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Abstract

Zeroth-Order Optimization (ZOO) provides pow-
erful tools for optimizing functions where explicit
gradients are unavailable or expensive to compute.
However, the underlying mechanisms of popu-
lar ZOO methods, particularly those employing
randomized finite differences, and their connec-
tion to other optimization paradigms like Rein-
forcement Learning (RL) are not fully elucidated.
This paper establishes a fundamental and previ-
ously unrecognized connection: ZOO with finite
differences is equivalent to a specific instance
of single-step Policy Optimization (PO). We for-
mally unveil that the implicitly smoothed objec-
tive function optimized by common ZOO algo-
rithms is identical to a single-step PO objective.
Furthermore, we show that widely used ZOO gra-
dient estimators, are mathematically equivalent
to the REINFORCE gradient estimator with a
specific baseline function, revealing the variance-
reducing mechanism in ZOO from a PO perspec-
tive.Built on this unified framework, we propose
ZoAR (Zeroth-Order Optimization with Aver-
aged Baseline and Query Reuse), a novel ZOO
algorithm incorporating PO-inspired variance re-
duction techniques: an averaged baseline from
recent evaluations and query reuse analogous to
experience replay. Our theoretical analysis further
substantiates these techniques reduce variance
and enhance convergence. Extensive empirical
studies validate our theory and demonstrate that
ZoAR significantly outperforms other methods in
terms of convergence speed and final performance.
Overall, our work provides a new theoretical lens
for understanding ZOO and offers practical algo-
rithmic improvements derived from its connection
to PO.
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1. Introduction
Zeroth-Order Optimization (ZOO) addresses the task of
optimizing objectives F (θ) = Eξ[f(θ; ξ)] using only func-
tion evaluations, bypassing the need for explicit gradients
(Nesterov & Spokoiny, 2017; Ghadimi & Lan, 2013). This
paradigm is essential in numerous domains where gradi-
ents are intractable, computationally prohibitive, or sim-
ply unavailable, such as hyperparameter optimization (Gu
et al., 2021), derivative-free reinforcement learning (Sali-
mans et al., 2017), communication-efficient federated learn-
ing (Shu et al., 2024), black-box adversarial attacks (Shu
et al., 2023; 2025b), prompt optimization (Hu et al., 2024;
Zhan et al., 2024), and memory-efficient finetuning for large
language models (LLMs) (Malladi et al., 2023; Zhang et al.,
2024). A dominant strategy within ZOO involves estimating
gradients via randomized finite differences, which implicitly
optimize a smoothed surrogate Fµ(θ) of the original objec-
tive F (θ) (Nesterov & Spokoiny, 2017; Shu et al., 2025b).
A thorough discussion on the most related works of ZOO is
in Appx. A. While foundational, these methods often suffer
from high variance in their gradient estimates, potentially
impeding convergence speed and solution quality. Further-
more, a deep theoretical understanding connecting these
ZOO techniques to established principles in related fields
like Reinforcement Learning (RL) remains underdeveloped.
In parallel, Policy Optimization (PO) forms the bedrock of
modern RL, seeking policy parameters θ to maximize ex-
pected cumulative rewards J(θ) (Sutton et al., 1999; Sutton
& Barto, 2018). Policy Gradient (PG) algorithms like REIN-
FORCE (Williams, 1992) estimate∇J(θ) from trajectory
rollouts. A crucial technique for stabilizing PG methods
is baseline subtraction, which provably reduces gradient
estimate variance and thereby accelerates learning (Sutton
& Barto, 2018).

As the first primary contribution, this paper establishes
a fundamental and previously unrecognized connection:
smoothed Zeroth-Order Optimization (ZOO) with finite
differences is formally equivalent to a specific instance of
single-step Policy Optimization (PO). We bridge these two
fields, providing theoretical clarification for ZOO mecha-
nisms (Sec. 3): First, we formally unveil that the smoothed
objective Fµ(θ) implicitly targeted by common ZOO meth-
ods is identical to a single-step PO objective J(θ) under a
specific reward definition (Thm. 3.1). Second, we prove for
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the first time that the standard Gaussian-smoothed ZOO gra-
dient estimator is mathematically equivalent to the single-
step REINFORCE estimator using the function value f(θ; ξ)
as a baseline (Thm. 3.2). This novel interpretation recasts
the standard ZOO baseline subtraction not merely as a
finite-difference artifact, but as a principled variance reduc-
tion technique rooted in PO theory, revealing the variance-
reducing mechanism in ZOO from a PO lens. Third, we
further extend this foundational equivalence using impor-
tance sampling (Thm. 3.3), clarifying how ZOO estimators
with alternative sampling distributions relate to weighted
REINFORCE and optimize distinct smoothed objectives.

Building upon this newly established unified PO framework,
our second primary contribution is ZoAR (Zeroth-Order
Optimization with Averaged Baseline and Query Reuse)
proposed in Sec. 4. ZoAR is the first to integrate two PO-
inspired variance reduction techniques directly into conven-
tional ZOO (see Sec. 4.1): (a) Averaged Baseline: Instead
of the high-variance single-point estimate f(θ; ξ), ZoAR
introduces an averaged baseline from recent function eval-
uations in a history buffer. This novel ZOO adaptation of
the value function estimation in PO provides a more stable
Monte Carlo estimate of the smoothed objective Fµ(θ). (b)
Query Reuse: ZoAR computes gradient estimates using
all samples in the history buffer (analogous to the experi-
ence replay in PO), effectively increasing the batch size for
gradient estimation without new queries per iteration, thus
enhancing sample efficiency and mitigating variance. We
further provide rigorous theoretical analysis in Appx. B to
support the variance reduction effect of these two newly
introduced PO-inspired techniques from the lens of ZOO
theory and show the potentially improved convergence of
ZoAR when variance dominates.

Our third contribution lies in comprehensive empirical val-
idation (Sec. 5). We benchmark ZoAR against other ZOO
baselines, across standard synthetic functions, a black-box
adversarial attack task, and memory-efficient finetuning of
LLMs. The results consistently show that ZoAR achieves
significant improvements in convergence rate and final per-
formance, validating the practical efficacy of leveraging
these newly connected PO techniques for ZOO. Notably,
substantial gains are observed even with our novel averaged
baseline alone, highlighting its distinct effectiveness.

2. Preliminaries
This section introduces the necessary background on Zeroth-
Order Optimization (ZOO) and Policy Optimization (PO)
in Reinforcement Learning (RL), establishing the notation
and core concepts used throughout the paper.

Problem Setup. We focus on the problem of minimizing
a potentially non-convex objective function F (θ) defined

as an expectation over a random variable ξ:

min
θ∈Rd

F (θ) ≜ Eξ [f(θ; ξ)] . (1)

Here, θ ∈ Rd represents the d-dimensional parameter vector
we aim to optimize, f(θ; ξ) is a scalar-valued loss function
whose evaluation depends on both the parameters θ and a
random variable ξ. The defining characteristic of the Zeroth-
Order (ZO) setting is the constraint that we can only access
stochastic evaluations of the function value, f(θ; ξ), through
a black-box oracle. Importantly, direct access to the gradient
∇θf(θ; ξ) is assumed to be unavailable or computationally
prohibitive. Throughout this paper, we use ∇ to denote the
gradient with respect to the parameters θ, i.e., ∇ ≡ ∇θ.

Zeroth-Order Optimization. To optimize (1) without ex-
plicit gradients, ZOO algorithms employ gradient estimators
constructed solely from function evaluations. A prevalent
technique is randomized finite differences. A common form
of such an estimator, averaged over K directions is:

∇̂F (θ) ≜
1

K

K∑
k=1

f(θ + µuk; ξ)− f(θ; ξ)

µ
uk . (2)

where {uk}Kk=1 are i.i.d. random direction vectors, µ > 0
is a small smoothing radius parameter, and K ≥ 1 dictates
the number of function queries used per gradient estimate
(beyond the baseline evaluation f(θ; ξ)). Standard choices
for the distribution of uk include:

(I) The standard multivariate Gaussian distribution
uk ∼ N (0, Id) (Nesterov & Spokoiny, 2017).

(II) The uniform distribution over the unit sphere uk ∼
Unif(Sd−1) (Flaxman et al., 2005a).

(III) The uniform distribution over the standard basis vec-
tors uk ∼ Unif({e1, . . . , ed}) (Lian et al., 2016).

It is well-established that (2) is an unbiased gradient estima-
tion of a smoothed approximation Fµ (defined as below) for
the original objective F (θ) (Nesterov & Spokoiny, 2017;
Shu et al., 2025b). This means that ZOO with estimator (2)
is in fact implicitly optimizing the smoothed objective Fµ.

Fµ(θ) ≜ Eu [F (θ + µu)] = Eu [Eξ [f(θ + µu; ξ)]] .
(3)

Policy Optimization and REINFORCE. In policy opti-
mization, the objective is typically to find the parameters θ
of a stochastic policy πθ(a|s) that maximize the expected
cumulative reward. Let us consider the standard episodic
setting. The objective function, J(θ), is the expected to-
tal discounted reward obtained by executing the policy πθ
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starting from an initial state distribution ρ0(s0):

J(θ) ≜ Eτ∼pθ(τ)

[
T−1∑
t=0

γtR(St, At)

]

=ES0∼ρ0,At∼πθ(·|St),St+1∼P (·|St,At)

[
T−1∑
t=0

γtR(St, At)

]
.

(4)
Here, τ = (S0, A0, R0, . . . , ST−1, AT−1, RT−1, ST ) rep-
resents a trajectory (or episode) of states St, actions At, and
rewards Rt = R(St, At). The trajectory distribution pθ(τ)
is induced by the policy πθ and the transition dynamics
P (St+1|St, At) of environment. γ ∈ [0, 1] is the discount
factor, and T is the episode horizon (which can be finite
or infinite). Note that while policy optimization typically
involves maximization, we can frame it as minimization
by considering the negative reward (cost), i.e., minimizing
−J(θ), to align with the optimization setup in (1).

Policy Gradient methods are a class of algorithms designed
to optimize J(θ) by estimating its gradient ∇J(θ) and
performing gradient ascent (or descent on −J(θ)). The
Policy Gradient Theorem (Sutton et al., 1999) provides the
analytical form of this gradient and a widely used policy
gradient is derived from the REINFORCE (w/ baseline)
algorithm (Williams, 1992):

∇J(θ) = Eτ∼pθ(τ)

[
T−1∑
t=0

∇ lnπθ(At|St) (Gt − b(St))

]
(5)

where Gt =
∑T−1

t′=t γ
t′−tR(St′ , At′) represents the dis-

counted return-to-go from time step t and the state-
dependent baseline b(St) is applied for variance reduction.

3. A Policy Optimization Framework for
Zeroth-Order Optimization

Building on the preliminaries in Sec. 2, this section formally
establishes the connection between Zeroth-Order Optimiza-
tion (ZOO) and Policy Optimization (PO). We demonstrate
that the ZOO problem can be precisely framed as a single-
step PO problem (Sec. 3.1). Furthermore, we show that
common ZOO gradient estimators are equivalent to specific
instances of the REINFORCE algorithm with a baseline
(Sec. 3.2 & Sec. 3.3).

3.1. Equivalence of Objectives in ZOO and PO

We begin by demonstrating the equivalence between the
objective function implicitly optimized by many ZOO meth-
ods, i.e., Fµ(θ) in (3), and a specific instance of the PO
objective. Formally, consider the standard PO objective
from (4) in a simplified, single-step episodic setting (i.e.,
T = 1, γ = 0). In this scenario, the agent takes a single
action x sampled from a policy πθ(x), and receives a re-

ward based on this action. To align with the minimization
problem (1), we define the reward as the negative function
value, R0 = −F (x). The PO objective is then to minimize
the expected negative reward:

J(θ) ≜ Ex∼πθ(x) [F (x)] = Ex∼πθ(x) [Eξ [f(θ; ξ)]] . (6)

The connection between the ZOO smoothed objective Fµ(θ)
defined in (3) and this single-step PO objective J(θ) defined
in (6) is formalized below (proof in Appx. C.1).

Theorem 3.1 (Objective Equivalence). Let the policy πθ(x)
be defined via the reparameterization x = θ + µu, where
u is a random vector drawn from a distribution p(u) in-
dependent of θ. Then, the single-step PO objective J(θ)
defined in (6) is identical to the ZOO smoothed objective
Fµ(θ) defined in (3) using the same distribution p(u), i.e.,

J(θ) = Fµ(θ) .

Remark. Thm. 3.1 establishes that optimizing the
smoothed function Fµ(θ), a standard practice in ZOO the-
ory, is equivalent to optimizing a single-step RL objective
J(θ) where the policy samples perturbations around the cur-
rent parameters θ. This equivalence allows us to leverage
concepts and algorithms from PO to understand and poten-
tially improve ZOO methods (see Sec. 4). The choice of
the smoothing distribution p(u) in ZOO corresponds to the
choice of the exploration strategy (policy structure) in this
PO context. To the best of our knowledge, this is the first
to explicitly interpret the ZOO smoothed objective through
this specific PO lens.

3.2. Gaussian Smoothing as Single-Step REINFORCE
w/ Baseline

We now demonstrate that the widely used Gaussian-
smoothed ZOO gradient estimator is equivalent to a specific
instance of the REINFORCE w/ baseline algorithm. Let the
smoothing distribution be the standard multivariate Gaus-
sian, p(u) = N (0, Id). The corresponding policy πθ(x)
samples x = θ + µu, which means x ∼ N (θ, µ2Id). To
minimize Fµ(θ) = J(θ), We apply the REINFORCE w/
baseline algorithm using the policy gradient theorem (5).
For our single-step case (T = 1), the policy gradient gives:

∇J(θ) = Ex∼πθ(x) [∇ lnπθ(x) (Eξ[f(x; ξ)]− b)] , (7)

where b is a baseline that is independent of the specific
sample x. Particularly, for the Gaussian policy πθ(x) =
N (θ, µ2Id), we have∇ lnπθ(x) =

x−θ
µ2 . Substituting this

into (7) gives:

∇J(θ) = Ex∼πθ(x)

[
x− θ

µ2
(Eξ[f(x; ξ)]− b)

]
. (8)
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In practice, the expectations are approximated using Monte
Carlo sampling. Let b = Eξ [b(ξ)], we sample xk from
πθ(x) to estimate the outer expectation and ξ to estimate the
inner expectation. A common stochastic gradient estimator
based on K samples is then:

∇̂GSJ(θ) ≜
1

K

K∑
k=1

xk − θ

µ2
(f(xk; ξ)− b(ξ)) . (9)

The connection between the standard Gaussian-smoothed
ZOO gradient estimator from (2) and the REINFORCE gra-
dient estimator (9) is formalized below (proof in Appx. C.2).

