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Abstract

Positional bias in large language models001
(LLMs) hinders their ability to effectively pro-002
cess long inputs. A prominent example is the003
"lost in the middle" phenomenon, where LLMs004
struggle to utilize relevant information situated005
in the middle of the input. While prior research006
primarily focuses on single pieces of relevant007
information, real-world applications often in-008
volve multiple relevant information pieces. To009
bridge this gap, we present LONGPIBENCH, a010
benchmark designed to assess positional bias011
involving multiple pieces of relevant informa-012
tion. It includes various tasks and input lengths.013
Thorough experiments are conducted with three014
commercial and six open-source models. These015
experiments reveal that while most current016
models are more robust against the "lost in the017
middle" issue, there also exist noticeable biases018
related to the spacing of relevant information019
pieces. These findings highlight the importance020
of evaluating and reducing positional biases for021
long-context LLMs1022

1 Introduction023

Large language models (LLMs) (Zhao et al., 2023; Mi-024
naee et al., 2024) have made significant progress in vari-025
ous natural language processing tasks (Hendrycks et al.,026
2021; Han et al., 2021). In particular, applications such027
as code repository analysis (Chen et al., 2021) and in-028
formation extraction (Kočiský et al., 2018) often require029
processing long texts, with context lengths reaching up030
to 200,000 tokens (Li et al., 2024; Zhang et al., 2024a).031
To address these demands, researchers have focused032
on enhancing LLMs’ ability to handle extended inputs033
effectively (Chen et al., 2023; Han et al., 2024). As034
a result, multiple LLMs have been developed (Dubey035
et al., 2024; Team et al., 2024; OpenAI, 2024) which036
support context lengths of up to one million tokens.037

Recent studies have shown that the position of rele-038
vant information significantly affects the performance039
of long-context LLMs (Liu et al., 2023; Lei et al., 2024;040
Hsieh et al., 2024). In "needle in a haystack" tasks, mod-041
els struggle to utilize information located in the middle042
of the input, which is known as the "lost in the middle"043

1anonymous repo link available.

Figure 1: Illustration of absolute position and relative
position. Absolute position refers to the location of
relevant information within the entire context sequence,
while relative position represents the distribution and
distance between multiple relevant information pieces.

effect (Liu et al., 2023). This evaluation method is com- 044
monly used to analyze positional bias (Hengle et al., 045
2024; Nelson et al., 2024). These analyses (Liu et al., 046
2023) focused on single relevant information pieces 047
and their positions in the input sequence (front, middle, 048
back), which we refer to as absolute positions. 049

However, real-world tasks like data analysis (Zhang 050
et al., 2024a) often involve multiple pieces of relevant 051
information. This introduces a new characteristic: the 052
distance between relevant information pieces, or how 053
densely they are distributed, which we term as rela- 054
tive position. Evidence from two types of extreme 055
cases indicates that varying relative position may lead to 056
significant bias, impairing LLMs’ long-context perfor- 057
mance (Lei et al., 2024). However, this kind of biases 058
have not been systematically studied so far, which high- 059
lights the need for thorough investigation. 060

To bridge the gap, we introduce LONGPIBENCH, a 061
benchmark designed to evaluate positional bias with 062
multiple relevant pieces. It assesses positional bias in 063
two categories: (1) absolute positions, referring to the 064
location of relevant information within the entire con- 065
text, and (2) relative positions, referring to the distribu- 066
tion and distance between multiple relevant information 067
pieces. It includes diverse tasks of different complexity 068
and spans four input lengths from 32K to 256K tokens. 069
To the best of our knowledge, LONGPIBENCH is the 070
most comprehensive benchmark for isolating and ana- 071
lyzing positional bias in long text models. 072

We evaluated nine popular LLMs. Our experimental 073
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Figure 2: Construction and task examples of LONGPIBENCH. We manually annotated seed data and varied the
positions of relevant information for data augmentation.

analysis yields several key findings: (1) most current074
models demonstrate enhanced robustness against "lost075
in the middle" phenomenon. (2) However, they show076
biases related to the spacing of relevant information077
(i.e.relative positions), especially in retrieval tasks. (3)078
Additionally, we discuss the impact of model size and079
query-aware contextualization on this issue.080

These findings emphasize the importance of evalu-081
ating and mitigating positional biases to advance long-082
context LLM capabilities.083

2 LONGPIBENCH084

LONGPIBENCH is a dataset designed to evaluate posi-085
tional bias with multiple relevant information pieces. As086
shown in Figure 2, we first manually annotated several087
seed examples and then augmented them by varying the088
positions of relevant information. More details can be089
found in Appendix A.090

2.1 Core Statistics091

LONGPIBENCH contains 3 different tasks, 4 different092
input length levels2: (32k, 64k, 128k, and 256k). To093
analyze the impact of positional bias, we set 16 different094
absolute and relative location levels respectively. The095
benchmark is composed of 7,040 instances, each con-096
taining around 10 pieces of relevant information. The097
whole dataset comprises to 845M tokens.098

