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ABSTRACT

While only trained to reconstruct training data, autoencoders may produce high-
quality reconstructions of inputs that are well outside the training data distribution.
This phenomenon, which we refer to as outlier reconstruction, has a detrimental
effect on the use of autoencoders for outlier detection, as an autoencoder will
misclassify a clear outlier as being in-distribution. In this paper, we introduce
the Energy-Based Autoencoder (EBAE), an autoencoder that is considerably less
susceptible to outlier reconstruction. The core idea of EBAE is to treat the recon-
struction error as an energy function of a normalized density and to strictly enforce
the normalization constraint. We show that the reconstruction of non-training in-
puts can be suppressed, and the reconstruction error made highly discriminative
to outliers, by enforcing this constraint. We empirically show that EBAE signif-
icantly outperforms both existing autoencoders and other generative models for
several out-of-distribution detection tasks.

1 INTRODUCTION

An autoencoder (Rumelhart et al., 1986) is a neural network trained to reconstruct samples from a
training data distribution. As the quality of reconstruction is expected to degrade for inputs that are
significantly different from training data, autoencoders are widely used in outlier detection (Japkow-
icz et al., 1995) where an input with a large reconstruction error is classified as out-of-distribution
(OOD). Such autoencoders for outlier detection have been applied in domains ranging from video
surveillance (Zhao et al., 2017) to medical diagnosis (Lu & Xu, 2018).

Contrary to widely-held belief, autoencoders are in fact capable of accurately reconstructing outliers,
casting doubt on their reliability as an outlier detector. Lyudchik (2016) showed that an autoencoder
trained on MNIST with the digit seven excluded can reconstruct an image of the excluded digit, and
Tong et al. (2019) reported that an autoencoder trained on MNIST can reconstruct an image with all
zero pixels. The reconstruction of outliers is also observed for non-image data (Zong et al., 2018).

In this paper, we investigate this unexpected behavior of autoencoders more deeply, which we refer
to as outlier reconstruction. In the course of our investigation, we reproduce the findings of Lyudchik
(2016) and Tong et al. (2019), and additionally discover other interesting cases (Figure 1). Our
experiments suggest that outlier reconstruction is not a fortuitous artifact of stochastic training but
is, in fact, a consequence of inductive biases inherent in an autoencoder.

Outlier reconstruction should be suppressed for an autoencoder-based outlier detector, since a recon-
structed outlier undermines the detector’s performance by being mistaken to be an inlier. Despite
the long history of autoencoder research (Rumelhart et al., 1986; Bank et al., 2020), the outlier re-
construction phenomenon has only recently begun to receive attention (Lyudchik, 2016; Tong et al.,
2019; Zong et al., 2018), with few works explicitly proposing solutions to the outlier reconstruc-
tion problem (Gong et al., 2019). Previous works focused on regularization techniques that pre-
vent an autoencoder from being an identity mapping (and thus reconstructing all inputs). However,
outlier reconstruction still occurs in popular regularized autoencoders, including denoising autoen-
coders (DAE, Vincent et al. (2008)), variational autoencoders (VAE, Kingma & Welling (2014)),
and Wasserstein autoencoders (WAE, Tolstikhin et al. (2017)), as we shall show in our experiments
(Table 1).
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Figure 1: (Left) Input images (first row), reconstructions from an autoencoder (AE, second row) and
from EBAE (third row). AE and EBAE are trained on MNIST. (Right) Distribution of reconstruction
errors for inliers (CIFAR10) and outliers (the other curves).

In this paper, we propose the Energy-based Autoencoder (EBAE), an autoencoder in which the
reconstruction of outliers is explicitly suppressed during training. In each training step of EBAE,
“fake” samples with small reconstruction error are generated. These well-reconstructed fake samples
serve as probes for potential reconstructed outliers. Then, EBAE maximizes the reconstruction errors
of the generated samples, while minimizing the reconstruction errors of “real” training samples.
When the generated samples become indistinguishable to training data, the gradients from the fake
samples and real samples balance, and thus the training converges.

The training scheme naturally arises from defining a probability density for EBAE using its recon-
struction error. The density of EBAE is given as pθ(x) = exp(−E(x))/Ω, where E(x) is the
reconstruction error of x and Ω is a normalization constant. This formulation of defining a density
using a scalar function is often called an energy-based model in the literature (Mnih & Hinton, 2005;
Hinton et al., 2006), and E(x) is called the energy of the density. Maximizing likelihood in this for-
mulation results in contrastive divergence learning (Hinton, 2002), which minimizes the energy of
the training data while maximizing the energy of the samples from the model.