Theorem 3.2 (Gradient Estimator Equivalence for Gaus-
sian). Let πθ(x) = N (θ, µ2Id) and b(ξ) = f(θ; ξ) in (9).
Then, the REINFORCE gradient estimator (9) is identical
to the Gaussian-smoothed ZOO gradient estimator (2), i.e.,

∇̂GSJ(θ) = ∇̂F (θ) .

Remark. Thm. 3.2 provides the first explicit interpretation
of the common ZOO gradient estimator (2) from a novel
PO lens. Specifically, it reveals that Gaussian-smoothed
ZOO estimator can be interpreted as REINFORCE gradient
estimator with gaussian policy. Moreover, it unveils that the
subtraction of f(θ; ξ) in conventional ZOO is not merely
a result from the first-order Taylor polynomial but corre-
sponds precisely to using a baseline in the REINFORCE
algorithm. This baseline is known to reduce the variance
of the gradient estimate without introducing bias (Sutton
& Barto, 2018). This perspective not only aligns with but
also provides a theoretical support for observations in works
like (Salimans et al., 2017) where similar estimators were
used in the context of evolution strategies, highlighting the
variance reduction benefit without explicitly linking it to the
REINFORCE w/ baseline mechanism.

3.3. Generalization Through Importance Sampling

The previous section only established the equivalence for
Gaussian smoothing, whereas ZOO methods can also ap-
ply other sampling distributions for uk, like the uniform
distribution over the unit sphere or coordinate directions
mentioned in Sec. 2. We hence generalize our PO perspec-
tive to encompass these cases using importance sampling
(IS) in this section.

Suppose we still consider the objective J(θ) with the Gaus-
sian policy πθ(x) = N (θ, µ2Id), but we want to estimate
its gradient using samples drawn from a different proposal
distribution p(x). The policy gradient using importance
sampling becomes:

∇J(θ) = Ex∼p(x)

[
πθ(x)

p(x)
∇ lnπθ(x) (Eξ[f(x; ξ)]− b)

]
.

(10)

Similar to (9), by substituting ∇ lnπθ(x) = x−θ
µ2 , b =

Eξ [b(ξ)] and using Monte Carlo approximation with sam-
ples xk ∼ p(x), we get the stochastic gradient estimator:

∇̂ISJ(θ) ≜
1

K

K∑
k=1

πθ(xk)

p(xk)

xk − θ

µ2
(f(xk; ξ)− b(ξ)) .

(11)

The connection between the ZOO gradient estimator under
various sampling distributions from (2) and the IS-based
REINFORCE gradient estimator (11) is formalized below
(proof in Appx. C.3).

Theorem 3.3 (Extended Gradient Estimator Equivalence).
Let πθ(x) = N (θ, µ2Id), p(x) = p(θ + µu), and b(ξ) =
f(θ; ξ) in (11). IS-based REINFORCE gradient estimator
(11) is identical to a scaled ZOO gradient estimator (2) for
the three different distributions of uk in Sec. 2:

∇̂ISJ(θ) = γ∇̂F (θ) .

Particularly, let Γ(·) be the Gamma function, (I) if uk ∼
N (0, Id), γ = 1; (II) if uk ∼ Unif(Sd−1), γ =
21−d/2 exp(−1/2)

µΓ(d/2) ; (III) if uk ∼ Unif({e1, . . . , ed}), γ =
d exp(−1/2)
(2πµ2)d/2

.

Remark. Thm. 3.3 reveals that ZOO estimators employing
non-Gaussian sampling distributions for uk (e.g., uniform
on sphere or coordinate-wise) can also be interpreted as
REINFORCE gradient estimators through the lens of im-
portance sampling. Specifically, the ZOO gradient ∇̂F (θ)
(unbiased for its own smoothed objective Fµ(θ) with the
non-Gaussian p(u)) remains equivalent to an IS-based RE-
INFORCE estimator for J(θ) with the Gaussian policy
scaled by γ. This scaling factor γ arises from the implicit
importance weights between the Gaussian policy for J(θ)
and the ZOO proposal distribution p(u). This perspective
unifies diverse ZOO sampling strategies under the REIN-
FORCE lens, provides a principled reason for the learning
rate adjustments in Cor. 3.4, and further solidifies the funda-
mental equivalence between the convergence of ZOO and
single-step PO.

Corollary 3.4 (Convergence Equivalence). Under the same
condition in Thm. 3.3, let baseline b(ξ) and update rule
(e.g. gradient descent algorithm and Adam (Kingma & Ba,
2015) algorithm) be the same for ZOO and REINFORCE,
they achieve identical convergence when

ηR = ηZ/γ .

Here, γ is from Thm. 3.3, ηZ and ηR are the learning rates
of ZOO and REINFORCE, respectively.

4. Zeroth-Order Optimization with Averaged
Baseline and Query Reuse
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Algorithm 1 ZOO with Averaged Baseline and Query Reuse
Input: objective function f , learning rate η, moment
decay rates β1, β2, number of queries K and histories N
Initialize: θ0,m0,v0,H0 = ∅
for iteration t ∈ [T ] do

Sample {uk}Kk=1

Query {yk|yk = f(θt−1+µuk; ξ)}Kk=1

Ht ← Ht−1 \Ht−N ∪
{
(uk, f(θt−1+µuk; ξ))

}K
k=1

bt ← 1
|Ht|

∑
(u,y)∈Ht

y

gt ← 1
|Ht|−1

∑
(u,y)∈Ht

y−bt
µ u

mt ← β1mt−1 + (1− β1)gt

vt ← β2vt−1 + (1− β2)m
2
t

θt ← θt−1 − η mt√
vt+ζ

end for
Output: θT

Leveraging the Policy Optimization (PO) framework estab-
lished in Sec. 3, this section introduces ZoAR (Algo. 1), an
improved Zeroth-Order Optimization (ZOO) algorithm. We
illustrate in Sec. 4.1 how ZoAR incorporates PO-inspired
variance reduction techniques, including an averaged base-
line and query reuse, for enhanced efficiency. While Algo. 1
demonstrates these techniques using the update rule from
R-AdaZO (Shu et al., 2025b), their core design is general
and readily adaptable to other update rules like ZO-SGD
(Ghadimi & Lan, 2013) and ZO-AdaMM (Chen et al., 2019).
Furthermore, we provide theoretical analyses in ZOO theory
to validate these PO-derived improvements in Appx. B.

4.1. Algorithm Design

We introduce the two key PO-inspired techniques in ZoAR
(line 5 of Algo. 1), namely the averaged baseline and query
reuse, below.

Averaged Baseline. As established in Thm. 3.2, the stan-
dard Gaussian-smoothed ZOO gradient estimator (2) im-
plicitly uses f(θ; ξ) as a baseline, corresponding to b(ξ) =
f(θ; ξ) in the REINFORCE framework (9). While this
baseline helps reduce variance compared to no baseline, it
may not be the most effective choice. In the single-step RE-
INFORCE algorithm, the baseline that minimizes the vari-
ance of the gradient estimate∇ lnπθ(x)(R(x)−b) is given

by b∗ =
Ex∼πθ(x)[(∇ lnπθ(x))

2R(x)]
Ex∼πθ(x)[(∇ lnπθ(x))2]

. A simpler and widely
used near-optimal baseline is the expected reward itself,
b = Ex∼πθ(x)[R(x)]. In our ZOO context, where R(x) =
−F (x) = −Eξ[f(x; ξ)] and x = θ + µu, this corresponds
to choosing the baseline as b = Ex∼πθ(x)[F (x)] = Fµ(θ).
The standard ZOO baseline f(θ; ξ) can be seen as a single-
sample, zero-order approximation of Fµ(θ) evaluated at the
center point. Algo. 1 proposes using a more robust estimate

of this expected value. Specifically, it computes the baseline
bt as the empirical average of function values obtained from
recent queries stored in a history bufferHt:

bt ≜
1

|Ht|
∑

(u,y)∈Ht

y , (12)

where y = f(θt′ +µu; ξ) for some past iteration t′ ≤ t− 1.
This average in fact serves as a Monte Carlo estimate of
the expected function value Fµ(θ), potentially providing
a lower-variance baseline compared to the single evalua-
tion f(θ; ξ) used implicitly in (2), which we will verify in
Appx. B.

Query Reuse. To further enhance sample efficiency and
reduce variance, Algo. 1 incorporates query reuse. This mir-
rors the concept of using off-policy data, common in algo-
rithms like Proximal Policy Optimization (PPO) (Schulman
et al., 2017), where experiences gathered under previous
policies are reused to improve the current policy update,
thereby increasing data efficiency. In our ZOO context,
Algo. 1 maintains a history bufferHt containing the N ×K
most recent query results (pairs of perturbation vectors u
and corresponding function values y). At iteration t, K new
queries based on θt−1 are performed, added to the buffer,
and the oldest K queries are discarded. Crucially, the gra-
dient estimate gt = ∇̂F (θt−1) is then computed using all
samples currently in the historyHt:

∇̂F (θt−1) ≜
1

|Ht| − 1

∑
(u,y)∈Ht

y − bt
µ

u . (13)

This approach uses all |Ht| = N ×K samples, effectively
increasing the gradient estimation batch size without addi-
tional queries beyond the initial K. The resulting averaging
over a larger set is expected to produce a gradient estimate
with significantly lower variance (verified in Appx. B).

Advantages. The proposed ZoAR algorithm offers several
compelling advantages. (a) It provides significant variance
reduction by employing an averaged baseline bt and reusing
historical queries fromHt (see Appx. B) compared to con-
ventional ZOO with finite difference (Nesterov & Spokoiny,
2017). (b) Compared to (Cheng et al., 2021; Wang et al.,
2024), the algorithm maintains compelling computational
and memory efficiency, as the overhead for managing the
history buffer (using only random seeds like (Malladi et al.,
2023; Shu et al., 2025a)) and performing the averaging cal-
culations is generally modest, which is scaling linearly with
history size. (c) ZoAR benefits from ease of Implementa-
tion, representing a straightforward modification to standard
ZOO procedures by incorporating a buffer and simple av-
eraging steps. (d) It offers enhanced sample efficiency and
flexibility by leveraging the accumulated information inHt:
a meaningful gradient estimate gt can be computed even if
only a small number of new queries (potentially K = 1) are
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Figure 1. Comparison of convergence among different zeroth-order optimization algorithms on four synthetic functions. All curves are
averaged over 5 independent runs.

Table 1. Comparison of the minimal number of iterations to
achieve a successful attack for different ZOO methods. Results are
averaged over 5 runs. The speedup is compared against the Vanilla
ZOO.

Metric Vanilla ZoHS ZoAR w/o history ZoAR

R-AdaZO # Iters (×102) 23.3±5.4 23.3±2.6 12.4±1.0 8.56±2.2
Speedup 1.0× 1.0× 1.87× 2.72×

ZO-AdaMM # Iters (×102) 65.3±12.7 36.9±5.8 32.6±8.0 11.0±2.8
Speedup 1.0× 1.8× 2.0× 5.92×

performed at each iteration. These advantages make ZoAR
a practical approach for improving ZOO performance, par-
ticularly in optimization settings where variance control and
query efficiency is crucial.

5. Experiments
In this section, we conduct extensive experiments on syn-
thetic functions (Sec. 5.1) and black-box adversarial attack
(Sec. 5.2). More results, e.g., the equivalence between ZOO
and REINFORCE, memory-efficient LLM fine-tuning, are
in Appx. E.

5.1. Synthetic Functions

The Superiority of ZoAR. We subsequently evaluate the
convergence rate and final performance of ZoAR against
several baselines on four synthetic functions of dimensional-
ity d = 104 (detailed in Appx. D.2). The compared methods
include Vanilla ZOO (Nesterov & Spokoiny, 2017), Re-
LIZO (Wang et al., 2024), and ZoHS (details in Appx. D.1).
Fig. 1 presents the results using the ZO-AdaMM (Chen
et al., 2019) update rule, while corresponding results under
theR-AdaZO (Shu et al., 2025b) update rule are available
in Appx. E.2. The results in Fig. 1 show that ZoAR consis-
tently outperforms all baseline algorithms in both conver-
gence speed and final optimization performance. Notably,
ZoAR with N = 6 achieves an 8× speedup over Vanilla
ZOO on the Quadratic and Rosenbrock functions, and a
16× speedup on the Ackley function. Moreover, comparing
ZoAR with N = 6 (utilizing query reuse) against ZoAR
with N = 1 (using only the averaged baseline) illustrates
the significant additional benefit of historical information.

5.2. Black-box Adversarial Attack

We further evaluate the performance of ZoAR in the domain
of black-box adversarial attacks, a prominent application
of zeroth-order optimization (Cheng et al., 2021; Shu et al.,
2023). In this scenario, the goal is to identify an optimal
perturbation δ for a given input image x such that a target
black-box model misclassifies x+δ. Our experimental setup
follows that introduced by (Shu et al., 2025b), targeting a
convolutional neural network (CNN) trained on the MNIST
dataset (Lecun et al., 1998) (more details in Appx. D.3).
We assess algorithm efficiency by the minimum number
of iterations required to achieve a successful attack. The
comparison includes Vanilla ZOO and ZoHS, with each eval-
uated under both the ZO-AdaMM (Chen et al., 2019) and
R-AdaZO (Shu et al., 2025b) update rules. ReLIZO is omit-
ted from this comparison as it failed to achieve a successful
attack within the maximum query budget. The results are
summarized in Tab. 1, showing that ZoAR achieves the
fastest attack success across both update rules. Specifically,
under the ZO-AdaMM setting, ZoAR represents a 5.92×
speedup compared to Vanilla ZOO. The less pronounced
speedup of ZoAR withR-AdaZO (versus ZO-AdaMM) is
likely due to the inherent gradient variance reduction ofR-
AdaZO (Shu et al., 2025b), which may reduce the marginal
impact of additional variance mitigation from ZoAR.

