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ABSTRACT

This paper presents a framework for analyzing the expressiveness and learning of
relational models applied to hypergraph reasoning tasks. We start with a general
framework that unifies several relational neural network architectures: graph neural
networks, neural logical machines, and transformers. Our first contribution is a
fine-grained analysis of the expressiveness of these neural networks, that is, the
set of functions that they can realize and the set of problems that they can solve.
Our result is a hierarchy of problems they can solve, defined in terms of various
hyperparameters such as depth and width. Next, we analyze the learning properties
of these neural networks, especially focusing on how they can be trained on a small
graphs and generalize to larger graphs. Our theoretical results are further supported
by the empirical results illustrating the optimization and generalization of these
models based on gradient-descent training.

1 INTRODUCTION

Reasoning over graph-structured data is an important task in various applications, including molecule
analysis, social network modeling, and knowledge graph reasoning (Gilmer et al., 2017; Schlichtkrull
etal., 2018; Liu et al., 2017). While we have seen great success of various relational neural networks,
such as Graph Neural Networks (GNNs; Scarselli et al., 2008), Neural Logical Machines (NLM;
Dong et al., 2019), and Transformers (Vaswani et al., 2017) in a variety of applications (Battaglia et al.,
2018; Merkwirth & Lengauer, 2005; Velickovic et al., 2020), we do not yet have a full understanding
of how different design parameters, such as the depth of the neural network, affects the expressiveness
of these models, or how effectively these models generalize from data.

In this paper, we develop a general framework, generalized relational neural networks (ReINNs), that
unifies a large class of relational neural networks including GNNs, NLMs, and Transformers. Unlike
previous work that analyzes the expressiveness of graph neural networks (Xu et al., 2019; 2020;
Barcelo et al., 2020), our framework applies to hypergraphs, i.e., graphs that have representations
that directly relate groups of more than two nodes.

Next, we quantify the expressiveness of generalized relational neural networks in terms of their
structural parameters; in particular, the maximum arity of hyperedges and the depth of the network.
We formally proved the “if and only if” conditions for the expressive power w.r.t. the arity. That
is, k-ary hyper-graph relational neural networks are sufficient and necessary for realizing FOC-
k, a fragment of first-order logic which involves at most k variables. This is a helpful result
because now we can determine whether a ReINN can solve a problem by thinking whether a logic
formula can represent the solution to this problem. Next, we formally described the relationship
between expressiveness and non-constant-depth RelNNs. We proposed a conjecture about the ’depth
hierarchy,” and we connect the potential proof of this conjecture to distributed computing literature.
We also develope an upper bound for ReINNs. This is a very interesting result: applying a k-ary
hyper-graph ReINN for more than O(n*~1) iterations has no effect on the expressiveness.

Finally, we study the learning capabilities of ReINNs. We prove, under certain realistic assumptions,
it is possible to train a ReINN on a finite set of graphs, and it will generalize to arbitrarily large graphs.
This is an outcome due to the weight-sharing nature of ReINNs. Next, we proved a finer-grained
sample-complexity bound for ReINNs. This result theoretically suggests that using max aggregation
function is provably better than sum aggregation function when realizing a first-order logic formula.

We hope our work can serve as a foundation for designing relational neural networks: to solve a
specific problem, what arity do you need? What depth do you need? What aggregation function
should you use? Will my model have structural generalization (i.e., to larger graphs)? Our theoretical
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results on learning are further supported by experiments, for empirical demonstration of the theorems
and for exploring the tightness of the sample-complexity bounds and effectiveness of different
aggregation functions. Specifically, we show that ReINNs with sufficient expressiveness power can
be trained using gradient descent to realize the desired function. Meanwhile, when the training data
distribution is uniformly distributed, ReINNs do demonstrate strong generalization to larger graphs
than those seen during training. Finally, we also empirically show the generalization of RelNNs with
different aggregation functions.

2 GRAPH REASONING AND RELATIONAL NEURAL NETWORKS

In this section, we define a very general class of relational networks and show that it can represent
several important classes of relational neural networks, including graph neural networks, neural logic
machines, and transformers.

