
Under review as submission to TMLR

Differentiable Causal Discovery of Linear Non-Gaussian
Acyclic Models Under Unmeasured Confounding

Anonymous authors
Paper under double-blind review

Abstract

We propose a score-based method that extends the framework of the linear non-
Gaussian acyclic model (LiNGAM) to address the problem of causal structure
estimation in the presence of unmeasured variables. Building on the method pro-
posed by Bhattacharya et al. (2021), we develop a method called ABIC LiNGAM,
which assumes that error terms follow a multivariate generalized normal distribu-
tion and employs continuous optimization techniques to recover acyclic directed
mixed graphs (ADMGs). We demonstrate that the proposed method can esti-
mate causal structures, including the possibility of identifying their orientations,
rather than only Markov equivalence classes, under the assumption that the data
are linear and follow a multivariate generalized normal distribution. Additionally,
we provide proofs of the identifiability of the parameters in ADMGs when the er-
ror terms follow a multivariate generalized normal distribution. The effectiveness
of the proposed method is validated through simulations and experiments using
real-world data.

1 Introduction

1.1 Background and Motivation

Uncovering causal relationships from observational data―often referred to as causal discovery―is
a critical objective in numerous disciplines, including life sciences, social sciences, and marketing.
While randomized controlled trials (RCTs) are the gold standard for identifying causal effects, they
are frequently infeasible in practice due to prohibitive costs or ethical constraints. Therefore, it is
essential to develop robust methods for inferring causal structures from observational data.

Many existing algorithms assume the absence of unmeasured variables, implying that all relevant
factors are fully observed (Spirtes et al., 2000; Chickering, 2002; Shimizu et al., 2006). For example,
the linear non-Gaussian acyclic model (LiNGAM) (Shimizu et al., 2006) demonstrates that causal
directions can be uniquely identified when errors are non-Gaussian and no hidden confounders
exist. However, this assumption of no unmeasured variables is often unrealistic. In practical
applications such as consumer purchasing behavior analysis, latent factors like income or occupation
can significantly confound observed relationships.

To address this issue, acyclic directed mixed graphs (ADMGs) (Richardson & Spirtes, 2002) have
been introduced. By including both directed and bidirected edges, ADMGs can represent the more
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intricate dependencies induced by latent variables, capturing confounding effects that traditional
directed acyclic graphs (DAGs) cannot. Additionally, ADMGs support nonparametric equality
constraints, such as the Verma constraints (Verma & Pearl, 1990), providing a flexible framework
for causal discovery in the presence of hidden confounders.

Key Point (1): ADMGs allow us to capture both direct causal effects and latent confounding
within a single graph, which is crucial in many real-world scenarios where some variables are
unobserved.

1.2 Related Work

Methods for estimating ADMG structures can be broadly classified into three categories:

Constraint-based methods. These use repeated conditional independence tests to build partial
ancestral graphs (PAGs) (Spirtes et al., 2000). Prominent examples include FCI (Spirtes et al.,
2000), RFCI (Colombo et al., 2012), and GFCI (Ogarrio et al., 2016), extended to high-dimensional
data in approaches like lFCI (Chen et al., 2021). While effective under sufficient sample sizes, these
methods can be sensitive to the multiplicity and order of tests.

Score-based methods. By optimizing a global objective (e.g., log-likelihood or BIC), score-
based approaches can provide a more coherent framework for model selection (Nowzohour et al.,
2017; Bernstein et al., 2020; Chen et al., 2021; Claassen & Bucur, 2022; Ng et al., 2024). However,
many existing score-based techniques assume Gaussian error terms, thus limiting their ability to
recover strict causal orientations when latent variables induce equivalence classes.

Hybrid methods. These combine constraint-based and score-based strategies, aiming to balance
local statistical decisions with global model fit. GFCI (Ogarrio et al., 2016) exemplifies this line of
research.

Recent developments emphasize strict orientation recovery under latent confounding by leveraging
non-Gaussianity or nonlinearity (Shimizu et al., 2006; Tashiro et al., 2014; Wang & Drton, 2024).
Notably, the BANG method (Wang & Drton, 2024) exploits higher-order moments in a constraint-
based procedure to identify bow-free ADMGs beyond Markov equivalence classes. Further refining
these ideas, Wang & Drton (2024) (see also references therein) incorporate non-Gaussian assump-
tions into a framework that can recover directions more strictly, though specialized moment condi-
tions are still crucial for direction recovery.

In parallel, Bhattacharya et al. (2021) introduced ABIC, a continuous score-based method for learn-
ing ancestral, arid, or bow-free ADMGs under the linear Gaussian setting. Although ABIC unifies
different structural constraints within a differentiable optimization framework, strict orientation
recovery remains elusive under Gaussianity. Subsequent work, such as Ng et al. (2024), has fo-
cused on scalable continuous relaxations for large ADMGs, but again, the challenge of uniquely
determining causal directions persists without non-Gaussian assumptions.

Key Point (2): In Gaussian settings, we can typically only recover up to a Markov equivalence
class. Non-Gaussian error assumptions are needed to fully determine directions.
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1.3 Our Goal and Contributions

Motivated by these developments, we propose ABIC LiNGAM, a novel approach for strictly
identifying bow-free ADMGs under linear non-Gaussian error distributions. Specifically, we assume
error terms follow a multivariate generalized normal distribution (MGGD), thereby generalizing
ABIC (Bhattacharya et al., 2021) beyond Gaussianity. Our primary contributions are:

1. Orientation Recovery Beyond Gaussian Equivalence. We show that non-
Gaussianity (i.e., β ̸= 1 in MGGD) can enable more precise identification of causal di-
rections in bow-free ADMGs, going beyond the limitations of Gaussian-based methods
that recover only up to Markov equivalence classes.

2. Unified Framework. When the shape parameter β = 1 (Gaussian case), our method
reduces to the original ABIC scheme, ensuring compatibility with purely Gaussian models
while offering a broader scope for non-Gaussian scenarios.

3. Identifiability Proof. Building on Brito & Pearl (2002) and Wang & Drton (2024), we
rigorously prove identifiability of bow-free ADMGs under MGGD assumptions, solidifying
the theoretical foundation of our approach.

4. Empirical Validation and Scalability. We conduct extensive simulations (up to 50
variables) and apply our method to real-world social survey data, illustrating higher accu-
racy than constraint-based (e.g., FCI) and non-Gaussian methods (e.g., BANG). Moreover,
the fully differentiable formulation scales effectively to larger graphs.

Key Point (3): In summary, we extend a continuous score-based approach (ABIC) from Gaussian
to non-Gaussian error assumptions, potentially enabling more thorough orientation recovery for
bow-free ADMGs.

To our knowledge, ABIC LiNGAM is the first continuous score-based method that achieves full
identification of bow-free ADMGs under linear non-Gaussian assumptions. The remainder of this
paper is organized as follows: Section 2 reviews the linear structural equation model, bow-free
ADMGs, and the MGGD. Section 3 introduces our differentiable constraints and likelihood-based
objective. Section 4 presents the ABIC LiNGAM algorithm and theoretical properties. Sections 5–
6 report experimental results on synthetic and real datasets. We conclude in Section 7 with a
discussion of future directions and broader implications．Unlike a simple relaxation of assumptions,
the key is the introduction of non-Gaussianity, which provides crucial higher-order information.
Hence, our framework can strictly identify causal directions in linear models with latent confounders,
rather than settling for Markov equivalence classes.

2 Problem Definition

2.1 Representation by Linear SEM

In this section, we review linear SEMs and their graphical representations. We use uppercase letters
(e.g., X) to denote variables or nodes in the graph and indexed uppercase letters (e.g., Xi) to denote
specific variables or nodes. We also use the following standard matrix notation: Aij denotes the
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element in the ith row and jth column of matrix A, A−i,−j denotes the submatrix of A obtained
by removing the ith row and jth column, and A:,i denotes the ith column of A.

Additionally, for each vertex i belonging to set V , let {pa(i) | i ∈ V } and {sp(i) | i ∈ V } be two
families of index sets. The vertex set of G is the index set V , and G contains the edge j → i if
and only if j ∈ Pa(i) and the edge j ↔ i if and only if j ∈ Sp(i) (or equivalently, i ∈ Sp(j)).
Furthermore, {sp(i) | i ∈ V } satisfies the following symmetry condition: for any j ∈ V , j ∈ sp(i)
holds if and only if i ∈ sp(j). These two families of sets {pa(i) | i ∈ V } and {sp(i) | i ∈ V } define
the system of structural equations.

2.1.1 Linear SEM

We consider linear SEMs for d variables, parameterized by a weight matrix θ ∈ Rd×d. For each
variable Xi ∈ X, the structural equation is

Xi =
∑

j∈pa(i)

θijXj + ϵi, i ∈ V (1)

Here, the noise terms ϵi are mutually independent. In this case, sp(i) = ∅ for all i, since no
unmeasured variables exist. The graph G and corresponding binary adjacency matrix D ∈ {0, 1}d×d

are defined as follows: An edge Xj → Xi exists in G if and only if θij ̸= 0, in which case Dij = 1. The
graph G is acyclic if and only if θ can be created as an upper triangular matrix by the permutation
of vertex labeling.

