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Abstract

Ensuring the reliability of Large Language001
Models (LLMs) in complex reasoning tasks002
remains a formidable challenge, particularly003
in scenarios that demand precise mathemati-004
cal calculations and knowledge-intensive open-005
domain generation. In this work, we introduce006
an uncertainty-aware framework designed to007
enhance the accuracy of LLM responses by008
systematically incorporating model confidence009
at critical decision points. We propose an ap-010
proach that encourages multi-step reasoning011
in LLMs and quantify the confidence of in-012
termediate answers such as numerical results013
in mathematical reasoning and proper nouns014
in open-domain generation. Then, the overall015
confidence of each reasoning chain is evalu-016
ated based on confidence of these critical in-017
termediate steps. Finally, we aggregate the an-018
swer of generated response paths in a way that019
reflects the reliability of each generated con-020
tent (as opposed to self-consistency in which021
each generated chain contributes equally to022
majority voting). We conducted extensive ex-023
periments in five datasets, three mathemati-024
cal datasets and two open-domain datasets, us-025
ing four LLMs. The results consistently vali-026
date the effectiveness of our novel confidence-027
aggregation method, leading to an accuracy im-028
provement of up to 7.4% and 5.8% over base-029
line approaches in math and open-domain gen-030
eration tasks, respectively. The code is avail-031
able anonymously at CER Repository.032

1 Introduction033

Recently, Large Language Models (LLMs) (Dubey034

et al., 2024; Guo et al., 2025; Jiang et al., 2023;035

Groeneveld et al., 2024; Achiam et al., 2023) have036

garnered significant attention for their strong per-037

formance across diverse reasoning tasks, including038

arithmetic reasoning and open-domain question an-039

swering (Wei et al., 2022; Marasovic et al., 2022;040

Zelikman et al., 2022; Kojima et al., 2022; Yang041

et al., 2024b). Approaches such as self-consistency042

(Wang et al., 2022) and few-shot prompting (Brown 043

et al., 2020) have also been introduced to enhance 044

the reasoning process of these models. However, 045

these approaches have notable limitations. For in- 046

stance, few-shot prompting relies on carefully cu- 047

rated demonstrations to perform well, and poorly 048

chosen ones can have a reverse effect on perfor- 049

mance (Halawi et al., 2023). In addition, the self- 050

consistency method faces challenges in scenarios 051

where generated paths either (1) produce inconsis- 052

tent answers that do not include the correct solution 053

or (2) predominantly converge on incorrect results 054

(Zhang et al., 2023; Wang and Zhou, 2024). 055

Besides that, human intelligence is uniquely 056

characterized by its ability to express and communi- 057

cate uncertainty, a critical skill for sound decision- 058

making and effective collaboration (Cosmides and 059

Tooby, 1996). Similarly, in artificial intelligence, 060

accurate uncertainty estimation is essential for risk 061

assessment, error mitigation, and reliable decision- 062

making (Blundell et al., 2015; Guo et al., 2017; 063

Tomani and Buettner, 2021; Fadeeva et al., 2024). 064

To improve the reasoning capabilities of LLMs, 065

it is essential to equip them with mechanisms for 066

effectively quantifying and leveraging uncertainty. 067

In this work, we aim to improve reasoning by in- 068

corporating uncertainty estimation within a Chain- 069

of-Thought (CoT) process, which consists of a se- 070

quence of steps that generate intermediate outputs 071

or answers and ultimately leading to the final an- 072

swer. At the end of each step, the model is expected 073

to arrive at a certain level of confidence in its out- 074

put, while some degree of uncertainty is natural 075

throughout a thought due to an incomplete or evolv- 076

ing reasoning step. As a result, we hypothesize that 077

the overall undesired uncertainty of the reasoning 078

chain can be inferred by analyzing the confidence 079

of the tokens that make up the intermediate and 080

final answers. Additionally, these intermediate out- 081

puts often exhibit specific characteristics, such as 082

numerical values or proper nouns, that can be read- 083
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Carefully work through the problem step
by step. For each step, ... 

Q: a cube of side one meter length is cut
into small cubes of side 20 cm each. how
many such small cubes can be obtained?

Step 1: First, we need to understand ...  Answer: 20. 
Step 2: We need to convert ...  Answer: 100. 

Step 3: We will calculate the number of ...  Answer: 5. 
Step 4: To find the total number of ...  Answer: 125.  

The final answer is 125.

Step 1: To find the number of ...  Answer: 100 / 20 = 5.  
Step 2: Since the small cubes will be ...  Answer: 5 * 5 = 25.  

Step 3: Now we need to consider ...  Answer: 25. 
The final answer is 25.

Step 1: First, we need to determine ... Answer: 1,000,000.   
Step 2: Next, we calculate the volume of ...  Answer: 8,000. 

Step 3: To find out how many ... Answer: 125.  
The final answer is 125. 

LLM

Step 1: First, we need to understand ...  Answer: 20. 
Step 2: We need to convert ...  Answer: 100. 

Step 3: We will calculate the number of ...  Answer: 5. 
Step 4: To find the total number of ...  Answer: 125.  

The final answer is 125.

Figure 1: Illustration of Confidence-Enhanced Reasoning (CER) in LLMs. On the left, we demonstrate the CER
framework. Given an input query, the LLM generates three independent outputs using temperature sampling (T = 1).
Intermediate answers are bolded, and final answers are highlighted. The confidence of each output is computed, and
the most weighted-confident answer—125—is selected. On the right, we illustrate the confidence calculation for the
first output. We use multiplication as the step-wise aggregator function (f ) and weighted averaging (wa) as the
path-wise aggregator function (g). Since the answer 125 appears in both step 4 and the final answer, we mark its
first occurrence with * for clarity. The full question and responses from the LLM are provided in Appendix F.

