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Abstract—

Garment folding is a common yet challenging task in
robotic manipulation. The deformability of garments leads to
a vast state space and complex dynamics, which complicates
precise and fine-grained manipulation. In this paper, we
present MetaFold, a unified framework that disentangles task
planning from action prediction and learns each indepen-
dently to enhance model generalization. It employs language-
guided point cloud trajectory generation for task planning
and a low-level foundation model for action prediction.
This structure facilitates multi-category learning, enabling
the model to adapt flexibly to various user instructions and
folding tasks. We also construct a large-scale MetaFold
dataset comprising folding point cloud trajectories for a
total of 1210 garments across multiple categories, each
paired with corresponding language annotations. Extensive
experiments demonstrate the superiority of our proposed
framework. Supplementary materials are available on our
website: https://meta-fold.github.io/.

I. INTRODUCTION

Robotic manipulation of deformable objects—such as
clothing—remains challenging due to the high-dimensional
state space and complex, non-linear fabric dynamics [1],
[2]. Inspired by the human separation of high-level planning
(brain) from low-level execution (spinal cord), we decom-
pose garment folding into two stages: (1) state planning, by
predicting sequences of future point-cloud states during fold-
ing; and (2) action execution, by translating these planned
states into end-effector motions.

Predicting future states and actions from arbitrary initial
states introduces highly complex dynamics, posing signifi-
cant challenges to the learning process. By contrast, decom-
posing the task and focusing specifically on predicting gar-
ment states during the folding process simplifies the learning
process and further facilitates multi-category generalization,
benefiting from the strong capabilities of generative models.
Although accurately modeling full dynamics is challenging,
predicting state transitions for garment folding is compara-
tively feasible when action prediction is performed separately
and conditioned on these transitions.

Accurate prediction of future states in garment manipu-
lation requires an effective representation of garment con-
figurations. Point cloud trajectories fulfill this need by pro-
viding a comprehensive spatial model that captures any
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Fig. 1.  We present MetaFold, a unified framework capable of handling

diverse garments and a wide range of language instructions, enabling various
clothing folding tasks efficiently.

point in space and encodes temporal changes in object
states. Unlike methods that rely on fixed keypoints or
skeletal models—often tied to specific garments—our use
of point-cloud trajectories preserves complete spatial and
temporal information, enabling precise folding across diverse
clothing types. [3]-[8]. Additionally, employing generative
model to create point cloud trajectories facilitates multi-
category learning and generalization within a unified frame-
work, yielding robust performance across diverse garment
manipulation tasks. We also leverages language-conditioned
trajectory generation, enabling it to adapt dynamically to a
wide range of user-specified instructions.

To bridge planned trajectories with robot control, we inte-
grate a generative trajectory model with the ManiFoundation
model [9], which converts point-flow between successive
states into contact proposals and motion vectors. This capa-
bility allows us to disentangle robot action prediction from
the overall manipulation procedure, thereby reducing the
complexity of high-level and low-level modules. To enhance
model robustness, we propose a closed-loop framework that
integrates the point cloud trajectory generation model with
the ManiFoundation model for action prediction.

In summary, our main contributions are as follows:

o We propose MetaFold, a framework that integrates
a language-guided point cloud trajectory generation
model with an action prediction foundation model,
thereby facilitating multi-category garment folding.

« We developed the point cloud trajectory dataset for fold-



ing garments across multiple categories, accompanied
by corresponding language descriptions.

« We conduct extensive experiments demonstrating
MetaFold’s superior performance in folding accuracy
and language generalization.

II. FRAMEWORK

A. Language-Guided Trajectory Generation

1) Data Generation: Training a point-cloud trajectory
generation model requires a dataset. Since existing datasets
lack folding trajectories, we use ClothesNetM [10] and the
DiffClothAl simulator [11] to simulate deformable garments
and generate trajectories. Grasp and target points are chosen
heuristically, the grasp point follows a predefined curve,
and mesh vertices are extracted and downsampled to form
ground-truth point clouds, each annotated with a language
description. Our dataset comprises 3376 trajectories over
1210 garments (2664 for training; 712 for testing).