2.2 Seed Data Annotation099

We manually labeled 15-20 seed data points for three100
tasks: Table SQL, Code Completion, and Wiki Retrieval,101
which represent typical use cases in real-world applica-102
tions of long-context models (Lei et al., 2024; Jimenez103
et al., 2024; Ajith et al., 2024). Each instance contains104
10 relevant pieces of information. This selection was105
based on an examination of long-context application sce-106
narios, where the number of relevant elements typically107
falls around the order of magnitude of ten, although108
it varies across different tasks (Bai et al., 2023; Wang109
et al., 2024; Dong et al., 2024). Detailed task defini-110
tions, examples, and other pertinent details are provided111
in Appendix A.112

2measured with GPT2Tokenizer (Radford et al., 2019)

2.3 Data Augmentation 113

To analyze the positions of relevant information, we 114
augmented the data by altering the absolute and relative 115
positions of the relevant pieces while keeping all other 116
features unchanged. 117

We broke down the context into elements based on 118
natural information units: table entries for Table SQL, 119
API instances for Code Completion and documents for 120
Wiki Retrieval. We labeled each element as relevant or 121
irrelevant in a reversal way. We select some elements 122
to be relevant, and then form queries around them, and 123
add irrelevant ones to form the context. By introducing 124
varying amounts of irrelevant information, the context 125
lengths are varied at four levels: 32K, 64K, 128K, and 126
256K. We then shuffled the element positions to intro- 127
duce positional variations. Notice that changing the 128
order of elements does not compromise the coherence 129
of the context. 130

Absolute Position. To analyze the impact of absolute 131
position on LLM performance, we manipulated where 132
relevant information appears in the context. Each con- 133
text was divided into 16 equal segments from start to 134
end. We placed all 10 relevant pieces within a single 135
segment to keep their relative positions consistent. By 136
moving this segment from the first to the last position, 137
we varied the absolute position from the start to the 138
end of the input. The average position of these relevant 139
pieces served as the absolute position metric which is 140
calculated as: 141

Average Location =

(
l − 1

N − 1

)
× L, 142

where l is the current level, N is the total number of 143
levels (16), and L is the length of the context. 144

This setup allowed us to assess how model perfor- 145
mance changes as relevant information is placed further 146
back in the context. 147

Relative Position. To examine the effect of spacing 148
between relevant information pieces on LLM perfor- 149
mance, we created 16 levels of distribution density. 150
Each level represents a different spacing configuration 151
among the 10 relevant pieces. At the densest level, all 152
relevant pieces are adjacent with no irrelevant informa- 153
tion between them. At the sparsest level, they are evenly 154
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Figure 3: The impact of relevant information’s absolute and relative position on Geimini-1.5-Flash (Team et al.,
2024), Claude-3.5-Haiku (Anthropic, 2024) and Qwen 2.5 model family (Qwen, 2024). A higher absolute position
feature level indicates locations closer to the end of input, while a higher relative position feature level indicates a
greater distance between relevant pieces of information.

distributed throughout the context with equal intervals155
of irrelevant information. Intermediate levels gradually156
increase spacing from adjacent to evenly spaced. The157
distance between each relevant piece is calculated as:158

Distance =

(
L

n− 1

)
×
(

l − 1

N − 1

)
,159

where n is the number of relevant pieces (10), l is the160
current level ranging from 1 to N , N is the total number161
of levels (16), and L is the length of the context.162

To control for absolute position effects, we random-163
ized the starting position of the first relevant piece in164
each example. This ensures that any observed perfor-165
mance differences are due to relative spacing rather than166
absolute positions within the context.167

3 Experimental Setup168

To evaluate the influence of context information posi-169
tioning on long-text LLMs, we conducted experiments170
using popular long-context language models.171

Models. We assessed a total of nine LLMs, compris-172
ing six open-source and three commercial options. The173
selection of open-source models includes the 70B model174
from Llama-3.1-Instruct series (Dubey et al., 2024),175
the 7B, 14B, 32B, 72B models from Qwen-2.5 fam-176
ily (Qwen, 2024), the 8×22B model of WizardLM-177
2 (Xu et al., 2023). The commerical models we selected178
are Gemini-1.5-Flash (Team et al., 2024), Claude-3-179
Haiku (Anthropic, 2024) and GPT-4o-mini (OpenAI,180
2024). The selected models are good representatives of181
popular and top-performance long-context models. Due182
to computational limitations, we evaluated the open-183
source model only on the Table SQL task.184

Metric. For both the Table SQL and Wiki Retrieval185
tasks, performance is measured using recall rate. This186
metric evaluates the proportion of relevant items in-187
cluded in the output. Formally, given a set of reference188

items D = {d1, . . . , dn} and a set of retrieved/gener- 189
ated items D̂, the recall rate is: 190