2.1 GRAPH REASONING PROBLEM

A graph reasoning problem is a prediction task on a hypergraph G. It can predict a discrete or
real-valued property of the whole graph, of individual nodes, or of tuples of nodes.

Much of the work on graph-structured neural-network models has focused on cases with only binary
edges, but many important problems are best modeled using hypergraphs, in which a hyperedge can
connect multiple nodes. A further generalization is to labeled hypergraphs, in which each hyperedge
can have one of a discrete set of labels. We will make use of a still more general structure, in which
hyperedges can have real and/or vector-valued labels.

A hypergraph representation G is a tuple (V, X), where V is a set of entities (nodes), and X is
a set of hypergraph representation functions. Specifically, X = {X, X1, X5, -+, Xy}, where
X; : (v1,v2,- -+ ,vj) — S is a function mapping every tuple of j nodes to a value. We call j the
arity of the hyperedge and £ is the max arity of input hyperedges. The range S can be any set of
discrete labels that describes relation type, or a scalar number (e.g., the length of an edge), or a
vector. In general, we will use the arity O representation function X()) — S to represent any global
properties of the graph as a whole.

A graph reasoning function f is a mapping from a hypergraph representation G = (V, X) to another
hyperedge representation function Y on V. There are several important types:

* graph classification function: computes a global label, Y = {Yo}; Yo () — S’ = {0, 1} for the

whole graph.

* graph regression function: computes a global real output, Y = {Y;}, where Y5(0) — R.

* node classification/regression function: computes Y = {Y7 }, where Y7 (vo) — {0, 1} is a binary

label for each individual node.

* edge classification function: extends previous prediction notions to higher-arity hyperedges.
For example, asking whether a graph is fully connected is a graph classification problem; computing
its diameter is a graph regression problem; finding the set of disconnected subgraphs of size k is a
k-ary hyperedge classification problem.

Example (undirected graph connectivity). The input is G = (V, X), where X = {X,, X3, X2},
in which X5 is mapping from each pair of nodes vy, v2 € V to {0, 1}, indicating whether (v, vo) are
connected. The input is an undirected graph; thus, X5 (v1,v2) = Xao(va, v1) for every vy, v2. Note
that X, and X are constant functions and not used for describing the undirected graph. The output
is Y = {Yy}, where Yo() — {0, 1} is a binary classification label. The desired label is 1 when the
graph is connected, and O otherwise.

2.2 RELATIONAL NEURAL NETWORKS

We now introduce introduce generalized relational neural networks (RelNNs), a general framework
that unifies a set of important relational neural network models that can be trained to solve graph
reasoning problems. In particular, we will describe relational neural networks following the notation
and computation of neural logic machines (NLMs; Dong et al., 2019). We choose NLM as a base
model because it naturally generalizes to hyperedges with arities greater than 2. As we will see later,
other relational neural networks such as graph neural networks (GNNs; Scarselli et al., 2008) and
transformers (Vaswani et al., 2017) are equivalent to NLMs and each other in terms of expressiveness.
Showing this equivalence allows us to focus the rest of the paper on analyzing a single model type,
with the understanding that the conclusions generalize to a broader class of relational neural networks.
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(b) The computation graph of a single ReINN block.
Figure 1: The overall architecture of our generalized relational neural network (RelNNs). It follows
the computation graph of NLM (Dong et al., 2019) and can be applied to hypergraphs.

A RelINN is a multi-layer neural network that operates on hypergraph representations, in which
the hypergraph representation functions are represented as tensors. The input is a hypergraph
representation (V, X). There are then several computational layers, each of which produces a
hypergraph representation with nodes V' and a new set of representation functions. Specifically, a
B-ary ReINN produces hypergraph representation functions with arities from 0 up to a maximum
hyperedge arity of B. We let T} ; denote the tensor representation for the output at layer ¢ and arity
j. Each entry in the tensor is a mapping from a set of node indices (v, va, - -+ ,v;) to a vector in a
latent space R Thus, T} ; is a tensor of j + 1 dimensions, with the first j dimensions corresponding
to j-tuple of nodes, and the last feature dimension. For convenience, we write hg . for the input
hypergraph representation and h p . for the output of the ReINN.

