy of the 179

baseline model drops considerably with shuffled 180

contexts, while the KV models maintain stable per- 181

formance. In the shuffled scenario, KV-Llama3 182

achieves higher accuracy than baselines on the NQ, 183

TQA, and POPQA datasets, with similar trends 184

observed for KV-Llama3.1. These findings sug- 185
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Dataset NQ TQA POPQA

Top-K 5 10 20 40 5 10 20 40 5 10 20 40

Llama3 34.1 37.2 40.4 38.8 62.4 66.5 67.2 64.7 31.7 33.7 33.7 31.6

Llama3.1 43.2 41.5 42.7 42.4 64.0 64.8 65.9 67.1 31.1 33.4 32.8 33.3

REPLUG-LLAMA3 35.6 34.0 33.6 32.2 57.7 56.4 55.8 56.3 30.1 28.1 26.0 26.7

REPLUG-LLAMA3.1 38.6 36.4 35.3 34.1 65.1 64.4 62.8 60.6 35.4 33.8 30.7 29.4

PAM QA 51.9 46.5 40.7 19.7 65.9 61.2 52.3 29.0 37.0 35.9 34.9 15.7

KV-LLAMA3 51.6 51.7 51.4 49.8 67.5 68.8 69.3 69.3 44.5 46.7 48.3 46.7

KV-LLAMA3.1 51.7 51.8 50.8 49.0 68.6 68.3 69.3 68.7 44.7 47.6 47.4 45.3

Table 1: Accuracy comparison with differnet position-invariant readers. Across top-k results, KV-fusion maintains
stable and the strong accuracies, while other models either degrade or exhibit relatively low accuracies.