Key Point (4): Even in a linear SEM, once unmeasured variables are discovered, we may need
an ADMG (not just a DAG) to handle latent confounding via bidirected edges.

2.1.2 Linear SEM with unmeasured variables

An observed set of variables is causally insufficient if there exist unmeasured variables that are the
ancestors of two or more observed variables in the system. In a linear structural equation model
(SEM), these unmeasured variables often manifest as dependencies among the error terms Pearl
(2009). Consider a d-dimensional random vector X = (X1, . . . , Xd) represented by real-valued
matrices δ, Ω ∈ Rd×d. For each Xi, the structural equation takes the following form:

Xi =
∑

j∈pa(i)

δijXj + ϵi, i ∈ V. (2)

Here, ϵ = (ϵ1, . . . , ϵd) is a vector of error terms with zero mean without loss of generality and
is not necessarily Gaussian. Allowing non-Gaussian noise terms accommodates a wider class of
underlying distributions and may improve identifiability via higher-order moments or nonsymmetric
distributional features Shimizu et al. (2006); Wang & Drton (2024).

In the special case where a given variable Xi has no unmeasured variables, its error term ϵi may
be independent of all the others. However, if unmeasured variables influence multiple observed
variables, their corresponding error terms become dependent on each other. These dependencies
are captured by the matrix Ω = E[ϵϵ⊤], which does not need to be diagonal. For the Gaussian noise,
the marginalized distribution of X is a zero-mean multivariate normal with a covariance matrix as
follows:

Σ = (I − δ)−1Ω(I − δ)−⊤, (3)
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And the same covariance structure can be considered for non-Gaussian errors, at least at the level of
second moments. In a non-Gaussian setting, higher-order moments and distributional asymmetries
can be exploited to identify causal directions and latent structures.

The induced graph G is an ADMG that includes both directed (→) and bidirected (↔) edges. The
graph G and associated binary adjacency matrices D ∈ {0, 1}d×d and B ∈ {0, 1}d×d are defined
as follows: a directed edge Xj → Xi exists in G if and only if δij ̸= 0, in which case Dij = 1. A
bidirected edge Xj ↔ Xi exists in G if and only if Ωij ̸= 0 (symmetry ensures Ωji ̸= 0), in which
case Bij = Bji = 1. In the special case where there are no unmeasured variables, the ADMG
reduces to a DAG, and the B matrix is a zero matrix.

In summary, this framework does not restrict the noise terms to be Gaussian, allowing a broader
class of SEMs that can represent latent variable-induced dependencies through non-Gaussian dis-
tributions. By leveraging non-Gaussianity, one can potentially achieve stronger identifiability and
more robust causal inferences than would be possible under Gaussian assumptions alone.

Key Point (5): Non-Gaussian error terms can often break Markov equivalences that would hold
under purely Gaussian assumptions, thus allowing clearer causal direction recovery.

2.2 Motivation Example

As discussed in Section 2.1.1, when there are no unmeasured variables, the observed variables
can be represented as a DAG. Thus, the problem reduces to estimating the structure of a DAG.
However, when unmeasured variables are present, a DAG cannot adequately represent the rela-
tionships between variables while accounting for such unmeasured variables. Therefore, we use an
ADMG, which can represent latent variable-induced covariation and confounding through directed
and bidirected edges. Consequently, in the presence of unmeasured variables, the problem reduces
to estimating the structure of an ADMG. This section builds on the work of Bhattacharya et al.
(2021).

A B

C D
(a)

A B

C D
(b)

A B

C D
(c)

A B

C D
(d)

Figure 1: (a) DAG without unmeasured variables. (b) Ancestral ADMGs. (c) Arid ADMGs. (d)
bow-free ADMGs.

Figure 1(a) depicts a DAG, which represents the relationships among the variables in the absence
of unmeasured variables. Figures (b), (c), and (d) illustrate examples of ADMGs that we aim to
estimate in this study. Figure (b) shows an ancestral ADMG, where no directed path Xi → · · · → Xj

and bidirected edges Xi ↔ Xj exist simultaneously in G for any pair of vertices Xi, Xj ∈ X. Figure
(c) shows an arid ADMG that does not contain any c-trees. A c-tree is a subgraph of G where its
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directed edges form a directed tree, and its bidirected edges form a single bidirectional connected
component within the subgraph. For details on c-trees, see Shpitser & Pearl (2006). Figure (d)
shows a bow-free ADMGs, where no pair of vertices Xi → Xj and Xi ↔ Xj both exist in G. These
three types of ADMGs exhibit an inclusion relationship, with bow-free ADMGs being the most
general type of ADMGs.

Ancestral ⊂ Arid ⊂ Bow-free

In Bhattacharya et al. (2021), these ADMGs are expressed as differentiable constraints, allowing
the selection of the appropriate ADMGs type to be estimated based on the data. This study
adopts the differentiable constraints proposed by Bhattacharya et al. (2021), enabling the selection
of suitable ADMGs types according to the data.

2.3 Identifiability in the Model

This section discusses the identifiability of the parameters in bow-free ADMGs where the error terms
follow a multivariate generalized normal distribution. Brito & Pearl (2002) proved that given a bow-
free ADMG model, the parameters are almost everywhere identifiable from the observed covariance
matrix. Since this fact is often utilized under the assumption that the error terms are Gaussian,
we show in this study that it also applies to bow-free ADMG models when the error terms follow
a multivariate generalized normal distribution. Furthermore, we draw on Wang & Drton (2024),
who demonstrated that the model can identify causal directions, and not only Markov equivalence
classes, using the non-Gaussianity of error terms. This study also provides evidence that causal
directions can be estimated.

2.3.1 Definition and Key Terms

bow-free ADMG. A bow-free ADMG is a type of directed mixed graph (ADMG) that may include
latent variables. For any two nodes Xi and Xj , it disallows having both

Xi → Xj and Xi ↔ Xj

simultaneously (i.e., no ‘bow” shape). This ensures that any bidirected edge (representing covari-
ance structures induced by latent variables) does not overlap with a directed edge between the same
pair of nodes.

Markov equivalence class. A Markov equivalence class of DAGs (or ADMGs) is a set of graphs
that encode the same set of conditional independence relationships. When the error terms are
assumed to be Gaussian, one often can only identify the Markov equivalence class, meaning that
the directions of certain edges cannot be distinguished.

Non-Gaussianity. Non-Gaussianity refers to error terms that do not follow a Gaussian distri-
bution (e.g., distributions with skewness or high kurtosis). Such non-Gaussian characteristics can
allow one to distinguish causal directions that remain indistinguishable under purely Gaussian
assumptions, by exploiting higher-order moments or skewness.
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2.3.2 On the Identifiability of Parameters in bow-Free ADMGs with Multivariate
Generalized Normal Distributions

Brito & Pearl (2002) demonstrated that a bow-free ADMG model is almost always identifiable from
the observed covariance matrix. As the argument in Brito & Pearl (2002) primarily assumes that
the error terms are Gaussian, we follow Brito & Pearl (2002) to demonstrate that when the error
terms have a multivariate generalized normal distribution (MGGD), a bow-free ADMG model is
almost always identifiable from the observed covariance matrix. (See the Appendix for the proof.)

Theorem 1

Let G be a bow-free ADMG with error terms following a multivariate generalized normal distri-
bution, and let the set of parameters of G be θ = {δ, Ω}. Then, for almost all θ, the following
holds:

Σ(θ) = Σ(θ′)

implies

θ = θ′.

In other words, if two parameter sets θ and θ′ yield the same covariance matrix Σ, then θ and θ′

must be identical, except possibly when θ belongs to a set of Lebesgue measure zero.

This result follows from extending the argument of Brito & Pearl (2002) (which relies on Wright ’
s path analysis and the inductive construction of linear SEMs) to the MGGD setting. Because
the MGGD includes the Gaussian distribution (as a special case with β = 1) and is closed under
linear transformations, imposing the structural constraints of a bow-free ADMG yields a unique
parameter set {δ, Ω}.

Moreover, if the error terms are non-Gaussian (i.e., β ̸= 1), then not only are the parameters
identifiable, but there is also potential to determine the directions of causal edges, as suggested by
Wang & Drton (2024) and others. In this paper, we leverage this non-Gaussianity to propose a
method for estimating both the structure and orientations in bow-free ADMGs.

Intuition.Because the generalized normal distribution includes the Gaussian as a special case, each
valid (δ, Ω) pair generally induces a unique covariance structure, making parameters identifiable in
the bow-free setting.