Fig. 1a shows the overall architecture of ReINNs. It has D x B computation blocks, namely relational
reasoning layers (RRLs). Each block RRL; ;, illustrated in Fig. 1b, takes the output from neighboring
arities in the previous layer, T;_1 ;_1, T;—1,; and T;_1 11, and produces T; ;. Below we show the
computation of each primitive operation in an RRL.

The expand operation takes tensor 7;_1 ;1 (arity j — 1) and produces a new tensor T, 1,j—1 of arity

j. .The reduce operatiqn takes tensor 1;_1 ;41 (arity j + 1) and produces a new tensor Tfi 1,541 of
arity j + 1. Mathematically,

72}217]'_1[111,1127"' 7Uj] = Ti—l,j—l['UhUQa"' 7'Uj—1]§
Tﬁl,jﬂ[vhvz,“' ,Uj] = Aggle {Tz‘71,j+1[01,02,'“ 7vjavj+1]}~

Here, Agg is called the aggregation function of a ReINN. For example, a sum aggregation function
takes the summation along the dimension j + 1 of the tensor, and a max aggregation function takes
the max along that dimension.

The concat (concatenate) operation € is applied at the “vector representation” dimension. The
permute operation generates a new tensor of the same arity, but it fuses the representations of
hyperedges that share the same set of entities but in different order, such as (v1,v2) and (v, v7).
Mathematically, for tensor X of arity j, if Y = permute(X) then
Y[U17v2a T 7Uj] = Coélgat {X[U0'1av0'27 o aUO'j]} ’
TEo;

where o € S; iterates over all permuations of {1,2, - - - j}. NN, is a multi-layer perceptron (MLP)
applied to each entry in the tensor produced after permutation, with nonlinearity o (e.g., ReLU).

It is important to note that we intentionally name the MLPs NN instead of NN; ;. In generalized rela-
tional neural networks, for a given arity 7, all MLPs across all layers ¢ are shared. It is straightforward
to see that this “weight-shared”” model can realize a “non-weight-shared” ReINN that uses different
weights for MLPs at different layers when the number of layers is a constant. With a sufficiently
large length of the representation vector, we can simulate the computation of applying different
transformations by constructing block matrix weights. (A more formal proof is in Appendix B.1) The
advantage of this weight sharing is that the network can be easily extended to a “recurrent” model.
For example, we can apply the ReINN for a number of layers that is a function of n, where n is the the
number of nodes in the input graph. Thus, we will use the term layers and iterations interchangeably.

Handling high-arity features and using deeper models usually increase the computational cost. In
appendix B.6, we show that the time and space complexity of ReINN [D, B] is O(Dn?).

Exanple (GNN). The graph neural network (GNN) of Scarselli et al. (2008) can be described as a
specific type of ReINN. First, GNNs work on graphs with maximum arity 2. In a single iteration in a
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B =4 4-Clique Detection ReINN[O(1), 4] 4-Clique Count ReINN[O(1), 4]

Triangle Detection ReINN[O(1),3] All-Pair Distance ReINN[O(log n), 3]*
Bipartiteness ReINN[O(log ), 3]*

B =3 All-Pair Connectivity ReINN[O (log 1), 3]*
All-Pair Connectivity-k ReINN[O(log k), 3]*
3-Link Detection ReINN[O(1), 2] S-T Distance ReINN[O(n), 2]
B—2 4-Link Detection ReINN[O(1), 2] Max Degree ReINN[O(1), 2]
- S-T Connectivity ReINN[O(n), 2] Max Flow ReINN[O(n?), 2]*
S-T Connectivity-k ReINN[O(k), 2]
FOC; Realization ReINN[-, 2] (Barcelo et al., 2020)
B =1 Node Color Majority: ReINN[O(1), 1] Count Red Nodes: ReINN[O(1), 1]

Classification Tasks Regression Tasks

Table 1: The minimum depth and arity of ReINNs for solving graph classification and regression
tasks. The * symbol indicates that these are conjectured lower bounds.