When generating samples with small reconstruction error during training, we use a novel sampling
scheme specifically designed for EBAE. Our sampling scheme is based on Langevin Monte Carlo
but leverages the latent space of an autoencoder to generate diverse samples which facilitates the
training of EBAE.

Setting the reconstruction error as the energy, EBAE incorporates two major outlier detection crite-
ria, large reconstruction error (Japkowicz et al., 1995) and low likelihood (Bishop, 1994), since the
two are equivalent in EBAE. Generally, the two criteria do not necessarily overlap in other methods,
e.g., VAE or energy-based models (Zhai et al., 2016). Recent studies show that a likelihood-based
outlier detector using a deep generative model, such as an auto-regressive model or flow-based
model, fails to correctly classify certain obvious outliers (Nalisnick et al., 2019; Hendrycks et al.,
2019). However, EBAE is able to detect such outliers successfully while still using likelihood as the
decision criterion.

The contributions of our paper can be summarized as follows:

• We report and investigate various cases of outlier reconstruction in autoencoders;
• We propose EBAE, an autoencoder significantly less prone to outlier reconstruction;
• We present a sampling method tailored for EBAE which efficiently generates diverse samples;
• We empirically show that EBAE is highly effective for outlier detection.

Section 2 provides a brief introduction on autoencoder-based outlier detection. In Section 3, we
investigate outlier reconstruction in depth with illustrative examples. Section 4 describes EBAE.
Related works are reviewed in Section 5. Section 6 presents experimental results. Section 7 con-
cludes the paper.

2 BACKGROUND

2.1 PROBLEM SETTING

In this paper, we consider the outlier detection problem, which is also referred to as novelty de-
tection, open set recognition, or OOD detection in literature. The goal is to classify outliers from
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in-distribution samples, while no information regarding the outliers to be detected is provided during
training. Formally, we are given a set of inliers x ∈ X ⊂ RDx from the underlying data density
function p(x) for training. Dx is the dimensionality of x and X is the support of p(x). An outlier is
typically defined as a sample from the ρ-sublevel set of data density {x|p(x) ≤ ρ} (Steinwart et al.,
2005). Note that a sample located outside of the support X belongs to the 0-sublevel set and hence
is an outlier for all ρ ≥ 0.

An outlier detection system typically produces a scalar decision function c(x), and x is predicted as
an outlier if c(x) > η for the threshold η. Setting the threshold controls the trade-off between false
positive rate and false negative rate. In our experiments, we shall use area under receiver operating
characteristic curve (AUC) as a threshold-independent performance metric when evaluating outlier
detection algorithms.

2.2 AUTOENCODER-BASED OOD DETECTION

An autoencoder consists of an encoder fe(x) : RDx → RDz and a decoder fd(z) : RDz → RDx ,
where Dz is the dimensionality of the latent vector z. An input x is sequentially processed through
the encoder and the decoder, producing its reconstruction x̃ = fd(fe(x)). The reconstruction error is
the discrepancy between x and x̃. L2 distance ||x− x̃||2 is a popular choice of discrepancy measure,
but other error metrics are also applicable. A encoder and a decoder are deep neural networks and
are jointly trained to minimize the mean reconstruction error of training data through stochastic
gradient descent.

In an autoencoder-based outlier detection system (Japkowicz et al., 1995), the reconstruction error of
an autoencoder trained on in-distribution samples is used as the decision function c(x) = ||x− x̃||2,
and an input with large reconstruction error is classified as OOD. However, in the next section,
we shall show that an autoencoder could unexpectedly produce very small reconstruction error for
inputs not drawn from the training distribution. Thus an autoencoder-based outlier detection system
may fail to detect such outliers.

3 OUTLIER RECONSTRUCTION

AE

inliers reconstruction outliers

EBAE

Figure 2: AE and EBAE trained on a bi-
modal distribution.

The outlier reconstruction is a phenomenon that an au-
toencoder unexpectedly succeeds in reconstructing an in-
put even though it is located outside of the training dis-
tribution. In this section, we provide illustrative exam-
ples that show that outlier reconstruction is a consequence
from the inductive biases of an autoencoder.

Smoothness of mappings When the training data distri-
bution consists of multiple clusters, the outliers from the
region between the clusters are likely to be reconstructed.
Figure 2 depicts 2D synthetic data generated from a mix-
ture of two disconnected uniform distributions and their
reconstruction from autoencoders with one-dimensional
latent space. The outliers (red crosses) from the middle
of two clusters show reconstruction errors (the length of
thin black lines) smaller than some inliers (blue dots). Tong et al. (2019) noted this type of outlier
reconstruction and mentioned that outliers “close to the mean” of data or “in the convex hull” of
data are likely to be reconstructed.