2.3.3 Identifiability of the structure in bow-Free ADMGs Using Non-Gaussianity

Wang & Drton (2024) demonstrated that when the data are non-Gaussian and correspond to a
bow-free ADMG, the bow-free ADMG can be consistently recovered, including both the Markov
equivalence class and causal directions. The multivariate generalized normal distribution assumed
for the observed data in this study is non-Gaussian except in the special case. Therefore, un-
like Bhattacharya et al. (2021), who were limited to recovering the Markov equivalence class, it is
expected that the causal directions can also be estimated.
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3 Decomposition of the Log-Likelihood Function of the Multivariate
Generalized Normal Distribution

3.1 Probability Density Function of the Multivariate Generalized Normal Distribution

As defined by Gómez et al. (1998), the probability density function of the multivariate generalized
Gaussian distribution (MGGD) is given by:

f(X | µ, Σ, β) =
Γ
(

p
2
)

π
p
2 Γ
(

p
2β

) · β

2
p

2β |Σ|
1
2

exp
(
− 1

2
(
(X − µ)⊤Σ−1(X − µ)

)β
)

, (4)

where X is a p-dimensional random vector (p ≥ 1) that follows a power-exponential distribution
with parameters µ, Σ, and β. Specifically, µ ∈ Rp, Σ is a (p×p) positive-definite symmetric matrix,
and β ∈ (0,∞). Γ(·) denotes the gamma function. Notably, the MGGD reduces to a multivariate
normal distribution when β = 1. In this distribution, if Σ is a diagonal matrix, then the correlation
coefficients between the components become zero. However, because the multivariate generalized
normal distribution belongs to the elliptical family, a zero correlation does not imply independence.
Nonetheless, if the components are assumed to be generated independently, they can be considered
truly independent rather than merely uncorrelated.

Gómez et al. (1998) show that the MGGD is invariant under affine transformations. More precisely,
if f(X | µX , ΣX , β) is the probability density function, then for the affine transformation

Y = CX + b, (5)

where C is a nonsingular matrix, b is a vector in Rp, and the transformed variable Y follows
f(Y | CµX + b, C ΣX C⊤, β). This indicates that the family of distributions remains within the
same class under any nonsingular linear transformation and translation.

This affine transformation property is particularly useful in linear structural equation models (es-
pecially (2)). In such models, the relationships among the observed variables and the covariance
structure of the error terms are modeled, leading to the covariance matrix Σ of the observed vari-
ables in the form

Σ = (I − δ)−1 Ω (I − δ)−⊤.

Furthermore, as discussed in Section 3.2.1, one can estimate the parameters δ and Ω from the
observed covariance matrix. In other words, if the data follow an MGGD, then in principle δ and
Ω can be estimated from an observed covariance matrix of the form Σ = (I − δ)−1 Ω (I − δ)−⊤.

Key Point (6): The elliptical nature and affine-invariance of the MGGD are crucial for applying it
to linear SEMs. They ensure that under linear transformations (e.g. confounding), the distributional
form remains within the same family, aiding our later decomposition.

3.2 Log-Likelihood Function

Assuming that in the ADMG graph G = (V, E) of the linear model (2), N observations are drawn,
where all the components of µ are zero (the mean vector is zero). The reason for setting all the
components of µ to zero is to prevent notational clutter without loss of generality. In this case, the
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log-likelihood function is given by (4) as follows:

ℓ(µ, Σ, β|X) = N log Γ
(p

2

)
+ N log β − p

2
N log π

−N log Γ
(

p

2β

)
− p

2β
N log 2− N

2
log |Σ|

− 1
2

N∑
l=1

(
X(l)⊤Σ−1X(l)

)β

(6)

3.3 Decomposition of the Log-Likelihood Function

The main component of the proposed algorithm is the decomposition of the log-likelihood function of
the multivariate generalized normal distribution, inspired by Dorton et al. (2009), who decomposed
the log-likelihood function of the multivariate normal distribution.

Let Xi ∈ RN denote the ith row of the observation matrix X and X−i = XV/i be the (V \ {i})×N
submatrix of X. We adopt the abbreviated notation XC to represent the C ×N submatrix of the
D ×N matrix X, where C ≤ D.

Theorem 3

Let i ∈ X be a variable node in the ADMG graph G = (V, E) of the linear model (2). Let
∥x∥2 = x⊤x and define Ωii.−i as the conditional variance of εi given ε−i as follows:

Ωii.−i = Ωii − Ωi,−iΩ−1
−i,−iΩ−i,i (7)

Here, Ωi,−i is the row vector obtained by removing the ith element from the ith row, Ω−i,i is the
column vector obtained by removing the ith element from the ith column, and Ω−i,−i denotes the
submatrix obtained by removing the ith row and ith column from Ω. Additionally, let Ω−1

−i,−i =
(Ω−i,−i)−1. Then, the log-likelihood function ℓ(B, Ω, β) of the graph G = (V, E) can be decomposed
as

ℓ(µ, Σ, β|X) =

− N

2
log Ωii.−i −

N

2
log det(Ω−i,−i)

− 1
2

N∑
l=1

(
Ω−1

ii.−i

(
(X(l)

i − δi,pa(i)X
(l)
pa(i) − Ωi,sp(i)

(
Ω−1

−i,−iε
(l)
−i

)
sp(i)

)2 + ε
(l)⊤
−i Ω−1

−i,−iε
(l)
−i

))β

(8)

Proof.

By rearranging the log-likelihood function described in equation (6), considering the constant parts
unrelated to the coefficient matrices δ and Ω, noting that the determinant det(I − δ) = 1 since δ is
acyclic, and that (I−δ)X = ε, and considering that the covariance matrix Σ can be expressed using
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the adjacency matrix B and Ω as Σ = Var(X) := (I − δ)−1Ω(I − δ)−⊤, we obtain the following:

ℓ(µ, Σ, β|X) = −N

2
log |Σ| − 1

2

N∑
l=1

(
X(l)⊤Σ−1X(l)

)β

= N

2
log |(I − δ)Ω(I − δ)⊤| − 1

2

N∑
l=1

(
X(l)⊤(I − δ)⊤Ω−1(I − δ)X(l)

)β

= −N

2
log |Ω| − 1

2

N∑
l=1

(
ε(l)⊤Ω−1ε(l)

)β

(9)

We can partition Ω as a block matrix:

Ω =
(

Ωii Ωi,−i

Ω−i,i Ω−i,−i

)
(10)

Based on equations (7) and (10), we can rearrange log |Ω| as shown in equation (11):

log |Ω| = log
(
Ωii − Ωi,−iΩ−1

−i,−iΩ−i,i

)
+ log |Ω−i,−i|

= log Ωii.−i + log |Ω−i,−i|
(11)

Next, we rearrange the term ε(l)⊤Ω−1ε(l) in 1
2
∑N

l=1
(
ε(l)⊤Ω−1ε(l))β . We partition Ω−1 as a block

matrix:

Ω−1 =
(

Ωii Ωi,−i

Ω−i,i Ω−i,−i

)−1

=
(

Ω−1
ii.−i −Ω−1

ii.−iΩi,−iΩ−1
−i,−i

−Ω−1
−i,−iΩ−i,iΩ−1

ii.−i Ω−1
−i,−i + Ω−1

−i,−iΩ−i,iΩ−1
ii.−iΩi,−iΩ−1

−i,−i

)
.

(12)

Considering that Ω−1 is a block matrix, we can rearrange ε(l)⊤Ω−1ε(l) as follows:

ε(l)⊤Ω−1ε(l) =
(

ε
(l)
i ε

(l)⊤
−i

)( Ω−1
ii.−i −Ω−1

ii.−iΩi,−iΩ−1
−i,−i

−Ω−1
−i,−iΩ−i,iΩ−1

ii.−i Ω−1
−i,−i + Ω−1

−i,−iΩ−i,iΩ−1
ii.−iΩi,−iΩ−1

−i,−i

)(
ε

(l)
i

ε
(l)
−i

)
= Ω−1

ii.−i(ε
(l)
i − Ωi,−iΩ−1

−i,−iε
(l)
−i)

2 + ε
(l)⊤
−i Ω−1

−i,−iε
(l)
−i

(13)

From this rearrangement, the log-likelihood function becomes equation (14):

ℓ(µ, Σ, β|X) = −N

2
log Ωii.−i−

N

2
log det(Ω−i,−i)+

1
2

N∑
l=1

(
Ω−1

ii.−i

(
(ε(l)

i − Ωi,−iΩ−1
−i,−iε

(l)
−i)

2 + ε
(l)⊤
−i Ω−1

−i,−iε
(l)
−i

))β

(14)

By definition, the error term ε
(l)
i = X

(l)
i − δi,pa(i)X

(l)
pa(i). Moreover, since we are dealing with

bow-free ADMGs, we have Ωi,−iΩ−1
−i,−iε

(l)
−i = Ωi,sp(i)

(
Ω−1

−i,−iε
(l)
−i

)
sp(i)

. This yields the claimed
decomposition.
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□
The decomposition of the log-likelihood function is based on decomposing the joint distribution of ε
into the marginal distribution of ε−i and conditional distribution (εi | ε−i). In particular, as shown
in (14), the squared term (ε(l)

i −Ωi,−iΩ−1
−i,−iε

(l)
−i)2 represents the deviation of εi from its conditional

expectation given ε−i, which plays a key role in deriving the likelihood decomposition. This idea
leads to an approach similar to that of Dorton et al. (2009), who decomposed the log-likelihood
function of the multivariate normal distribution and proposed an iterative algorithm. The steps of
this algorithm are based on fixing the marginal distribution of ε−i and estimating the conditional
distribution. To fix the marginal distribution of ε−i, we must fix the submatrix of Ω−i,−i excluding
the ith row and ith column and the submatrix of δ−i,V excluding the ith row. This is because ε−i

is determined depending on Ω−i,−i and δ−i,V .