GNN, we use two message-passing subroutines: (edge update) the representation associated with
each edge is updated by representations of its both ends, and (node update): the representation of
each node is updated by all edge presentations connected to it. This message passing scheme can
easily fit in the ReINN: edge update can be realized by the expand and permute operations, while
node update can be realized by the reduce operation.

In general, hypergraph GNNs (Morris et al., 2019) are also equivalent to ReINNs. Specifically, a
GNN applied to B-ary hyperedges is equivalent to an NLM applied to B + 1-ary hyperedges. We
provide proof details in Appendix B.2.

There are other approaches of realizing GNN on hypergraphs such as hypergraph convolution(Feng
et al.,, 2019; Yadati et al., 2019; Bai et al., 2021), attention(Ding et al., 2020) and message pass-
ing(Huang & Yang, 2021). These approaches can be viewed as instances of ReINNs, but are less
expressive than ReINNs with equal max arity. We provide proof details in Appendix B.3.

Example (Transformer). The key difference between Transformers (Vaswani et al., 2017) and
GNN s is the “self-attention” opeartion, which can be viewed as a special aggregation function. In
self-attention, each “sender” computes the key and value, and each “receiver” computes the guery.
Xu et al. (2019) proved such aggregation can be simulated with a sum aggregation function.

We will use calligraphic letters M7, Ms, - - - to name ReINNs. Because even when hyperparameters
such as the maximum arity and the number of iterations are fixed, a ReINN is still a model family M:
the weights for MLPs will be trained on some data. Furthermore, each model M € M is a ReINN
with a specific set of MLP weights.

3 EXPRESSIVENESS OF RELATIONAL NEURAL NETWORKS

A ReINN is characterized by hyperparameters D (depth), and B maximum arity. In this section, we
will focus on D and B, quantifying how they affect the expressiveness of a model; i.e., the set of
graph reasoning functions a model family can realize. The W parameter affects the precise details of
what functions can be realized, as it does in a regular neural network, but does not affect the structural
constraints that are our focus in this paper. When considering D, we will focus on the distinction
between any constant depth vs. adaptive depth, in which D depends on the number n of nodes in the
input graph. We will use the notation ReINN[D, B] to represent a ReINN family with depth D and
max arity B. A summary of some concrete results is in table 1 and discussed in detail in Appendix A.

Many frameworks for characterizing the expressiveness of neural networks make a distinction between
models that have the capacity to use unbounded precision in intermediate representations. In all
results we state below, we will indicate whether they apply to the fixed or unbounded precision case.

Definition 3.1 (Expressiveness). We say a model family M is at least expressive as M, written
as My = Mo, if for all My € M, there exists M7 € M such that M, can realize M5. A model
family M is more expressive than Ms, written as M > Mo, if My = My and IM; € My,
VM, € Msy, My can not realize M.
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3.1 ARITY HIERARCHY

We first aim to quantify how the maximum arity B of the network’s representation affects its
expressiveness and find that, in short, the higher the maximum arity, the more expressive the relational
neural network is. A majority of the results in this section are based on the Weisfeiler-Leman graph
isomophism test (WL-test) (Leman & Weisfeiler, 1968; Xu et al., 2019).

Theorem 3.1 (Arity Hierarchy). For any maximum arity B, there exists a depth D* such that:
VD > D*,ReINN[D, B + 1] is more expressive than ReINN[D, B]. This theorem applies to both
fixed-precision and unbounded-precision networks.

Proof sketch: Our proof slightly extends the proof of Morris et al. (2019). First, the set of graphs
distinguishable by ReINN[D, B] is bounded by graphs distinguishable by a D-round order-B WL-
test. If models in ReINN[D, B] cannot generate different outputs for two distinct hypergraphs GG and
G2, but there exists M € ReINN[D, B + 1] that can generate different outputs for G; and G, then
we can construct a graph classification function f that ReINN[D, B + 1] can realize but ReINN[D,
B] cannot. The full proof is described in Appendix B.4.