MRecall =
|D ∩ D̂|
|D|

. 191

In Table SQL, D represents target entries, and D̂ rep- 192
resents the entry present in the output. In Wiki Retrieval, 193
D represents the set of relevant documents, and D̂ rep- 194
resents the top 10 documents retrieved by the model. 195

For the Code Completion task, performance is eval- 196
uated with the pass rate across 8-12 test cases T = 197
{t1, . . . , tm}. The pass rate is computed as: 198

MCode =
1

|T |

|T |∑
j=1

1[G passes tj ]. 199

All metrics range from 0.0 to 1.0, where 0.0 means 200
complete failure, and 1.0 means perfect performance. 201

Context Length. Since 32k tokens is the minimal con- 202
text length supported by tested LLMs, we standardized 203
the context length to 32k3 tokens for all experiments. 204

Detailed discussions on parameter settings and 205
prompt configurations are provided in Appendix B. 206

4 Results and Discussion 207

In this section, we analyze the impact of absolute and 208
relative positional bias. And we further analyze these 209
phenomena from two perspectives: the number of pa- 210
rameters and query-aware contextualization. Full Ex- 211
perimental results are available in Appendix C. 212

4.1 Impact of Absolute Position 213

As illustrated by the blue lines in Figure 3, we progres- 214
sively shift the interval of relevant information from the 215
beginning to the end. 216

3The minimal context size is 64k, but some tokenizers
expand our 64k inputs to nearly 80k, exceeding the limit.
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We observe that (1) some open-source models like217
Qwen 2.5 (7B) (Qwen, 2024) still suffer heavily from218
the severe "lost in the middle" phenomenon but (2) com-219
mercial models and larger open-source models are more220
robust to the bias of absolute position. Although abso-221
lute position still significantly affects the recall rate in222
the Code Completion experiments, this bias becomes223
less severe in the Table SQL and Wiki Retrieval tasks.224

4.2 Impact of Relative Position225

As illustrated by the orange lines in Figure 3, we pro-226
gressively increase the distance between relevant pieces227
of information.228

We observe that both open-source and commercial229
models exhibit noticable biases toward different rela-230
tive positions. In the case of Code Completion, this231
bias is prominent. As the relative positions of relevant232
information pieces shift from being fully adjacent to233
uniformly distributed across the context, the model’s234
performance fluctuates by 20-30%. For tasks with a235
stronger retrieval nature, such as Table SQL and Wiki236
Retrieval, the bias even displays certain patterns. Specif-237
ically, performance initially declines sharply and then238
decreases more gradually.239

These findings indicate that the relative positioning240
among multiple relevant pieces of information is a se-241
rious and unresolved issue, which may substantially242
undermine the effectiveness of long-text language mod-243
els in practical applications.244

4.3 Further Analysis245

Effect of Parameter Size. When selecting models for246
evaluation, we included four variants from the Qwen247
2.5 Family (Qwen, 2024) with differing parameter sizes.248
These models exhibit no significant differences in archi-249
tecture, training methods, or training data. By analyzing250
their performance under identical positional information251
features, we can isolate the impact of parameter size252
on the robustness to positional bias. We use Table SQL253
task, where the pattern is most significant254

As illustrated in Figure 3, for absolute position bias,255
we found that simply increasing the model parameters256
from 7B to 14B—while keeping architecture, training257
methods, and data constant substantially mitigates the258
"lost in the middle" (Liu et al., 2023) issue. This sug-259
gests that robustness to absolute positions may be an260
"emergent ability" (Wei et al., 2022) and increasing the261
number of parameters can significantly enhances it.262

In contrast, regarding biases related to relative posi-263
tional information, augmenting the number of parame-264
ters only yielded minor quantitative improvements and265
did not alter the pronounced bias trend. This trend re-266
mains largely unchanged even in commercial models267
with approximately hundreds of billions of parameters.268
These findings indicate that merely increasing parame-269
ter size is insufficient to develop robustness to relative270
positions, and new techniques may be necessary.271

Effect of Query-Aware Contextualization. Liu et al.272

Figure 4: Impact of query placement (beginning, end,
both) on the performance of GPT-4o-mini (OpenAI,
2024) and Qwen-2.5-14B (Qwen, 2024) models.