This phenomenon arises from the inductive bias of an autoencoder that its encoder and decoder
are smooth mappings. The extreme case of this inductive bias can be found in linear principal
component analysis (PCA). PCA, a linear counterpart of an autoencoder (Bourlard & Kamp, 1988),
would reconstruct any outliers which reside on the principal axis. Note that this phenomenon is
consistent with the objective function of an autoencoder and PCA, as the objective does not penalize
the reconstruction of outliers.

Compositionality When there is a compositional structure in data, we can still observe a recon-
structed outlier even if it lies outside of the convex hull of training data. The data are compositional
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if each datum can be broken down into smaller reusable components; For example, MNIST can be
considered highly compositional, since a digit image can be decomposed into smaller sub-patterns,
such as straight lines and curves. An outlier can be successfully reconstructed when composed of a
subset of components existing in the training data.

To demonstrate the effect of compositionality in outlier reconstruction, we make two synthetic
datasets both of which are clearly out-of-distribution with respect to MNIST. The first dataset is
HalfMNIST (the seventh column in Figure 1), consisting of MNIST images with a randomly cho-
sen upper or lower half replaced by zero pixels. ChimeraMNIST (the last column in Figure 1), the
second dataset, is a set of images generated by concatenating upper and lower halves of two ran-
domly chosen digits. Although these images are not in the convex hull of MNIST digits, they share
components found in MNIST. As shown in Figure 1, an autoencoder trained on MNIST have no
problem reconstructing them. The classification AUCs from the reconstruction error are 0.482 for
HalfMNIST and 0.69 for ChimeraMNIST, indicating poor classification.

It seems that an autoencoder learns to reconstruct each part of an image separately but is not able to
judge whether the combination of the parts is valid as a whole. This compositional way of processing
facilitates generalization of a model (Keysers et al., 2019), but the generalization of reconstruction
in OOD inputs is not desirable for an autoencoder-based outlier detector.
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Figure 3: Reconstruction errors of MNISTnot9
and MNIST9. The error bars denote 80-percentile
around the means.

Distributed representation We suspect the
outlier reconstruction due to compositional pro-
cessing may be attributed to the distributed rep-
resentation (Mikolov et al., 2013) used in an
autoencoder. To show the effect of the dis-
tributed representation, we train autoencoders
on MNIST with the digit 9 excluded (MNIST-
not9) and measure the reconstruction error of
the digit 9 (MNIST9) under multiple values of
latent dimensionality Dz. Figure 3 shows the
result. We observe the outlier reconstruction of
MNIST9 possibly due to the compositional processing mentioned above. However, the outlier re-
construction occurs only when Dz is large. The latent representation is more distribution for large
Dz, as a larger number of hidden neurons are used to represent an input. This observation suggests
that the distributed representation used in an autoencoder enables the compositional processing and
thus facilitates outlier reconstruction.

Meanwhile, the model we propose shortly is not vulnerable to outlier reconstruction in all cases we
examined above, as shown in Figure 1, Figure 2, and Table 1, even though it is based on the same
autoencoder architecture.

4 ENERGY-BASED AUTOENCODERS

4.1 DEFINITION

We propose Energy-based Autoencoder (EBAE), a generative model built from an autoencoder
described in Section 2.2. The density of EBAE is designed to be large for an input with small
reconstruction error. Formally, given an encoder fe(x) and a decoder fd(z), the density model of
EBAE pθ(x) is defined as follows:

pθ(x) =
1

Ωθ
exp(−Eθ(x)), Eθ(x) = ||x− fd(fe(x))||2, Ωθ =

∫
exp(−Eθ(x))dx <∞. (1)

To ensure the integral exists, we assume that the domain of x is bounded, and exp(−Eθ(x)) is
continuous and bounded. Often, the quantity Eθ(x) is referred to as an energy function, and the
whole formulation is called energy-based model (Mnih & Hinton, 2005; Hinton et al., 2006).

As in a conventional autoencoders (Japkowicz et al., 1995), outliers are detected based on the large
reconstruction error in EBAE. This decision is equivalent to determining an outlier based on low
likelihood (Bishop, 1994), as the likelihood and the reconstruction error are in a linear relationship:
log pθ(x) = −Eθ(x)− log Ωθ where log Ωθ is a constant with respect to x.
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4.2 TRAINING

EBAE is trained to maximize the likelihood of data. The expectation of the likelihood gradient with
respect to the data density p(x) is written as follows (the derivation in the supplementary material):

Ex∼p(x)[∇θ log pθ(x)] =− Ex∼p(x)[∇θE(x)]−∇θ log Ωθ (2)

=− Ex∼p(x)[∇θE(x)] + Ex′∼pθ(x)[∇θE(x′)]. (3)

The expectation Ex∼p(x)[·] is with respect to training data, and the expectation Ex′∼pθ(x′)[·] is with
respect to samples generated from the model. Each gradient step would decrease the average re-
construction error of the training data while increase the average reconstruction error of “fake” data
x′. In practice, we approximate the expectations with a mini-batch of training data and generated
samples in each iteration.