It is also important to quantify the minimum arity for realizing certain graph reasoning functions.

Theorem 3.2 (FOL realization bounds). Let FOCp denote a fragment of first order logic with at
most B variables, extended with counting quantifiers of the form 32~ ¢, which state that there are at
least n nodes satisfying formula ¢ (Cai et al., 1992).
¢ (Upper Bound) Any function f in FOCp can be realized by ReINN[D, B] for some D.
* (Lower Bound) There exists a function f € FOC g such that for all D, f cannot be realized by
ReINN[D,B —1].

Proof: The upper bound part of the claim has been proved by Barcel6 et al. (2020) for B = 2.
The results generalize easily to arbitrary B because the counting quantifiers can be realized by
sum aggregation. The lower bound part can be proved by applying Section 5 of Cai et al. (1992),
in which they show that FOCp is equivalent to a (B — 1)-dimensional WL test in distinguishing
non-isomorphic graphs. Given that ReINN[D, B — 1] is equivalent to the (B — 2)-dimensional WL
test of graph isomorphism, there must be an FOL g formula that distinguishes two non-isomorphic
graphs that ReINN[D, B — 1] cannot. Hence, FOL 5 cannot be realized by ReINN[-, B — 1].

3.2 DEPTH HIERARCHY
We now study the dependence of the expressiveness of ReINNs on depth D.

ReINNs are generally defined to have a fixed depth, but allowing them to have a depth that is dependent
on the number of nodes n = |V/| in the graph can substantially increase their expressive power. In the
following, we define a depth hierarchy by analogy to the time hierarchy in computational complexity
theory (Hartmanis & Stearns, 1965), and we extend our notation to let ReINN[O( f(n)), B] denote
the class of adaptive-depth ReINNs in which the growth-rate of depth D is bounded by O(f(n)).

Conjecture 3.3 (Depth hierarchy). For any maximum arity B, for any two functions f and g, if
g(n) = o(f(n)/logn), that is, f grows logarithmically more quickly than g, then fixed-precision
ReINN[O(f(n)), B] is more expressive than fixed-precision ReINN[O(g(n)), B].

There is a closely related result for the congested clique model in distributed computing, where
Korhonen & Suomela (2018) proved that CLIQUE(g(n)) € CLIQUE(f(n)) if g(n) = o(f(n)).
This result does not have the logn gap because the congested clique model allows logn bits to
transmit between nodes at each iteration, while fixed-precision ReINN allows only a constant number
of bits. The reason why the result on congested clique can not be applied to fixed-precision ReINNs
is that congested clique assumes unbounded precision representation for each individual node.

However, Conjecture 3.3 is not true for ReINNs with unbounded precision, because there is an upper
bound depth O(n®~1) for a model’s expressiveness power. That is, an unbounded-precision ReINN
can not achieve stronger expressiveness by increasing its depth beyond O(n?~1).

Theorem 3.4 (Upper depth bound for unbounded-precision ReINN). For any maximum arity B,
ReINN[O(n®~1), B] = ReINN[O(f(n)), B] for any function f(n).

Proof sketch. Theorem 3.4 can be proved by combining the fact that the B-dimensional WL test is
equivalent to differentiating graphs using FOCp; (Cai et al., 1992), and the O(n?) upper bound
on the computation depth for B-dimensional WL-test (Kiefer & Schweitzer, 2016). This upper
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bound indicates that O(n?) depth is sufficient for B-dimensional WL-test to reach its maximum
discriminative power, and thus any two graphs distinguishable by the WL-test can be distinguished
by some FOL 5 ; formula with quantifier depth O(n?). The full proof is described in Appendix B.5.

It is important to point out that, to realize a specific graph reasoning function, ReINNs with different
maximum arity B may require different depth D. Fiirer (2001) provides a general construction for
problems that higher-dimensional ReINNs can solve in asymptotically smaller depth than lower-
dimensional ReINNs. In the following we give a concrete example for computing S-T Connectivity-k,
which asks whether there is a path of from nodes S and T in a graph, with length < k.