ily identified. In fact, we consider these critical084

tokens in our uncertainty estimation process to en-085

hance the overall accuracy of the reasoning. For086

mathematical tasks (e.g., GSM8K (Cobbe et al.,087

2021) ), we prioritize confidence in numerical to-088

kens, while for open-domain generation reasoning089

(e.g., TriviaQA (Joshi et al., 2017)), we focus on090

the model’s confidence in proper nouns (entities,091

names, locations).092

Based on the above idea, our method comprises093

three key components: (1) a confidence estimation094

technique that focuses on evaluating confidence in095

specific tokens, where a high degree of certainty is096

crucial, (2) an aggregation strategy for integrating097

confidence scores across a reasoning chain, and098

(3) a function that ensembles answers by harness-099

ing the uncertainty within each reasoning chain,100

resulting in enhanced performance compared to en-101

semble reasoning methods such as self-consistency.102

We evaluated our framework on four LLMs103

(Llama 3.1, Llama 3.2 (Dubey et al., 2024), OLMo104

2 (Groeneveld et al., 2024), and Mistral 7B v0.3105

(Jiang et al., 2023)) across five datasets, three math-106

ematical and two open-domain generation bench-107

marks. Our experiments demonstrate that explicitly108

incorporating uncertainty in reasoning can enhance109

accuracy by up to 7.4% in mathematical tasks and110

5.8% in open-domain question answering. Our111

contributions are as follows:112

• By considering the confidence of LLMs in113

critical points of their responses, we easily114

compute the uncertainty of an LLM on a gen-115

erated response that can be useful in aggre- 116

gating responses generated in multiple chains 117

based on their confidences. 118

• We analyze various functions for each com- 119

ponent of our method and identify the best 120

choice to enhance reasoning accuracy. 121

• Empirical validation across various LLMs 122

and benchmarks, showing significant improve- 123

ments in accuracy without model fine-tuning. 124

2 Related Work 125

2.1 Reasoning in LLMs 126

Recent research has explored various techniques to 127

enhance the reasoning capabilities of LLMs. CoT 128

prompting (Brown et al., 2020; Kojima et al., 2022) 129

improves multi-step reasoning by generating struc- 130

tured intermediate steps, leading to more transpar- 131

ent and interpretable solutions. Self-consistency 132

(Wang et al., 2022) further enhances accuracy by 133

sampling multiple reasoning paths and selecting 134

the most consistent answer. In parallel, question 135

decomposition methods (Zhou et al., 2022; Dua 136

et al., 2022; Khot et al., 2022; Ling et al., 2023; 137

Weng et al., 2023) improve coherence by break- 138

ing complex queries into simpler sub-questions, 139

though it introduces additional computational over- 140

head. Another promising direction involves search 141

and planning-based methods (Wang et al., 2023, 142

2024a; Yao et al., 2023a; Besta et al., 2024; Xue 143

et al., 2025; Yang et al., 2024a), which system- 144

atically explore multiple reasoning trajectories to 145
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improve problem-solving. Lastly, integrating exter-146

nal tools—such as web search engines and Python147

interpreters—extends the model’s capabilities, en-148

abling more precise and efficient task execution149

across diverse domains (Lu et al., 2023; Yao et al.,150

2023b; Kim et al., 2024; Chen et al., 2023). As151

our approach is grounded in uncertainty estima-152

tion, we begin by reviewing existing uncertainty153

estimation methods, followed by an introduction to154

uncertainty-aware reasoning techniques, which are155

the most pertinent to our research.156

2.2 Uncertainty Estimation157

Uncertainty estimation methods can be broadly158

classified into two categories: black-box (Zhang159

et al., 2023; Xiong et al., 2024; Lin et al., 2023;160

Manakul et al., 2023; Chen and Mueller, 2024)161

and white-box (Kuhn et al., 2023; Duan et al.,162

2024; Fadeeva et al., 2024; Huang et al., 2023)163

approaches. One approach to uncertainty estima-164

tion is training-based confidence estimation (Cohen165

et al., 2024; Lin et al., 2022; Azaria and Mitchell,166

2023), which improves calibration by incorporating167

uncertainty estimation directly into the training pro-168

cess. These methods modify the training objective,169

introduce auxiliary loss functions, or leverage addi-170

tional supervision to produce more reliable confi-171

dence estimates. Another approach is verbal-based172

confidence estimation (Tian et al., 2023; Kadavath173

et al., 2022), which prompts the model to explic-174

itly express its confidence through natural language175

statements. Finally, semantic-based uncertainty es-176

timation methods (Nikitin et al., 2024; Kuhn et al.,177

2023; Qiu and Miikkulainen, 2024; Wang et al.,178

2024b) cluster outputs or reasoning chains that are179

semantically equivalent, quantifying uncertainty180

based on the variability of responses within these181

clusters.182

2.3 Uncertainty-aware reasoning183

An emerging trend leverages uncertainty estima-184

tion as a tool to enhance various components of185

reasoning. One application is in improving few-186

shot prompting, where uncertainty estimation helps187

automate the selection of demonstrations (Gonen188

et al., 2023; Huang et al., 2024; Margatina et al.,189

2023), reducing the need for manually intensive190

prompt engineering. Another key contribution of191

uncertainty estimation in reasoning is its role in192

selecting the most reliable reasoning chain based193

on confidence (Murray and Chiang, 2018; Kada-194

vath et al., 2022; Malinin and Gales, 2020). In such195

cases, uncertainty acts as a guiding signal, identify- 196

ing the chain where the model exhibits the highest 197

confidence. Our approach builds on this intuition 198

by enabling a weighted voting mechanism to select 199

the final answer. More importantly, instead of ap- 200

plying our uncertainty estimation function to every 201

token, we focus only on critical tokens, specifically 202

the intermediate answers in a CoT chain. 203

3 Confidence Enhanced Reasoning 204

Prior research has demonstrated that, analogous 205

to human cognitive processes, enabling LLMs to 206

generate intermediate reasoning steps can substan- 207

tially enhance their accuracy in complex reasoning 208

tasks. In this work, we aim to extend this approach 209

further by incorporating confidence estimation into 210

the reasoning process. We hypothesize that the fi- 211

nal output of each intermediate step—whether a 212

numerical value in mathematical problems or a con- 213

textually salient entity in open-domain generative 214

reasoning—serves as a probabilistic signal, provid- 215

ing valuable insight into the model’s confidence 216

in that step’s validity. Moreover, these localized 217

confidence scores can be aggregated to estimate the 218

model’s overall confidence in the entire reasoning 219

chain. By doing so, we refine the self-consistency 220

voting mechanism: rather than selecting the most 221

frequent answer, we sum the confidence scores of 222

chains arrive at the same conclusion and choose 223

the answer with the highest total confidence. 224

3.1 Definitions 225

In the following, we present the unified definitions 226

used throughout this paper: 227

• Token Probability: The output probability of 228

token t is derived directly from the model’s 229

output logits with a simple softmax function; 230

denoted pt. 231

• Word Confidence: The confidence of a word 232

w generated by the model, calculated using a 233

function f that incorporates all the tokens that 234

make up the word; denoted as 235

cfw = f({pt|t ∈ w}). (1) 236

• Path Confidence: An output sequence gener- 237

ated by the LLM, denoted y and consisting of 238

n steps where n shows the number of the con- 239

stituent parts of the reasoning paths. Each step 240

is composed of two components: a content 241
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and an answer component, denoted as o and242