(Intuition.) By isolating each node’s contribution and conditioning out the rest, the log-likelihood
can be decomposed into local pieces that depend on the parents and siblings (in terms of bidirected
edges). Such an approach is crucial for efficiently optimizing over ADMG structures under the
MGGD.

Before presenting the full decomposition, we first define the pseudo-variable Z−i as follows:

Z−i = Ω−1
−i,−i ε−i, (15)

where Ω−i,−i is the submatrix of Ω obtained by removing the i-th row and column, and ε−i is
the error vector excluding the i-th component. We will use Z−i in the subsequent derivations to
simplify the notation of the conditional distribution.

Note that Ω−1
−i,−i ε−i in (equation 15) captures the same quantity that appears in the decomposition

of εi given ε−i. In later equations, if we write Ωi,−i Ω−1
−i,−i ε−i, it should be understood that the

vector part Ω−1
−i,−i ε−i is precisely Z−i.

ℓ(µ, Σ, β|X)

= −N

2
log Ωii.−i −

1
2

N∑
l=1

(
Ω−1

ii.−i

(
X

(l)
i − δi,pa(i)X

(l)
pa(i) − Ωi,sp(i)

(
Ω−1

−i,−iε
(l)
−i

)
sp(i)

)2
)β

= −N

2
log Ωii.−i −

1
2Ωβ

ii.−i

N∑
l=1


X

(l)
i −

∑
j∈pa(i)

δi,jX
(l)
j −

∑
k∈sp(i)

Ωi,kZ
(l)
k

2


β

(16)

Assuming β ≥ 1, we rearrange equation (16) using Hölder’s inequality(for details on the application
of Hölder’s inequality, see the APPENDIX).
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ℓ(µ, Σ, β|X)

= −N

2
log Ωii.−i −

1
2Ωβ

ii.−i

N∑
l=1


X

(l)
i −

∑
j∈pa(i)

δi,jX
(l)
j −

∑
k∈sp(i)

Ωi,kZ
(l)
k

2


β

= −N

2
log Ωii.−i −

1
2Ωβ

ii.−i

Nβ−1

Nβ−1

N∑
l=1


X

(l)
i −

∑
j∈pa(i)

δi,jX
(l)
j −

∑
k∈sp(i)

Ωi,kZ
(l)
k

2


β

≥ −N

2
log Ωii.−i −

1
2Ωβ

ii.−i

1
Nβ−1

 N∑
l=1

X
(l)
i −

∑
j∈pa(i)

δi,jX
(l)
j −

∑
k∈sp(i)

Ωi,kZ
(l)
k

2


β

= −N

2
log Ωii.−i −

1
2Ωβ

ii.−i

1
Nβ−1

∥∥∥∥∥∥Xi −
∑

j∈pa(i)

δi,jXj −
∑

k∈sp(i)

Ωi,kZk

∥∥∥∥∥∥
2β

(17)

Maximizing equation (17) to estimate δ and Ω is equivalent to performing a regression of Xi (as
the target variable) on Xj (the parent variable of Xi) and the pseudo-variables Zk, considering the
shape parameter β.

Utilizing these observations, in the next section, we propose a method for causal structure estimation
using continuous optimization, considering the presence of unmeasured variables and assuming that
the error variables follow a multivariate generalized normal distribution, using the decomposition
results of the log-likelihood function organized in this section to estimate δ̂, Ω̂.

4 Proposed Method

4.1 Causal Discovery Based on Differentiable Scores

Score-based methods aim to estimate causal structures by maximizing a graph’s score (e.g., log-
likelihood) given the data. Learning DAGs from data is an NP-hard problem because it is chal-
lenging to efficiently enforce combinatorial acyclicity constraints ((Chickering, 1996)).

Zheng et al. (2018) proposed a new approach for score-based DAG learning by converting the
traditional combinatorial optimization problem (18) into a continuous optimization problem (19).

min
θ∈Θ

F (θ) subject to G(θ) ∈ DAGs (18)

min
θ∈Θ

F (θ) subject to h(θ) = 0, (19)

where G(θ) is a d-node graph induced by the weight matrix θ ∈ Rd×d, and F : Rd×d → R is a
score function. h : Rd×d → R is a smooth function over real matrices, and the constraint h(θ) = 0

12
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can precisely characterize the acyclicity of the graph. Causal structure estimation via continuous
optimization eliminates the need for specialized algorithms to explore the combinatorial space of
DAGs and instead allows the use of standard numerical algorithms for constrained problems, making
implementation particularly straightforward, as mentioned in Zheng et al. (2018).

The acyclicity constraint is defined as follows:

h(θ) = trace
(
eθ◦θ

)
− d = 0 (20)

Here, θ ◦ θ denotes the Hadamard product (element-wise multiplication), trace
(
eθ◦θ

)
is the trace

(sum of the diagonal elements) of the matrix exponential, and d is the number of variables. This
constraint ensures that the matrix θ forms a DAG.

Zheng et al. (2018) used the augmented Lagrangian method as a continuous optimization technique.
This method solves constrained optimization problems using an objective function that includes
penalty terms and is formulated as

min
θ∈Θ

L(θ) + λ∥θ∥1 + αh(θ) + ρ

2
h(θ)2 subject to h(θ) = 0. (21)

Here, λ is the weight of the regularization term, α is the Lagrange multiplier, and ρ is the penalty
coefficient.

Key Point (7): Score-based methods combined with differentiable constraints allow us to leverage
standard optimization routines (e.g. gradient-based) instead of combinatorial searches, thus scaling
more easily to larger graphs.

4.2 ABIC

Although the differentiable score-based causal discovery method using continuous optimization pro-
posed by Zheng et al. (2018) has been successful in estimating causal structures in DAGs, it cannot
be directly applied to ADMGs. This is because ADMGs require two adjacency matrices, D and B,
to represent the directed and bidirected edges, respectively. To extend the differentiable algebraic
characterization to ADMGs, Bhattacharya et al. (2021) proposed differentiable constraints for each
causal graph. In Bhattacharya et al. (2021), three differentiable constraints (i.e., ancestral, arid,
and bow-free)are proposed for ADMGs , as shown in Table 1.

ADMGs Algebraic Constraint
Ancestral trace(eD)− d + sum(eD ◦B) = 0
Arid trace(eD)− d + Greenery(D, B) = 0
Bow-free trace(eD)− d + sum(D ◦B) = 0

Table 1: Differentiable constraints for each causal graph in ADMGs ((Bhattacharya et al., 2021))

For example, to estimate the causal structure of bow-free ADMGs, the constraint equation becomes
(22).

13

森西美光



Under review as submission to TMLR

h(θ) = tr(eD)− d + sum(D ◦B) (22)

Here, tr(A) denotes the trace of the square matrix A, i.e., the sum of its diagonal entries.

Here, sum(·) denotes the sum of all the elements in a matrix. It has been proven that when h(θ) = 0,
the estimated graph corresponds to an ADMG ((Bhattacharya et al., 2021)). Essentially, tr(eD)−d
signifies the standard acyclicity constraint for directed edges, and the latter term sum(D◦B) ensures
that bidirected edges are not introduced when a directed edge exists (i.e., it enforces the bow-free
ADMGs property).

Bhattacharya et al. (2021) used the augmented Lagrangian method, similar to Zheng et al. (2018),
to convert the problem into an optimization problem with a quadratic penalty term, and proposed
ABIC, which solves the following primal equation at each iteration:

min
θ∈Θ

ABICλ(X; θ) + ρ

2
|h(θ)|2 + αh(θ), (23)

where ρ is the weight of the penalty term, and α is the Lagrange multiplier. Then, the Lagrange
multiplier is updated as α← α + ρh(θ). Intuitively, by optimizing the primal equation with a large
ρ, we force h(θ) to be very close to zero, thus satisfying the equality constraint.

(Intuition.) By formulating ADMG constraints as smooth penalty terms, we can directly incor-
porate them into standard optimization frameworks, rather than enumerating all possible graphs.
This approach generalizes well beyond DAGs to bow-free or ancestral ADMGs.

14
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Algorithm 1: Algorithm 1: ABIC
Input : X ∈ Rn×d : Observed data

Ω ∈ Rd×d : Initial error covariance
tol > 0 : Convergence threshold
max_iters : Max iterations
h(θ) : Differentiable constraint (e.g. bow-free)
ρ, α : Augmented Lagrangian coefficients
λ : Regularization weight

Output: δt, Ωt : Final estimates
Initialization:

1. δ0, Ω0 ← (0, Id) or random.
2. c← ln(n) (used in tanh(c|θ|)).
3. Define

LS(θ) = 1
2n

d∑
i=1
∥X·,i −X δ·,i − Z(i)Ω·,i∥2.

(Here, Z(i) are pseudo-variables updated per iteration.)
for t = 0 to max_iters− 1 do

(A) Pseudo-variables:
for i = 1 to d do

ϵi ← X·,i −X δt
·,i.

Z
(i)
·,i ← 0, Z

(i)
·,−i ← ϵ−i (Ωt

−i,−i)−T .