(2023) demonstrated that the placement of the query 273
(beginning or end of the context) significantly affects 274
the performance of decoder-only models due to unidi- 275
rectional attention. When the query is placed after the 276
context, the LLM cannot attend to the query token while 277
processing the context tokens. 278

As shown in Figure 4, our experiments with GPT-4o- 279
mini (OpenAI, 2024) and Qwen-2.5-14B (Qwen, 2024) 280
on Table SQL corroborate this observation and confirm 281
that it also holds for bias caused by relative position 282
changes. When the query is placed at the end of the 283
context, the model performs much worse than when the 284
query is at the beginning or both at the beginning and 285
end. However, the difference between placing the query 286
only at the beginning and at both the beginning and end 287
depends on the model. This indicates that for decoder- 288
only long-text models, the position of the query is also 289
crucial in influencing biases related to the absolute and 290
relative positions of relevant information. 291

5 Conclusion 292

This study investigates a new category of positional 293
bias involving multiple relevant pieces of information 294
in long-context LLMs through three key contributions. 295

(1) Benchmark Development: We introduce LONG- 296
PIBENCH, the most comprehensive benchmark for eval- 297
uating positional bias in long-text LLMs, assessing both 298
absolute and relative biases. 299

(2) Comprehensive Evaluation: Using LONG- 300
PIBENCH, we evaluated nine popular LLMs, investi- 301
gated the "lost in the middle" phenomenon, and identi- 302
fied novel yet significant biases related to the relative 303
positioning of multiple relevant pieces of information. 304

(3) Findings: Our experiments show that while 305
LLMs have improved robustness against absolute posi- 306
tional biases, they are still sensitive to relative positional 307
biases, especially for retrieval-intensive tasks. We also 308
explore how model size and query-aware contextualiza- 309
tion impact these biases. 310

These findings emphasize the necessity of continu- 311
ously mitigating positional biases in long-text models. 312
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Limitation313

Lack of In-depth Analysis. Our systematic experi-314
ments demonstrate that two types of positional bias exist315
when multiple related pieces of information are present316
in the context. We also analyzed how these biases relate317
to the number of parameters and query contextualiza-318
tion. However, we are currently unable to explain the319
reasons behind these two positional biases.320

Focus on Specific Models. The evaluation was con-321
ducted on a set of nine popular large language models322
(LLMs), including both open-source and commercial323
options. However, the findings are limited to these mod-324
els. The study does not account for the performance325
of other emerging or less popular models, which might326
exhibit different results regarding positional biases.327

Ethical Considerations328

Human Annotation. Our seed construction process329
involves manual annotation. This annotation was carried330
out by some of the authors, who are researchers with331
substantial knowledge in LLM evaluation. Consent was332
obtained from the individuals whose data we are using333
or curating. The data collection protocol was approved.334

Data Security. Some data in our Table SQL task may335
appear to pertain to personal information. However, this336
data is not actual personal information. Instead, it is337
generated by us through specific heuristics, eliminating338
the risk of personal information leakage.339

Use of AI assistants We use GPT-4o (OpenAI, 2024)340
for expression modification and grammar sanity check341
during the composition process.342

Related Works343

Many benchmarks have been proposed to evaluate344
long-context performance of LLMs by designing a345
variety of tasks with different context length. This346
field is relatively saturated at present, with some of347
the representative benchmarks including Long Range348
Arena(Tay et al., 2021), Scrolls(Shaham et al., 2022),349
ZeroScrolls(Shaham et al., 2023), Longbench(Bai et al.,350
2023), L-Eval(An et al., 2023), Longbench(Bai et al.,351
2023), LV-Eval(Yuan et al., 2024), and ∞Bench(Zhang352
et al., 2024b).353

However, these benchmarks tend to provide only a354
general conclusion regarding which task types are more355
challenging, without offering in-depth analysis on posi-356
tional bias like this paper proposes.357

Levy et al. (2024) explored the impact of input length358
on reasoning performance using a similar data augmen-359
tation approach, adding irrelevant elements to context-360
relevant elements. While their method shares some361
similarities with ours, our focus is fundamentally differ-362
ent, leading to entirely distinct conclusions. Their study363
centers on the overall input length which has nothing to364
do with positional bias. But we investigate the distance365

between relevant information pieces, where the input 366
length is fixed. 367
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A Details of LONGPIBENCH550

A.1 Task Definitions551

Table SQL This task involves retrieving entries con-552
taining specific features from a table with a large num-553
ber of entries. The prototype of this task is primarily554
derived from experiments in S3Eval (Lei et al., 2024),555
specifically those examining information distributions556
with extreme positional variability.557

Code Completion This task involves performing ba-558
sic programming assignments based on the definitions,559
signatures, examples, and other information provided in560
API documentation. The task is considered more chal-561
lenging than Table SQL tasks because an LLM must562
not only identify which parts of the API documentation563
are relevant but also correctly utilize them during cod-564
ing. The data we use originates from the Private Coding565
Dataset introduced by Zan et al. (2022). To ensure that566
the LLM does not rely on internal knowledge about567
common Python libraries, both the API documentation568
and task function names have been masked. This pri-569
vatization process is crucial for evaluating performance570
on long-text scenarios, as it compels the LLM to extract571
relevant information directly from the provided context.572

Wiki Retrieval This task involves identifying rele-573
vant passages from Wikipedia (Wikipedia, 2024) pages574
based on a given question. It is a common scenario575
in which LLMs are used to rerank relevant passages576
retrieved through information retrieval systems (Ajith577
et al., 2024).578