a, respectively. In our method, the confidence243

score for each path y, obtained by aggregat-244

ing the confidence values of only the critical245

points, i.e. the answer components {aj}nj=1,246

on the path through a function g as247

cg,fy = g
(
cfa1 , . . . , c

f
an

)
. (2)248

Algorithm 1 CER Algorithm

Require: x, P , f , g, K, T
Ensure: a∗

Description: Given an input prompt x, the lan-
guage model P generates responses. The func-
tions f and g represent step-wise and path-wise
aggregation, respectively. The temperature pa-
rameter is denoted by T , and the ensemble
consists of K generations. The final output, is
denoted as a∗.

1: P ← ∅
2: {yi}Ki=1 ← P (y|x, T )
3: for i← 1 to K do
4: yi =

{
(oij , a

i
j)
}ni

j=1

5: for each aij in yi do
6: cf

aij
← f(aij) ▷ Eq. (1)

7: end for
8: cg,f

yi
← g

(
cf
aia1

, . . . , cf
ai
ni

)
▷ Eq. (2)

9: Ai = ai
ni

10: P ← P ∪ {(cg,f
yi

, Ai)}
11: end for
12: A ← { a | (cg,f

yi
, Ai) ∈ P}

13: for each a ∈ A do
14: C(a)←

∑K
i=1 c

g,f
yi

.I({Ai = a}) ▷ Eq. (5)
15: end for
16: a∗ ← argmaxa∈AC(a)
17: return a∗

3.2 Method249

At first, we independently generate K response250

paths {y1, y2, . . . , yK} from the LLM. Next, we251

break down each response yi into ni constituent252

steps, extracting the answers at different steps as253

key elements {aij}n
i

j=1 for constructing our con-254

fidence subset. Specifically, the LLM-produced255

answer in the final step of the generation process256

yi, i.e. ai
ni , representing the conclusive answer to257

the question in this path is denoted as Ai.258

We can compute the confidence of each answer 259

using the function f as in (1). For instance, if f is a 260

multiplication function and aij consists of r tokens 261

{t1, . . . , tr}, the confidence on this special point 262

can be written as: 263

c
∏
aij

=
r∏

k=1

p(tk). (3) 264

One other choice of f is mean entropy which is 265

computed as the average entropy of distributions 266

on all tokens in the word. Details about different 267

choices of f and subsequent impact on the results 268

are thoroughly examined in Appendix A and D. 269

Subsequently, we aggregated the confidence 270

scores from all steps of a path using the function g 271

as in (2). For the path-wise aggregate function g, 272

which aggregates the confidence scores of words, 273

we experimented with several formulations. Our 274

primary aggregation method is: 275

cg,f
yi

=

∑ni

j=1 j · c
f

aij∑ni

j=1 j
. (4) 276

It assigns higher weights to the steps that are closer 277

to the final answer. Other aggregation schemes we 278

considered include harmonic mean and different 279

kinds of weighted means which are introduced and 280

assessed in Appendix B and Appendix D. 281

Once path confidence is determined, we further 282

aggregate the confidence scores of all paths that 283

yield the same Ai. The answer with the highest 284

aggregate confidence is then selected. 285

A = { a | a ∈ {Ai}Ki=1}

C(a) =

K∑
i=1

cg,f
yi
× I(Ai = a) ∀a ∈ A,

a∗ = argmax
a∈A

C(a).

(5) 286

where A is the set of unique final answers among 287

{Ai}Ki=1. C(a) is the aggregated confidence score 288

for each unique a. Finally, a∗ is the best candidate, 289

chosen by maximizing the confidence score over 290

all a ∈ A. 291

The algorithm 1 summarizes the complete pro- 292

cedure of our method. 293

4 Experiments 294

4.1 Experimental Setup 295

In this section, we present the experimental setup 296

used to assess our method and compare it with the 297
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Models & Datasets Self-Consistency P(True) PE NL NE LL Greedy CER

LLaMA-3.1-8B

GSM8K 89.6 87.6 85.2 86.2 86.2 83.8 82.8 90.0 (+0.4%)
MATH 55.4 56.8 52.0 52.8 53.6 50.4 53.4 58.2 (+1.8%)
MathQA 63.2 65.2 64.4 65.2 61.6 65.4 60.0 68.2 (+2.8%)
Average 69.4 69.8 67.2 68.0 67.1 66.53 65.4 72.1 (+2.3%)

Mistral-7B

GSM8K 62.2 46.6 55.8 59.0 60.0 55.6 44.8 65.2 (+3.0%)
MATH 20.4 13.6 19.0 20.2 20.0 19.6 17.0 18.0 (-2.4%)
MathQA 20.8 12.4 22.6 20.0 19.4 22.6 20.2 22.6 (+0%)
Average 34.4 24.2 32.4 33.0 33.1 32.6 27.3 35.2 (+0.8%)

OLMo-2-7B

GSM8K 85.0 82.0 84.4 83.8 78.0 84.8 84.2 88.8 (+3.8%)
MATH 42.5 40.0 41.0 40.0 39.2 42.6 37.8 48.0 (+5.4%)
MathQA 52.0 51.8 44.8 50.0 48.8 47.4 45.2 59.4 (+7.4%)
Average 59.8 57.9 56.7 57.9 53.3 58.2 55.73 65.1 (+5.3%)