(B) Parameter optimization:
Solve

(δt+1, Ωt+1)← arg min
θ

{
LS(θ) + ρ

2
|h(θ)|2 + α h(θ) + λ

∑
j

tanh
(
c|θj |

)}
.

for i = 1 to d do
ϵi ← X·,i −X δt+1

·,i .

Ωt+1
ii ← var(ϵi).

(C) Convergence check:
if ∥δt+1 − δt∥+ ∥Ωt+1 − Ωt∥ < tol then

break
return δt, Ωt

Tips:
• h(θ) = 0 can enforce a DAG or ADMG constraint (e.g. bow-free).
• Increase ρ gradually if h(θ) stays large.
• If δ0 = 0, Ω0 = Id, residuals start simply.

4.3 ABIC LiNGAM

In this study, we extend the method proposed by Bhattacharya et al. (2021) and present algorithm2
that can estimate causal structures when the error terms follow a multivariate generalized normal
distribution. The basic framework is the same as that in Bhattacharya et al. (2021), but we consider
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that the error terms follow a multivariate generalized normal distribution and incorporate the shape
parameter β into the loss function. The shape parameter must be estimated from the observed data
in advance. We use the estimated shape parameter β̂. In addition, since the multivariate normal
distribution corresponds to β = 1, the proposed method can handle the normal distribution case,
thereby generalizing the method of Bhattacharya et al. (2021). Depending on the data, it is possible
to switch between non-Gaussianity and Gaussianity.

16
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Algorithm 2: Algorithm 2: ABIC LiNGAM
Input : X ∈ Rn×d : Observed data

Ω ∈ Rd×d : Initial error covariance
tol > 0 : Convergence threshold
max_iters : Max iterations
h(θ) : Differentiable constraint
ρ, α : Augmented Lagrangian coeff.
λ : Regularization weight
β > 0 : Shape parameter (if β ̸= 1, non-Gaussian)

Output: δt, Ωt

Initialization:
1. δ0, Ω0 ← (0, Id) or random.
2. c← ln(n).
3. Define

LS(θ) = 1
2n

d∑
i=1

∥∥∥X·,i −X δ·,i − Z(i) Ω·,i

∥∥∥2β

.

(Note: β = 1 recovers the Gaussian case.)
for t = 0 to max_iters− 1 do

(A) Pseudo-variables:
for i = 1 to d do

ϵi ← X·,i −X δt
·,i.

Z
(i)
·,i ← 0, Z

(i)
·,−i ← ϵ−i (Ωt

−i,−i)−T .

(B) Parameter optimization:
Solve

(δt+1, Ωt+1)← arg min
θ

{
LS(θ) + ρ

2 |h(θ)|2 + α h(θ) + λ
∑

j

tanh
(
c |θj |

)}
.

for i = 1 to d do
ϵi ← X·,i −X δt+1

·,i .

Ωt+1
ii ← var(ϵi).

(C) Convergence check:
if ∥δt+1 − δt∥+ ∥Ωt+1 − Ωt∥ < tol then

break
return δt, Ωt

Tips:
• If β ̸= 1, non-Gaussian stats help identify directionality strictly.
• If β = 1, same as Algorithm 1.
• Use gradient-based methods or coordinate descent for the inner optimization.

Key Point (8): By generalizing from ABIC (Gaussian) to ABIC LiNGAM (non-Gaussian), we
can exploit higher-order statistics to potentially identify the orientations of edges in ADMGs. This
is especially powerful when hidden confounders introduce bidirected edges.

17
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Comparison of ABIC vs. ABIC LiNGAM:

1. Residual norm:

• ABIC uses ∥ · ∥2 (Gaussian assumption).
• ABIC LiNGAM uses ∥ · ∥2β for non-Gaussian errors if β ̸= 1.

2. Shape parameter β:

• ABIC LiNGAM requires β > 0.
• If β = 1, it becomes exactly the Gaussian case (Algorithm 1).

3. Identifiability: Orientation Recovery Beyond Gaussian Equivalence:

• Under non-Gaussian assumptions (β ̸= 1), ABIC LiNGAM can potentially identify
causal directions.

• Gaussian ABIC recovers structure up to Markov equivalence.

5 Experiments

5.1 Simulation

5.1.1 Simulation Setup and Evaluation

We aim to evaluate whether our proposed method (ABIC LiNGAM) can accurately recover bow-
free ADMG structures under various conditions, including non-Gaussian error terms. Specifically,
we focus on:

• How well the method identifies both the skeleton (presence or absence of edges) and the
direction (arrowhead/tail) of each edge.

• The effect of different shape parameters β of the multivariate generalized normal distribu-
tion (MGGD), which control the deviation from Gaussianity.

Following and extending the setup of Bhattacharya et al. (2021), we generate synthetic data from
a bow-free ADMG as follows:

1. Node pairs and edge assignment. For each pair of nodes (i, j) with i < j, draw a
uniform random value in [0, 1].

• If this value is below a predefined threshold for directed edges, set Xi → Xj and sample
the coefficient δij uniformly in [−2.0,−0.5] ∪ [0.5, 2.0].

• If this value is within the threshold for bidirected edges, set Xi ↔ Xj and assign
Ωij = Ωji uniformly from [−0.7,−0.4] ∪ [0.4, 0.7].

• Otherwise, no edge is placed between (i, j).

2. Diagonal entries of Ω. Each Ωii is sampled from an interval ±[0.4, 0.7]. To ensure Ω is
positive-definite, we add an adjustment term proportional to

∑
(|Ωi,−i|) plus an offset in

[0.1, 0.5].
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3. Shape parameter and error terms. Let β ∈ {1, 3, 5} be the shape parameter of the
MGGD. For each node i, generate error terms ϵi from a multivariate generalized normal
distribution (mean 0, covariance Ω, shape β). Note that β = 1 recovers the Gaussian case.

4. Generate observed data. Construct Xi via

Xi =
∑

j∈pa(i)

δij Xj + ϵi, i = 1, . . . , d.

Repeating this for n samples yields the data matrix X ∈ Rn×d.

This probabilistic framework ensures that the randomly generated δ and Ω conform to a bow-free
ADMG while allowing flexible edge structures.

We vary:

• Sample size n ∈ {100, 500, 1000},

• Number of variables d ∈ {5, 10},

• Shape parameter β ∈ {1, 3, 5} (MGGD).

Hence, we obtain 3 × 2 × 3 = 18 total conditions. For each condition, we run 50 trials. All
simulations use Python 3.8 with NumPy/SciPy．We used the hyperparameters recommended by
ABIC (https://gitlab.com/rbhatta8/dcd) as a reference when setting up our implementation.

Compared Methods. We compare the proposed ABIC LiNGAM to:

• bow-free ABIC (Bhattacharya et al., 2021), which assumes Gaussian errors (β = 1) and
recovers structures up to Markov equivalence.

• FCI (Spirtes et al., 2000), a constraint-based algorithm for ADMGs, outputting a partial
ancestral graph (PAG).

• BANG (Wang & Drton, 2024), a constraint-based method that exploits higher-order mo-
ments to identify bow-free ADMG directions (5% significance).

Because our synthetic data are bow-free, we evaluate ABIC LiNGAM under the bow-free constraint.

We assess:

• Skeleton accuracy (presence or absence of edges): Precision, Recall, F1-score.

• Arrowhead accuracy (correctly oriented edges): Precision, Recall, F1-score.

• Tail accuracy (the tail end of directed edges): Precision, Recall, F1-score.
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For FCI, which outputs a partial ancestral graph (PAG), we interpret A ◦→ B as A→ B and ◦−◦
as A↔ B.

Key Point (9): By introducing non-Gaussian errors (when β ̸= 1), we can potentially distinguish
causal directions beyond what is possible in purely Gaussian scenarios. Specifically, ABIC LiNGAM
leverages score-based continuous optimization under a multivariate generalized normal assumption,
providing the possibility of identifying orientations rather than merely recovering Markov equiva-
lence classes.

5.1.2 Simulation Results and Discussion

Figure 2: The precision results for each method with five variables.
In what follows, we report the performance of ABIC LiNGAM in terms of Recall, Precision, and
F1-score on three aspects of the learned graph: Skeleton, Arrowhead, and Tail. We compare our
method with BANG (Wang & Drton, 2024), as well as ABIC (Bhattacharya et al., 2021) and FCI
(Spirtes et al., 2000), under various conditions:

n ∈ {100, 500, 1000}, d ∈ {5, 10}, β ∈ {1, 3, 5}.

Key numerical results are shown in Figures (2)–(7).

(1) Gaussian case: β = 1.

• Skeleton accuracy. ABIC LiNGAM achieves almost the same Skeleton Re-
call/Precision/F1 as ABIC. This agrees with the fact that, in the Gaussian regime, both
methods can recover structures only up to the Markov equivalence class.
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Figure 3: The recall results for each method with five variables.

Figure 4: The F1-score results for each method with five variables.
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Figure 5: The precision results for each method with ten variables.

Figure 6: The recall results for each method with ten variables.
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Figure 7: The F1-score results for each method with ten variables.