6. Conclusion
This paper established a novel and fundamental equivalence
between zeroth-order optimization (ZOO) with finite differ-
ences and single-step policy optimization (PO). Leveraging
this PO framework, we introduced ZoAR, an algorithm in-
corporating PO-inspired variance reduction techniques (an
averaged baseline and query reuse) that demonstrably en-
hance performance. Our theoretical and empirical results
highlight the benefits of this unified perspective, offering
new insights into ZOO and providing a principled path for
future algorithmic advancements.
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A. Related Work
Zeroth-Order (ZO) optimization research has primarily advanced along two interconnected fronts: the design of gradient
estimators and the development of update rules or full algorithms.

ZO Gradient Estimation. A cornerstone of ZOO is the estimation of gradients using only function evaluations, typically
through finite difference approximations. Seminal work introduced Gaussian random perturbations for smooth objectives,
establishing theoretical convergence (Nesterov & Spokoiny, 2017). Other perturbation strategies include uniform sampling
from the unit sphere (Flaxman et al., 2005a) or coordinate-wise perturbations (Lian et al., 2016). A primary challenge with
these methods is the high variance in their gradient estimates. To address this, several approaches have been developed.
E.g., prior-guided gradient estimation leverages historical estimates to denoise current ones (Cheng et al., 2021). Recently,
methods have explored learning surrogate models of the objective function using past queries to derive more stable gradient
estimates (Shu et al., 2023; 2024). Another line of work has focused on linear interpolation strategies for more accurate
estimates by reusing queries from prior iterations to reduce complexity while maintaining sample quality (Wang et al., 2024).
While these methods offer valuable improvements, the underlying connection between the widely-used finite difference
ZOO gradient estimators and principles from Reinforcement Learning (RL), particularly Policy Optimization (PO), has
remained largely unelucidated. Our work bridges this gap by reinterpreting these estimators through a PO lens, which not
only reveals inherent variance reduction mechanisms but also inspires new ones. Leveraging this novel PO framework, this
paper introduces new PO-inspired variance reduction techniques, specifically an averaged baseline and query reuse, which
are central to our proposed ZoAR algorithm and aim to significantly improve the stability and efficiency of ZO gradient
estimation.

ZO Update Rules and Algorithms. Given a ZO gradient estimate, many ZOO algorithms directly adopt update rules
from first-order (FO) optimization. A significant body of work employs Stochastic Gradient Descent (SGD) or its variants
(Ghadimi & Lan, 2013; Ghadimi et al., 2016; Nesterov & Spokoiny, 2017; Liu et al., 2018b;a; Cheng et al., 2021; Shu
et al., 2023). Recognizing the potential benefits of adaptive step sizes, some research has integrated adaptive methods
like Adam (Kingma & Ba, 2015) into the ZOO setting (Chen et al., 2019; Nazari et al., 2020; Jiang et al., 2024). Further
advancing these adaptive methods, recent work such asR-AdaZO (Shu et al., 2025b) has focused on refining the utilization
of moment information, demonstrating how careful handling of first and second moment estimates can lead to significant
variance reduction in the gradient estimates and a more accurate capture of the optimization landscape, thereby improving
convergence. Notably, this paper does not aim to introduce a new update rule, but focus on unveiling the fundamental
connection between ZOO and PO, and developing advanced gradient estimation method that is applicable to all these
existing update rules and algorithms.

B. Theoretical Analysis
This section provides a theoretical underpinning for our ZoAR (Algo. 1). We analyze the bias of its gradient estimator,
the optimality of its baseline, the bias-variance trade-off, and its convergence. To ease our proof, we follow the common
practice in (Shu et al., 2025b) to prove under u ∼ Unif(Sd−1) and the following commonly used assumptions.

Assumption B.1 (Bounded Continuity and Smoothness). ∀θ,θ′ ∈ Rd and i ∈ [d],

|f(θ, ξ)| ≤ C ,

|F (θ)− F (θ′)| ≤ L0∥θ − θ′∥ ,
|∇iF (θ)−∇iF (θ′)| ≤ L1∥θ − θ′∥ .

(14)

Assumption B.2 (Bounded Variance). ∀θ ∈ Rd,

Eξ[|f(θ, ξ)− F (θ)|2] ≤ σ2
ξ ,

Eu[|F (θ + µu)− Fµ(θ)|2] ≤ σ2
µ .

(15)

Theorem B.3 (Bias Analysis). For every iteration t of ZoAR (Algo. 1) with history depth N ≥ 1 and K queries per step,
the expected value of the gradient estimator ∇̂F (θt−1) is:

E
[
∇̂F (θt−1)

]
=

1

N

N∑
n=1

∇Fµ(θt−n) .
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Remark. Its proof is in Appx. C.4. Thm. B.3 reveals that ∇̂F (θt−1) in (13) of ZoAR is secretly an unbiased estimator for
the average of smoothed gradients from the current and N − 1 previous parameters. This implies that (13) implicitly targets
this historically averaged groundtruth, a mechanism that shall potentially reduce the gradient estimation variance at θt−1

by effectively increasing the number of queries contributing to the estimate (see Thm. B.5). However, (13) is biased with
respect to the current smoothed gradient∇Fµ(θt−1) when N ≥ 2, which emerges because these historical parameters θt−n

have diverged from θt−1. This is an inherent consequence of leveraging historical queries for variance reduction, creating a
bias-variance trade-off detailed in Thm. B.5. Notably, if N = 1 (no query reuse beyond the current batch), the estimator
becomes unbiased for∇Fµ(θt−1).

Theorem B.4 (Optimal Baseline). Let u ∼ Unif(Sd−1), for every t of ZoAR (Algo. 1) with N ≥ 1, the optimal bt to

minimize Var
(
∇̂F (θt−1)

)
= E

[∥∥∥∇̂F (θt−1)− 1
N

∑N
n=1∇Fµ(θt−n)

∥∥∥2] is

b∗t =
1

N

N∑
n=1

Fµ(θt−n) .

Remark. Its proof is in Appx. C.5. Thm. B.4 provides strong theoretical support for the averaged baseline in ZoAR. It
demonstrates that for gradient estimator (13) of ZoAR under u ∼ Unif(Sd−1), the baseline bt defined in (12) is in fact a
practical Monte Carlo approximation of the variance-minimizing b∗t . This result formalizes the intuition that averaging
recent function evaluations provides a more effective baseline than a single point estimate (like f(θ; ξ) implicitly used in
vanilla ZOO, or no baseline at all), thereby contributing to the overall variance reduction of the gradient estimate from a pure
perspective of ZOO theory. Crucially, the structural similarity between the optimal b∗t above and the variance-minimizing
baseline b = Ex∼πθ(x)[R(x)] in the REINFORCE algorithm further underscores the principled PO foundation and validates
the practical efficacy of our bt approximation.

Theorem B.5 (Bias-Variance Decomposition). Let u ∼ Unif(Sd−1) and bt in (13) be the optimal b∗t in Thm. B.4, under
Assump. B.1 and B.2, for every t of ZoAR (Algo. 1) with N ≥ 1,

E
[∥∥∥∇̂F (θt−1)−∇Fµ(θt−1)

∥∥∥2] ≤ σ2
ξ + σ2

µ

NKµ2︸ ︷︷ ︸
Variance ≜ V

+
η2L2

0d
(
N2 − 1

)
3 (1− β2)N2Kµ2

+
η2L2

1d
2 (N − 1)

2 (1− β2)︸ ︷︷ ︸
Squared Bias

.

Remark. Its proof is in Appx. C.6. Thm. B.5 explicitly quantifies the fundamental trade-off inherent in the query reuse
mechanism of ZoAR. The first component variance V is what ZoAR primarily targets for reduction through its PO-inspired
techniques: the averaged baseline (justified by Thm. B.4) and the reuse of historical samples. The second component
squared bias arises because the gradient estimator, as shown in Thm. B.3, is an average of historical smoothed gradients,
which may differ from the current target gradient ∇Fµ(θt−1). Consequently, while increasing the history depth N can
substantially decrease variance, it may simultaneously inflate the bias. Fortunately, this bias can be small with a small
learning rate η, and is completely avoided when N = 1.

Theorem B.6 (Variance-Aware Convergence, Informal). Let u ∼ Unif(Sd−1) and bt in (13) be the optimal b∗t in Thm. B.4,
under Assump. B.1 and B.2, when 1 − β2 ∼ O

(
ϵ2
)
, η ∼ O

(
ϵ2
)
, T ∼ O

(
ϵ−4
)
, β1 ≤

√
β2, β2 > 1/2,m0,i =0,v0,i >

0 (∀i ∈ [d]), the following holds for ZoAR (Algo. 1) under certain constants B1 and B2 that are independent of ϵ,

1

T

T∑
t=1

E[∥∇F (θt)∥] ≤

√
2

β1 (1− β2)
(1 + β1) ϵ

2 +
(

4
√
ζ +
√
Ξ
)
ϵ+ µL1

√
d+B2 ,

where Ξ ≜ B1 +

√
2(1+β1)(1−β1)

2β2

(β2−β2
1)(1−β2)

V and V =
σ2
ξ+σ2

µ

NKµ2 .

Remark. Its proof is in Appx. C.7. Thm. B.6 presents the convergence of ZoAR (Algo.1). Notably, it highlights that the
convergence rate is directly influenced by the variance V (occurred in Ξ) of our gradient estimator (13), which corresponds
to the variance term in Thm. B.5. When V dominates the convergence, minimizing V is hence the key to achieving better
optimization performance, which provides a strong theoretical support for the variance reduction techniques used in ZoAR
(averaged baseline and query reuse). The O(µ) term is standard in conventional ZOO, reflecting the inherent discrepancy
from optimizing the smoothed objective Fµ instead of F . While the additional B2 term results from the bias introduced by
our (13) as revealed in Thm. B.3, it can be small with a small η.

10



Zeroth-Order Optimization is Secretly Single-Step Policy Optimization

C. Proofs
C.1. Proof of Thm. 3.1

Proof. By definition, J(θ) = Ex∼πθ(x)[F (x)]. Substituting the reparameterization x = θ + µu where u ∼ p(u), the
expectation over x ∼ πθ(x) becomes an expectation over u ∼ p(u):

J(θ) = Eu∼p(u) [F (θ + µu)] , (16)

which is precisely the definition of the ZOO smoothed objective Fµ(θ) in (3).

C.2. Proof of Thm. 3.2

Proof. Substituting xk = θ + µuk and b(ξ) = f(θ; ξ) into the REINFORCE estimator (9):

∇̂GSJ(θ) =
1

K

K∑
k=1

(θ + µuk)− θ

µ2
(f(θ + µuk; ξ)− f(θ; ξ)) =

1

K

K∑
k=1

f(θ + µuk; ξ)− f(θ; ξ)

µ
uk . (17)

This is exactly the Gaussian-smoothed ZOO gradient estimator ∇̂F (θ) in (2).

C.3. Proof of Thm. 3.3

Proof. Initially, inserting xk = θ + µuk into πθ(xk) = N (θ, µ2Id):

πθ(xk) =
e
−∥xk−θ∥

2µ2

(2πµ2)
d
2

=
1

µd

e−
∥uk∥

2

(2π)
d
2

. (18)

We next consider the transformation of p(xk) under three different distributions separately:

(I) If uk follows the standard Gaussian distribution, xk follows the Gaussian distribution N (θ, µ2Id), then conse-
quently:

p(xk) =
e
−∥xk−θ∥

2µ2

(2πµ2)
d
2

=
1

µd

e−
∥uk∥

2

(2π)
d
2

, (19)

which is the same as πθ(xk).
(II) If uk follows the uniform distribution over the unit sphere Unif(Sd−1), xk follows the uniform distribution over

the sphere with radius µ Unif(Sd−1(µ)), then consequently:

p(xk) =
1

Area (Sd−1(µ))
=

Γ
(
d
2

)
2π

d
2 µd−1

, (20)

with constraint ∥u∥ = 1, where Γ(·) denotes Gamma function.
(III) If uk follows the uniform distribution over standard basis vectors Unif({ei}di=1), xk follows the uniform distribution

over the orthonormal basis vectors Unif({θ + µei}di=1), then consequently:

p(xk) =
1

d
, (21)

with constraint u ∈ {ei}di=1.