The second term Ex′∼pθ(x)[∇θE(x′)] is responsible for inhibiting the reconstruction of outliers. The
sampling process tend to generate high-likelihood samples which will produce small reconstruction
error by definition. Therefore, the second term finds outliers which can be reconstructed by a current
model and suppress them by applying the gradient. The training converges when pθ(x) become
identical to p(x) as the two gradient terms are cancelled out. A converged EBAE will give small
reconstruction errors only for in-distribution samples and large reconstruction errors for OOD inputs.

The suppression of outlier reconstruction in EBAE is originated from the enforcement of the nor-
malization constraint, as the second gradient term is derived from the gradient of the normalization
constant∇θ log Ωθ. Note that by removing the second term in Eq.(3), the expression reduces into the
gradient of a conventional autoencoder, only minimizing the reconstruction error of inliers. Thus,
from our energy-based formulation (Eq.(1)), a conventional autoencoder training does not properly
maximizes the likelihood as it neglects normalization, and the lack of normalization is an explana-
tion why outlier reconstruction occurs in autoencoders.

4.3 SAMPLING FROM EBAE

During training, samples are drawn from pθ(x) by Markov Chain Monte Carlo (MCMC) method
to approximate the second expectation in Eq.(3). For an energy function based on a deep neural
network, Langevin Monte Carlo (LMC) (Welling & Teh, 2011; Neal et al., 2011) method is typically
employed (Du & Mordatch, 2019; Grathwohl et al., 2020). However, we found that naive LMC
mixes very slowly for the energy function of EBAE, possibly because the energy landscape is highly
multi-modal.

Figure 4: The illustration of
two-stage sampling process.

Here, we propose a two-stage sampling scheme which is specifi-
cally designed for EBAE. The proposed method use the latent space
structure in an autoencoder to traverse between energy basins. The
scheme consists of two consecutive LMC chains, the latent chain
and the visible chain, which are illustrated in Figure 5. The la-
tent chain runs first in the latent space and aims to provide a good
starting point for the visible chain, which runs in the visible space
afterwards. After Tz steps of the latent chain, its sample zTz is
fed to the decoder, yielding the starting point for the visible chain
x0 = fd(zTz). The visible chain runs for Tx steps and produces the
sample. With the latent chain, the visible chain could start from diverse points with sufficiently high
density, resulting in diverse samples with high quality.

The two chains can be formally written as follows:

Latent chain: z0 ∼ Uniform, zt+1 = zt +
λz
2
∇z log qθ(zt) + εz, εz ∼ N (0z, σ

2
zIz). (4)

Visible chain: x0 = fd(zTz), xt+1 = xt +
λx
2
∇x log pθ(xt) + εx, εx ∼ N (0x, σ

2
xIx). (5)

where 0z, 0x, Iz, and Ix are zero vectors and identity matrices defined in the latent space or the
input space, accordingly. The step sizes λz, λx and the variances σz, σx are tuned separately to
achieve faster training in practice as done in Du & Mordatch (2019); Grathwohl et al. (2020). pθ(z)
is the density of EBAE defined in Eq.(1), and qθ(z) is an auxiliary density function designed for the
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latent chain to yield desirable starting point for the visible chain. We also define qθ(z) through the
energy-based formulation with an energy function Hθ(z):

qθ(z) =
1

Ψθ
exp(−Hθ(z)), Hθ(z) = Eθ(fd(z)), Ψθ =

∫
exp(−Hθ(z))dz <∞. (6)

where Ψθ being the normalization constant. A sample z with high qθ(z) from the latent chain will
have low Hθ(z), and therefore its projection to the visible space fd(z) will have low E(fd(z)) by
design.

Figure 5: Samples from
AE (Left) and from EBAE
(Right).

Theoretically, running an infinitely long visible chain should suffice
for generating samples from pθ(x). As the choice of initial point
has negligible effect on the convergence of the chain in theory, the
introduction of the latent chain does not affect the asymptotic be-
havior of sampling.

Figure 5 shows the samples generated from a conventional autoen-
coder and EBAE trained on MNIST through the proposed two-stage
sampling method. The samples from the autoencoder are signif-
icantly different from MNIST digits. As samples with small re-
construction errors are more likely to be drawn, these non-MNIST
images have smaller reconstruction errors than MNIST in-distribution images. Meanwhile, the sam-
ples from EBAE are visually similar to MNIST digits while also being diverse.