2) Conditional Point Cloud Trajectory Generation: We
model garment folding as point-cloud state transitions and
implement this “world model” with a CVAE [12] whose
encoder and decoder are Transformer blocks. Given an initial
point cloud P € RY*3 and a language instruction £, we
extract spatial features Fp € RV*128 via PointNet++ and
encode £ with LLaMA [13] , projecting it to an embedding
Fr € R1X128 These features condition the CVAE to learn
a latent distribution z, that, when sampled and combined
with spatial features, generates a sequence of future frames
T = {P}M, € RN*XMx3 We train with ground-truth
trajectories; at inference, we sample z and decode trajectories
one folding substage at a time (e.g., one sleeve), simplifying
the overall process while enabling the model to sequentially
address different tasks by precisely guiding each folding
stage.. Joint training across all garment categories lets the
model capture both shared and garment-specific folding
patterns, boosting cross-category generalization.

B. Closed-Loop Manipulation

Our framework employs a closed-loop manipulation strat-
egy that integrates point cloud acquisition, action prediction,
and feedback control to achieve robust garment folding.

1) Point Cloud Acquisition: In simulation, we extract
mesh vertices; in real settings, we capture RGB-D data,
segment with Segment Anything Model 2 (SAM?2) [14], and
downsample them to a dimension suitable for the trajectory
generation model and the ManiFoundation model [9].

2) ManiFoundation Model: We feed point-flow between
successive clouds into ManiFoundation to predict contact
and direction proposals, decoupling trajectory planning from
action prediction for modular training. We fine-tune it on
garment folding data with a contact synthesis loss to improve
point and force accuracy. To reduce seed variability, we
ensemble 160 runs, cluster predictions within ¢ distance, and
pick the modal contact point and force via their mean.

3) Feedback Control: Once ManiFoundation outputs an
action, the robot moves the garment, captures the updated
point cloud, and feeds it back into the trajectory generator.
This closed-loop control lets the system adapt to disturbances
and environmental changes.

III. EXPERIMENTS

We address three questions:
Q1: How does MetaFold perform on garment folding tasks?
Q2: How does disentangling planning and action compare
to end-to-end action prediction?
Q3: How well does MetaFold generalize to diverse language
instructions?

A. Simulation and Datasets

We use Isaac Sim [16] for accurate fabric dynamics.
Evaluation is on our MetaFold test split and zero-shot on
CLOTH3D [17]. We test about 500 distinct garments in total.

B. Metrics

« Rectangularity: Final area / bounding rectangle area.

« Area Ratio: Final area / initial area.

o Success Rate: The percentage of trials that satisfy the
thresholds for both Rectangularity and Area Ratio.

C. Baselines

e For Q1: UniGarmentManip [5] and GPT-Fabric [18].
« For Q2: 3D Diffusion Policy (DP3) [19].
o For Q3: L.D. (Deng et al. [15]).

D. Results and Analysis

Table I presents the results for garment folding tasks,
Table II shows the results for different language guidance
(1 higher is better; | lower is better).

UniGarmentManip’s reliance on demonstrations can lead
to geometric failures, and GPT-Fabric’s LLM-based key-
point selection is often inaccurate (Table I). MetaFold, which
is even zero-shot on CLOTH3D dataset, matches or out-
performs these baselines by producing neat, compact folds
across most metrics, demonstrating strong generalization
(Q1). Its modular separation of planning and execution
also surpasses end-to-end DP3 [19], better capturing folding
dynamics and enhancing robustness (Q2).

We test on seen (training) and unseen instructions. Table II
shows MetaFold outperforms L.D. (Deng et al. [15]) under
both settings, demonstrating strong language understanding
and generalization (Q3).

E. Real-World Experiments

We evaluated MetaFold on a uFactory xArm6 with xArm
Gripper and an overhead RealSense D435 (Fig. 1). Using
SAM2 [20] to segment the RGB image, we masked and
filtered the depth map to obtain the garment’s point cloud.
This point cloud drives our pipeline to predict folding states
and contact directions, which the robot executes sequentially.
Thanks to the small sim-to-real gap of point clouds, no
additional adaptation was needed. Quantitative outcomes (10
trials per garment) are in Table III.
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Fig. 2. Overview: The folding trajectory data for clothing is generated using heuristic methods in the DiffClothAl simulation environment, with language
descriptions subsequently added (Green). The trajectory generation model takes a point cloud from any given frame and a corresponding language
description as inputs to generate the subsequent trajectory (Orange). The generated trajectory is fed into the ManiFoundation model to estimate contact
points and force directions, enabling the robot to conduct garment folding actions. This process is then iteratively refined using a feedback loop (Blue).
TABLE I

SIMULATION RESULTS ON GARMENT FOLDING TASKS. UNIG STANDS FOR UNIGARMENTMANIP [5].