gest that KV-Fusion improves performance in RAG186

pipelines.187

Comparison with Recent Methods We evaluate188

KV models alongside other position-agnostic meth-189

ods: PAM QA (He et al., 2024), which employs190

multi-step reasoning to reduce position bias, and191

REPLUG (Shi et al., 2024b), which predicts the192

next token based on a weighted score for each con-193

text. Across the test sets, we utilize up to 40 DPR-194

retrieved passages, using default settings for PAM195

QA and the same configurations as Llama3 for RE-196

PLUG. As shown in Table 1, KV-models achieve197

the highest accuracy across datasets except top-5198

NQ case. Notably, KV-models, originally trained199

with 20 passages, demonstrate strong robustness200

even with top-40 passages. PAM QA performs well201

with up to 20 passages but shows an average accu-202

racy decline of 50.3% when scaled to the top 40.203

REPLUG follows the similar pattern as the base-204

lines but also experiences performance degradation.205

Comparable results are observed with contriever206

passages as shown in Appendix A.7. These results207

indicate that KV-Fusion enhances robustness even208

with large input passages within the RAG pipeline.209

5 Related Works210

Retrieval Augmented Generation (RAG) With211

recent advancements in LLMs(Team et al., 2024;212

OpenAI, 2024), Retrieval Augmented Generation213

(RAG) have proven to be effective in complement-214

ing LLMs across various tasks: managing long-tail215

information (Mallen et al., 2023), reducing halluci-216

nations (Huang et al., 2023b; Shi et al., 2024a), and217

improving interpretability (Borgeaud et al., 2022;218

Rudin et al., 2021). The idea of utilizing external219

knowledge has become prevalent, particularly in220

knowledge-intensive (Thorne et al., 2018; Lewis221

et al., 2021; Petroni et al., 2021), where retrievers222

like DPR and Contriever (Karpukhin et al., 2020;223

Izacard et al., 2021) first retrieve relevant informa- 224

tion, and readers like FiD, ATLAS (Izacard and 225

Grave, 2020; Izacard et al., 2022) incorporate the 226

retrieved information to make predictions. 227

Robustness and Bias in RAG Pipeline Despite 228

the promising capabilities of the RAG system, one 229

major challenge is the notable drop in performance 230

when irrelevant contexts exist during inference. 231

(Shi et al., 2023; Oh and Thorne, 2023), along with 232

incorrect responses even when the gold context ap- 233

pears in the middle (Liu et al., 2023). To address 234

these issues, Xu et al. 2023 trained an auxiliary 235

LLM to summarize and extract relevant contexts, 236

while Yoran et al. 2024b proposed a simple Natural 237

Language Inference (NLI) model to eliminate un- 238

necessary passages. Also, He et al. 2024 suggests 239

decomposing inference into multi-step resasoning, 240

enabling the model to generate accurate response 241

regardless of the context order. Other methods fo- 242

cus on internal features, such as adjusting position 243

hidden states or calibrating attention biases (Hsieh 244

et al., 2024b; Yu et al., 2024a). However, none of 245

these approaches fully resolve a complete solution 246

for ‘Lost in the Middle’ problem. 247

6 Conclusion 248

This paper presents KV-Fusion, a lightweight train- 249

ing scheme aimed at addressing positional bias and 250

improving robustness of decoder-only models in 251

RAG pipeline. KV-Fusion trains language models 252

to be context-order invariant by extracting and pre- 253

filling KV caches with identical positional informa- 254

tion, then training decoder-only models using these 255

caches. The results not only highlight the robust- 256

ness of KV-Fusion in handling a large number of in- 257

put passages but also its position-invariant property. 258

Our empirical evaluations on three open-domain 259

datasets indicate that KV-Fusion can improve per- 260

formance and reliability of the RAG system. 261
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7 Limitations262

One limitation of this work is its focus on question263

answering. Although the most common dataset for264

evaluating LLMs’ understanding with large con-265

text would be the needle-in-a-haystack (NIAH)266

dataset (Kamradt, 2023), our experiments are cen-267

tered around question-answering, which is more268

challenging than NIAH (Hsieh et al., 2024a).269

Second limitation is that our experiments are270

limited to single-hop question answering, where271

multi-step reasoning is not required. For exam-272

ple, datasets like HotpotQA (Yang et al., 2018)273

and MuSiQue (Trivedi et al., 2022) require multi-274

ple passages to derive answers. This work, how-275

ever, focuses on single-hop question-answering276

datasets, making it difficult to assess the impact277

of KV-fusion in multi-hop datasets.278

Third limitation is that this work does not fully279

explore the use of KV-cache for training LLMs. Re-280

cently, training LLMs by conditioning key-value281

caches has gained attention (Sun et al., 2024),282

though our approach remains underexplored in283

terms of language modeling. However, we present284

strong empirical results to solve ‘Lost in the middle’285

problem. We hope our work can facilitate future286

studies on utilizing key-value cache for training287

LLMs.288
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A Appendix559

A.1 Details for KV-Fusion Implementation560

This section describes the pseudocode for KV-Fusion and Python implementation of the RES function.561

A.1.1 Algorithm for KV-Fusion562

This section further elaborates on the KV-Fusion algorithm, which can be implemented using standard563

language modeling. For clarification, we provide the pseudocode with a single-instance example. As564

explained in Section 2, KV-Fusion is built upon two decoders. First, Dp processes a set of input565

passages retrieved by retrievers, C = {c1, c2, . . . , cN}, and generates Key-Value (KV) caches in parallel.566

These KV caches are reshaped by the RES function into the form {K l, V l}Ll=1 to prefill the cache in567

Dt. Next, Dt processes target tokens, t = {t1, t2, . . . , tm}, along with their positional information,568

p = {pn+1, pn+2, . . . , pn+m}. Specifically, the target tokens consist of two parts: the query part, which569

includes instructions, q = {t1, t2, . . . , tk}, and the answer part, y = {tk+1, tk+2, . . . , tm}. Along with570

the prefilled KV cache, we train Dt by prompting it with q and using the standard language model571

loss to generate y. For implementation, we use huggingface transformers(Wolf et al., 2020) and572

PyTorch(Paszke et al., 2017) libraries.573

Algorithm 1 Key Value Fusion(KV Fusion)
Input: Dt, Dp, Training Data Ctrain = {C1, C2, . . . , CL} where Ci = {ci1, ci2, . . . , ciN}, Corresponding
query tokens qi = {ti1, ti2, . . . , tik}, Corresponding answer tokens yi = {tik+1, t

i
k+2, . . . , t

i
m}

1: Initialize Dt, Dp and freeze Dp
2: for i = 1, 2, ..., L do
3: # Extract KV-caches in parallel
4: KV cache = Dp(Ci)
5:

6: # Reshape KV-caches
7: {K l, V l}Ll=1 = RES(KV cache)
8:

9: # Compute loss and Optimize Dt
10: Loss = LMloss(yi,Dt(qi; {K l, V l}Ll=1))
11: Update parameters of Dt with repect to Loss via gradient descent
12: end for

A.1.2 RES Implementation574

To train Dt seaminglessly with huggingface transformers(Wolf et al., 2020) and PyTorch(Paszke575

et al., 2017), extracted KV-cache need to be reshaped to prefill the caches in Dt. To this end, we implement576

RES function down below, which can also process batch of instances.577
def reshape_key_value_batches(cur_past_key_values, n_psgs):