LLama-3.3-3B

GSM8K 78.4 73.2 73.0 77.0 78.6 75.2 75.2 82.6 (+4%)
MATH 51.2 44.2 44.0 42.6 40.0 40.2 46.4 56.0 (+4.8%)
MathQA 59.6 52.2 55.6 54.2 58.4 57.4 55.4 62.8 (+3.2%)
Average 63.0 56.5 57.5 57.9 59.0 57.6 59.0 67.1 (+4.1%)

Table 1: Accuracy comparison across three mathematical datasets—MATH, MATHQA, and GSM8K—on 500
sampled instances evaluated using various baseline methods and the proposed CER approach. The colored values
indicate the improvement or decline compared to the best performance of the baselines for each dataset.

other methods.298

Models: We evaluate our approach on a diverse299

set of LLMs to capture a wide range of architec-300

tures and capabilities. Our primary model is Meta301

Llama 3.1 8B Instruct (Dubey et al., 2024), a302

state-of-the-art open source LLM known for its ro-303

bust performance. To further support our findings,304

we also conducted experiments on Meta Llama305

3.2 3B (Dubey et al., 2024), representing a pow-306

erful yet compact model. Additional experiments307

were performed using Mistral 7B Instruct (Jiang308

et al., 2023), a model frequently referenced in re-309

cent studies, and Olmo 2 7B (Groeneveld et al.,310

2024), which exemplifies the latest mixture of ex-311

pert architectures.312

Datasets and Tasks: We evaluate our method313

across two task categories: 1) mathematical reason-314

ing and 2)open-domain question answering. For315

the mathematical tasks, we utilize the following316

datasets:317

• GSM8K (Cobbe et al., 2021): A widely used318

benchmark that contains mathematical prob-319

lems with numerical answers.320

• MATH (Hendrycks et al., 2021): A dataset 321

that presents more complex mathematical 322

problems than GSM8K. It consists of two 323

parts: numerical and non-numerical answers. 324

We preprocessed the dataset and filtered out 325

all mathematical questions that yield non- 326

numerical answers. 327

• Math QA (Amini et al., 2019): A collection 328

of difficult math problems that do not overlap 329

with the MATH dataset. 330

For open-domain question answering, we utilize 331

the following datasets: 332

• TriviaQA (Joshi et al., 2017): A large-scale 333

dataset containing knowledge-intensive ques- 334

tions sourced from Wikipedia. 335

• HotPotQA (Yang et al., 2018): A dataset de- 336

signed for multi-hop reasoning (Yang et al., 337

2024b), requiring models to synthesize infor- 338

mation from multiple documents. We prepro- 339

cessed the dataset by removing all comparison 340

questions and filtering out open-domain gener- 341

ation questions that do not have a proper noun 342

as their answer. 343
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Models & Datasets Self-Consistency P(True) PE NL NE LL Greedy CER

LLaMA-3.1-8B

Trivia QA 62.2 64.8 58.0 58.0 60.2 59.4 61.8 66.0 (+1.2%)
HotPot QA 10.2 14.4 11.0 13.4 12.6 13.2 14.2 14.4 (+0.0%)
Average 36.2 39.6 34.5 35.7 36.4 36.3 38.0 40.2 (+0.6%)

Mistral-7B

Trivia QA 37.0 43.2 48.6 46.0 44.2 47.0 44.8 54.4 (+5.8%)
HotPot QA 7.2 6.4 10.2 7.6 6.8 8.8 8.4 10.4 (+0.2%)
Average 22.1 24.8 29.4 26.8 25.5 27.9 26.6 32.4 (+3.0%)

OLMo-2-7B

Trivia QA 47.0 49.0 48.0 45.2 43 46.4 48.4 50.8 (+1.8%)
HotPot QA 8.6 8.6 8.2 8.8 7.8 8.6 8.4 10.6 (+1.8%)
Average 27.8 28.8 28.1 27.0 25.4 27.5 28.4 30.7 (+1.9%)

LLama-3.3-3B

Trivia QA 48.8 50.8 45.0 43.4 42.4 41.4 49.4 53.0 (+2.2%)
HotPot QA 9.0 8.4 6.4 6.8 7.8 7.4 9.0 9.2 (+0.2%)
Average 28.9 29.6 25.7 25.1 25.1 24.4 29.0 31.1 (+1.5%)

Table 2: Accuracy comparison on two open-domain QA datasets—Trivia QA and HotPot QA—using 500 sampled
instances. The table presents results across multiple baseline methods alongside the proposed CER method. Colored
values represent the performance change compared to the best baseline performance.

Both of these datasets require comprehensive rea-344

soning and are knowledge-intensive.345

Evaluation Metrics: Given our emphasis on rea-346

soning and verifiable problem solving, we adopt347

accuracy as the main evaluation metric.348

Baselines: We compare our approach against sev-349

eral baselines that include greedy sampling and350

self-consistency as baselines and also improved351

versions of self-consistency by incorporating confi-352

dence or uncertainty in their voting phase:353

• Greedy Sampling: Uses straightforward354

greedy decoding to generate a single response,355

serving as a baseline for the model’s raw per-356

formance.357

• Self-Consistency (Wang et al., 2022): Ag-358

gregates multiple response paths to enhance359

reasoning accuracy.360

• Token "True" Probability (Kadavath et al.,361

2022): Determines the final answer based on362

the probability assigned to the token “true”.363

• Log Likelihood (LL) (Murray and Chiang,364

2018): Multiply the probabilities of all tokens365

in a response path.366

• Normalized Likelihood (NL) (Murray and 367

Chiang, 2018): A length-normalized variant 368

of log likelihood, computed by dividing the 369

log likelihood by the sequence length. 370

• Predictive Entropy (PE) (Kadavath et al., 371

2022): Computes the mean entropy over all 372

tokens in a response path to assess confidence. 373

• Normalized Entropy (NE) (Malinin and 374

Gales, 2020): A length-normalized variant 375

of predictive entropy, obtained by dividing the 376

entropy by the sequence length. 377

More details on the formulation and the aggre- 378

gation approach of confidence-based methods are 379

provided in the Appendix G. 380

Implementation Details: All methods, except 381

for the simple greedy baseline, utilize tempera- 382

ture sampling with T = 1 to generate responses. 383

The number of generated paths K is set to 10, a 384

choice supported by previous research. (Zhang 385

et al., 2023; Duan et al., 2024; Qiu and Miikku- 386

lainen, 2024; Fadeeva et al., 2024) We aggregated 387

all response paths based on an exact match of the 388

final answer to the question. Our experiments were 389

conducted on a single A100 80G GPU. We sample 390

500 data points from each dataset and evaluate our 391
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results on these subsets. Additional details, includ-392