4.4 TECHNICAL DETAILS IN TRAINING

Here, we describe a few technicalities for stable training and competitive performance with EBAE.

Pre-training as a conventional autoencoder Before training an EBAE using Eq.(3), we initialize
the network parameters by training the network as a conventional autoencoder via reconstruction er-
ror minimization until convergence. Compared to computationally expensive LMC steps in EBAE
training, the conventional autoencoder training is very stable and fast, also resulting in a good rep-
resentation of data to start working with.

Spherical latent space (Davidson et al., 2018; Xu & Durrett, 2018; Zhao et al., 2019) The output
of an encoder is projected to the surface of a unit ball through division by its norm. The spherical
latent space removes the boundary effect for the latent chain in EBAE, improving the stability of
LMC. To reflect the spherical constraint during LMC, we employ Constrained LMC Brubaker et al.
(2012), where zt is projected to the sphere after every LMC step (Eq.(4)).

Regularization We regularize the energy of negative samples to prevent its blow up. During the
training, we minimize the average squared energy of negative samples in a mini-batch as well as
the negative likelihood of data. The regularization term is given as Lreg =

∑B
i=1E(x′i)

2/B for the
batch size B, and its gradient α∇θLreg is added to the gradient of the negative log likelihood.

5 RELATED WORK

Autoencoder as a probabilistic model While conventional autoencoders do not directly model a
probability distribution, but some autoencoder variants have probabilistic interpretation. In DAE
(Vincent et al., 2008) and contractive autoencoders (Rifai et al., 2011), the reconstruction error
is related to the gradient of log density (Alain & Bengio, 2014). Generative stochastic networks
(Bengio et al., 2014) utilize this property to build a model that can draw samples. Interestingly,
Alain & Bengio (2014) reported that DAE might produce a spuriously small log density gradient
estimate, i.e., a small reconstruction error, for a point in far from the support of data. VAE (Kingma
& Welling, 2014) and its variants, including adversarial autoencoders Makhzani et al. (2015), WAE
Tolstikhin et al. (2017), and Generative Probabilistic Novelty Detection Pidhorskyi et al. (2018),
model a properly normalized probability density with the aid of a prior distribution.

Outlier detection Besides the reconstruction-based method mainly discussed in this paper (Jap-
kowicz et al., 1995; An & Cho, 2015; Zong et al., 2018), autoencoders can be applied to outlier
detection by learning representation of data. In Xu et al. (2015), input data are transformed using
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Table 1: MNIST hold-out class detection results. AUC scores are shown. The values in parentheses
denote the standard error of mean after 10 training runs.

MNIST 0 1 2 3 4 5 6 7 8 9 avg

EBAE .989(.002) .919(.013) .992(.001) .949(.004) .949(.005) .978(.003) .938(.004) .885(.024) .929(.004) .934(.005) .946
AE .819 .131 .843 .734 .661 .755 .844 .542 .902 .537 .677
DAE .769 .124 .872 .935 .884 .793 .865 .533 .910 .625 .731
VAE(R) .954 .391 .978 .910 .860 .939 .916 .774 .946 .721 .839
VAE(L) .967 .326 .976 .906 .798 .927 .928 .751 .935 .614 .813
WAE .817 .145 .975 .950 .751 .942 .853 .912 .907 .799 .805
GLOW .803 .014 .624 .625 .364 .561 .583 .326 .721 .426 .505
PXCNN++ .757 .030 .663 .663 .483 .642 .596 .307 .810 .497 .545
IGEBM .926 .401 .642 .644 .664 .752 .851 .572 .747 .522 .672
DAGMM .386 .304 .407 .435 .444 .429 .446 .349 .609 .420 .423

the encoder in an autoencoder, then other outlier detection algorithms, such as one-class support
vector machines (Schölkopf et al., 2001), are applied. Deep autoencoding Gaussian mixture model
(DAGMM, Zong et al. (2018)) trains an autoencoder jointly with a mixture of Gaussian distributions
defined in the latent space of the autoencoder. The key assumption of using the latent representation
of an autoencoder is that an outlier will reside far from the training samples in the latent space.

After Nalisnick et al. (2019); Hendrycks et al. (2019) reported that deep generative models are not
able to detect obvious outliers, a number of outlier detection methods have been proposed to remedy
the problem. Some of those methods require training of multiple generative models (Ren et al.,
2019; Choi et al., 2018). Other methods are highly specialized to image data (Golan & El-Yaniv,
2018; Tack et al., 2020; Serrà et al., 2020). In this paper, we focus on the generative approach which
is more generally applicable.