A.2 Task Examples579

Here are some examples of the three tasks in LONG-580
PIBENCH. Queries are placed both before and after the581
context for better query contextualization.582

A.2.1 Table SQL583

Input You are given a table of entries with the
following columns: Country, Name, Birth Year,
Birth Month, Blood Type. Your task is to find all
the entry with the following Country: China. You
should return all the entries that match the query as a
python list. For example, [’| China | Hong Liang |
1991 | August | A |’, ...]. You should not generate
anything else. Here is the table:
| Country | Name | Birth Year | ... | Blood Type |
| Italy | Ginevra | 2009 | February | O |
| Argentina | Martina | 1966 | March | B |
| Egypt | Salma | 1985 | July | B |
...
| China | Zhang Wei | 2006 | November | O |
...
| China | Wang Wei | 1966 | February | AB |
...
| Australia | Emily | 1983 | December | O |
| Italy | Leonardo | 1985 | November | O |

584

You are given a table of entries with the fol-
lowing columns: Country, Name, Birth Year, Birth
Month, Blood Type. Your task is to find all the entry
with the following Country: China. You should
return all the entries that match the query as a python
list. For example, [’| China | Hong Liang | 1991 |
August | A |’, ...]. You should not generate anything
else.

585

Ground Truth
[
"| China | Zhu Wei | 1992 | September | B |",
"| China | Zhang Wei | 1955 | March | O |",
"| China | Zhang Wei | 2006 | November | O |",
"| China | Wang Wei | 2001 | September | B |",
"| China | Yang Wei | 2016 | November | AB |",
"| China | Li Na | 1974 | January | B |",
"| China | Liu Wei | 1975 | November | O |",
"| China | Gao Wei | 1954 | August | B |",
"| China | Zhu Wei | 1989 | September | AB |",
"| China | Wang Wei | 1966 | February | AB |"
],

586

A.2.2 Code Completion 587

Notice that in the Code Completion task, the ground 588
truth is provided in its unmasked form, while the LLMs 589
generate code based on the masked API documentation, 590
resulting in masked code as output. 591

Input Please complete the code snippet above ac-
cording to the provided code snippet and the api doc.
# Text where substitution will
take place
text = ’Thelib_2 alib_2 123 apples
and 456 oranges.’
# Define pattern and replacement
for substitution
sub_pattern = r’
d+’ lib_2placement = ’NUM’
# Task 1: Substitute matching
text using ‘sub_pattern‘ and
‘lib_2placement‘
lib_2sult_1 = print(lib_2sult_1)
# Task 2: ...
The following context is a code snippet with the
detailed api doc.

{

"api_path": "lib_2.submodule_26",

"api_doc": "Returns complex...",

"api_signature": "",

"api_parameters": "",

"api_parameters_number": "=0",

"api_returns": ""

},
592
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...

(more API instances)
Please complete the code snippet above according to
the provided code snippet and the api doc.
# Text where substitution will
take place
text = ’Thelib_2 alib_2 123 apples
and 456 oranges.’
# Define pattern and replacement
for substitution
sub_pattern = r’
d+’ lib_2placement = ’NUM’
# Task 1: Substitute matching
text using ‘sub_pattern‘ and
‘lib_2placement‘
lib_2sult_1 = print(lib_2sult_1)
# Task 2: ...

593

Ground Truth

import re

text = ’There are 123 apples

and 456 oranges.’

sub_pattern = r’\d+’

replacement = ’NUM’

## task 1

result_1 = re.sub(sub_pattern,

replacement, text)

print(result_1)

...
594

A.2.3 Wiki Retrieval595

Input Please find the top-10 most helpful Docs that
will help answer the question. (You do not need to
answer it.)
What are ten easy eco-friendly practices that individ-
uals can adopt in their daily lives?
Here is the context
Doc 1
Gaetano J̈amesS̈enese (born 6 January 1945) is an
Italian saxophonist, composer, and singer-songwriter.
Life and career Senese was born in Naples, the son
of Anna Senese and James Smith, an American sol-
dier from North Carolina in Italy because of World
War II. Senese’s father moved back to the US eigh-
teen months after Gaetano’s birth and never returned.
Senese started playing the saxophone at 12 years old.
Doc 2
He made his professional debut in the 1960s, as a
member of the rhythm and blues band The Showmen
(later known as Showmen 2), with whom he won
the 1968 edition of Cantagiro. In 1974 Senese co-
founded and led the critically acclaimed jazz-rock

596

group Napoli Centrale. After the group disbanded
in 1978, he started a long collaboration with Pino
Daniele, both in studio and on stage. His first solo
album was released in 1983 by Polydor Records.
......
Doc 1128
Release and critical reception Generations in Song
was first released on Coldwater Records in 2001. It
was originally offered as a compact disc and con-
tained 19 tracks in its original release. On February
10, 2004, the album was re-released on Slewfoot
Records in a compact disc format again. However,
only 12 tracks were included on the re-release. The
album cover was also changed for the re-release of
the project.
Please find the top-10 most helpful Docs that will
help answer the question. (You do not need to answer
it.)
What are ten easy eco-friendly practices that individ-
uals can adopt in their daily lives?
You should output a python list of the Doc Index like
“‘[’Doc 1’, ...]“‘ as your answer