• Directional accuracy (Arrowhead/Tail). Since β = 1 implies normal errors, ABIC
LiNGAM does not gain additional information to identify directions uniquely. For in-
stance, at (n, d) = (500, 5), both methods yield high Skeleton-F1 but yield only limited
Arrowhead/Tail correctness, consistent with standard LiNGAM theory.

(2) Non-Gaussian case: β ̸= 1.

• Improved direction recovery. Once β diverges from 1, ABIC LiNGAM can exploit non-
Gaussianity to break Markov equivalences. For example, at (d, n, β) = (5, 500, 3), ABIC
LiNGAM obtains Arrowhead Recall 0.760, Precision 0.733, F1 0.735, surpassing BANG’s
Arrowhead Recall of 0.651 (though BANG reaches a high Precision of 0.898).

• Consistency with increasing β. We also observe stable performance as β grows further,
e.g., (d, n, β) = (10, 500, 5) yields Arrowhead F1 ≈ 0.707, close to the β = 3 case. This
suggests that the proposed method’s direction estimation remains robust across different
levels of non-Gaussianity.

(3) Effect of dimensionality (d = 5 vs. d = 10).

• Stability of ABIC LiNGAM at higher d. Comparing d = 5 and d = 10 at n = 500,
we see little degradation in ABIC LiNGAM ’s Arrowhead Recall and F1 (e.g., 0.726 vs.
0.760). Hence, the method appears well-suited for moderately larger graphs.

• Comparison to BANG at d = 10. As d increases, the gap in directional accuracy be-
tween ABIC LiNGAM and BANG tends to narrow. For instance, at (d, n, β) = (10, 500, 3),
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ABIC LiNGAM’s Arrowhead Recall (0.726) exceeds BANG’s (0.590), though BANG still
sometimes shows a slightly better Tail precision in certain settings.

(4) Overall comparison to existing methods.

• BANG generally exhibits high directional accuracy, especially for d = 5. In particular,
with Tail metrics at (d, n, β) = (5, 500, 3), BANG shows Recall of 0.945, higher than ABIC
LiNGAM ’s 0.684. That said, the difference decreases as d grows.

• ABIC (Gaussian-only) matches ABIC LiNGAM under β = 1, but under non-Gaussianity,
it struggles to recover directions (e.g., Tail Recall 0.055 at d = 5, n = 500, β = 3).

• FCI works well in identifying skeletons and partial ancestral structures, but reading off
precise arrowheads from the PAG can be more involved.

(5) Summary of key findings.

In summary, ABIC LiNGAM can accurately estimate causal structures—including
orientations—when errors follow a non-Gaussian distribution, even in the presence
of unmeasured variables. It behaves similarly to ABIC for β = 1 (Gaussian),
and approaches or slightly surpasses BANG in certain non-Gaussian conditions,
especially as the dimensionality increases. Meanwhile, BANG still shows very high
directional accuracy in lower-dimensional settings. Hence, our results suggest that
ABIC LiNGAM is competitive with the state-of-the-art.

These observations are based on the aggregated numerical values (Figures 1–6). In particular,
we highlight Arrowhead and Tail metrics because direction estimation is crucial for causal infer-
ence. By exploiting a score-based unified criterion rather than repeated independence tests, ABIC
LiNGAM maintains stable and consistent accuracy across different sample sizes, dimensions, and
non-Gaussian parameters.

Although larger samples theoretically lead to more accurate recovery of the true structure，we ob-
served cases where increasing n improves recall but lowers precision (Figure 3)．Further experiments
and discussions on this phenomenon are provided in Appendix.

Key Point (10): In many conditions, non-Gaussian error terms (β ̸= 1) can help ABIC LiNGAM
surpass purely Gaussian-based methods (e.g., ABIC) in direction identification, because they break
the Markov equivalences that persist under Gaussian assumptions.

Key Point (11): Our experiments suggest that as dimensionality increases, the performance
gap between ABIC LiNGAM and BANG often narrows, indicating potential scalability and robust
performance of the proposed approach in higher-dimensional settings.

5.2 Performance Evaluation on Real-world Data

We evaluated our proposed method using a sociological data repository (https://gss.norc.org/),
which has also been studied in the context of DirectLiNGAM (Shimizu et al., 2011). The dataset
contains 1380 samples of sociological variables, such as parental education/occupation and off-
spring’s outcomes. In this study, we focus on the subset of variables and their presumed causal
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directions as depicted in Figure 8, following the domain knowledge and temporal ordering from
Duncan & Featherman (1972).

Compared Methods. Similar to our simulation experiments, we compared:

• bow-free ABIC LiNGAM (proposed), which handles non-Gaussian errors under a
bow-free ADMG constraint;

• bow-free ABIC (Bhattacharya et al., 2021), the baseline Gaussian version;

• FCI (Spirtes et al., 2000), a constraint-based algorithm for ADMGs, producing a partial
ancestral graph (PAG);

• BANG (Wang & Drton, 2024), which also identifies bow-free ADMG directions using non-
Gaussianity at a 5% significance level.

These methods were applied in the same fashion as in the simulation, focusing on how well they
recover known directions and possible confounding relationships.

Estimation of the Shape Parameter β. To remain consistent with our earlier assumption
that the error terms follow a multivariate generalized normal distribution (MGGD), we needed to
estimate the shape parameter β from the observed GSS data. Initially, we attempted to estimate a
single global β using the entire dataset, but the resulting value was below 1 and produced unstable
estimates (δ became all zeros, and Ω turned into a near-diagonal matrix). Instead, we adopted a
variable-by-variable estimation approach:

1. For each variable Xi, fit an MGGD-based model separately to approximate its marginal
distribution and infer an individual shape parameter β̂i.

2. Choose the maximum among {β̂i} as a conservative estimate, β̂ = maxi β̂i.

3. Use this β̂ as the shape parameter for the error distribution in the bow-free ADMG model.

This procedure avoided the instability observed in the global estimation method, ensuring all vari-
ables were effectively represented in the final choice of β.

Implementation Details. With β̂ fixed, we ran bow-free ABIC LiNGAM under the same aug-
mented Lagrangian optimization framework described previously. For ABIC, BANG, and FCI, we
applied their respective default or recommended settings, mirroring the simulation setup. Finally,
we evaluated each learned graph against the domain-consistent directions in Figure 8.

Remarks. By leveraging both domain knowledge (Duncan & Featherman, 1972) and our non-
Gaussian ADMG framework, we expected ABIC LiNGAM to capture latent confounders via bidi-
rected edges and to estimate orientations more accurately than purely Gaussian methods. In the
next section, we present the quantitative results and discuss how they compare to the simulation
findings.

Table2 reports the performance metrics for bow-free ABIC LiNGAM (beta est) compared to
other methods. We focus on three evaluation criteria: Skeleton, Arrowhead, and Tail.
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Figure 8: Variables and causal relations in the General Social Survey dataset used for the evaluation.

Figure 9: Causal graph produced by ABIC LiNGAM: The dashed lines represent predicted arrows
that differ from the true arrows.

Table 2: Experimental Results on Bollen Data
Method SKELETON ARROWHEAD TAIL

Recall Precision F1-score Recall Precision F1-score Recall Precision F1-score
FCI 0.727 1.000 0.842 0.643 0.692 0.666 0.250 0.667 0.363
BANG 0.727 0.889 0.800 0.643 0.643 0.643 0.250 0.500 0.333
ABIC 0.455 1.000 0.625 0.429 0.600 0.500 0.000 0.000 0.000
ABIC LiNGAM

beta est 0.818 1.000 0.900 0.714 0.800 0.740 0.500 0.800 0.615
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• Skeleton Performance. Our proposed method achieves a Recall of 0.818, Precision of
1.000, and an F1-score of 0.900, surpassing all baseline methods in identifying the pres-
ence or absence of edges. In contrast, ABIC attains Recall of 0.455 with an F1 of 0.625.
This highlights that ABIC LiNGAM (beta est) can more consistently recover the correct
adjacency relationships than the purely Gaussian version of ABIC.

• Arrowhead and Tail Performance (Direction). When examining directed-edge ori-
entation, ABIC LiNGAM (beta est) also shows promising results:

– Arrowhead: Recall = 0.714, Precision = 0.800, F1 = 0.740. Notably, this exceeds
BANG ’s Arrowhead metrics (Recall 0.643, Precision 0.643, F1 0.643).

– Tail: Recall = 0.500, Precision = 0.800, F1 = 0.615. Again, this is higher than BANG’
s Recall (0.250), Precision (0.500), and F1 (0.333).

As such, even for orientation-specific measures, ABIC LiNGAM (beta est) appears to out-
perform both BANG and ABIC on this particular dataset. Figure ?? (formerly Figure 9)
suggests that the true causal structure is largely recovered, including plausible directional-
ity.

Overall, these results demonstrate that ABIC LiNGAM (beta est) can estimate causal structures
(including edge directions) with higher accuracy than competing methods on the GSS dataset. In
particular, its Skeleton F1-score (0.900) and the improvement in Arrowhead/Tail measures over
BANG and ABIC indicate the potential effectiveness of adopting a non-Gaussian error assumption
in a score-based, bow-free ADMG framework. This is consistent with our simulation findings that
exploiting non-Gaussianity is crucial for precise direction inference. ABIC LiNGAM (beta est)
can flexibly incorporate prior knowledge. In this dataset as well, incorporating prior knowledge led
to improved accuracy. See Appendix for further details.