MetaFold Dataset Cloth3D
No-sleeve  Short-sleeve ~ Long-sleeve  Pants  No-sleeve  Short-sleeve  Long-sleeve  Pants
UniG 0.85 0.78 0.88 0.81 0.82 0.80 0.85 0.83
Rectangularity 1 DP3 0.85 0.82 0.86 0.88 0.80 0.76 0.78 0.79
swany 1 GPT-Fabric 078 0.78 0.77 0.66 0.81 0.78 0.80 0.83
Ours 0.87 0.83 0.85 0.86 0.82 0.80 0.83 0.83
UniG 0.48 0.34 0.34 0.34 0.47 0.43 0.34 0.28
Area Ratio | DP3 0.50 0.44 0.39 0.33 0.47 0.33 0.26 0.28
GPT-Fabric 0.48 0.45 0.47 0.44 0.54 0.46 0.47 0.50
Ours 0.45 0.33 0.24 0.26 0.47 0.33 0.25 0.27
UniG 0.71 0.69 0.90 0.77 0.77 0.42 0.71 0.91
Success Rate 1 DP3 0.73 0.66 0.37 0.94 0.71 0.70 0.82 0.85
GPT-Fabric 0.34 0.21 0.03 0.40 0.63 0.22 0.15 0.03
Ours 0.88 0.86 0.90 0.97 0.79 0.86 0.97 0.97

TABLE II TABLE III

DIFFERENT LANGUAGE-GUIDED FOLDING TASKS. L.D. STANDS FOR

[15]. ”SEEN” AND "UNSEEN” REFER TO THE INPUT INSTRUCTIONS.

REAL WORLD RESULTS FOR OUR FRAMEWORK

No-sleeve  Short-sleeve  Long-sleeve  Pants

MetaFold Dataset Cloth3D Rectangularity 1 0.94 0.91 0.87 0.85
Seen Unseen Seen  Unseen Area Ratio | 0.45 0.33 0.29 0.24
Success Rate 1 10/10 8/10 9/10 9/10
Rectangularity 1 LD. 0.78 0.78 0.81 0.81
Ours 0.85 0.80 0.83 0.81
. LD. 036 0.37 0.39 0.40 folding tasks guided by user language instructions. This
Area Ratio | Ours 0.24 0.33 0.25 0.26 framework adopts a disentangled structure consisting of a
LD. 046 0.46 0.56 0.47 point cloud trajectory generation model and a low-level
Success Rate 1 Ours 0.90 0.63 0.97 0.93 action prediction model, utilizing closed-loop control for

IV. CONCLUSION

In this work, we propose a comprehensive framework,
MetaFold, for garment folding that supports multi-category

effective garment manipulation. We also constructed a point
cloud trajectory dataset for garment folding, encompassing
various folding methods across different garment types.



Experimental results demonstrate that our approach achieves
state-of-the-art performance in multi-category and language-
guided garment folding tasks. We believe that MetaFold
represents a significant step forward in applying trajectory
generation to deformable object manipulation, marking an
important milestone toward advancing spatial intelligence.
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APPENDIX
A. Problem Formulation

The goal of language-guided garment folding is to gen-
erate a sequence of actions {a;}!" ; to fold the garment
into a target point cloud configuration P4, given the 3D
point cloud observation P € RV*3 with N points and the
language guidance L.

As introduced before, we disentangle this task into three
sub-tasks: Point cloud trajectory generation, action predic-
tion, and corresponding closed-loop manipulation:

(1) Given the current P with N points and £, the goal of
the point cloud trajectory generation model is to generate
the trajectory 7 = {P;}M, € RMXN*3 that represents
the evolution of the point cloud over time, where M is the
number of frames.