597

Ground Truth
[ "Doc 920", "Doc 927", "Doc 935", "Doc 942", "Doc
949", "Doc 957", "Doc 964", "Doc 971", "Doc 979",
"Doc 986" ]

598

B Details of Experimental Setup 599

B.1 Inference Parameters 600

To ensure consistency and reproducibility in our experi- 601
ments, we standardized the inference parameters across 602
all models during the inference phase. Specifically, we 603
set the temperature parameter (temp) to 0.1 and the top- 604
p sampling parameter (topp) to 0.9. This unification of 605
inference settings facilitates the replication of experi- 606
ments and establishes a consistent evaluation standard 607
across different models. 608

B.2 Prompt Template 609

For the three tasks, we used the following prompt tem- 610
plates respectively. Notice that we place queries both 611
before and after the context body for better query con- 612
textualization. 613

B.2.1 Table SQL 614

Input You are given a table of entries with the fol-
lowing columns: Country, Name, Birth Year, Birth
Month, Blood Type. Your task is to find all the en-
try with the following Country: {country}. You
should return all the entries that match the query as
a python list. For example, [’| China | Hong Liang
| 1991 | August | A |’, ...]. You should not generate
anything else. Here is the table:

615
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{context}
You are given a table of entries with the following
columns: Country, Name, Birth Year, Birth Month,
Blood Type. Your task is to find all the entry with the
following Country: {country}. You should return
all the entries that match the query as a python list.
For example, [’| China | Hong Liang | 1991 | August
| A |’, ...]. You should not generate anything else.

616

B.2.2 Code Completion617

Input Please complete the code snippet above ac-
cording to the provided code snippet and the api doc.
{query}
The following context is a code snippet with the
detailed api doc.
{context}
Please complete the code snippet above according to
the provided code snippet and the api doc.
{query}

618

B.2.3 Wiki Retrieval619

Input Please find the top-10 most helpful Docs that
will help answer the question. (You do not need to
answer it.)
{query}
Here is the context
{context}
Please find the top-10 most helpful Docs that will
help answer the question. (You do not need to answer
it.)
{query}
You should output a python list of the Doc Index like
“‘[’Doc 1’, ...]“‘ as your answer

620

C Details of Experimental Results621

In the main text, for better readability, we only presented622
the experimental results of a subset of tested LLMs in623
the form of line charts. Here we present all the experi-624
mental results in both tabular and chart form. This will625
better facilitate the precise display of the experimental626
results.627

Figure 5 and 6 use line charts to illustrate the per-628
formance of all selected closed-source and open-source629
models across the respective test tasks.630

Table 1 and Table 2 summarize the performance of all631
models on the Table SQL task across different absolute632
and relative positions. Similarly, Table 3 and Table 4633
present the results for the Code Completion task, while634
Table 5 and Table 6 correspond to the Wiki Retrieval635
task. Finally, Table 7 and Table 8 show the impact of636
query contextualization.637
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Model
Performance / %

Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 5 Lv. 6 Lv. 7 Lv. 8 Lv. 9 Lv. 10 Lv. 11 Lv. 12 Lv. 13 Lv. 14 Lv. 15 Lv. 16

Claude 97.5 97.5 98.0 93.0 94.5 96.5 96.0 91.5 96.0 97.0 99.5 97.5 97.0 96.5 99.0 98.0
Deepseek 100.0 99.5 99.5 97.0 98.5 98.5 97.5 99.5 99.0 95.5 97.0 98.0 99.0 99.0 97.5 100.0
Gemini 100.0 100.0 100.0 100.0 100.0 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
GLM 100.0 99.0 94.0 93.0 91.5 91.0 95.0 96.5 93.5 91.5 92.0 89.0 91.0 91.0 94.0 86.0
GPT 100.0 100.0 100.0 100.0 99.0 99.5 99.5 100.0 99.5 100.0 99.0 98.5 99.5 100.0 98.5 96.0
Llama 96.0 96.0 93.0 96.0 91.0 88.0 92.0 92.0 94.0 94.0 94.0 89.0 94.0 99.0 99.0 98.0
Wizard 85.5 42.5 31.5 20.5 3.0 38.0 36.5 23.0 12.0 13.5 3.5 5.0 1.5 8.5 24.5 90.0
Qwen 7b 85.5 93.5 98.0 99.5 98.5 93.0 98.0 99.5 96.0 70.5 45.0 70.5 64.0 74.0 81.0 87.5
Qwen 14b 93.5 80.5 93.0 93.5 98.5 93.0 93.5 98.0 96.0 94.5 96.0 96.0 97.0 98.5 96.0 98.5
Qwen 32b 98.0 98.0 99.0 99.0 99.5 89.0 98.0 98.0 97.5 97.0 98.5 95.5 93.9 96.0 94.5 93.5
Qwen 72b 99.5 99.5 98.0 96.0 92.5 93.5 96.5 98.0 99.0 99.5 99.5 100.0 99.5 100.0 100.0 100.0

Table 1: Performance of various models across different absolute position levels in Tabel SQL. The model names
are abbreviated for better layout. Full names are listed in Section 3.