Afterthat, let γ ≜ πθ(xk)
p(xk)

, and substitute xk = θ + µuk, b(ξ) = f(θ; ξ) into IS-based REINFORCE gradient estimator
(11):

∇̂ISJ(θ) = γ
1

K

K∑
k=1

f(θ + µuk; ξ)− f(θ; ξ)

µ
uk = γ∇̂F (θ) ; (22)

where (I) for uk ∼ N (0, µ2Id), γ = 1; (II) for uk ∼ Unif(Sd−1), γ = 21−
d
2 e−

1
2

µΓ( d
2 )

; (III) for uk ∼ Unif({ei}di=1),

γ = de−
1
2

(2πµ2)
d
2

.
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C.4. Proof of Thm. B.3

Proof. By inserting the average baseline (12), the expectation of the gradient estimator (13) can be expressed as follows:

E
[
∇̂F (θt−1)

]
=

1

NK − 1
EuEξ

 N,K∑
n,k=1

f (θt−n + µut−n,k; ξ)− 1
NK

∑N,K
n′,k′=1 f (θt−n + µut−n′,k′ ; ξ)

µ
ut−n,k


=

1

NK − 1
Eu

 N,K∑
n,k=1

F (θt−n + µut−n,k)− 1
NK

∑N,K
n′,k′=1 F (θt−n + µut−n′,k′)

µ
ut−n,k



=
1

NK − 1
Eu

 N,K∑
n,k=1

NK−1
NK F (θt−n + µut−n,k)− 1

NK

∑N,K

n′,k′=1
n′ ̸=n,k′ ̸=k

F (θt−n + µut−n′,k′)

µ
ut−n,k


(a)
=

1

NK

N,K∑
n,k=1

Eut−n,k

[
F (θt−n + µut−n,k)

µ
ut−n,k

]
(b)
=

1

NK

N,K∑
n,k=1

Eut−n,k
[∇F (θt−n + µut−n,k)]

=
1

N

N∑
n=1

∇Fµ (θt−n) ,

(23)
where Eu denote the expectation over ut−1,1, · · · ,ut−n,K for simplicity. Besides, (a) follows from the fact that ut−n′,k′

within the summation over n′, k′ is uncorrelated with ut−n,k. When u ∼ N (0, Id), (b) is a direct consequence of Stein’s
Lemma in (Stein, 1981). Alternatively, when u ∼ Unif(Sd−1), (b) follows from Lemma 2.1 in (Flaxman et al., 2005b),
utilizing the definition Fµ(θ) ≜ Eu∼Unif(Bd) [F (θ + µu)].

Remark. Note that in the step (a), the baseline term 1
NK

∑N,K

n′,k′=1
n′ ̸=n,k′ ̸=k

F (θt−n + µut−n′,k′) vinishes because it is

independent of the random variable ut−n,k. Similar to the REINFORCE estimator in (6), incorporating the baseline b(ξ)
does not alter the expected value of the gradient estimator, which further supports the connection between the REINFORCE
and ZOO gradient estimators.

C.5. Proof of Thm. B.4

Proof. Beginning with the definition of Var
(
∇̂F (θt−1)

)
:

Var
(
∇̂F (θt−1)

)
= E

∥∥∥∥∥∇̂F (θt−1)−
1

N

N∑
n=1

∇Fµ (θt−n)

∥∥∥∥∥
2


=E
[∥∥∥∇̂F (θt−1)

∥∥∥2]− 2

〈
E
[
∇̂F (θt−1)

]
,
1

N

N∑
n=1

∇Fµ (θt−n)

〉
+

∥∥∥∥∥ 1

N

N∑
n=1

∇Fµ (θt−n)

∥∥∥∥∥
2

(a)
=E


∥∥∥∥∥∥ 1

NK

N,K∑
n,k=1

f(θt−n + µut−n,k; ξ)− bt
µ

ut−n,k

∥∥∥∥∥∥
2
− ∥∥∥∥∥ 1

N

N∑
n=1

∇Fµ (θt−n)

∥∥∥∥∥
2

,

(24)

where (a) comes from Thm. B.3.

It is obvious that (24) is actually a quadratic function w.r.t bt, and hence the optimal b∗t is derived by setting its derivative to

12
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zero ∂
∂bt

Var
(
∇̂F (θt−1)

)
= 0, i.e.

∂

∂bt
Var

(
∇̂F (θt−1)

)
=2E

〈 1

NK

N,K∑
n,k=1

f(θt−n + µut−n,k; ξ)− bt
µ

ut−n,k,−
1

NKµ

N,K∑
n,k=1

ut−n,k

〉
(a)
= − 2

N2K2µ2

N,K∑
n,k=1

E [⟨(f(θt−n + µut−n,k; ξ)− bt)ut−n,k,ut−n,k⟩]

=− 2

N2K2µ2

N,K∑
n,k=1

Eut−n,k
[⟨(F (θt−n + µut−n,k)− bt)ut−n,k,ut−n,k⟩]

=− 2

N2K2µ2

N,K∑
n,k=1

(
Eut−n,k

[
F (θt−n + µut−n,k) ∥ut−n,k∥2

]
− btEut−n,k

[
∥ut−n,k∥2

])
,

(25)
where (a) is due to the independence of ut−n,k across different iterations t and queries k.

Setting ∂
∂bt

Var
(
∇̂F (θt−1)

)
= 0, we have:

b∗t =

1
NK

∑N,K
n,k=1 Eut−n,k

[
F (θt−n + µut−n,k) ∥ut−n,k∥2

]
1

NK

∑N,K
n,k=1 Eut−n,k

[
∥ut−n,k∥2

] =

1
N

∑N
n=1 Eu

[
F (θt−n + µu) ∥u∥2

]
Eu

[
∥u∥2

] . (26)

If uk ∼ Unif(Sd−1) or uk ∼ Unif({ei}di=1), it follows that ∥u∥2 = 1. Consequently:

b∗t =
1

N

N∑
n=1

Eu [F (θt−n + µu)] =
1

N

N∑
n=1

Fµ (θt−n) , (27)

which completes the proof.

C.6. Proof of Thm. B.5

Proof. To begin with, we let bt be the optimal value obtained from Thm. B.4, and proceed with the calculation of
Var

(
∇̂F (θt−1)

)
from (24):

Var
(
∇̂F (θt−1)

)
≤ E


∥∥∥∥∥∥ 1

NK

N,K∑
n,k=1

f(θt−n + µut−n,k; ξ)− bt
µ

ut−n,k

∥∥∥∥∥∥
2
− ∥∥∥∥∥ 1

N

N∑
n=1

∇Fµ (θt−n)

∥∥∥∥∥
2

. (28)
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For the first term of (28):

E


∥∥∥∥∥∥ 1

NK

N,K∑
n,k=1

f(θt−n + µut−n,k; ξ)− bt
µ

ut−n,k

∥∥∥∥∥∥
2


(a)
=

1

N2K2µ2

N,K∑
n,k=1

E
[
∥(f(θt−n + µut−n,k; ξ)− bt)ut−n,k∥2

]
(b)
=

1

N2K2µ2

N,K∑
n,k=1

E
[
|f(θt−n + µut−n,k; ξ)− bt|2

]
(c)

≤ 1

N2K2µ2

N,K∑
n,k=1

Eu

[
σ2
ξ + |F (θt−n + µut−n,k)− bt|2

]
(d)

≤ 1

N2K2µ2

NKσ2
ξ +

N,K∑
n,k=1

Eu

[
|F (θt−n + µut−n,k)− Fµ(θt−n)|2

]
+K

N∑
n=1

|Fµ(θt−n)− bt|2


(e)

≤ 1

NKµ2

(
σ2
ξ + σ2

µ +
L2
0

N2

N∑
n=1

N∑
n′=1

∥θt−n − θt−n′∥2
)

,

(29)

where (a) is derived from the independence of ut−n,k across different iterations t and queries k, (b) comes from
the fact that u ∼ Unif(Sd−1) and hence ∥u∥2 = 1, (c) is obtained from Assump. B.2, and (d) results from
Eu [F (θt−n + µut−n,k)− Fµ(θt−n)] = 0. In step (e), we apply Assump. B.2 and the following inequality:

|Fµ(θt−n)− bt|2 =

∣∣∣∣∣ 1N
N∑

n′=1

(Fµ(θt−n)− Fµ(θt−n′))

∣∣∣∣∣
2

(a)

≤ 1

N

N∑
n′=1

|Fµ(θt−n)− Fµ(θt−n′)|2

(b)

≤ L2
0

N

N∑
n′=1

∥θt−n − θt−n′∥2 ,

(30)

where (a) follows from the Jensen’s inequality and (b) is derived from Assump. B.1.

Inserting the results of 29 into 28, we have

Var
(
∇̂F (θt−1)

)
≤ 1

NKµ2

(
σ2
ξ + σ2

µ +
L2
0

N2

N∑
n=1

N∑
n′=1

∥θt−n − θt−n′∥2
)
−

∥∥∥∥∥ 1

N

N∑
n=1

∇Fµ (θt−n)

∥∥∥∥∥
2

. (31)

Finally, the MSE of the gradient estimator ∇̂F (θt−1) with respect to∇Fµ(θt−1) can be bounded as below:

E
[∥∥∥∇̂F (θt−1)−∇Fµ(θt−1)

∥∥∥2]
(a)

≤ Var
(
∇̂F (θt−1)

)
+

∥∥∥∥∥ 1

N

N∑
n=1

∇Fµ (θt−n)−∇Fµ(θt−1)

∥∥∥∥∥
2

(b)

≤ 1

NKµ2

(
σ2
ξ + σ2

µ +
L2
0

N2

N∑
n=1

N∑
n′=1

∥θt−n − θt−n′∥2
)

+
L2
1d

N

N∑
n=1

∥θt−n − θt−1∥2 −

∥∥∥∥∥ 1

N

N∑
n=1

∇Fµ (θt−n)

∥∥∥∥∥
2

,

(32)

where (a) follows from the fact that Var
(
∇̂F (θt−1)

)
and

∥∥∥ 1
N

∑N
n=1∇Fµ (θt−n)−∇Fµ(θt−1)

∥∥∥2 with respect to {ξτ}tτ
are independent, while (b) is derived from the subsequent inequality using Jensen’s inequality and Assump. B.1:∥∥∥∥∥ 1

N

N∑
n=1

∇Fµ (θt−n)−∇Fµ(θt−1)

∥∥∥∥∥
2

≤ 1

N

N∑
n=1

∥∇Fµ (θt−n)−∇Fµ(θt−1)∥2 ≤
L2
1d

N

N∑
n=1

∥θt−n − θt−1∥2 . (33)
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Considering the update rule ofR-AdaZO, (32) can be further simplified as:

E
[∥∥∥∇̂F (θt−1)−∇Fµ(θt−1)

∥∥∥2] ≤σ2
ξ + σ2

µ

NKµ2
+

L2
0η

2d
(
N2 − 1

)
3 (1− β2)N2Kµ2

+
L2
1η

2d2 (N − 1)

2 (1− β2)
, (34)

where we perform mt,i√
vt,i
≤ 1√

1−β2
in the following inequality:

∥θt−n − θt−n′∥2 ≤
max(n,n′)−1∑
n′′=min(n,n′)

∥∥∥∥∥ ηmt−n′′√
vt−n′′ + ζ

∥∥∥∥∥
2

≤
max(n,n′)−1∑
n′′=min(n,n′)

η2d

1− β2
=

η2d

1− β2
|n− n′| . (35)

C.7. Proof of Thm. B.6

To ease the proof of Thm. B.6, we first prove the smoothness of Fµ (Lemma C.1), then the upper bound of the squared first
moment m2

t,i (Lemma C.2) and the second moment vt,i (Lemma C.3).

Lemma C.1. ∀θ,θ′ ∈ Rd, we have

|∇iFµ(θ)−∇iFµ(θ
′)| ≤L1 ∥θ − θ′∥ .

Proof.
|∇iFµ(θ)−∇iFµ(θ

′)| = |Eu [∇iF (θ + µu)−∇iF (θ′ + µu)]|
(a)

≤Eu [|∇iF (θ + µu)−∇iF (θ′ + µu)|]
(b)

≤L1 ∥θ − θ′∥ ,

(36)

where (a) comes from the Jensen’s inequality and (b) follows from Assump. B.2.

Lemma C.2. ∀θ ∈ Rd, i ∈ [d] and t ∈ [T ], if m0,i = 0, the following inequality holds for ZoAR,

m2
t,i ≤2 (1 + β1) (1− β1)

2
t∑

τ=1

β
2(t−τ)
1

∣∣∣∣∣∣∇̂if(θτ−1; ξτ )−
1

min (N, τ)

min(N,τ)∑
n=1

∇iFµ(θτ−n)

∣∣∣∣∣∣
2

+
2β1(1 + β1)

2

(1− β1)
2
(1− β2)

η2L2
1dCN + 2

(1 + β1)
2

β1
|∇iFµ(θt−1)|2 ,

where CN ≜ 2(1−β1)
2N2−3(1−β1)(1−3β1)N−β1(2−13β1)+1

6β1(1+β1)
is monotonously increasing in N and satisfies CN = 1 when

N = 1.

Proof. First of all, the square of the first moment m2
t,i can be bounded as below:

m2
t,i =|mt,i −∇iFµ(θt−1) +∇iFµ(θt−1)|2

≤ (1 + β1) |mt,i −∇iFµ(θt−1)|2 +
(
1 +

1

β1

)
|∇iFµ(θt−1)|2 ,

(37)

where we apply the inequality (a+ b)
2 ≤ (1 + β1) a

2 +
(
1 + 1

β1

)
b2.

The first term of (37) can be further bounded:

|mt,i −∇iFµ(θt−1)|2

=|mt,i − E [mt,i] + E [mt,i]−∇iFµ(θt−1)|2

(a)

≤2|mt,i − E [mt,i] |2 + 2|E [mt,i]−∇iFµ(θt−1)|2

=2|mt,i − E [mt,i] |2 + 2|E [mt,i]−
(
1− βt

1

)
∇iFµ(θt−1)− βt

1∇iFµ(θt−1)|2

(b)

≤2|mt,i − E [mt,i] |2 + 2
(
1− βt

1

) ∣∣∣∣E [mt,i]

1− βt
1

−∇iFµ(θt−1)

∣∣∣∣2 + 2βt
1 |∇iFµ(θt−1)|2 ,

(38)
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where (a) and (b) utilize the inequality (a+ b)
2 ≤ (1 + k) a2 +

(
1 + 1

k

)
b2 for any k > 0, with k = 1 in step (a) and

k =
1−βt

1

βt
1

in step (b).

We next bound the first and second terms of (38) separately. First, by assuming m0,i = 0, the geometric series of mt,i and
E [mt,i] are given by:

mt,i =(1− β1)

t∑
τ=1

βt−τ
1 ∇̂if(θτ−1; ξτ );

E [mt,i] =(1− β1)

t∑
τ=1

βt−τ
1

1

min (N, τ)

min(N,τ)∑
n=1

∇iFµ(θτ−n) .