"""
Reshapes key-value pairs in batches
"""
new_key_cache = []

# Iterate through each key-value pair
for k, v in cur_past_key_values:

# Split keys and values into splits (split by instance)
k_splits, v_splits = torch.split(k, n_psgs, dim=0), torch.split(v, n_psgs, dim=0)

# Reshape and concatenate splits (reshape by instance)
k_re = torch.cat([torch.cat(torch.split(k_val, 1, dim=0), dim=2) for k_val in k_splits], dim=0)
v_re = torch.cat([torch.cat(torch.split(v_val, 1, dim=0), dim=2) for v_val in v_splits], dim=0)

# Append processed key-value pair
new_key_cache.append((k_re, v_re))

return tuple(new_key_cache)578
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A.2 Dataset Construction 579

A.2.1 Prompt Template 580

Prompt Template for Verifying Gold Passages and Supporting Evidence

Your task is to find Evidence from a given Document based on a Question and its corresponding
Answer. Specifically, the Document contains the Answer for the given Question. Your job is to
extract the Evidence from the document.

Here are the Question, Document, and Answer.

Question:
{QUESTION}

Document:
{PASSAGE}

Answer:
{ANSWER}

Here is how the evidence should be presented:

* Evidence
- The Evidence should only consist of sentences or paraphrases taken from the given Document.
- The Evidence should retain the same format as in the given Document.
- The Evidence should inlcude enough information to derive the given Answer from the given
Question.
- If the provided Document does not contain sufficient information, generate NONE.

* Format
- DO NOT WRITE ANY GREETING MESSAGES, just write the evidence only.
- In front of the evidence, append the word “Evidence:".
- Write [END] after you are done.
- Here is the Example Format:
“
Evidence: evidence sentences [END]
“
- Do not include “ in the response.

Data Generation:
581

A.2.2 Dataset Statistics 582

Dataset Training Dev Test
NQ 47,633 3,036 3,610

TQA 34,648 4,288 1,768
POPQA 6,833 1,190 1,267

Table 2: Dataset Statistics for NQ, TQA, and PQA

NQ and TriviaQA are filtered versions provided by Karpukhin et al. 2020 under the CC BY-NC 4.0. 583
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We also use POPQA, available from the HuggingFace datasets3 under MIT License. These datasets584

are English open domain question answering datasets based on December 2018 Wikipedia snapshot,585

preprocessed by Karpukhin et al. 2020.586

• NQ dataset: Following the procedure outlined in Section 3.1, we obtained 47,633, 3,036, and 3,610587

instances for the training, dev, and test sets, respectively.588

• TQA dataset: To manage the GPT-4o API budget, the original TQA dev set was split in a 2:1 ratio,589

resulting in newly defined dev and test sets. This produced 34,648, 4,288, and 1,768 instances for the590

training, dev, and test sets, respectively.591

• POPQA dataset: The original dataset did not include pre-defined training or dev sets. We split the592

data in an 8:1:1 ratio. After processing with the GPT-4 API, this resulted in 6,833, 1,190, and 1,267593

instances for the training, dev, and test sets, respectively594

A.3 Baseline Model Template and Example595

Baseline Template

Title: {TITLE} Context: {TEXT}
=====
Title: {TITLE} Context: {TEXT}
=====
.
.
.
=====
Title: {TITLE} Context: {TEXT}
=====
Strictly based on listed documents (titles and contexts) above, answer the given question clearly
and concisely in a single sentence. If none of the documents provide a valid answer, respond with
“Unanswerable”. Question: {QUESTION}? ANSWER:

596

Baseline Example

Title: Nobel Prize in Physics Context: Nobel Prize in Physics The Nobel Prize in Physics () is a
yearly award given by the Royal Swedish Academy of Sciences for...
=====
Title: Nobel Prize Context: His son, George Paget Thomson, received the same prize in 1937 for
showing that they also have the properties of waves...
=====
.
.
.
=====
Title: Nobel Prize Context: Wilhelm Röntgen’s discovery of X-rays and Philipp Lenard’s work on
cathode rays. The Academy of Sciences selected Röntgen...
=====
Strictly based on listed documents (titles and contexts) above, answer the given question clearly
and concisely in a single sentence. If none of the documents provide a valid answer, respond with
“Unanswerable”. Question: who got the first nobel prize in physics? ANSWER:

597

3https://huggingface.co/datasets/akariasai/PopQA
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A.4 KV-Model Input Format Template and Example 598

The following examples outline the input format template along with a concrete example for Dp. 599