ing input prompts and sample instances from the393

datasets, can be found in the Appendix C.394

4.2 Main Results395

Mathematical Reasoning Table 1 reports the396

performance of our models on three mathemati-397

cal datasets under the CER framework, alongside398

all baseline methods. Notably, our CER approach399

consistently surpasses every baseline, with its ad-400

vantage being particularly marked when applied401

to smaller, less powerful LLMs. In addition, our402

method yields more significant relative improve-403

ments on more challenging datasets. For instance,404

Llama 3.1 8B records an average relative gain of405

2.3% across the datasets; Mistral 7B, Olmo 2 7B,406

and Llama 3.2 3B achieve gains of 0.8%, 5.3%,407

and 4.1%, respectively. An intriguing observa-408

tion arises from the results on Llama 3.1 7B—the409

most potent model in our experiments. Although410

this model already exhibits strong baseline perfor-411

mance, CER not only boosts its overall results but412

also delivers particularly significant improvements413

on the more demanding MATH and Allen AI’s414

Math QA datasets. By contrast, the performance415

trend for the Mistral model differs: while it shows416

consistent improvements across all datasets, the417

performance gap does not widen as markedly on418

the more challenging problems. This suggests that419

while CER can unlock additional reasoning capabil-420

ities in models with sufficient capacity, its benefits421

are limited when the underlying model lacks the422

capacity to solve the problem entirely.423

Knowledge Intensive Reasoning Our CER424

method outperforms all baselines by a substantial425

margin for open-domain generation tasks requir-426

ing intensive knowledge reasoning. Specifically,427

it delivers average gains of 0.6% for Llama 3.1428

8B, 3.0% for Mistral 7B, 1.9% for Olmo 2 7B,429

and 1.5% for Llama 3.1 3B. A notable finding is430

the relatively poor performance of Llama 3.2 3B431

compared to the other models. Although Llama432

3.2 3B outperforms Mistral 7B on mathematical433

reasoning tasks by a considerable margin, it falls434

short on knowledge-intensive tasks. We attribute435

this discrepancy to the nature of questions in Trivia436

QA and HotPot QA, which demand that specific437

knowledge be stored within the model’s parame-438

ters. In contrast, mathematical reasoning relies439

primarily on operational and logical skills. Con-440

sequently, even though Llama 3.2 3B is distilled441

Figure 2: Performance comparison of CER and baseline
models across different generations K = {3, 5, 10} on
the LLAMA 3.3-3B model using the MATH dataset.

from larger, more capable models, its smaller size 442

means it possesses fewer parameters to encapsulate 443

the extensive knowledge required, leading to its 444

diminished performance on knowledge-intensive 445

tasks. 446

Results Across Different Models As previously 447

noted, our selection of models aims to demonstrate 448

the performance and versatility of our approach 449

across both smaller models and mixtures of ex- 450

perts—a popular choice in recent research. As 451

illustrated in Tables 1 and 2, our framework not 452

only achieves strong results with commonly used 453

models such as Llama 3.1 8B and Mistral 7B, but 454

also shows impressive performance on the compact 455

Llama 3.1 3B and the state-of-the-art open-source 456

MoE model, Olmo 2 7B. In every case, CER out- 457

performs all baseline methods across all datasets. 458

4.3 Ablation Studies 459

We conducted several ablation studies to further 460

elucidate the contributions of individual compo- 461

nents and assess the robustness of our approach. 462

Varying the Number of Paths (K) Our first ex- 463

periment explores the impact of the hyperparam- 464

eter K, which denotes the number of generated 465

paths. As shown in Figure 2, both CER and all 466

baseline methods benefit from increasing K. How- 467

ever, CER consistently outperforms the baselines 468

for every value of K. 469

Entropy vs. Probabilities While entropy is com- 470

monly used in the literature as a measure of model 471

uncertainty and confidence, we conducted an ab- 472

lation study comparing the mean entropy over all 473

tokens to the word confidence measure defined in 474

Equation 3. Appendix D provides the complete 475
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Figure 3: Ablation study results comparing the performance of the CER method using the last answer confidence
(CER-LAST, red) versus the original CER method utilizing all intermediate answers (CER-ALL, blue) across
mathematical reasoning datasets (GSM8K, MATH, MathQA) and open-domain question-answering datasets
(TriviaQA, HotpotQA). The left side presents results for LLaMA-3.1-8B, while the right side shows results for
Mistral-7B. Across all datasets, CER-ALL consistently outperforms CER-LAST, emphasizing the advantage of
incorporating intermediate answers for improved accuracy.

results and the precise formulation of the entropy476

function, as f is in Appendix A.477

Different Path-Level Aggregators This study478

investigated the effect of various path-level aggre-479

gator functions, denoted by g. Beyond our primary480

choice of weighted mean aggregation, we experi-481

mented with several similar alternatives. The re-482

sults across these different aggregators were strik-483

ingly similar, indicating that the weighted mean484

is sufficiently effective without requiring further485

tuning. We also assessed an aggregation func-486

tion based on the multiplication of word-level con-487

fidences along each path, as well as the mini-488

mum function—motivated by the adage “a chain489

is only as strong as its weakest link.” All alter-490

natives yielded comparable results, as detailed in491

Appendix D492

Last Answer Confidence Finally, we examined493

the effect of relying solely on the confidence of the494

last answer to guide the overall reasoning process,495

thereby excluding intermediate signals. As illus-496

trated in Figure 3, this ablation reveals a significant497

performance gap compared to the original CER498

method. Although confidence in the final answer499

is an important indicator, these results confirm that500

incorporating all intermediate responses leads to501

superior performance.502

5 Conclusion 503

In this paper, we introduced a lightweight frame- 504

work that enhances performance on various rea- 505

soning tasks by relying solely on the model’s out- 506

put logits without the need for fine-tuning or task- 507

specific prompts. Our approach bridges the gap 508

between reasoning and uncertainty estimation in 509

LLMs. Through extensive experiments, we val- 510

idated our proposed functions and demonstrated 511

the CER algorithm’s effectiveness as a general per- 512

formance enhancement framework. Our findings 513

show that the framework is robust across different 514

model sizes and architectures. In this study, we 515

focus only on numerical outputs in mathematical 516

reasoning. However, with minor modifications, our 517

approach can also handle non-numerical outputs, 518

such as mathematical proofs. Future research could 519

further extend our framework to mathematical rea- 520

soning tasks with non-numerical final answers. 521

Limitations 522

Our work has several notable limitations. First, the 523

framework has been applied only to a narrow range 524

of tasks, specifically those involving mathemati- 525

cal reasoning and knowledge-intensive questions. 526

Furthermore, our approach relies on access to the 527

model output logits; therefore, our method is not 528

applicable in scenarios where these logits are un- 529

available. 530
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A Different Choices for step-wise872