(39)

Therefore, the first term of (38) can be bounded as:

|mt,i − E [mt,i] |2 =

∣∣∣∣∣∣(1− β1)

t∑
τ=1

βt−τ
1

∇̂if(θτ−1; ξτ )−
1

min (N, τ)

min(N,τ)∑
n=1

∇iFµ(θτ−n)

∣∣∣∣∣∣
2

(a)
=(1− β1)

2
t∑

τ=1

β
2(t−τ)
1

∣∣∣∣∣∣∇̂if(θτ−1; ξτ )−
1

min (N, τ)

min(N,τ)∑
n=1

∇iFµ(θτ−n)

∣∣∣∣∣∣
2

,

(40)

where (a) results from the independence of different {ξτ}tτ=1.

Besides, the second term of (38) can be bounded as below:∣∣∣∣E [mt,i]

1− βt
1

−∇iFµ(θt−1)

∣∣∣∣2

=

∣∣∣∣∣∣ (1− β1)

1− βt
1

t∑
τ=1

βt−τ
1

 1

min (N, τ)

min(N,τ)∑
n=1

∇iFµ(θτ−n)−∇iFµ(θt−1)

∣∣∣∣∣∣
2

=
(1− β1)

2

(1− βt
1)

2

t∑
τ,τ ′=1

β2t−τ−τ ′

1

 1

min (N, τ)

min(N,τ)∑
n=1

∇iFµ(θτ−n)−∇iFµ(θt−1)


×

 1

min (N, τ)

min(N,τ)∑
n=1

∇iFµ(θτ ′−n)−∇iFµ(θt−1)


(a)

≤ (1− β1)
2

2 (1− βt
1)

2

t∑
τ,τ ′=1

β2t−τ−τ ′

1


∣∣∣∣∣∣ 1

min (N, τ)

min(N,τ)∑
n=1

∇iFµ(θτ−n)−∇iFµ(θt−1)

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣ 1

min (N, τ)

min(N,τ)∑
n=1

∇iFµ(θτ−n)−∇iFµ(θt−1)

∣∣∣∣∣∣
2


=
1− β1

1− βt
1

t∑
τ=1

βt−τ
1

∣∣∣∣∣∣ 1

min (N, τ)

min(N,τ)∑
n=1

∇iFµ(θτ−n)−∇iFµ(θt−1)

∣∣∣∣∣∣
2

(b)

≤ 1− β1

1− βt
1

t∑
τ=1

βt−τ
1

1

min (N, τ)

min(N,τ)∑
n=1

|∇iFµ(θτ−n)−∇iFµ(θt−1)|2

(c)

≤ 1− β1

1− βt
1

L2
1

t∑
τ=1

βt−τ
1

1

min (N, τ)

min(N,τ)∑
n=1

∥θτ−n − θt−1∥2 ,

(41)

where (a) is derived from ab ≤ 1
2 (a

2 + b2), (b) is due to Jensen’s inequality, and (c) is obtained from Lemma C.1.

16



Zeroth-Order Optimization is Secretly Single-Step Policy Optimization

Recalled to the update rule ofR-AdaZO, we have:

∥θτ−n − θt−1∥2 =

d∑
i

|θτ−n,i − θt−1,i|2 = η2
d∑
i

∣∣∣∣∣
t−1∑

s=τ−n+1

ms,i√
vs,i + ζ

∣∣∣∣∣
2

(a)

≤η2 (t− τ + n− 1)

d∑
i

t−1∑
s=τ−n+1

m2
s,i

vs,i + ζ

(b)

≤ d

1− β2
η2 (t− τ + n− 1)

2
,

(42)

where (a) is from Cauchy-Schwarz inequality
∣∣∣∑t−1

s=τ−n+1 as

∣∣∣2 ≤ (t− τ + n− 1)
∑t−1

s=τ−n+1 a
2
s, and (b) follows from

m2
s,i

vs,i+ζ ≤
1

1−β2
.

Putting the result of (42) into (41), we have:

∣∣∣∣E [mt,i]

1− βt
1

−∇iFµ(θt−1)

∣∣∣∣2 ≤ (1− β1) η
2L2

1d

(1− βt
1) (1− β2)

t∑
τ=1

βt−τ
1

min (N, τ)

min(N,τ)∑
n=1

(t− τ + n− 1)
2

(a)

≤ β1(1 + β1)

(1− βt
1) (1− β1)

2
(1− β2)

η2L2
1dCN ,

(43)

where (a) comes from the geometric series summation over τ and n:

t∑
τ=1

1

min (N, τ)

min(N,τ)∑
n=1

βt−τ
1 (t− τ + n− 1)

2 ≤ β1(1 + β1)

(1− β1)
3 CN , (44)

where CN ≜ 2(1−β1)
2N2−3(1−β1)(1−3β1)N−β1(2−13β1)+1

6β1(1+β1)
is monotonously increasing in N and satisfies CN = 1 when

N = 1.

Finally, gathering the results of (40), (43) into (38), we obtain:

|mt,i −∇iFµ(θt−1)|2 ≤(1− β1)
2

t∑
τ=1

β
2(t−τ)
1

∣∣∣∣∣∣∇̂if(θτ−1; ξτ )−
1

min (N, τ)

min(N,τ)∑
n=1

∇iFµ(θτ−n)

∣∣∣∣∣∣
2

+
β1(1 + β1)

(1− β1)
2
(1− β2)

η2L2
1dCN + βt

1 |∇iFµ(θt−1)|2

+ 2 (mτ,i − E [mτ,i]) (E [mτ,i]−∇iFµ(θτ−1)) .

(45)

Consequently, (37) becomes:

m2
t,i ≤2 (1 + β1) (1− β1)

2
t∑

τ=1

β
2(t−τ)
1

∣∣∣∣∣∣∇̂if(θτ−1; ξτ )−
1

min (N, τ)

min(N,τ)∑
n=1

∇iFµ(θτ−n)

∣∣∣∣∣∣
2

+
2β1(1 + β1)

2

(1− β1)
2
(1− β2)

η2L2
1dCN + 2 (1 + β1)β

t
1 |∇iFµ(θt−1)|2 + 2

(
1 +

1

β1

)
|∇iFµ(θt−1)|2

≤2 (1 + β1) (1− β1)
2

t∑
τ=1

β
2(t−τ)
1

∣∣∣∣∣∣∇̂if(θτ−1; ξτ )−
1

min (N, τ)

min(N,τ)∑
n=1

∇iFµ(θτ−n)

∣∣∣∣∣∣
2

+
2β1(1 + β1)

2

(1− β1)
2
(1− β2)

η2L2
1dCN +

2(1 + β1)
2

β1
|∇iFµ(θt−1)|2 ,

(46)

which concludes the proof.
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Lemma C.3. ∀θ ∈ Rd, i ∈ [d] and t ∈ [T ], if v0,i > 0, the following inequality holds for ZoAR,

vt,i ≤βt
2v0,i +

2 (1 + β1) (1− β1)
2
(1− β2)

β2 − β2
1

t∑
τ=1

(
βt+1−τ
2 − β

2(t+1−τ)
1

) ∣∣∣∣∣∣∇̂if(θτ−1; ξτ )−
1

min (N, τ)

min(N,τ)∑
n=1

∇iFµ(θτ−n)

∣∣∣∣∣∣
2

+
2β1(1 + β1)

2

(1− β1)
2
(1− β2)

L2
1η

2dCN +
2 (1 + β1)

2
(1− β2)

β1

t∑
τ=1

βt−τ
2 |∇iFµ(θτ−1)|2 ,

where CN ≜ 2(1−β1)
2N2−3(1−β1)(1−3β1)N−β1(2−13β1)+1

6β1(1+β1)
is monotonously increasing in N and satisfies CN = 1 when

N = 1.

Proof. Starting the geometric series of vt,i, the following inequality holds:

vt,i = βt
2v0,i + (1− β2)

t∑
τ=1

βt−τ
2 m2

τ,i

(a)

≤βt
2v0,i + (1− β2)

t∑
τ=1

βt−τ
2

(
2 (1 + β1) (1− β1)

2
τ∑

s=1

β
2(τ−s)
1

∣∣∣∣∣∣∇̂if(θs−1; ξs)−
1

min (N, s)

min(N,s)∑
n=1

∇iFµ(θs−n)

∣∣∣∣∣∣
2

+
2β1(1 + β1)

2

(1− β1)
2
(1− β2)

L2
1η

2dCN +
2 (1 + β1)

2

β1
|∇iFµ(θτ−1)|2

)

(b)
=βt

2v0,i +
2 (1 + β1) (1− β1)

2
(1− β2)

β2 − β2
1

t∑
τ=1

(
βt+1−τ
2 − β

2(t+1−τ)
1

) ∣∣∣∣∣∣∇̂if(θτ−1; ξτ )−
1

min (N, τ)

min(N,τ)∑
n=1

∇iFµ(θτ−n)

∣∣∣∣∣∣
2

+
2β1(1 + β1)

2 (1− βt
2)

(1− β1)
2
(1− β2)

L2
1η

2dCN +
2 (1 + β1)

2
(1− β2)

β1

t∑
τ=1

βt−τ
2 |∇iFµ(θτ−1)|2

(c)

≤βt
2v0,i +

2 (1 + β1) (1− β1)
2
(1− β2)

β2 − β2
1

t∑
τ=1

(
βt+1−τ
2 − β

2(t+1−τ)
1

) ∣∣∣∣∣∣∇̂if(θτ−1; ξτ )−
1

min (N, τ)

min(N,τ)∑
n=1

∇iFµ(θτ−n)

∣∣∣∣∣∣
2

+
2β1(1 + β1)

2

(1− β1)
2
(1− β2)

L2
1η

2dCN +
2 (1 + β1)

2
(1− β2)

β1

t∑
τ=1

βt−τ
2 |∇iFµ(θτ−1)|2 ,

(47)
where (a) comes from Lemma C.2, and (c) is due to β2 ≤ 1. In step (b), we use the following geometric series summation:

t∑
τ=1

τ∑
s=1

βt−τ
2 β

2(τ−s)
1

∣∣∣∣∣∣∇̂if(θs−1; ξs)−
1

min (N, s)

min(N,s)∑
n=1

∇iFµ(θs−n)

∣∣∣∣∣∣
2

(a)
=

t∑
s=1

t∑
τ=s

βt−τ
2 β

2(τ−s)
1

∣∣∣∣∣∣∇̂if(θs−1; ξs)−
1

min (N, s)

min(N,s)∑
n=1

∇iFµ(θs−n)

∣∣∣∣∣∣
2

=
1

β2 − β2
1

t∑
τ=1

(
βt+1−τ
2 − β

2(t+1−τ)
1

) ∣∣∣∣∣∣∇̂if(θτ−1; ξτ )−
1

min (N, τ)

min(N,τ)∑
n=1

∇iFµ(θτ−n)

∣∣∣∣∣∣
2

,

(48)

where we exchange the order of summation in step (a). This concludes the proof.

Here, we give the formal statement of the convergence of ZoAR in Thm. B.6.
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Theorem C.4 (Variance-Aware Convergence of R-AdaZO, Formal). Let u ∼ Unif(Sd−1) and bt in (13) be
the optimal b∗t in Thm. B.4, under the Assump. B.1, B.2, and the gradient of Fµ being bounded |∇iFµ(θt)| ≤
Gµ, when η =

(1−β1)(1−β1/
√
β2)ϵ2

128L1d3/2 ∼ O
(
ϵ2
)
, 1 − β2 = min

(
(1−β1)

2µ2η
√
ζϵ2

64C2d3 , (1−β1)
2ϵ2

4β2
1d

√
ζ

)
∼ O

(
ϵ2
)
, T =

max

(
64C2d3

(1−β1)
2µ2η

√
ζηϵ2

,
8(1−β1/

√
β2)

(1−β1)ηϵ2
, 64L1

√
dη

(1−β1)(1−β1/
√
β2)(1−β2)ϵ2

∑d
i ln

(
βT
2 v0,i+4C2d2/µ2

v0,i

))
∼ O

(
ϵ−4
)
, β1 ≤

√
β2,

β2 > 1/2, m0,i = 0, v0,i > 0 (∀i ∈ [d]), the following convergence holds for ZoAR (Algo. 1),

1

T

T∑
t=1

E[∥∇F (θt)∥] ≤

√
2

β1 (1− β2)
(1 + β1) ϵ

2 +
(

4
√
ζ +
√
Ξ
)
ϵ+ µL1

√
d+B2 , (49)

where B1 ≜
√
dβ2 ∥v0∥+ 2β1(1+β1)2

(1−β1)
2(1−β2)

L2
1η

2d2CN +

√
2(1+β1)(1−β1)

2β2L2
0η

2d(N2−1)

3(β2−β2
1)(1−β2)

2N2Kµ2
, Ξ ≜ B1 +

√
2(1+β1)(1−β1)

2β2

(β2−β2
1)(1−β2)

V ,

V =
σ2
ξ+σ2

µ

NKµ2 , G ≜ 2Gµ√
ζ

√
d
(
V +

L2
0η

2d(N2−1)
3(1−β2)N2Kµ2 +

L2
1η

2d2(N−1)
2(1−β2)

)
, B2 ≜

√
2

β1(1−β2)
(1 + β1)G+

(
4
√
ζ +
√
Ξ
)√

G, and

CN ≜ 2(1−β1)
2N2−3(1−β1)(1−3β1)N−β1(2−13β1)+1

6β1(1+β1)
is monotonously increasing in N and satisfies CN = 1 when N = 1.

Proof. We begin by introducing the following transformation:(
1

T

T∑
t=1

E [∥∇Fµ(θt)∥]

)2

=

(
1

T

T∑
t=1

E

[
4
√
β2∥vt∥+ ζ · ∥∇Fµ(θt)∥

4
√
β2∥vt∥+ ζ

])2

(a)

≤ 1

T 2

 T∑
t=1

E
[√

β2∥vt∥+ ζ
] 1

2 · E

[
∥∇Fµ(θt)∥2√
β2∥vt∥+ ζ

] 1
2

2

(b)

≤ 1

T

T∑
t=1

E
[√

β2∥vt∥+ ζ
]

︸ ︷︷ ︸
Term I

· 1
T

T∑
t=1

E

[
∥∇Fµ(θt)∥2√
β2∥vt∥+ ζ

]
︸ ︷︷ ︸

Term II

,

(50)

where (a) comes from the Hölder’s inequality E[|ab|] ≤
(
E
[
|a|2

]) 1
2
(
E
[
|b|2
]) 1

2 , and (b) results from the Cauchy-Schwarz
inequality.