(2) Given two point clouds (P, P’), the aim of the Man-
iFoundation [9] model is to predict the action a = {¢;}_,,
which is defined as a set of contact syntheses. The contact
synthesis for end effector i is ¢; = (p, s), where p € R3 is
the contact position and s € R? is the corresponding motion
direction based on the trajectory. We slice the generated
garment point cloud trajectory 7 and input the segments
into the ManiFoundation model to predict an action a =
My r(P, P, where {P,P'} C T.

(3) Afterward, the robot executes the action a, manipulat-
ing the garment to a new configuration P* = M gopot (P, a).

We perform processes (1), (2), and (3) iteratively until the
current point cloud configuration P matches the desired point
cloud configuration Pyoq;.

B. MetaFold Dataset

Our dataset is visualized in Figure 3. The dataset consists
of folding point cloud trajectories from a total of 1210
garments and 3376 trajectories, with 2664 trajectories in the
training set and 712 in the test set. A seen instruction might
be “Fold the short-sleeve top from the left,” while an unseen
instruction could be “Please fold the garment from the left
sleeve.”

For details of the dataset composition, please refer
to Table V. The dataset is available on Hugging Face
at https://huggingface.co/datasets/chenhn02/MetaFold. The
dataset and model-generated trajectories are visualized in
Figure 5. An interactive visualization can be found on our
website at https://meta-fold.github.io/.
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Fig. 3. Example garments in our MetaFold Dataset. The garments
demonstrate diversities in categories, shapes, and deformations.



Fig. 4. Real-World Experiments of MetaFold on Diverse Garment Types: Long-Sleeve, Short-Sleeve, No-Sleeve, and Pants.

TABLE IV
ABLATION STUDIES. ALL ABLATION EXPERIMENTS WERE CONDUCTED ON THE SAME GARMENT TYPE.

Methods Ours  Ours-5frames  Ours-15frames  Ours-NextStep ~ Ours w/o MF  Ours w/o CL
Rectangularity T 0.83 0.80 0.83 0.79 0.81 0.81
Area Ratio | 0.33 0.42 0.34 0.35 0.46 0.60
Success Rate 1 0.86 0.51 0.69 0.41 0.27 0.07
TABLE V
DETAILS OF METAFOLD DATASET. S STANDS FOR SLEEVE. ‘ .
Type No-S  Short-S Long-S Pants Total
ight -> Left -> Bottom
Garments 666 121 146 277 1210 E—
Trajectories 666 726 876 1108 3376 I ‘ ‘ ‘ .
P r F 4 7 p » 2 1 Left -> Right -> Bottom
ol y
y ? ’ (Unseen) Bottom -> Left -> Right
( ¥ 'R § §
v Fig. 6. MetaFold generates different sequences under different instructions.
5 2 g & e Ours w/o CL: our method with open-loop control
v . . .
- instead of closed-loop control. The execution relies
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a) Ground truth folding trajectories
Fig. 5.

b) Generated folding trajectories
Visualization of ground truth and generated trajectories.

C. Language-Guided Folding

Our model supports folding based on languages, even if
the folding sequence (Bottom — Left — Right) does not
exist during training. Figure 6 illustrates the folding results
of our model under different language instructions.

D. Ablation Studies

We compared our framework with several ablated versions
to demonstrate the effectiveness of its components:

e Ours w/o MF: our method without ManiFoundation
model. We randomly select points from the entire set,
filter out those with minimal motion, and use grouping
to determine contact points. We use the selected point’s
trajectory direction prediction as the force direction.

entirely on the initial frame’s predicted trajectory.

o Ours-5frames and Ours-15frames: represent different
granularities of closed-loop execution, performed every
5 frames and every 15 frames, respectively.

o Ours-NextStep: predicts only a single step at a time

rather than an entire trajectory.

Table IV presents a quantitative comparison with these
ablated versions. Experimental results indicate that both the
ManiFoundation model and closed-loop control are essen-
tial components in garment folding tasks. The results also
indicate that our approach achieves optimal performance
when closed-loop execution is performed every 10 frames.
Predicting the entire trajectory enables the model to generate
more effective sequences of actions.

E. Real World Experiment Visualization

Real-world experiments are visualized in Figure 4. Videos
of them are available on: https://meta-fold.github.io/.