aggregation function (f )873

In this work, we define the stepwise aggregate func-874

tion (f ) as a function that quantifies the confidence875

of a word by leveraging the probabilities of its876

constituent tokens. We consider two common for-877

mulations for f :878

1. Mean Entropy: Compute the average entropy879

of all tokens in a word. This metric represents880

the confidence of the model when generating881

the word, where a lower entropy indicates a882

higher confidence.883

2. Multiplicative Probability: Determine the884

overall probability of a word by multiply-885

ing the probabilities of its constituent tokens,886

where a higher value indicates greater confi-887

dence.888

Mean Entropy: Let a word w consist of tokens889

{t1, t2, . . . , tn} with the corresponding probabili-890

ties of the mass functions P (T = t1), P (T =891

t2), . . . , P (T = tn) and the corresponding prob-892

abilities of the tokens p(t1), p(t2), . . . , p(tn). We893

define the mean entropy formulation as follows:894

fentropy(w) = −
1

n

n∑
i=1

H(P (T = ti)) (6)895

fentropy(w) = −
1

n

n∑
i=1

∑
j

P (ti = j) logP (ti = j)

(7)896

Multiplicative Probability: Alternatively, the897

multiplicative probability formulation is given by:898

fmult(w) =

n∏
i=1

p(ti). (8)899

We also performed an ablation study using the900

mean probability of tokens as an alternative.901

B Different Choices for path-wise902

aggregate function (g)903

For the path-wise aggregate function (g), which904

aggregates the confidence scores of words, we ex-905

perimented with several formulations. Our primary906

aggregation method is the weighted mean, where907

Cw represents the confidence of each word. Other908

aggregation schemes we considered include the 909

following: 910

For all cases below, let {c1, . . . , cn} denote the 911

confidence scores associated with words 1 through 912

n. 913

• Harmonic Mean: Aggregates confidences 914

using the harmonic mean. 915

n
1
c1

+ · · ·+ 1
cn

(9) 916

• Weighted Mean: This approach applies lin- 917

early increasing weights to the confidences, 918

based on the intuition that the final steps 919

contribute more to the overall confidence of 920

the path and should therefore receive greater 921

weight. 922

1 · c1 + · · ·+ n · cn
1 + · · ·+ n

(10) 923

• Half Split Mean: A weighted split that as- 924

signs half of the total weight to the final 925

answer, with the remaining half distributed 926

uniquely among the other words. 927

1

2
cn +

1

2(n− 1)

n−1∑
i=1

ci, n > 1. (11) 928

• Exponential Mean: Uses exponents of 2 as 929

the weights to emphasize later steps. 930

20 · c1 + · · ·+ 2n−1 · cn
2n − 1

(12) 931

• Average Log: Computes the average of the 932

logarithm-transformed confidences. 933

1

n

n∑
i=1

log(1 + ci) (13) 934

• Minimum: Uses the minimum confidence 935

among all steps. 936

min
i∈{1,...,n}

ci (14) 937

Each function represents a distinct hypothesis re- 938

garding the relative importance of individual words 939

in the response path. The experimental results com- 940

paring these methods are presented in the corre- 941

sponding section of the paper. 942
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**Objective**
Carefully work through the problem step by
step. For each step, perform any required
reasoning and express the answer at the end
of the step. Your response should be in the
format Answer: [answer]. After completing
the steps, provide the final answer based
on the reasoning developed throughout the
process.
**Important Rules**
1. Perform detailed analyses before
concluding the answer.
2. Express intermediate answers explicitly
at the end of each step in the format
Answer: [answer].
3. Ensure that your response ends with:
The final answer is [answer], where
[answer] is the response to the problem.

Q: <question>

Figure 4: Prompt for Math Reasoning

**Objective**
Carefully work through the problem step by
step, focusing only on the essential steps
and limiting your response to five sentences.
Your response should end with: The final
answer is [answer], where [answer] is the
response to the problem.
Q: <question>

Figure 5: Prompt for Multi-hop Reasoning

C More Implementation Details943

The prompt is tailored for mathematical reasoning,944

guiding the LLM through a structured step-by-step945

process while ensuring it generates an answer at946

each stage. This is illustrated in Figure 4. Similarly,947

the prompt for open-domain generation is designed948

to systematically lead the LLM through a logical949

reasoning process, as shown in Figure 5.950

D More Results951

This section shows the results of the ablation stud-952

ies for both f and g functions. Table 3 shows the953

results for different choices of f , and Table 4 shows954

the results for the g alternatives.955

E Further Exploration of the Dataset 956

Here, we show a sample from each dataset. Ta- 957

ble 5 shows the mathematical datasets samples and 958

Table 6 shows the open domain generation QA 959

datasets samples. 960

F Full question and responses related to 961

the main figure 962

Table 7 shows a question as an input sample to 963

the LLm with our prompt and the corresponding 964

generated paths and their intermediate steps. 965

G Examination of Confidence Baselines 966

We examine baseline methods that integrate confi- 967

dence measures, specifically Log-Likelihood (LL), 968

Normalized-Length Likelihood (NL), Predictive 969

Entropy (PE), and Normalized-Length Entropy 970

(NE). Let Pθ represent the LLM, and denote N 971

as the number of generated tokens, expressed as 972

{y1, . . . , yN}. 973

• Log-Likelihood (LL): Computes the likeli- 974

hood of a response path by multiplying the 975

probabilities of all tokens in the sequence. Af- 976

ter evaluating the confidence of each response, 977

the answer with the highest confidence—or 978

equivalently, the one with the lowest negative 979

log-likelihood—is selected. Its corresponding 980

equation is: 981

LL = −
N∑
t=1

logPθ(yt | y1:t−1, x) (15) 982

• Normalized Likelihood (NL): Computes a 983

normalized version of the log-likelihood for a 984

response path by multiplying the probabilities 985

of all tokens in the sequence and normalizing 986

the value by the length of the generated re- 987

sponse (N ). The answer with the highest con- 988

fidence—or equivalently, the one with the low- 989

est negative normalized-length likelihood—is 990

selected. Its corresponding equation is: 991

NL =
−1
N

N∑
t=1

logPθ(yt | y1:t−1, x) (16) 992

• Predictive Entropy (PE): Computes the 993

mean entropy over all tokens in a response 994

path to assess confidence. The answer with 995

the highest confidence—or equivalently, the 996
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one with the lowest predictive entropy—is se-997