Intuition: The shape parameter β can significantly influence direction recovery. In particular,
when β > 1, the distribution exhibits heavier tails or skewness, thereby highlighting causal direc-
tions that might remain indistinguishable under purely Gaussian assumptions (β = 1).

6 Conclusion

In this study, we built on the score-based continuous optimization method proposed by
Bhattacharya et al. (2021) and introduced ABIC LiNGAM, an extension of LiNGAM designed
for causal structure estimation in the presence of unmeasured variables. By assuming that error
terms follow a multivariate generalized normal distribution, we demonstrated that we can poten-
tially identify not only the Markov equivalence class but also the directions in the causal structure.
Moreover, because ABIC LiNGAM can accurately estimate the SKELETON even when the data
follow a Gaussian distribution, our approach can be viewed as a more generalized version of the
method in Bhattacharya et al. (2021).

We also proved that parameters in bow-free ADMGs are almost everywhere identifiable from the
covariance matrix under the multivariate generalized normal distribution, thereby extending the
results of Brito & Pearl (2002) to non-Gaussian settings. Through simulations and experiments with
real-world data, we confirmed that the proposed method achieves accuracy comparable to existing
methods (such as BANG or FCI) in recovering causal structures, including causal directions. These
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findings suggest that our approach provides a useful framework for causal discovery in practical
settings where unmeasured variables may be present.

Concretely, our main contributions can be summarized as follows:

• Direction Identification under Non-Gaussianity: Whereas many Gaussian-based
methods can only recover the Markov equivalence class, our method leverages the mul-
tivariate generalized normal distribution (β ̸= 1) to rigorously identify causal directions.

• Theoretical Identifiability: We proved that parameters in bow-free ADMGs are al-
most everywhere identifiable from the covariance matrix, thereby extending the results of
Brito & Pearl (2002) to non-Gaussian settings.

• Empirical Validation: Using both simulations and real datasets, we showed that our
method achieves accuracy comparable to that of existing methods (such as BANG or
FCI) in recovering causal structures and directions.

In future work, we will explore ways to reduce estimation time, investigate extensions to
nonlinear data structures, and apply our method to mixed data that include discrete variables.
Advancing these directions will help establish a more efficient and versatile methodology for causal
discovery across diverse real-world scenarios.

In this paper, we extended the differentiable score-based approach from the Gaussian to the non-
Gaussian setting. This does not imply removing all assumptions; rather, the non-Gaussian error
terms furnish additional identifiable information beyond second moments, thereby enabling us to
determine causal directions more strictly. The results underscore that adopting non-Gaussianity is
not just a weaker constraint but a critical tool to enhance identifiability in causal discovery under
latent confounding.
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A Appendix

A.1 Proof of the Identifiability of Parameters in Bow-Free ADMGs with Multivariate
Generalized Normal Distributions

Theorem 1

Let G be a bow-free ADMGs with error terms following a multivariate generalized normal distri-
bution, and let the set of parameters of G be θ = {δ, Ω}. Then, for almost all θ, the following
holds:

Σ(θ) = Σ(θ′)

implies θ = θ′.

In other words, if two parameter sets θ and θ′ give the same covariance matrix Σ, then θ and θ′ must
be identical, except possibly when θ belongs to a set of Lebesgue measure zero. If the two lemmas
described later can be proven for the case where the error terms follow a multivariate generalized
normal distribution, this theorem can be demonstrated using the same proof as in Brito & Pearl
(2002).

Definition 1

A path in a graph is a sequence of edges (directed or bidirectional), where each edge starts from the
node where the previous edge ends. A directed path consists only of directed edges all pointing in
the same direction. A node X is called an ancestor of a node Y if there is a directed path from X
to Y . A path is said to be blocked if there is a node Z on the path such that there are consecutive
edges pointing toward Z (e.g., · · · → Z ← . . . ). In this case, Z is called a collider.

Definition 2

In a DAG, the depth of a node is defined as the length (number of edges) of the longest path directed
from its ancestors to that node.

Lemma 1

Let X and Y be the nodes in a bow-free ADMG with depth(X) ≥ depth(Y ). Then, all paths
between X and Y that include a node Z satisfying depth(Z) ≥ depth(X) are blocked by colliders.
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This lemma is based on graph theory and does not depend on the distribution of the error terms.
It is quoted from Brito & Pearl (2002).

Definition 3

For each node Y , the set of edges directed to Y , denoted by I(Y ), is defined as the union of the
following two sets: (a) the set of all directed edges pointing to Y , (b) the set of all bidirectional
edges between X and Y , where depth(X) < depth(Y ).

Lemma 2

Let Y be a variable at depth k in a bow-free ADMG. Assume that the parameters of all edges
connecting variables of a depth less than k are identifiable. Then, in almost all cases, the parameters
of each edge in the set I(Y ) are identifiable.

Proof

In Brito & Pearl (2002), the identifiability of bow-free models was established under the assumption
that the error terms follow a multivariate normal distribution. In this study, we extend this identi-
fiability result to the case where the error terms follow the aforementioned multivariate generalized
normal distribution. The proof itself draws heavily from Brito & Pearl (2002).

Wright’s method Wright (1960) relies on linear relationships between variables and covari-
ance structures. Since the multivariate generalized normal distribution is closed under linear
transformations((Gómez et al., 1998)), Wright’s method is applicable beyond the normal distri-
bution as long as the necessary linear conditions are satisfied. Indeed, Wright (1960) also mentions
that Wright’s method can be applied to distributions other than the normal distribution.

Let X = {X1, X2, . . . , Xm} be the set of variables with a depth less than k, and suppose that
these variables are connected to Y by directed or undirected edges. By the properties of bow-free
ADMGs, a one-to-one correspondence exists between each variable in X and the edges in I(Y ).
Therefore, I(Y ) can be expressed as

I(Y ) = {(X1, Y ), (X2, Y ), . . . , (Xm, Y )}.

Applying Wright’s method to each pair (Xi, Y ) yields the following equations:

σXiY =
∑
pi

T (pi), i = 1, . . . , m

where σXiY represents the covariance between Xi and Y , the sum is over all paths pi between
Xi and Y that have direct or indirect effects or associations, and T (pi) represents the product of
parameters along the path pi.

For each i, let λi be the parameter corresponding to the edge (Xi, Y ). The equation can be rewritten
as

σXiY = λi +
∑
j ̸=i

λjaij , i = 1, . . . , m

where the coefficients aij are functions of identifiable parameters corresponding to edges connecting
variables of a depth less than k. These coefficients reflect contributions from direct or indirect
effects or associations involving known parameters, excluding the direct edge (Xi, Y ).
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Under the assumption, by the induction hypothesis, that all parameters of edges connecting vari-
ables of a depth less than k are identifiable, the coefficients aij are known quantities. Therefore,
we obtain a system of m linear equations with m unknowns λ1, . . . , λm, which can be written in a
matrix form as

σ = Aλ (24)

where

σ =


σX1Y

σX2Y

...
σXmY

 , λ =


λ1
λ2
...

λm

 , A =


1 a12 . . . a1m

a21 1 . . . a2m

...
...

. . .
...

am1 am2 . . . 1

 .

To establish the identifiability of the parameters λi, it suffices to show that matrix A is invertible in
almost all cases, that is, det(A) ̸= 0 except on a set of measure zero, considering that the left-hand
side σ is observable. The matrix A has all diagonal elements equal to 1, and off-diagonal elements
depending on the model parameters. The determinant can be expressed in terms of the diagonal
and off-diagonal elements, as shown in (25).

det(A) = 1 + T, (25)

where T is either zero or a polynomial in the model parameters that do not contain any constant
term.

According to a well-known result in algebraic geometry Okamoto (1973), the set of parameter values
where det(A) = 0 has Lebesgue measure zero in the parameter space. This is because det(A) = 0
defines an algebraic variety of a lower dimension within the parameter space. Therefore, the matrix
A is invertible in almost all cases, and the system of linear equations has a unique solution.

Thus, under the given assumptions, each parameter λi is identifiable in almost all cases.

□

A.2 Hölder’s Inequality

Hölder’s inequality is a fundamental result in analysis that provides estimates for sequences (or more
generally, measurable functions on a measure space (Ω, µ)) in terms of their Lp-norms. Specifically,
for p, q ≥ 1 satisfying 1

p + 1
q = 1, Hölder’s inequality states that for any two sequences (ak) and

(bk):

∞∑
k=1

|akbk| ≤

( ∞∑
k=1

|ak|p
)1/p( ∞∑

k=1

|bk|q
)1/q

. (26)

Furthermore, by taking bk = 1, we obtain a useful inequality for finite sums as follows:
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(
n∑

k=1

|ak|

)p

≤ np−1
n∑

k=1

|ak|p. (27)

This special case reflects how the Lp-norm behaves in a finite setting and is central to understanding
the interplay between norms and summation.