Calculation of Term I. Based on Lemma C.3, v0,i ≤ ∥v0∥, and β2 ≤ 1, we have:

vt,i ≤β2 ∥v0∥+
2 (1 + β1) (1− β1)

2
(1− β2)

β2 − β2
1

t∑
τ=1

(
βt+1−τ
2 − β

2(t+1−τ)
1

) ∣∣∣∣∣∣∇̂if(θτ−1; ξτ )−
1

min (N, τ)

min(N,τ)∑
n=1

∇iFµ(θτ−n)

∣∣∣∣∣∣
2

+
2β1(1 + β1)

2

(1− β1)
2
(1− β2)

L2
1η

2dCN +
2 (1 + β1)

2
(1− β2)

β1

t∑
τ=1

βt−τ
2 |∇iFµ(θτ−1)|2 .

(51)

Therefore, the square root of the summed second moment can be bounded as follows:√√√√ d∑
i

vt,i ≤

√
dβ2 ∥v0∥+

2β1(1 + β1)2

(1− β1)
2
(1− β2)

L2
1η

2d2CN +

√
2 (1− β2)

β1
(1 + β1)

t∑
τ=1

β
t−τ
2

2 ∥∇Fµ(θτ−1)∥

+

√
2 (1 + β1) (1− β2)

β2 − β2
1

(1− β1)

t∑
τ=1

√
βt+1−τ
2 − β

2(t+1−τ)
1

∥∥∥∥∥∥∇̂f(θτ−1; ξτ )−
1

min (N, τ)

min(N,τ)∑
n=1

∇Fµ(θτ−n)

∥∥∥∥∥∥ ,

(52)
where we utilize the inequality

√∑
i ai ≤

∑
i

√
ai.
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Subsequently, the expectation of (52) can be bounded as follows:

E


√√√√ d∑

i

vt,i

 ≤√dβ2 ∥v0∥+
2β1(1 + β1)2

(1− β1)
2
(1− β2)

L2
1η

2d2CN +

√
2 (1− β2)

β1
(1 + β1)

t∑
τ=1

β
t−τ
2

2 E [∥∇iFµ(θτ−1)∥]

+

√
2 (1 + β1) (1− β2)

β2 − β2
1

(1− β1)

t∑
τ=1

√
βt+1−τ
2 − β

2(t+1−τ)
1

√
Var

(
∇̂F (θτ−1)

)
,

(53)
where we apply the following inequality by Jensen’s inequality:

E

∥∥∥∥∥∥∇̂f(θτ−1; ξτ )−
1

min (N, τ)

min(N,τ)∑
n=1

∇Fµ(θτ−n)

∥∥∥∥∥∥
 ≤

√√√√√√E


∥∥∥∥∥∥∇̂f(θτ−1; ξτ )−

1

min (N, τ)

min(N,τ)∑
n=1

∇Fµ(θτ−n)

∥∥∥∥∥∥
2


=

√
Var

(
∇̂F (θτ−1)

)
,

(54)
where the definition of Var

(
∇̂F (θτ−1)

)
comes from Thm. B.4.

Considering the average over all iterations t, we have:

1

T

T∑
t=1

E


√√√√ d∑

i

vt,i

 ≤√dβ2 ∥v0∥+
2β1(1 + β1)2

(1− β1)
2
(1− β2)

L2
1η

2d2CN

+

√
2 (1 + β1) (1− β2)

β2 − β2
1

(1− β1)
1

T

T∑
t=1

t∑
τ=1

√
βt+1−τ
2 − β

2(t+1−τ)
1

√
Var

(
∇̂F (θτ−1)

)

+

√
2 (1− β2)

β1
(1 + β1)

1

T

T∑
t=1

t∑
τ=1

β
t−τ
2

2 E [∥∇Fµ(θτ−1)∥] .

(55)

The second and third terms in (55) contain double geometric series summations over τ and t. For the second term in (55),
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we have:
1

T

T∑
t=1

t∑
τ=1

√(
βt+1−τ
2 − β

2(t+1−τ)
1

)√
Var

(
∇̂F (θτ−1)

)
(a)

≤ 1

T

T∑
t=1

t∑
τ=1

(
β

t+1−τ
2

2 − βt+1−τ
1

)√
Var

(
∇̂F (θτ−1)

)
(b)

≤ 1

T

T∑
t=1

t∑
τ=1

β
t+1−τ

2
2

√
Var

(
∇̂F (θτ−1)

)
(c)
=

1

T

T∑
τ=1

T∑
t=τ

β
t+1−τ

2
2

√
Var

(
∇̂F (θτ−1)

)

=
1

T

T∑
t=1

√
β2 −

√
β2+T−t
2

1−
√
β2

√
Var

(
∇̂F (θt−1)

)
(d)

≤
√
β2

1− β2

1

T

T∑
t=1

√
Var

(
∇̂F (θt−1)

)
(e)

≤
√
β2

1− β2

√
V +

L2
0η

2d (N2 − 1)

3 (1− β2)N2Kµ2

(f)

≤
√
β2

1− β2

(
√
V +

√
L2
0η

2d (N2 − 1)

3 (1− β2)N2Kµ2

)
,

(56)

where (a), (f) results from
√∑

i ai ≤
∑

i

√
ai, (b), (d) comes from 0 ≤ β2

1 ≤ β2 ≤ 1, and (e) is due to (34) in Appx.

C.6 and V ≜
σ2
ξ+σ2

µ

NKµ2 . In step (c) we exchange the order of summation over t and τ .

For the third term in (55), we have:

1

T

T∑
t=1

t∑
τ=1

β
t−τ
2

2 E [∥∇Fµ(θτ−1)∥]
(a)
=

1

T

T∑
τ=1

T∑
t=τ

β
t−τ
2

2 E [∥∇Fµ(θτ−1)∥] =
1

T

T∑
t=1

1− β
1+T−t

2
2

1−
√
β2

E [∥∇Fµ(θt−1)∥]

(b)

≤ 1

1− β2

1

T

T∑
t=1

E [∥∇Fµ(θt−1)∥] ,

(57)

where (b) is due to the fact that β2 < 1. In step (a), we change the summation order over t and τ .

Therefore, (55) can be rewritten as:

1

T

T∑
t=1

E


√√√√ d∑

i

vt,i

 ≤√dβ2 ∥v0∥+
2β1(1 + β1)2

(1− β1)
2
(1− β2)

L2
1η

2d2CN

+

√
2 (1 + β1) (1− β2)

β2 − β2
1

(1− β1)

(
√
V +

√
L2
0η

2d (N2 − 1)

3 (1− β2)N2Kµ2

)

+

√
2

β1 (1− β2)
(1 + β1)

1

T

T∑
t=1

E [∥∇Fµ(θt−1)∥]

=Ξ +

√
2

β1 (1− β2)
(1 + β1)

1

T

T∑
t=1

E [∥∇Fµ(θt−1)∥] ,

(58)

where we let Ξ ≜ B1 +

√
2(1+β1)(1−β1)

2β2

(β2−β2
1)(1−β2)

V and B1 ≜
√
dβ2 ∥v0∥+ 2β1(1+β1)2

(1−β1)
2(1−β2)

L2
1η

2d2CN +√
2(1+β1)(1−β1)

2β2L2
0η

2d(N2−1)

3(β2−β2
1)(1−β2)

2N2Kµ2
.
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Therefore, we can bound Term I as follows:

1

T

T∑
t=1

E
[√

β2∥vt∥+ ζ
] (a)

≤ 1

T

T∑
t=1

E


√√√√β2

d∑
i

vt,i + ζ

 (b)

≤ 1

T

T∑
t=1

√ζ +
√
β2E


√√√√ d∑

i

vt,i


(c)

≤
√
ζ + Ξ+

√
2

β1 (1− β2)
(1 + β1)

1

T

T∑
t=1

E [∥∇Fµ(θt−1)∥] ,

(59)

where (a) and (b) are obtained by
√∑

i ai ≤
∑

i

√
ai, and (c) is due to (58) and β2 ≤ 1.

Calculation of Term II. Following a similar approach as in (Shu et al., 2025b), we first introduce the following auxiliary
variable:

xt ≜
θt − β1/

√
β2θt−1

1− β1/
√
β2

=
θt − κθt−1

1− κ
, (60)

where κ ≜ β1/
√
β2.

Based on the definition of xt, the following relationships hold:

xt+1 − xt =
θt+1 − θt − κ (θt − θt−1)

1− κ
=

1

1− κ

(
− ηmt+1√

vt+1 + ζ
+ κ

ηmt√
vt + ζ

)
, (61)

and,

xt − θt =
κ

1− κ
(θt − θt−1) = −

κ

1− κ

ηmt√
vt + ζ

. (62)

Starting from Lemma C.1:

Fµ(xt+1)− Fµ(xt) ≤ ⟨∇Fµ(xt),xt+1 − xt⟩+
L1

2

√
d∥xt+1 − xt∥2 . (63)

Firstly, we focus on iteration t and calculate the conditional expectation E [· · · |Ft] of (63), where Ft denotes all stochatsics
up to t. After that:

E [Fµ(xt+1)− Fµ(xt)|Ft] ≤ E [⟨∇Fµ(xt),xt+1 − xt⟩ |Ft] +
L1

2

√
dE
[
∥xt+1 − xt∥2|Ft

]
=E [⟨∇Fµ(θt),xt+1 − xt⟩ |Ft] + E [⟨∇Fµ(xt)−∇Fµ(θt),xt+1 − xt⟩ |Ft]︸ ︷︷ ︸

4⃝

+
L1

2

√
dE
[
∥xt+1 − xt∥2|Ft

]
︸ ︷︷ ︸

5⃝

.
(64)
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With the help of (61), the first term of (64) can be separated as below:

E [⟨∇Fµ(θt),xt+1 − xt⟩ |Ft] = E

[〈
∇Fµ(θt),

1

1− κ

(
− ηmt+1√

vt+1 + ζ
+ κ

ηmt√
vt + ζ

)〉∣∣∣∣∣Ft

]

=
1

1− κ
E

[〈
∇Fµ(θt),−

ηmt+1√
β2vt + ζ

+ β1
ηmt√
β2vt + ζ

− ηmt+1√
vt+1 + ζ

+
ηmt+1√
β2vt + ζ

〉∣∣∣∣∣Ft

]

+
1

1− κ
E

[〈
∇Fµ(θt), β1

(
ηmt√

β2vt + β2ζ
− ηmt√

β2vt + ζ

)〉 ∣∣∣∣∣Ft

]

=
1− β1

1− κ
ηE

[〈
∇Fµ(θt),−

∇̂f(θt; ξt+1)√
β2vt + ζ

〉∣∣∣∣∣Ft

]
︸ ︷︷ ︸

1⃝

+
1

1− κ
ηE

[〈
∇Fµ(θt),mt+1

(
1√

β2vt + ζ
− 1√

vt+1 + ζ

)〉∣∣∣∣∣Ft

]
︸ ︷︷ ︸

2⃝

+
β1

1− κ
ηE

[〈
∇Fµ(θt),mt

(
1√

β2vt + β2ζ
− 1√

β2vt + ζ

)〉 ∣∣∣∣∣Ft

]
︸ ︷︷ ︸

3⃝

.

(65)

Thereafter, we would bound term 1⃝, 2⃝, 3⃝, 4⃝ and 5⃝ one by one.

For the term 1⃝:

1⃝ =
1− β1

1− κ
ηE

[〈
∇Fµ(θt),−

∇̂f(θt; ξt+1)√
β2vt + ζ

〉∣∣∣∣∣Ft

]

=− 1− β1

1− κ
η

d∑
i

∇iFµ(θt)
E
[
∇̂if(θt; ξt+1)

∣∣∣Ft

]
√
β2vt,i + ζ

=− 1− β1

1− κ
η

d∑
i

(
|∇iFµ(θt)|2√
β2vt,i + ζ

+
∇iFµ(θt)√
β2vt,i + ζ

E
[
∇̂if(θt; ξt+1)−∇iFµ(θt)

∣∣∣Ft

])
.

(66)

If we assume that the gradient of Fµ is bounded, i.e. |∇iFµ(θt)| ≤ Gµ, we can simplify 66 as follows:

1⃝ ≤ −
1− β1

1− κ
η

d∑
i

|∇iFµ(θt)|2√
β2vt,i + ζ

+
(1− β1)Gµ

(1− κ)
√
ζ
η

d∑
i

E
[∣∣∣∇̂if(θt; ξt+1)−∇iFµ(θt)

∣∣∣ ∣∣Ft

]
, (67)

where we utilize
√
β2vt,i + ζ ≤

√
ζ and a ≤ |a| for simplicity.