Theorem 3.5 (S-T Connectivity-k with Different Max Arity). For any function f(k), if f(k) = o(k),
ReINN[O(f(k)), 2] cannot realize S-T Connectivity-k. That is, S-T Connectivity-k requires depth
at least O(k) for a relational neural network with an maximum arity of B = 2. However, S-T
Connectivity-k can be realized by ReINN[O(log k), 3].

Proof sketch. For any integer k, we can construct a graph with two chains of length k£, so that if we
mark two of the four ends as S or T, any ReINN[k — 1, 2] cannot tell whether .S and T are on the
same chain. The full proof is described in Appendix A.7.

There are many important graph reasoning tasks that do not have known depth lower bounds, including
all-pair connectivity and shortest distance (Karchmer & Wigderson, 1990; Pai & Pemmaraju, 2019).

4 LEARNING AND GENERALIZATION IN RELATIONAL NEURAL NETWORKS

Given our understanding of what functions can be realized by relational neural networks, we move
on to the problems of learning them: Can we effectively learn a relational neural network to solve a
desired task given a sufficient number of input-output examples? What is the sample complexity?
How do they generalize? These questions are very difficult to address in full for ReINNs, but there
still some interesting things to be said. In this section we state and prove two theorems that illuminate
their learning and generalization properties.

In a fixed-precision setting, we can show that applying enumerative training with examples up to
some fixed size can ensure that the trained neural network will generalize to all graphs larger than
those appearing in the training set. In an unbounded-precision setting, we can show that, if we use
gradient descent to train models that use certain aggregation functions from randomly sampled data,
then with a number of training examples that scales with log(V), the learned ReINN will generalize
to all hypergraphs of size smaller than N.

4.1 GENERALIZATION OF FIXED-PRECISION RELATIONAL NEURAL NETWORKS

Machine learning studies of generalization focus on cases where input and output space are fixed-
dimensional, and on how well the learned hypothesis can predict outputs for inputs that were not
observed in the training set. Although learning specific graph reasoning functions in RelNNs are
susceptible to this same type of analysis, we focus on an important type of generalization ability that
is not present in the classical models: the ability to train on example graphs with up to N nodes, and
then generalize to make correct predictions on graphs with larger numbers of nodes.

A critical determinant of the generalization ability for Re]NNs is the aggregation function they use.
Specifically, Xu et al. (2019) have shown that using sum as the aggregation function provides maxi-
mum expressiveness for graph neural networks. However, sum aggregation cannot be implemented
in fixed-precision models with an arbitrary number of nodes, because as the graph size n increases,
the range of the sum aggregation also increases.

Definition 4.1 (Fixed-precision aggregation function). An aggregation function is fixed precision
if it maps from any finite ser of inputs with values drawn from finite domains to a fixed finite set
of possible output values; that is, the cardinality of the range of the function cannot grow with the
number of elements in the input set.

Two useful fixed-precision aggregation functions are max, which computes the dimension-wise
maximum over the set of input values, and fixed-precision mean, which approximates the dimension-
wise mean to a fixed decimal place.

Definition 4.2 (Fixed-precision ReINN). A RelNN is fixed precision if its aggregation function is
fixed precision and all of the component MLPs, NN, are also fixed precision, in the same sense as
for aggregation functions above. This guarantees that the cardinality of the range of the hypergraph
representation functions cannot grow with the number of nodes in the hypergraph.
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In order to focus on structural generalization in this section, we consider an enumerative training
paradigm. When the input hypergraph representation domain S is a finite set, we can enumerate the
set G< v of all possible input hypergraph representations of size bounded by /N. We first enumerate
all graph sizes n < N; for each n, we enumerate all possible values assigned to the hyperedges
in the input. Given training size [V, we enumerate all inputs in G< v, associate with each one the
corresponding ground-truth output representation, and train the model with these input-output pairs.

This has much stronger data requirements than the standard sampling-based training mechanisms
in machine learning. In the simplest binary graph classification case, enumerative training allows
us to identify the optimal model in the hypothesis space. In practice, this can be approximated
well when the input domain S is small and the input data distribution is approximately uniformly
distributed. The enumerative learning setting is studied by the language identification in the limit
community (Gold, 1967), in which it is called complete presentation. This is an interesting learning
setting because even if the domain for each individual hyperedge representation is finite, as the graph
size can go arbitrarily large, the number of possible inputs is enumerable but unbounded.