Energy-based models The energy-based formulation (Eq.(1), Mnih & Hinton (2005); Hinton et al.
(2006)) to model a density function has a long history of research. Recently, a number of works
attempt to use a deep neural network to model an energy function, showing promising results on
generative modeling and OOD detection. Du & Mordatch (2019); Grathwohl et al. (2020) use
a deep feed-forward network as energy function and train it via contrastive divergence learning
which involves LMC sampling. Zhao et al. (2016) propose Deep Structured Energy-Based Model
(DSEBM), where the gradient of its energy function is set as the reconstruction error. Energy-based
Generative Adversarial Networks (EBGAN) Zhao et al. (2016) employs the reconstruction error of
a deep autoencoder as a discriminator and call it an energy function. However, EBGAN does not
explicitly model a density function and trained via methods similar to other generative adversarial
networks. Also, EBGAN requires a separate generator to generate samples.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

We empirically compare EBAE to other generative models in outlier detection tasks. In experi-
ments, each method is trained using inlier data and then asked to discriminate outliers from inliers
during test phase. As described in Section 2.1, we assume that a detection method produces a scalar
decision function c(x) given an input x, and its performance is measured in AUC. Following the
protocol of Ren et al. (2019) and Hendrycks et al. (2019), we use an additional OOD dataset differ-
ent from the datasets used in test phase to tune model hyperpamraeters. Additional details on model
implementation and datasets can be found in the supplementary material.

Our baselines includes autoencoders, deep generative models, and the state-of-the-art energy based
model. We test conventional autoencoders (AE), DAE, VAE, and WAE as our autoencoder base-
lines. Additionally, DAGMM (Zong et al., 2018), an autoencoder-based approach which considers
reconstruction error and density in the latent space simultaneously in outlier detection is tested. For
all autoencoder-based methods including EBAE, we use the identical network architectures and vary
other hyperparameters including the latent dimensionality. For AE, DAE, WAE, and EBAE, we use
reconstruction error as c(x). Since both reconstruction error and likelihood is available from VAE,
we test both options for c(x) and denote the results as VAE(R) and VAE(L), respectively. Deep
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generative model baselines, PixelCNN++ (PXCNN++, Salimans et al. (2017)) and Glow (Kingma
& Dhariwal, 2018) are trained by maximizing likelihood, and their negative log likelihoods are used
as c(x). We implement a deep energy-based model (IGEBM, Du & Mordatch (2019)) and use its
energy as c(x).

In addition to widely used datasets, including MNIST, FashionMNIST (FMNIST), CIFAR-10,
SVHN, CelebA, and ImageNet resized to 32×32 (ImageNet32, Oord et al. (2016)), we addition-
ally utilize two synthetic image datasets, Constant and Noise. In Constant dataset, all pixels of an
image has the same value uniform-randomly drawn from the set {0, ..., 255}. Images in Constant
dataset are gray, i.e., their channels have the same values. An image in Noise dataset has its pixel
values independently drawn from the uniform distribution on the set {0, ..., 255}. Constant and
Noise images are generated in two sizes, 1×28×28 and 3×32×32. Note that both image datasets
are clearly OOD for all mentioned datasets. Pixel values of images are scaled to the [0, 1] in all
experiments.

6.2 HOLD-OUT CLASS DETECTION

We set one class from MNIST as the outlier class and the rest as the inlier class, and repeat the pro-
cedure for all classes in MNIST. This experiment simulates the situation where an inlier distribution
consists of multiple disconnected clusters. Constant dataset of size 28×28 is used for select the best
hyperparameters for each method. After hyperparameter selection, the training for EBAE under the
selected hyperparameter is repeated for 10 different random seeds to demonstrate the variance of
EBAE training. The results are shown in Table 1.

EBAE shows the highest AUC score for all classes except for 7, while still achieves the second best
performance for detecting 7 and the best overall performance. Note that detecting 1, 7, or 9 as outlier
is more difficult than detecting other digit. From the discussion in Section 3, we suspect that 1, 7,
and 9 are more readily represented by composition of sub-patterns in other digits.

6.3 OOD DETECTION

Table 2: OOD detection (in-distribution: CIFAR-10).

OOD Constant FMNIST SVHN CelebA Noise

EBAE .923 .819 .818 .789 1.0
AE .006 .650 .175 .655 1.0

DAE .001 .671 .175 .669 1.0
VAE(R) .002 .700 .191 .662 1.0
VAE(L) .002 .767 .185 .684 1.0

WAE .000 .649 .168 .652 1.0
GLOW .384 .222 .260 .419 1.0

PXCNN++ .000 .013 .074 .639 1.0
IGEBM .192 .216 .371 .477 1.0

Table 3: OOD detection (in-distribution: ImageNet32).