Now turn to the calculation of term 2⃝. Note that:

1√
β2vt,i + ζ

− 1√
vt+1,i + ζ

=

√
vt+1,i + ζ −

√
β2vt,i + ζ√

β2vt,i + ζ
√
vt+1,i + ζ

(a)
=

vt+1,i − β2vt,i√
β2vt,i + ζ

√
vt+1,i + ζ

(√
vt+1,i + ζ +

√
β2vt,i + ζ

)
=

(1− β2)m
2
t,i√

β2vt,i + ζ
√
vt+1,i + ζ

(√
vt+1,i + ζ +

√
β2vt,i + ζ

) ,

(68)

where in step (a), we multiply
(√

vt+1,i + ζ +
√
β2vt,i + ζ

)
in both the numerator and denominator.
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Therefore, we can rewrite the term 2⃝ as:

2⃝ =
1

1− κ
η

d∑
i

E

[〈
∇iFµ(θt),mt+1,i

(
1√

β2vt,i + ζ
− 1√

vt+1,i + ζ

)〉∣∣∣∣∣Ft

]
(a)
=

1

1− κ
η

d∑
i

E

[〈
∇iFµ(θt),mt+1,i

(1− β2)m
2
t,i√

β2vt,i + ζ
√

vt+1,i + ζ
(√

vt+1,i + ζ +
√
β2vt,i + ζ

)〉 ∣∣∣∣∣Ft

]
(b)

≤ 1

1− κ
η

d∑
i

E

[
|∇iFµ(θt)|

(1− β2)m
2
t,i |mt+1,i|√

β2vt,i + ζ
√
vt+1,i + ζ

(√
vt+1,i + ζ +

√
β2vt,i + ζ

) ∣∣∣∣∣Ft

]
(c)

≤ 1

1− κ
η

d∑
i

E

[
|∇iFµ(θt)|

√
1− β2m

2
t,i√

β2vt,i + ζ
(√

vt+1,i + ζ +
√
β2vt,i + ζ

) ∣∣∣∣∣Ft

]

=
1

1− κ
η

d∑
i

1√
β2vt,i + ζ

|∇iFµ(θt)|E

[ √
1− β2m

2
t,i√

vt+1,i + ζ +
√
β2vt,i + ζ

∣∣∣∣∣Ft

]
(d)

≤ 1

1− κ
η

d∑
i

1√
β2vt,i + ζ

 |∇iFµ(θt)|2

2γ0
+

γ0
2

(
E

[ √
1− β2m

2
t,i√

vt+1,i + ζ +
√
β2vt,i + ζ

∣∣∣∣∣Ft

])2


(e)

≤ 1

1− κ
η

d∑
i

(
1

2γ0

|∇iFµ(θt)|2√
β2vt,i + ζ

+
γ0E

[
m2

t,i|Ft

]
2
√
β2vt,i + ζ

E

[ √
1− β2m

2
t,i(√

vt+1,i + ζ +
√
β2vt,i + ζ

)2
∣∣∣∣∣Ft

])
,

(69)

where (a) comes from (68), (b) is due to Cauchy-Schwarz inequality, (c) is due to the fact that |ms,i|√
vs,i+ζ

≤ 1√
1−β2

, (d)

is obtained by ab ≤ 1
γ0
a2 + γ0

2 b2 for any positive number γ0, and (e) results from the Hölder’s inequality E[|ab|] ≤(
E
[
|a|2

]) 1
2
(
E
[
|b|2
]) 1

2 .

Taking the Cauchy-Schwarz inequality and Assump. B.1 into account, the term E
[
m2

t,i|Ft

]
can be bounded by:

∣∣∣∇̂if(θ; ξ)
∣∣∣ ≤ d

NK

N,K∑
n,k

∣∣∣∣f (θ + µuk; ξ)− bt
µ

∣∣∣∣ |uk,i| ≤
2Cd

µ
, (70)

|mt+1,i| =

∣∣∣∣∣(1− β1)

t∑
τ=1

βt−τ
1 ∇̂if(θτ−1; ξτ )

∣∣∣∣∣ ≤ (1− β1)

t∑
τ=1

βt−τ
1

∣∣∣∇̂if(θτ−1; ξτ )
∣∣∣ ≤ 2Cd

µ
. (71)

Besides:

E

[ √
1− β2m

2
t,i√

β2vt,i + ζ
(√

vt+1,i + ζ +
√
β2vt,i + ζ

)2
∣∣∣∣∣Ft

]
(a)

≤E

[
vt+1,i + ζ − (β2vt,i + ζ)√

vt+1,i + ζ
√
β2vt,i + ζ

(√
vt+1,i + ζ +

√
β2vt,i + ζ

) ∣∣∣∣∣Ft

]

=E

[
1√

β2vt,i + ζ
− 1√

vt+1,i + ζ

∣∣∣∣∣Ft

]
.

(72)

where in step (a) we apply
(√

vt+1,i + ζ +
√
β2vt,i + ζ

)
≤
√

vt+1,i + ζ.

Hence, substituting (71), (72) into (69):

2⃝ ≤
1

1− κ
η

d∑
i

(
1

2γ0

|∇iFµ(θt)|2√
β2vt,i + ζ

+
γ0
2

4C2d2

µ
E

[
1√

β2vt,i + ζ
− 1√

vt+1,i + ζ

∣∣∣∣∣Ft

])

=
1− β1

4 (1− κ)
η

d∑
i

|∇iFµ(θt)|2√
β2vt,i + ζ

+
4C2d2

(1− β1) (1− κ)µ2
η

d∑
i

E

[
1√

β2vt,i + ζ
− 1√

vt+1,i + ζ

∣∣∣∣∣Ft

]
,

(73)
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where we let γ0 = 2
1−β1

in the last step.

Next, the term 3⃝ can be bounded as below:

3⃝ =
β1

1− κ
η

d∑
i

∇iFµ(θt)mt,i

(
1√

β2vt,i + β2ζ
− 1√

β2vt,i + ζ

)
(a)

≤ β1

1− κ
η

d∑
i

|∇iFµ(θt)| |mt,i|

∣∣∣∣∣ 1√
β2vt,i + β2ζ

− 1√
β2vt,i + ζ

∣∣∣∣∣
=

β1

1− κ
η

d∑
i

|∇iFµ(θt)| |mt,i|

∣∣∣∣∣ (1− β2) ζ√
β2vt,i + β2ζ

√
β2vt,i + ζ

(√
β2vt,i + β2ζ +

√
β2vt,i + ζ

) ∣∣∣∣∣
(b)

≤ β1

1− κ
η

d∑
i

1√
β2vt,i + ζ

|∇iFµ(θt)|

∣∣∣∣∣
√
1− β2ζ√

β2

(√
β2vt,i + β2ζ +

√
β2vt,i + ζ

) ∣∣∣∣∣
(c)

≤ β1

1− κ
η

d∑
i

(
|∇iFµ(θt)|2

2γ1
√

β2vt,i + ζ
+

γ1 (1− β2) ζ
2

2β2

√
β2vt,i + ζ

(√
β2vt,i + β2ζ +

√
β2vt,i + ζ

)2
)

(d)

≤ β1

1− κ
η

d∑
i

(
|∇iFµ(θt)|2

2γ1
√

β2vt,i + ζ
+

γ1 (1− β2)
√
ζ

8β2
2

)

=
1− β1

4 (1− κ)
η

d∑
i

|∇iFµ(θt)|2√
β2vt,i + ζ

+
β2
1 (1− β2)

4β2
2 (1− β1) (1− κ)

ηd
√
ζ

(e)

≤ 1− β1

4 (1− κ)
η

d∑
i

|∇iFµ(θt)|2√
β2vt,i + ζ

+
β2
1 (1− β2)

(1− β1) (1− κ)
ηd
√
ζ ,

(74)

where (a) comes from Cauchy-Schwarz inequality, (b) results from the fact that
m2

t,i

vt,i+ζ ≤
1

1−β2
, (c) is because of

ab ≤ 1
2 (a

2 + b2), and (d) is due to
√

vt,i + ζ ≤
√
ζ. In step (e), we assume 2β2 ≥ 1 and let γ1 = 2β1

1−β1
.

Term 4⃝ is bounded as below:

4⃝ =

d∑
i

E [(∇iFµ(xt)−∇iFµ(θt)) (xt+1,i − xt,i)]

(a)

≤ 1

1− κ

d∑
i

E [|∇iFµ(xt)−∇iFµ(θt)| |θt+1,i − θt,i − κ (θt,i − θt−1,i)| |Ft]

(b)

≤ κ

(1− κ)
2L1

d∑
i

E [∥θt − θt−1∥ |θt+1,i − θt,i − κ (θt,i − θt−1,i)| |Ft]

(c)

≤ κ

(1− κ)
2L1

d∑
i

E [∥θt − θt−1∥ |θt+1,i − θt,i|+ κ ∥θt − θt−1∥ |θt,i − θt−1,i| |Ft]

(d)

≤ κ

2 (1− κ)
2

√
dL1η

2
d∑
i

(
(1 + 2κ)

m2
t,i

vt,i + ζ
+ E

[
m2

t+1,i

vt+1,i + ζ

∣∣∣∣∣Ft

])
(e)

≤ 1

2 (1− κ)
2

√
dL1η

2
d∑
i

(
3

m2
t,i

vt,i + ζ
+ E

[
m2

t+1,i

vt+1,i + ζ

∣∣∣∣∣Ft

])
,

(75)

where (a) is due to (61) and Cauchy-Schwarz inequality, (b) is due to Lemma C.1, (c) comes from the fact that |a− b| ≤
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|a|+ |b|, and in step (e) we assume κ ≤ 1. In step (d), we apply the following inequality by ab ≤ a2

2
√
d
+

√
db2

2 :

d∑
i

(∥θt − θt−1∥ |θt+1,i − θt,i|+ κ ∥θt − θt−1∥ |θt,i − θt−1,i|)

≤
d∑
i

(
∥θt − θt−1∥2

2
√
d

+

√
d |θt+1,i − θt,i|2

2
+ κ

(
∥θt − θt−1∥2

2
√
d

+

√
d |θt,i − θt−1,i|2

2

))

=

√
d

2

(
(1 + 2κ) ∥θt − θt−1∥2 + ∥θt+1 − θt∥2

)
.

(76)

Finally, with the help of (61), the term 5⃝ is bounded as below:

5⃝ =
1

2 (1− κ)
2

√
dL1

d∑
i

E
[
|θt+1,i − θt,i − κ (θt,i − θt−1,i)|2

∣∣∣Ft

]
(a)

≤ 1

(1− κ)
2

√
dL1

d∑
i

E
[
|θt+1,i − θt,i|2 + κ2 |θt,i − θt−1,i|

∣∣∣Ft

]
=

1

(1− κ)
2

√
dL1η

2
d∑
i

(
E

[
m2

t+1,i

vt+1,i + ζ

∣∣∣∣∣Ft

]
+ κ2

m2
t,i

vt,i + ζ

)
(b)

≤ 1

(1− κ)
2

√
dL1η

2
d∑
i

(
E

[
m2

t+1,i

vt+1,i + ζ

∣∣∣∣∣Ft

]
+

m2
t,i

vt,i + ζ

)
,

(77)

where (a) results from the inequality (a− b)
2 ≤ 2a2 + 2b2, and in step (b), we assume κ ≤ 1.

Gathering the results of (66), (73), (74), (75) and (77), (64) can be bounded as below:

E [Fµ(xt+1)− Fµ(xt)|Ft] ≤ −
1− β1

2 (1− κ)
η

d∑
i

|∇iFµ(θt)|2√
β2vt,i + ζ

+
β2
1 (1− β2)

(1− β1) (1− κ)
ηd
√
ζ

+
4ηC2d3

(1− β1) (1− κ)µ2

d∑
i

E

[
1√

β2vt,i + ζ
− 1√

vt+1,i + ζ

∣∣∣∣∣Ft

]

+
5L1

√
d

2 (1− κ)
2 η

2
d∑
i

m2
t,i

vt,i + ζ
+

3L1

√
d

2 (1− κ)
2 η

2
d∑
i

E

[
m2

t+1,i

vt+1,i + ζ

∣∣∣∣∣Ft

]

+
(1− β1)Gµ

(1− κ)
√
ζ
η

d∑
i

E
[∣∣∣∇̂if(θt; ξt+1)−∇iFµ(θt)

∣∣∣ ∣∣Ft

]
.

(78)

Considering the summation of (78) over all iterations t from 0 to T − 1:

LHS =

T−1∑
t=0

E [Fµ(xt+1)− Fµ(xt)] = E [Fµ(xT )]− Fµ(x0) ≜ −∆ , (79)

RHS
(a)

≤ − 1− β1

2 (1− κ)
η

T−1∑
t=0

d∑
i

|∇iFµ(θt)|2√
β2vt,i + ζ

+
β2
1 (1− β2)

(1− β1) (1− κ)
Td
√
ζ

+
4C2d3

(1− β1) (1− κ)µ2

(
1√
ζ
+

T (1− β2)√
ζ

)
+

(1− β1)

2 (1− κ)
ηTG

+
4L1

√
d

(1− κ)
2 η

2
d∑
i

(
1

1− β2
ln

(
βT
2 v0,i + 4C2d2/µ2

v0,i

)
+ 2T

)
,

(80)
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where G ≜ 2Gµ√
ζ

√
d
(
V +

L2
0η

2d(N2−1)
3(1−β2)N2Kµ2 +

L2
1η

2d2(N−1)
2(1−β2)

)
is a constant number. In step (a), we apply the following three

inequalities. The first one is:

T∑
t=0

d∑
i

E

[
1√

β2vt,i + ζ
− 1√

vt+1,i + ζ

]

=

d∑
i

(
1√

β2v0,i + ζ
+

T−2∑
t=0

E

[
1√

β2vt+1,i + ζ
− 1√

vt+1,i + ζ

]
− E

[
1√

vT,i + ζ

])

≤
d∑
i

(
1√
ζ
+

T−2∑
t=0

E

[
1√

β2vt+1,i + ζ
− 1√

vt+1,i + ζ

])

=

d∑
i

(
1√
ζ
+

T−2∑
t=0

E

[
(1− β2)vt+1,i√

β2vt+1,i + ζ
√
vt+1,i + ζ

(√
β2vt+1,i + ζ +

√
vt+1,i + ζ

)])

≤
d∑
i

(
1√
ζ
+

1− β2√
ζ

T

)
.

(81)

The second one is:

T−1∑
t=0

(1− β2)m
2
t,i

vt,i + ζ
=

T−1∑
t=0

(1−β2)m
2
t,i

vt,i−(1−β2)m2
t,i

1 +
(1−β2)m2

t,i

vt,i−(1−β2)m2
t,i

≤
T−1∑
t=0

ln

(
1 +

(1− β2)m
2
t,i

vt,i − (1− β2)m2
t,i

)

=

T−1∑
t=0

ln

(
vt,i

β2vt−1,i

)
= ln

(
vT,i

v0,i

)
− T lnβ2 ,

(82)

where we utilize ln(1 + a) ≤ a.