Input Template for Dp

Title: {TITLE} Context: {TEXT}
=====

600

Input Example for Dp

Title: Does He Love You Context: Does He Love You "Does He Love You" is a song written by
Sandy Knox and Billy Stritch, and recorded as a duet by American country music artists Reba
McEntire and Linda Davis. It was released in August 1993 as the first single from Reba’s album
"Greatest Hits Volume Two". It is one of country music’s several songs about a love triangle.
"Does He Love You" was written in 1982 by Billy Stritch. He recorded it with a trio in which he
performed at the time, because he wanted a song that could be sung by the other two members
=====

601

The following example outlines the input format template along with a concrete example for Dt. 602

Input Template for Dt

<|question_answering|> Using the provided titles and contexts, answer the given question briefly
and provide the supporting sentences as evidence.
Question: {QUESTION}?
Answer: {ANSWER} [RESULT]
Evidence: {EVIDENCE} [END]

603

Input Example for Dt

<|question_answering|> Using the provided titles and contexts, answer the given question briefly
and provide the supporting sentences as evidence.
Question: who sings does he love me with reba?
Answer: Linda Davis [RESULT]
Evidence: "Does He Love You" is a song written by Sandy Knox and Billy Stritch, and recorded
as a duet by American country music artists Reba McEntire and Linda Davis. [END]

604
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A.5 Hyperparameters for training605

Training Hyperparameters
flash attention 2 True

target token max length 192
number of input contexts 20
input token max length 192

epochs 2
batch size per gpu 2

gradient accumulation 8
learning rate 2e-5
warmup ratio 0.05

scheduler cosine
optimizer adamW

Table 3: Across all datasets, we utilize four A100 80 GB GPUs, with a batch size of 2 per device and a gradient
accumulation of 8, consuming approximately 12 hours (48 GPU hours). The number of training passages is 20
consisting of one gold context and 19 negative contexts. Contexts are tokenized with a maximum length of 192
tokens using left-padding; if a context exceeds this limit, tokens are truncated from the left. A random sample
of 10,000 contexts from the NQ training set showed that 99.0% of contexts fit within this token limit.(Avg: 145
tokens, Std: 14 tokens) The maximum learning rate is set to 2× 10−5, using a linear warmup and cosine decay. The
warmup ratio is set to 5%. The AdamW optimizer(paged_adamw_32bit) is used with β1 = 0.9 and β2 = 0.999.

A.6 KV-Llama3.1 and Llama3.1606

(a) NQ - Llama3.1 (b) TQA - Llama3.1 (c) POPQA - Llama3.1

Figure 5: Comparison of EM Accuracy between KV-Llama3.1 and Llama3.1 across different gold context positions.
With varying gold context positions, KV-Llama3.1 illustrates consistent accuracies across datasets. However,
Llama3.1 suffers from ‘lost in the middle’ problem, which can be resolved by KV-Fusion models.

A.7 Position Agnostic reader evaluation on Contriever retrieved passages607

Dataset NQ TQA POPQA

Top-K 5 10 20 40 5 10 20 40 5 10 20 40

Llama3 29.6 32.0 36.6 36.1 55.1 59.7 61.8 58.7 37.5 39.1 37.7 36.9

Llama3.1 38.8 36.2 37.7 38.4 58.4 57.6 59.4 60.7 38.8 38.8 38.4 38.8

REPLUG-LLAMA3 33.4 33.1 31.3 31.0 54.2 54.5 55.2 55.8 32.4 28.0 25.8 23.9

REPLUG-LLAMA3.1 35.3 34.9 33.4 32.7 61.0 60.9 60.1 60.4 39.9 34.3 30.8 28.8

PAM QA 49.9 44.1 38.1 18.9 64.4 57.7 52.7 28.5 51.0 48.8 44.0 24.2

KV-LLAMA3 49.1 50.6 50.3 49.1 65.1 67.1 68.4 68.3 53.9 56.6 54.5 51.9

KV-LLAMA3.1 48.9 50.9 50.3 48.9 65.7 66.3 68.8 67.8 53.0 54.8 54.1 51.3

Table 4: Accuracy comparison with other position-invariant methods on contriever-retrieved passages. KV-Fusion
models achieve the highest accuracies across datasets except NQ top-5 case. Consistent with the results observed
for DPR-retrieved passages in Table 1, KV-Fusion models show strong robustness to the inclusion of additional
passages, while other methods experience a decline in performance as more passages are added. Notably, the strong
performance on POPQA datasets highlights Contriever’s ability to excel on unseen datasets, which KV-Fusion
models effectively leverage. This demonstrates that KV-Fusion models can achieve strong performance on different
retrievers.
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