In our specific problem, we use Hölder’s inequality to handle the terms involving βth powers of
squared residuals. Considering the log-likelihood expression after rearrangement,

ℓ(µ, Σ, β|X)

= −N

2
log Ωii.−i −

1
2Ωβ

ii.−i

N∑
l=1


X

(l)
i −

∑
j∈pa(i)

δi,jX
(l)
j −

∑
k∈sp(i)

Ωi,kZ
(l)
k

2


β

= −N

2
log Ωii.−i −

1
2Ωβ

ii.−i

Nβ−1

Nβ−1

N∑
l=1


X

(l)
i −

∑
j∈pa(i)

δi,jX
(l)
j −

∑
k∈sp(i)

Ωi,kZ
(l)
k

2


β

.

(28)

We introduce the factor Nβ−1

Nβ−1 to rewrite the sum in a form amenable to Hölder’s inequality. Define
the sequence as

al =

∣∣∣∣∣∣∣
X

(l)
i −

∑
j∈pa(i)

δi,jX
(l)
j −

∑
k∈sp(i)

Ωi,kZ
(l)
k

2
∣∣∣∣∣∣∣
β

,

and let bl = 1. If we choose p = β, and hence q = β
β−1 (so that 1

p + 1
q = 1), Hölder’s inequality

gives us

N∑
l=1

|albl| ≤

(
N∑

l=1

|al|
β
β

) 1
β
(

N∑
l=1

|bl|
β

β−1

) β−1
β

=

(
N∑

l=1

al

) 1
β

N
β−1

β .

Rearranging this inequality, we obtain a lower bound on
∑N

l=1 al in terms of Nβ−1 and the Lβ-norm
of the residuals

N∑
l=1

((
X

(l)
i − · · ·

)2
)β

≥

(∑N
l=1 |X

(l)
i − · · · |

)β

Nβ−1 .

Substituting this bound back into the expression for ℓ(µ, Σ, β|X), we have
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ℓ(µ, Σ, β|X) ≥ −N

2
log Ωii.−i −

1
2Ωβ

ii.−i

1
Nβ−1

∥∥∥∥∥∥Xi −
∑

j∈pa(i)

δi,jXj −
∑

k∈sp(i)

Ωi,kZk

∥∥∥∥∥∥
2β

. (29)

Thereby, Hölder’s inequality is employed to provide a nontrivial lower bound on the log-likelihood by
relating sums of βth powers of squared terms to the βth power of their L1-norm, scaled appropriately
by Nβ−1. This facilitates a more tractable analysis of the growth behavior and bounding properties
of the likelihood function.

A.3 Additional Experiments with Larger Sample Sizes

In addition to the simulations described in Section 5 of the main text, we conducted fur-
ther experiments to investigate how our score-based continuous optimization approach (ABIC
LiNGAM ) behaves under larger sample sizes. Specifically, we generated datasets of size n ∈
{100, 500, 1000, 2000, 5000} with five observed variables (dimension k = 5) and a fixed non-Gaussian
parameter β = 5. We considered both cases: beta ture (i.e., β is known) and beta est (i.e., β is
estimated from the data). Our primary goal was to examine whether increasing n leads to higher
recall while potentially decreasing precision due to “over-detection” of minor dependencies.

Table 3 presents the results for three types of edges (SKELETON, ARROWHEAD, TAIL), evalu-
ated by recall, precision, and F1-score. One would expect, from a theoretical standpoint, that as
the sample size grows, the estimated causal structure should approach the true structure. However,
as seen in Table 3, although recall does tend to increase with larger n, precision can decline in
some settings, leading to F1-scores that do not strictly increase. This phenomenon arises because
a larger sample size increases the statistical power of our score-based method, causing it to detect
even subtle or spurious edges as false positives. Such a trend is common in flexible models when
the penalty strength or thresholds are not tuned for very large sample sizes.

As Table 3 shows, recall generally improves with n (i.e., fewer missed edges), but precision (≈
the proportion of correctly identified edges among those detected) can decrease, indicating a rise
in false positives. Consequently, the F1-scores (F1 = 2× recall× precision/(recall + precision)) do
not necessarily increase monotonically. Moreover, because our causal graph is randomly generated
for each run, the “difficulty” of each dataset can vary, causing some fluctuations (e.g., at n = 500
vs. n = 1000).

These results help explain why large-sample outcomes can sometimes appear to deviate from the
theoretical expectation of“ convergence to the true graph.”In principle, if the regularization or
threshold hyperparameters are adjusted for the sample size, false positives may be reduced, thus im-
proving precision alongside recall. However, in our current implementation, these hyperparameters
are held constant, leading to potential“ over-detection”when n grows large.

Relation to Figure 3. In Section 5 (Figure 3), the last subgraph similarly shows a case in which
increasing sample size does not strictly improve F1-scores, despite recall gains. As clarified above,
our score-based approach tends to pick up spurious edges with large n, thus reducing precision and
causing a mismatch from purely theoretical expectations. We believe that this phenomenon arises
from not tuning the penalty term to suppress minor spurious connections in very large samples.
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Table 3: Extended experiment results of ABIC LiNGAM (β = 5) with sample sizes n ∈
{100, 500, 1000, 2000, 5000} and dimension k = 5. Metrics are reported for three edge categories
(SKELETON, ARROWHEAD, TAIL), under both the “β-est” (top) and “β-true” (bottom) con-
ditions. Numbers are averaged over multiple random simulations. Note that data generation relies
on randomly assigned causal graphs and random noise, causing minor variability across runs.

SKELETON ARROWHEAD TAIL
Sample Size Recall Precision F1 Recall Precision F1 Recall Precision F1
(a) ABIC LiNGAM beta true
n = 100 0.903 0.776 0.826 0.722 0.682 0.691 0.669 0.443 0.502
n = 500 0.948 0.774 0.843 0.727 0.676 0.691 0.643 0.357 0.430
n = 1000 0.965 0.695 0.800 0.739 0.584 0.641 0.647 0.315 0.404
n = 2000 0.985 0.713 0.821 0.768 0.619 0.673 0.699 0.328 0.429
n = 5000 0.994 0.720 0.826 0.771 0.597 0.661 0.673 0.303 0.403
(b) ABIC LiNGAM beta est
n = 100 0.883 0.806 0.832 0.706 0.682 0.680 0.613 0.452 0.490
n = 500 0.942 0.821 0.869 0.742 0.727 0.720 0.673 0.409 0.485
n = 1000 0.928 0.727 0.808 0.739 0.634 0.672 0.603 0.359 0.431
n = 2000 0.953 0.750 0.833 0.734 0.670 0.689 0.660 0.364 0.451
n = 5000 0.992 0.731 0.832 0.744 0.616 0.660 0.711 0.324 0.424

Future work will focus on dynamically adjusting thresholds and penalties to maintain a balance
between recall and precision, ensuring more consistent alignment with the theoretical asymptotic
behavior.

A.4 Performance Evaluation on Real Data Using Prior Knowledge

In ABIC LiNGAM, prior knowledge can be incorporated into the inference process following the
code implementation of ABIC available at https://gitlab.com/rbhatta8/dcd. Specifically, by defin-
ing hierarchical causal orders (tiers) and incorporating prior knowledge that certain variables are
unconfounded, we can restrict the parameter ranges (bounds) considered during the estimation.
Consequently, edges that contradict the causal order, as well as bidirectional edges among uncon-
founded variables, are represented with predetermined constraints in the parameter space (e.g.,
fixed to zero) and are thus automatically excluded during the inference process. Thereby, explicitly
reflecting prior knowledge in the model ensures that assumptions regarding causal directionality
and the absence of confounding factors are maintained, enabling an efficient structural estimation.

For example, the General Social Survey dataset obtained from a sociological data repository
(https://gss.norc.org/) includes variables pertaining to parents and children. If a causal path exists
from the parents to the children, a causal path from the children to the parents is not possible. In
the following section, we consider the inferences with a hierarchical causal structure. Specifically,
we divided the variables into two groups with a two-tiered structure―Father’s Occupation, Father’
s Education and Number of Siblings, Son ’s Education, Son ’s Occupation, Son ’s Income―and
prohibited the existence of directed edges from children ’s variables to parents ’variables.

As demonstrated by the results shown in Figure 10 and Table 4, incorporating prior information
into ABIC LiNGAM leads to a higher estimation accuracy compared to the approach without such
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Figure 10: Causal graph produced by ABIC LiNGAM incorporating prior knowledge: The dashed
lines represent predicted arrows that differ from the true arrows.

Table 4: Experimental Results for Bollen Data incorporating prior knowledge
Method SKELETON ARROWHEAD TAIL

Recall Precision F1-score Recall Precision F1-score Recall Precision F1-score
ABIC LiNGAM

beta est 0.818 1.000 0.900 0.714 0.800 0.740 0.500 0.800 0.615

ABIC LiNGAM
beta est

prior knowledge
0.818 1.000 0.900 0.692 0.900 0.782 0.857 0.750 0.800
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information. The estimated graph aligns closely with the presumed true causal structure. This
suggests that incorporating prior knowledge into ABIC LiNGAM is feasible and that leveraging
such information can yield improved accuracy in practical applications.
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