OOD Constant FMNIST SVHN CelebA Noise

EBAE .966 .994 .985 .949 1.0
AE .005 .915 .102 .325 1.0

DAE .069 .991 .102 .426 1.0
VAE(R) .030 .936 .132 .501 1.0
VAE(L) .028 .950 .132 .545 1.0

WAE .069 .991 .081 .364 1.0
GLOW .413 .856 .169 .479 1.0

PXCNN++ .000 .004 .027 .238 1.0

In this experiment, we train generative
models on a CIFAR-10 or ImageNet
32×32 (ImageNet32), and test how well
they classify images from other datasets
as OOD. Here, we use MNIST images
padded with zeros to make 32x32 for
model selection. Other details are covered
in the supplementary material. Results
are shown in Table 2 and Table 3. Out-
lier reconstruction is severe for Constant
and SVHN datasets, as noted from AUC
lower than 0.5. The right panel of Figure
1 compares the reconstruction error distri-
bution of Constant and SVHN from AE
and EBAE trained on CIFAR-10, showing
that the outlier reconstruction is effectively
suppressed in EBAE.

7 CONCLUSION

In this paper, we have investigated the un-
expected reconstruction of outliers in au-
toencoders. To fix the problem, we have
proposed a novel probabilistic view on autoencoders, which leads to a new training scheme. In our
experiments, an autoencoder trained by the proposed method is less prone to reconstruct an outlier
and is highly effective in outlier detection.
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Hervé Bourlard and Yves Kamp. Auto-association by multilayer perceptrons and singular value
decomposition. Biological cybernetics, 59(4-5):291–294, 1988.

Marcus Brubaker, Mathieu Salzmann, and Raquel Urtasun. A family of mcmc methods on implicitly
defined manifolds. In Neil D. Lawrence and Mark Girolami (eds.), Proceedings of the Fifteenth
International Conference on Artificial Intelligence and Statistics, volume 22 of Proceedings of
Machine Learning Research, pp. 161–172, La Palma, Canary Islands, 21–23 Apr 2012. PMLR.
URL http://proceedings.mlr.press/v22/brubaker12.html.

Hyunsun Choi, Eric Jang, and Alexander A Alemi. Waic, but why? generative ensembles for robust
anomaly detection. arXiv preprint arXiv:1810.01392, 2018.

Tim R Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M Tomczak. Hyperspher-
ical variational auto-encoders. In 34th Conference on Uncertainty in Artificial Intelligence 2018,
UAI 2018, pp. 856–865. Association For Uncertainty in Artificial Intelligence (AUAI), 2018.

Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based mod-
els. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alche-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 3608–
3618. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
8619-implicit-generation-and-modeling-with-energy-based-models.
pdf.

Izhak Golan and Ran El-Yaniv. Deep anomaly detection using geometric transformations. In Ad-
vances in Neural Information Processing Systems, pp. 9758–9769, 2018.

Dong Gong, Lingqiao Liu, Vuong Le, Budhaditya Saha, Moussa Reda Mansour, Svetha Venkatesh,
and Anton van den Hengel. Memorizing normality to detect anomaly: Memory-augmented deep
autoencoder for unsupervised anomaly detection. In IEEE International Conference on Computer
Vision (ICCV), 2019.

Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi,
and Kevin Swersky. Your classifier is secretly an energy based model and you should treat it
like one. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=Hkxzx0NtDB.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=HyxCxhRcY7.

Geoffrey Hinton, Simon Osindero, Max Welling, and Yee-Whye Teh. Unsupervised discovery of
nonlinear structure using contrastive backpropagation. Cognitive science, 30(4):725–731, 2006.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771–1800, 2002.

9

http://proceedings.mlr.press/v22/brubaker12.html
http://papers.nips.cc/paper/8619-implicit-generation-and-modeling-with-energy-based-models.pdf
http://papers.nips.cc/paper/8619-implicit-generation-and-modeling-with-energy-based-models.pdf
http://papers.nips.cc/paper/8619-implicit-generation-and-modeling-with-energy-based-models.pdf
https://openreview.net/forum?id=Hkxzx0NtDB
https://openreview.net/forum?id=Hkxzx0NtDB
https://openreview.net/forum?id=HyxCxhRcY7
https://openreview.net/forum?id=HyxCxhRcY7


Under review as a conference paper at ICLR 2021

Nathalie Japkowicz, Catherine Myers, Mark Gluck, et al. A novelty detection approach to classifi-
cation. In Proceedings of the International Joint Conference on Artificial Intelligence, volume 1,
pp. 518–523, 1995.

Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashu-
bin, Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, et al. Measur-
ing compositional generalization: A comprehensive method on realistic data. arXiv preprint
arXiv:1912.09713, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. International Conference
on Learning Representations (ICLR), 2014.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems, pp. 10215–10224, 2018.

Yuchen Lu and Peng Xu. Anomaly detection for skin disease images using variational autoencoder.
arXiv preprint arXiv:1807.01349, 2018.

Olga Lyudchik. Outlier detection using autoencoders. Technical report, 2016.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial
autoencoders. arXiv preprint arXiv:1511.05644, 2015.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed represen-
tations of words and phrases and their compositionality. In Advances in neural information pro-
cessing systems, pp. 3111–3119, 2013.

Andriy Mnih and Geoffrey Hinton. Learning nonlinear constraints with contrastive backpropagation.
In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
pp. 1302–1307. IEEE, 2005.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do
deep generative models know what they don’t know? In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=H1xwNhCcYm.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2, 2011.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
arXiv preprint arXiv:1601.06759, 2016.

Stanislav Pidhorskyi, Ranya Almohsen, and Gianfranco Doretto. Generative probabilistic novelty
detection with adversarial autoencoders. In Advances in neural information processing systems,
pp. 6822–6833, 2018.

Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon, and
Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection. In Advances in
Neural Information Processing Systems, pp. 14680–14691, 2019.

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive auto-
encoders: explicit invariance during feature extraction. In Proceedings of the 28th International
Conference on International Conference on Machine Learning, pp. 833–840, 2011.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal Representations by Error
Propagation, pp. 318–362. MIT Press, Cambridge, MA, USA, 1986. ISBN 026268053X.

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the
pixelcnn with discretized logistic mixture likelihood and other modifications. arXiv preprint
arXiv:1701.05517, 2017.

Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C Williamson.
Estimating the support of a high-dimensional distribution. Neural computation, 13(7):1443–1471,
2001.

10

https://openreview.net/forum?id=H1xwNhCcYm


Under review as a conference paper at ICLR 2021
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complexity and out-of-distribution detection with likelihood-based generative models. In Interna-
tional Conference on Learning Representations, 2020. URL https://openreview.net/
forum?id=SyxIWpVYvr.

Ingo Steinwart, Don Hush, and Clint Scovel. A classification framework for anomaly detection.
Journal of Machine Learning Research, 6(Feb):211–232, 2005.

Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via contrastive
learning on distributionally shifted instances. arXiv preprint arXiv:2007.08176, 2020.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasserstein auto-
encoders. arXiv preprint arXiv:1711.01558, 2017.

Alexander Tong, Roozbah Yousefzadeh, Guy Wolf, and Smita Krishnaswamy. Fixing bias
in reconstruction-based anomaly detection with lipschitz discriminators. arXiv preprint
arXiv:1905.10710, 2019.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pp. 1096–1103, 2008.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681–688,
2011.

Dan Xu, Elisa Ricci, Yan Yan, Jingkuan Song, and Nicu Sebe. Learning deep representations of
appearance and motion for anomalous event detection. arXiv preprint arXiv:1510.01553, 2015.

Jiacheng Xu and Greg Durrett. Spherical latent spaces for stable variational autoencoders. In Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
4503–4513, 2018.

Shuangfei Zhai, Yu Cheng, Weining Lu, and Zhongfei Zhang. Deep structured energy based models
for anomaly detection. arXiv preprint arXiv:1605.07717, 2016.

Deli Zhao, Jiapeng Zhu, and Bo Zhang. Latent variables on spheres for autoencoders in high dimen-
sions. arXiv, pp. arXiv–1912, 2019.

Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial network.
arXiv preprint arXiv:1609.03126, 2016.

Yiru Zhao, Bing Deng, Chen Shen, Yao Liu, Hongtao Lu, and Xian-Sheng Hua. Spatio-temporal au-
toencoder for video anomaly detection. In Proceedings of the 25th ACM international conference
on Multimedia, pp. 1933–1941, 2017.

Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng
Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In In-
ternational Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=BJJLHbb0-.

11

https://openreview.net/forum?id=SyxIWpVYvr
https://openreview.net/forum?id=SyxIWpVYvr
https://openreview.net/forum?id=BJJLHbb0-
https://openreview.net/forum?id=BJJLHbb0-

	Introduction
	Background
	Problem Setting
	Autoencoder-based OOD Detection

	Outlier Reconstruction
	Energy-based Autoencoders
	Definition
	Training
	Sampling from EBAE
	Technical Details in Training

	Related Work
	Experiments
	Experimental Setup
	Hold-Out Class Detection
	OOD Detection

	Conclusion