Model
Performance / %

Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 5 Lv. 6 Lv. 7 Lv. 8 Lv. 9 Lv. 10 Lv. 11 Lv. 12 Lv. 13 Lv. 14 Lv. 15 Lv. 16

Claude 100.0 74.0 68.0 65.5 72.5 63.0 71.0 60.5 63.0 61.0 66.0 64.0 65.0 67.5 66.5 64.0
Deepseek 100.0 78.0 81.0 82.0 82.0 79.5 69.0 81.0 72.0 79.0 70.5 69.0 75.0 78.0 76.0 81.5
Gemini 100.0 97.5 89.0 81.0 78.0 78.5 84.5 79.0 79.5 78.5 79.5 74.0 77.5 74.0 75.0 82.5
GLM 90.0 69.0 68.5 67.5 63.0 58.0 65.0 48.5 62.0 50.5 60.0 57.5 61.5 52.0 51.5 44.0
GPT 100.0 84.5 86.5 82.5 70.5 74.0 86.5 80.0 83.0 76.5 81.5 78.0 78.5 77.0 73.5 80.0
Llama 100.0 77.0 77.0 75.0 88.0 75.0 79.0 74.0 74.0 80.0 68.0 66.0 75.0 72.0 79.0 69.0
Wizard 74.0 28.5 23.5 22.5 47.5 47.0 61.5 51.5 54.0 56.5 65.5 61.0 61.5 60.0 61.0 59.5
Qwen 7b 95.0 39.0 42.5 53.0 61.0 56.0 39.0 48.5 42.0 51.5 36.0 48.0 36.0 40.0 45.5 42.5
Qwen 14b 99.5 59.0 59.0 63.0 68.5 56.0 58.5 55.0 59.5 59.0 58.0 62.5 59.5 62.5 54.0 63.0
Qwen 32b 99.5 72.0 69.0 65.5 75.5 68.0 60.5 71.0 64.0 61.5 66.0 64.0 67.5 64.0 64.0 69.0
Qwen 72b 100.0 81.0 77.0 85.0 87.5 72.5 67.5 63.5 67.0 66.0 67.5 73.5 70.0 75.5 75.5 83.0

Table 2: Performance of various models across different relative position levels in Tabel SQL. The model names
are abbreviated for better layout. Full names are listed in Section 3.

Model
Absolute Performance / %

Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 5 Lv. 6 Lv. 7 Lv. 8 Lv. 9 Lv. 10 Lv. 11 Lv. 12 Lv. 13 Lv. 14 Lv. 15 Lv. 16

Claude 54.28 55.19 52.55 51.44 62.81 65.84 56.86 46.59 60.76 65.84 56.86 65.84 60.41 62.81 60.81 56.40
Gemini 81.37 76.37 75.59 73.87 83.34 81.81 83.46 83.95 84.55 83.95 84.15 84.78 82.81 84.55 81.94 80.31
GPT 47.64 57.34 44.99 43.00 44.57 53.65 48.37 50.20 50.78 48.66 47.45 49.87 49.37 54.72 60.61 45.37

Table 3: Performance of various models across different absolute levels in Code Completion. The data includes
absolute scores for the Claude, Gemini, and GPT models.

Model
Relative Performance / %

Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 5 Lv. 6 Lv. 7 Lv. 8 Lv. 9 Lv. 10 Lv. 11 Lv. 12 Lv. 13 Lv. 14 Lv. 15 Lv. 16

Claude 67.50 57.27 56.64 52.69 53.18 60.16 47.24 43.26 64.58 52.96 47.43 62.41 47.01 51.31 48.79 52.96
Gemini 83.87 83.65 74.71 84.36 84.36 81.37 84.11 74.29 83.09 75.45 83.09 75.59 84.36 77.47 76.45 72.61
GPT 54.57 51.13 56.03 58.11 52.19 48.57 41.59 51.64 68.87 62.38 44.21 42.66 51.66 45.25 66.06 54.83

Table 4: Performance of various models across different relative levels in Code Completion. The data includes
relative scores for the Claude, Gemini, and GPT models. Code Completion!