And the last one is:

T−1∑
t=0

d∑
i

E
[∣∣∣∇̂if(θt; ξt+1)−∇iFµ(θt)

∣∣∣] (a)

≤
√
d

T−1∑
t=0

E
[∥∥∥∇̂f(θt; ξt+1)−∇Fµ(θt)

∥∥∥]
(b)

≤
√
d

T−1∑
t=0

√
E
[∥∥∥∇̂f(θt; ξt+1)−∇Fµ(θt)

∥∥∥2] (c)

≤ T

√
d

(
V +

L2
0η

2d (N2 − 1)

3 (1− β2)N2Kµ2
+

L2
1η

2d2 (N − 1)

2 (1− β2)

)
,

(83)

where (a) comes from Cauchy-Schwarz inequality, (b) is due to Jensen’s inequality, and (c) comes from Thm. B.5.

Reorganizing (80), we can derive:

1

T

T−1∑
t=0

d∑
i

|∇iFµ(θt)|2√
β2vt,i + ζ

≤ 8C2d3

(1− β1)
2
µ2ηT

(
1√
ζ
+

T (1− β2)√
ζ

)
+

β2
1 (1− β2)

(1− β1)
2 d
√
ζ

+
2 (1− κ)

(1− β1) ηT
∆+

8L1

√
d

(1− β1) (1− κ)T
η

d∑
i

(
1

1− β2
ln

(
βT
2 v0,i + 4C2d2/µ2

v0,i

)
+ 2T

)
+G .

(84)

To simplify the equation, we choose 1 − β2 = min
(

(1−β1)
2µ2η

√
ζϵ2

64C2d3 , (1−β1)
2ϵ2

4β2
1d

√
ζ

)
∼ O

(
ϵ2
)
, T =

max
(

64C2d3

(1−β1)
2µ2η

√
ζηϵ2

, 8(1−κ)
(1−β1)ηϵ2

, 64L1

√
dη

(1−β1)(1−κ)(1−β2)ϵ2

∑d
i ln

(
βT
2 v0,i+4C2d2/µ2

v0,i

))
∼ O

(
ϵ−4
)
, η = (1−β1)(1−κ)ϵ2

128L1d3/2 ∼
O
(
ϵ2
)
, and then have:

1

T

T−1∑
t=0

∥∇Fµ(θt)∥2√
β2 ∥vt∥+ ζ

≤ 1

T

T−1∑
t=0

d∑
i

|∇iFµ(θt)|2√
β2vt,i + ζ

≤ 1

4
ϵ2 +

1

4
ϵ2 +

1

4
ϵ2 +

1

4
ϵ2 +G ≤ ϵ2 +G . (85)
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Overall, inserting the results of term I (55) and term II (85) into (50):(
1

T

T−1∑
t=0

E [∥∇Fµ(θt)∥]

)2

≤

(√
ζ + Ξ+

√
2

β1 (1− β2)
(1 + β1)

1

T

T∑
t=1

E [∥∇Fµ(θt−1)∥]

)(
ϵ2 +G

)
, (86)

which is actually a quadratic inequality. After solving the root of the quadratic equation, we obtain:

1

T

T−1∑
t=0

E [∥∇Fµ(θt)∥] ≤

√
2

β1 (1− β2)
(1 + β1)

(
ϵ2 +G

)
+
(

4
√
ζ +
√
Ξ
)√

ϵ2 +G

≤

√
2

β1 (1− β2)
(1 + β1)

(
ϵ2 +G

)
+
(

4
√
ζ +
√
Ξ
)(

ϵ+
√
G
)

≤

√
2

β1 (1− β2)
(1 + β1) ϵ

2 +
(

4
√
ζ +
√
Ξ
)
ϵ+B2 ,

(87)

where B2 ≜
√

2
β1(1−β2)

(1 + β1)G+
(

4
√
ζ +
√
Ξ
)√

G.

To derive the convergence guarantee of F (θt), we introduce the bias between Fµ(θt) and F (θt), which is defined as:

E [∥∇F (θ)−∇Fµ(θ)∥]
(a)
=E [∥Eu [∇F (θ)−∇F (θ + µu)]∥]

(b)

≤ E [∥∇F (θ)−∇F (θ + µu)∥]
(c)

≤
√
dL1E [∥µu∥] (d)= µL1

√
d ,

(88)

where (a) comes from the definition of Fµ (3), (b) results from Jensen’s inequility, (c) is due to Assump. B.1, and (d)
follows from the fact that u ∼ Unif(Sd−1) and hence ∥u∥ = 1.

Afterthat, we can bound the convergence of F (θt) as below:

1

T

T−1∑
t=0

E [∥∇F (θt)∥] ≤
1

T

T−1∑
t=0

E [∥∇Fµ(θt)∥] +
1

T

T−1∑
t=0

E [∥∇Fµ(θt)−∇F (θt)∥]

≤

√
2

β1 (1− β2)
(1 + β1) ϵ

2 +
(

4
√
ζ +
√
Ξ
)
ϵ+ µL1

√
d+B2 ,

(89)

which completes the proof.

D. Experiments Setup
In this section, we first introduce the baselines used in our experiments (Sec. D.1), and then we provide experimental details
on synthetic functions (Sec. D.2), black-box adversarial attack (Sec. D.3), and memory-efficient LLM fine-tuning (Sec.
D.4).

D.1. Baselines

First of all, we claims that our experiments compare only the differing gradient estimation methods among all baselines and
ZoAR. Consequently, all baselines and ZoAR share the same update rule, such as ZO-AdaMM andR-AdaZO. Below, we
introduce the three baselines used in our study.

• Vanilla ZOO. This zeroth-order optimization algorithm employs the gradient estimator in (2). When paired with the
Adam update rule, it is denoted ZO-AdaMM (Chen et al., 2019); when paired with theR-AdaZO update rule, it is referred
to asR-AdaZO (Shu et al., 2025b).

• ReLIZO (Wang et al., 2024). ReLIZO is zeroth-order gradient estimation algorithm, which reuses queries from previous
iterations through a quadratically constrained linear program, and effectively decouples sample size from variable
dimension.
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• ZOO with HiStorical gradient (ZoHS). On the basis of the Vanilla ZOO framework, ZoHS integrates historical
gradient information into the gradient estimation procedure. Specifically, the gradeint estimator for ZoHS is formally
defined as:

∇̂ZoHSF (θt−1) ≜
1

N

N∑
n=1

∇̂F (θt−n) , (90)

where ∇̂F (θt−n) is the gradient estimator of Vanilla ZOO at iteration t− n.

D.2. Synthetic Functions

All experiments are conducted in d = 10000 dimensions and run for T = 20000 iterations. For a fair comparison, all
experiments share the same initialization and hyperparameters: the step size η = 0.001, the number of queries K = 10, the
smoothing radius parameter µ = 0.05, and the number of histories N = 6. The analytical forms of the synthetic functions
used in our experiments are as follows:

• Ackley Function:

f(θ) = −20 exp

−0.2
√√√√1

d

D∑
i=1

θ2i

− exp

(
1

d

d∑
i=1

cos(2πθi)

)
+ 20 + e . (91)

• Levy Function:

f(θ) = sin2(πw1) +

d−1∑
i=1

(wi − 1)
2 [

1 + 10 sin2(πwi + 1)
]
+ (wd − 1)

2 [
1 + sin2(2πwd)

]
, (92)

where wi = 1 + θi−1
4 .

• Quadratic Function:

f(θ) =
1

2

d∑
i=1

θ2i . (93)

• Rosenbrock Function:

f(θ) =

d−1∑
i=1

[
100(θi+1 − θ2i )

2 + (1− θi)
2
]
. (94)

Note that all four functions have the same optimal solution of zero.

D.3. Black-box Adversarial Attack

For the black-box adversarial attack, we use the same model as in (Wang et al., 2024): a simple two-layer CNN trained
on the MNIST dataset. To ensure a fair comparison, all experiments utilize the same initialization and the following
hyperparameters: step size η = 0.01, number of queries K = 2, smoothing parameter µ = 0.5, and number of histories
N = 6.

D.4. Memory-Efficient LLM Fine-Tuning

For the memory-efficient fine-tuning of large language models, we select OPT-1.3B and OPT-13B (Zhang et al., 2022) as
the pretrained models, and fine-tune them with LoRA adapters on the SST-2 and COPA datasets from the GLUE benchmark
(Wang et al., 2019). All experiments are conducted using the same initialization and hyperparameters: step size η = 0.00005,
number of queries K = 2, smoothing parameter µ = 0.01, and history lengths N = {15, 50}. The batch size is fixed at 16
for both datasets.
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Figure 2. Equivalence of ZOO and REINFORCE with two different baselines. The y-axis denotes the gap between the current function
value and the optimal function value. The green curves denote to the average baseline defined in (12), while the red curves denote to the
single-point baseline bt = f(θt−1; ξ). All curves are averaged over 5 independent runs.
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Figure 3. Comparison of convergence among different zeroth-order optimization algorithms on four synthetic functions under R-AdaZO
setting. The x-axis denotes the number of iterations, and the y-axis denotes the gap between the current function value and the optimal
function value, i.e. F (θ)−minθ′ F (θ′). All curves are averaged over 5 independent runs.

E. Additional Experiments
E.1. The Equivalence between ZOO and REINFORCE

To empirically validate our core theoretical finding that the Gaussian-smoothed ZOO shares the same convergence as the
single-step REINFORCE with baseline (Cor. 3.4), we conduct comparison on four synthetic functions. Fig. 2 illustrates
these comparisons using two baselines: the standard ZOO single-point baseline (bt = f(θt−1; ξ), red curves) and an
averaged baseline (green curves) proposed for ZoAR in (12). The results in Fig. 2 clearly deliver two key points. First,
for any given baseline strategy (either single-point or averaged), the convergence trajectories of ZOO and REINFORCE
are virtually indistinguishable across all four synthetic functions. This provides strong numerical evidence supporting
our theoretical equivalence. Second, the averaged baseline (green curves) consistently and significantly outperforms the
single-point baseline (red curves) for both ZOO and REINFORCE. This manifests as faster convergence and a lower final
optimality gap, underscoring the effectiveness of the PO-inspired averaged baseline in reducing variance and improving
optimization performance, a central premise of our ZoAR.

E.2. Synthetic Functions Optimization underR-AdaZO

Consistent with the experiments in Section 5.1, we further conducted evaluations on four synthetic functions—Ackley,
Levy, Quadratic, and Rosenbrock—utilizing the R-AdaZO update rule. The results are presented in Figure 3. Notably,
the performance of Vanilla ZOO and ZoHS is highly similar, which indicates that ZoHS does not confer any additional
advantage within the R-AdaZO setting. Furthermore, the performance of ZoAR w/ and w/o historical information is
closely comparable, suggesting that ZoAR w/o history is sufficiently effective for practical application under theR-AdaZO
framework.
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Figure 4. Training loss comparison between Vanilla ZOO and ZoAR for the LLM fine-tuning under different model sizes on SST2 and
Copa datasets. Each curve is averaged over 3 independent runs.

E.3. Memory-Efficient LLM Fine-Tuning

The pursuit of memory-efficient fine-tuning for large language models (LLMs) has recently incorporated zeroth-order
optimization techniques ((Malladi et al., 2023)). However, conventional zeroth-order optimization methods typically exhibit
increased variance in gradient estimation, which can adversely affect the convergence of LLM fine-tuning. To mitigate
this variance, ZoAR reuses historical information without incurring the additional cost of new queries. In this section, we
fine-tunes the OPT-1.3B and OPT-13B models on the SST2 and COPA datasets, respectively, employing the R-AdaZO
update rule (refer to D.4 for more details). ZoAR is compared against the vanilla Zeroth-Order Optimization (ZOO) method,
which served as the baseline. The results, presented in Figure 4, demonstrate that ZoAR outperforms the vanilla ZOO
method, particularly for the smaller OPT-1.3B model. Furthermore, the convergence rate of ZoAR incorporating historical
information surpasses that of the variant without historical information, suggesting the beneficial role of historical data in
LLM fine-tuning.

F. Limitations and Broader Impact
ZoAR is an excellent variance reduction ZOO method, which can not only reduce the memory cost, but also increase the
convergence rate. Therefore, ZoAR is suitable for many variance dominate tasks, especially for LLM fine-tuning. Besides,
ZoAR works well even with a large smoothing parameter µ = 0.01 or µ = 0.1, which is much larger than the commonly
used µ = 0.001 in Vanilla ZOO. This is because ZoAR reuses the queries to smooth the gradient estimation, which is
equivalent to using a smaller smoothing parameter µ. This suggests that ZoAR is suitable to some non-smoothness objective
function, such as quantized function in quantization aware training (QAT) field. Recent study (Zhou et al., 2025) have
combined the ZOO with QAT to avoid the inaccuracy occured by straight through estimator (STE). However, quantized
function is actually a multiple step function, where small smoothing parameter µ would not sufficiently change the quantized
function value, especially for ultra-low precision (such as FP4), and often leads to worse convergence. ZoAR would be a
good choice for ultra-low precision QAT, since it can use a large smoothing parameter µ to smooth the quantized function,
which is left for future work.

Besides, despite its effectiveness, ZoAR presents several limitations. First, similarly with some variance reduction
techniques, such as (Shu et al., 2025b), ZoAR reuse historical queries, which introduce additional bias (Thm. B.5),
potentially leading to inaccurate descent directions. However, the extra bias is proptotional to the length of the historical
gradient, and hence we can introduce linear schudule to dynamically adjust the history length, aiming to reduce or even
eliminate the bias. This can be left for future work. Moreover, ZoAR retrive the historical samples from random seed
storage, which may cost extra computation when history length is large. This can be solved by utilizing parallel computing
techniques or employing dynamic scheduling of history length to improve computational efficiency.
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