lected. Its corresponding equation is:998

PE = −
N∑
t=1

Pθ(yt | y1:t−1, x)999

· logPθ(yt | y1:t−1, x) (17)1000

• Normalized Entropy (NE): A normalized1001

version of predictive entropy that accounts for1002

sequence length. The answer with the highest1003

confidence—or equivalently, the one with the1004

lowest normalized entropy—is selected. Its1005

corresponding equation is:1006

NE =
−1
N

N∑
t=1

Pθ(yt | y1:t−1, x)1007

· logPθ(yt | y1:t−1, x) (18)1008
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LLM Math datasets Open-domain datasets

GSM8K MATH MathQA TriviaQA HotPotQA

Multiplication
LLama-3.1-8B 90.0 58.2 68.2 66.0 14.4
Mistral-2-7B 65.2 18.0 22.6 54.4 10.4
OLMo-2-7B 88.8 48.0 59.4 50.8 10.6
LLama-3.3-3B 82.6 56.0 62.8 53.0 9.2

Entropy
LLama-3.1-8B 89.0 57.2 66.6 62.0 12.8
Mistral-2-7B 65.2 21.4 22.2 52.6 9.2
OLMo-2-7B 84.0 30.0 50.0 54.0 8.0
LLama-3.3-3B 85.8 50.0 60.8 50.4 8.4

Table 3: Accuracy comparison of different large language models (LLMs) on mathematical reasoning and open-
domain question-answering datasets. The models are evaluated on GSM8K, MATH, and MathQA for mathematical
reasoning, and TriviaQA and HotPotQA for open-domain tasks. Results are reported for two variations of our
step-wise aggregate functions (f ): Multiplication and Entropy.
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LLM Math datasets Open-domain datasets

GSM8K MATH MathQA TriviaQA HotPotQA

Self-Consistency
LLama-3.1-8B 89.6 55.4 63.2 62.2 10.2
Mistral-2-7B 62.2 20.4 20.8 37.0 7.2
OLMo-2-7B 85.0 42.5 52.0 47.0 8.6
LLama-3.3-3B 78.4 51.2 59.6 48.8 9.0

Avg(log c)
LLama-3.1-8B 89.6 56.8 68.6 65.8 14.6
Mistral-2-7B 66.8 19.2 24.8 54.2 9.8
OLMo-2-7B – 48.0 58.0 53.0 8.8
LLama-3.3-3B 84.0 55.6 61.6 54.8 9.6

min(c)
LLama-3.1-8B 90.6 57.6 65.4 65.2 12.6
Mistral-2-7B 63.4 17.2 24.8 54.6 9.4
OLMo-2-7B 89.4 46.8 58.8 49.4 8.4
LLama-3.3-3B 80.6 53.6 58.6 52.0 6.4

Weighted half
LLama-3.1-8B 89.0 59.0 68.2 67.4 13.8
Mistral-2-7B 66.8 20.0 21.6 53.2 10.0
OLMo-2-7B 89.2 46.0 59.2 50.2 9.6
LLama-3.3-3B 82.2 56.2 63.2 51.0 9.6

Weighted exp-2
LLama-3.1-8B 91.0 59.4 68.2 66.2 15.0
Mistral-2-7B 63.4 18.2 22.6 54.0 9.2
OLMo-2-7B 88.8 48.2 58.4 49.6 9.0
LLama-3.3-3B 82.0 55.6 62.8 55.2 8.8

Harmonic mean
LLama-3.1-8B 90.2 56.4 65.6 66.0 12.8
Mistral-2-7B 66.4 22.4 23.2 52.0 9.4
OLMo-2-7B – – 54.0 49.6 9.0
LLama-3.3-3B 84.2 56.0 62.6 54.0 8.8

Table 4: Accuracy comparison of different variants of our main method g function against the self-consistency
baseline on all models, evaluated on mathematical reasoning and open-domain generation datasets.
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Question Sampled Path
[GSM8K] The basketball team
went to the steakhouse to eat din-
ner. The first player ate a 6-ounce
steak. The second player ate beef
tips, containing 8 beef tips, each
an ounce in size. The third player
ate a one-pound steak. And the
fourth and fifth players ordered
vegetarian meals. In total, how
many ounces of meat were con-
sumed by the team?

Step 1: Calculate the amount of meat eaten by the first player.
The first player ate a 6-ounce steak. 0.8 pounds is equal to 6
ounces (using the conversion factor 1 pound is equal to 16 ounces.)
Answer: 6. Step 2: Calculate the amount of meat eaten by the
second player. The second player ate beef tips, containing 8 beef
tips, each an ounce in size. Multiply the number of tips (8) by
the size of each tip (1 ounce to find the total amount eaten by
the second player). 8 * 1 ounce = 8 ounces. Answer: 8. Step 3:
Calculate the amount of meat eaten by the third player. The third
player ate a 1-pound steak. First, we need to convert the 1-pound
steak to ounces using the conversion factor 1 pound is equal to 16
ounces. 1 pound multiplied by 16 ounces (pound-ounces) is 16
ounces. Answer: 16. Step 4: Calculate the total amount of meat
eaten by the team by summing the amounts for all the players.
Since the fourth and fifth players ate vegetarian meals, they did
not eat any meat, so we will only sum the amounts eaten by the
first three players. 6 + 8 + 16 = 30 ounces. Answer: 30. The final
answer is 30.