Model
Absolute Performance / %

Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 5 Lv. 6 Lv. 7 Lv. 8 Lv. 9 Lv. 10 Lv. 11 Lv. 12 Lv. 13 Lv. 14 Lv. 15 Lv. 16

Claude 96.33 98.33 99.00 95.00 93.33 95.00 96.00 95.67 97.67 97.00 99.00 94.33 93.00 91.33 92.33 92.00
Gemini 98.00 98.00 98.00 98.00 98.00 97.00 98.00 97.67 98.00 98.00 97.33 98.00 98.00 98.00 95.33 98.00
GPT 100.00 99.00 100.00 98.00 98.00 100.00 99.00 100.00 96.00 97.00 98.00 99.00 99.00 98.00 96.00 96.00

Table 5: Performance of various models across different absolute levels in Wiki Retrieval. The data includes
absolute scores for the Claude, Gemini, and GPT models.

Model
Relative Performance / %

Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 5 Lv. 6 Lv. 7 Lv. 8 Lv. 9 Lv. 10 Lv. 11 Lv. 12 Lv. 13 Lv. 14 Lv. 15 Lv. 16

Claude 100.00 96.00 99.67 96.00 98.00 96.33 95.00 95.67 93.00 92.67 91.00 93.00 95.33 92.00 96.67 96.33
Gemini 99.67 98.00 95.33 92.00 93.67 93.33 94.33 85.67 94.00 91.00 93.00 93.00 94.00 91.67 95.00 96.00
GPT 100.00 98.00 96.00 98.00 100.00 98.00 100.00 95.00 95.00 97.00 96.00 97.00 97.00 100.00 97.00 98.00

Table 6: Performance of various models across different relative levels in Wiki Retrieval. The data includes relative
scores for the Claude, Gemini, and GPT models.
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Figure 5: The impact of relevant information’s absolute and relative position for all open-source commercial models.
A higher absolute position feature level indicates locations closer to the end of input, while a higher relative position
feature level indicates a greater distance between relevant pieces of information.

Figure 6: The impact of relevant information’s absolute and relative position for all tested commercial models. A
higher absolute position feature level indicates locations closer to the end of input, while a higher relative position
feature level indicates a greater distance between relevant pieces of information.

Model Query Position
Performance / %

Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 5 Lv. 6 Lv. 7 Lv. 8 Lv. 9 Lv. 10 Lv. 11 Lv. 12 Lv. 13 Lv. 14 Lv. 15 Lv. 16

GPT
Head 100.0 90.5 85.0 89.5 98.0 99.5 95.0 100.0 90.0 95.0 89.0 83.0 100.0 83.5 69.0 86.5
Tail 100.0 80.0 36.0 47.0 68.0 73.5 81.5 84.5 70.5 81.5 79.5 60.0 68.0 72.5 67.0 83.0
Both 100.0 100.0 100.0 100.0 99.0 99.5 99.5 100.0 99.5 100.0 99.0 98.5 99.5 100.0 98.5 96.0

Qwen 14B
Head 93.5 84.5 91.0 96.0 97.5 90.5 96.5 97.5 95.0 93.5 94.0 95.0 96.5 98.5 98.5 97.5
Tail 82.5 57.0 72.5 88.5 88.0 79.0 86.0 77.5 89.5 90.0 88.0 89.5 92.5 96.5 95.0 97.5
Both 93.5 80.5 93.0 93.5 98.5 93.0 93.5 98.0 96.0 94.5 96.0 96.0 97.0 98.5 96.0 98.5

Table 7: Performance of GPT-4o-mini (OpenAI, 2024) and Qwen-2.5 14B (Qwen, 2024) across different absolute
position levels with varying placement of the query. The query position can be at the head, tail, or both positions in
the input.
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Model Query Position
Performance / %

Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 5 Lv. 6 Lv. 7 Lv. 8 Lv. 9 Lv. 10 Lv. 11 Lv. 12 Lv. 13 Lv. 14 Lv. 15 Lv. 16

GPT
Head 95.0 60.0 68.5 69.5 60.5 63.0 64.0 75.5 54.5 63.5 66.0 62.0 67.0 46.5 60.0 79.0
Tail 94.0 67.5 60.0 55.5 40.5 50.0 69.5 58.0 52.5 49.0 55.0 51.0 52.5 58.0 49.0 68.0
Both 100.0 84.5 86.5 82.5 70.5 74.0 86.5 80.0 83.0 76.5 81.5 78.0 78.5 77.0 73.5 80.0

Qwen 14b
Head 95.0 60.0 68.5 69.5 60.5 63.0 64.0 75.5 54.5 63.5 66.0 62.0 67.0 46.5 60.0 79.0
Tail 94.0 67.5 60.0 55.5 40.5 50.0 69.5 58.0 52.5 49.0 55.0 51.0 52.5 58.0 49.0 68.0
Both 100.0 84.5 86.5 82.5 70.5 74.0 86.5 80.0 83.0 76.5 81.5 78.0 78.5 77.0 73.5 80.0

Table 8: Performance of GPT and Qwen 14b across different relative levels with varying placement of the query.
The query position can be at the head, tail, or both positions in the input.
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