[MATH] Find the value of x such
that
√
x− 4 = 4.

Step 1: To start solving this equation, I will square both sides of
the equation to eliminate the square root. By doing this, I will be
able to get rid of the radical sign and simplify the equation. An-
swer: (

√
x− 4)2 = 42 Step 2: The left-hand side of the equation

becomes x− 4 after squaring the square root because (
√
y)2 = y.

The right-hand side of the equation becomes 16 since 42 = 4× 4.
Answer: x− 4 = 16. Step 3: Now, I will isolate x by adding 4 to
both sides of the equation. This gets rid of the −4 on the left-hand
side of the equation. Answer: x− 4 + 4 = 16 + 4. Step 4: The
left-hand side of the equation simplifies to x since any number
minus itself is equal to zero, and adding zero to a number doesn’t
change its value. The right-hand side of the equation becomes 20
since 16 + 4 = 20. Answer: x = 20. The final answer is 20.

[MathQA] Find a sum for first 8
prime numbers?

Step 1: To find the sum of the first 8 prime numbers, we need
to identify the first 8 prime numbers. Answer: 2, 3, 5, 7, 11, 13,
17, and 19. Step 2: Now, let’s add these numbers together to get
the sum. Answer: 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19. Step 3:
Performing the addition: Sum = 2 + 3 = 5, Sum = 5 + 5 = 10, Sum
= 10 + 7 = 17, Sum = 17 + 11 = 28 - Sum = 28 + 13 = 41, Sum =
41 + 17 = 58, Sum = 58 + 19 = 77 Answer: 77 The final answer is
77.

Table 5: We domenstrate the performance of our method, CER, along with a sampled response path for solving each
question in the math dataset. Intermediate answers at each step are highlighted in blue, while the final answer is
emphasized in green.
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Question Sampled Path
[TriviaQA] In which town or city
would you find the ’Caledonian
Brewery’?

[Step 1] To find the location of the ’Caledonian Brewery’, let’s
start by understanding the name itself. [Step 2] ’Caledonian’
refers to Caledonia, an ancient Roman name for Scotland. [Step
3] The brewery is likely to be in Scotland given its name. [Step 4]
Caledonian Brewery is specifically located in Edinburgh, Scotland.
[Step 5] Edinburgh is the capital city of Scotland. The final answer
is Edinburgh.

[HotPotQA] The Mutlu Onaral al-
bum "LivinÍt" was produced by the
bassist for what duo?

[Step 1] To find the answer, we need to look for information about
the Mutlu Onaral album "LivinÍt" and find a connection to a duo.
[Step 2] After researching "LivinÍt," I found itś by Mutlu Onaral,
a Turkish-born singer-songwriter known for being a member of
Hall & Oates. [Step 3] The American duo Hall & Oates consists
of Daryl Hall and John Oates. [Step 4] The bassist for Hall &
Oates, which is none other than bassist and vocalist Klyde Jones is
the lead vocalist who is also the bassist. The final answer is Hall
& Oates.

Table 6: We demonstrate the performance of our method, CER, along with a sampled response path for solving
each question in the open-domain generation dataset. Each step is clearly separated by a period and labeled as
[Step i], where i represents the step number. Intermediate answers, including the last proper noun in each step, are
highlighted in blue, while the final answer is emphasized in green.
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Question Sampled Paths
Carefully work through the
problem step by step. For each
step, perform any required
reasoning, and express the answer
at the end of the step, Your
response should be in the format
Answer: [answer]. After
completing the steps, provide the
final answer based on the
reasoning developed throughout
the process. Your response should
end with The final answer is
[answer], where [answer] is the
response to the problem. Q: a
cube of side one meter length is
cut into small cubes of side 20 cm
each. how many such small cubes
can be obtained?

Step 1: First, we need to understand the size of the large cube and
the size of the small cubes. The large cube has a side length of 1
meter, and the small cubes have a side length of 20 cm. Answer:
20. Step 2: We need to convert the side length of the large cube
from meters to centimeters for a uniform unit of measurement.
Since 1 meter = 100 centimeters, the side length of the large cube
is 100 cm. Answer: 100. Step 3: We will calculate the number
of small cubes that can fit along the side of the large cube. The
number of small cubes on one side of the large cube is 100 cm
/ 20 cm = 5. Answer: 5. Step 4: To find the total number of
small cubes, we will multiply the number of small cubes along the
length, width, and height. So, the total number of small cubes = 5
x 5 x 5 = 125. Answer: 125. The final answer is 125.
Step 1: To find the number of small cubes in one dimension, we
will divide the length of the big cube in meters by the side length
of the small cube in meters. Since 1 meter = 100 cm, and small
cube side = 20 cm, Answer: 100 / 20 = 5. Step 2: Since the small
cubes will be cubical in shape, we need to get the result for all the
dimensions (length, breadth, and height) and then multiply them
to get the total number of cubes. We’ve already found out that 5
cubes can fit along the length and breadth (in step 1). As the cube
is cube-shaped, the same number of cubes will fit along the height.
Answer: 5 * 5 = 25. Step 3: Now we need to consider all the
combinations (length, breadth, and height) to get the final answer.
But since we already got the same result for length and breadth,
there’s no need to multiply again. Answer: 25. The final answer is
25.
Step 1: First, we need to determine the volume of the large cube.
Since the side length of the large cube is 1 meter, which is equiv-
alent to 100 centimeters, we calculate its volume. Volume of
the large cube = side^3 = 100^3 = 1,000,000 cubic centimeters.
Answer: 1,000,000. Step 2: Next, we calculate the volume of a
small cube. The side length of a small cube is given as 20 cm, so
its volume is calculated by cubing this side length. Volume of a
small cube = side^3 = 20^3 = 8,000 cubic centimeters. Answer:
8,000. Step 3: To find out how many small cubes can be obtained
from the large cube, we divide the volume of the large cube by the
volume of one small cube. Number of small cubes = Volume of
the large cube / Volume of a small cube = 1,000,000 / 8,000 = 125.
Answer: 125. The final answer is 125.

Table 7: We present the complete prompt and full answers for our main figure. This table includes the full prompt
along with three sample paths, where intermediate answers at each step are highlighted in blue, and the final answer
is emphasized in green.
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