Theorem 4.1 (Fixed-precision generalization under complete presentation). For any hypergraph
reasoning function f, if it can be realized by a fixed-precision relational neural network model M,
then there exists an integer N, such that if we train the model with complete presentation on all input
hypergraph representations with size smaller than IV, G< y, then for all M € M,

> 1M(G) # f(G) =0 = VG € G : M(G) = f(G).
GeG«n
That is, as long as M fits all training examples, it will generalize to all possible hypergraphs in G ..

Proof. The key observation is that for any fixed vector representation length W, there are only finite
number of distinctive models in a fixed-precision ReINN family, independent of the graph size n.
Let W, be the number of bits in each intermediate representation of a fixed-precision ReINN. There

are at most (2"2)2"" different mappings from inputs to outputs. Hence, if N is sufficiently large to
enumerate all input hypergraphs, we can always identify the correct model in the hypothesis space.

In future, we hope to extend this result to encompass sampling-based rather than enumerative training.
In addition, models approximating the finite-precision assumption with sigmoid activation and max
aggregation have empirically demonstrated the strong generalization properties this theorem predicts.

4.2 GENERALIZATION OF UNBOUNDED-PRECISION RELATIONAL NEURAL NETWORKS

Intuitively, relational neural networks with unbounded precision may not generalize to larger graphs
because an aggregation function such as sum may accumulate through the layers. However, interest-
ingly, this error can remain reasonably well-bounded for max or mean aggregation function. In this
section, we will derive a bound for sample complexity in a more standard PAC-learning setting, in
which there are no precision bounds on the inputs and computation of the model. It is difficult to
characterize the VC dimension of an entire RelNN, but following Xu et al. (2021), we characterize
the properties of a sequential training paradigm that considers the components independently.

Theorem 4.2 (PAC sample complexity of unbounded-precision ReINNs). Let M be a family of
unbounded-precision relational neural networks with hidden dimension W, depth D, and maximum
arity B. Let f be a graph function that can be realized by M, and M € M be a sequentially-trained
model. If the following two conditions are true:
* (a) There exists an instance M’ € M such that M’ realizes f and MLPs in M are (¢, d)-
approximations of those in M’ *; and
* (b) The MLPs NN; in M are Lipschitz-continuous i.e. |[NN;(z1) — NN, (z2)|| < Allz1 — x2|
for some constant A and for all j.
Then on graphs of size n, M is a (O (eAPWP/2)  O(6Dn?))-approximation of f if M uses max
aggregation, and a (O (eAP) , O(6Dn”)-approximation of f if M uses mean aggregation.

Theorem 4.2 indicates that when using max or mean aggregation, the generalization error does not
scale with the graph size n (which is the case for sum), while the failure probability § scales with
O(Dn?). In the PAC-learning framework, the sample complexity for achieving error € with failure
probability  is bounded by O (2 (log (VC(H)) +log (1))). where VC(H) is the VC-dimension

*That is, Pry~x (|| M (z) — M'(z)|| <€) > (1 — §), where X is the data distribution
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3-link 4-link triangle 4-clique
Model Agg. n=10 n=30 n=10 n=30 n=10 n=30 n=10 n=30

Max 70.0i0,0 82.7i040 92.0i0,0 91.7i0,0 737i32 50-2i1.8 55.3i4,0 462i13
Sum 100.0+0.0 89.4+04 1000400 86.1+12 77.7485 48.641.6 53.7+0.6 5524038
Max 65-3i0.6 54~0i046 93.0i0,0 95.7i0,0 51.0i147 49.210.4 55.0i0,0 45-7i0.0
Sum 100.0+0.0 88.3+0.0 100.0+0.0 67.4+16.4 82.042.6 483100 53.040.0 54.4+15

Max 78-7i0.6 76.0i17_3 97~7i4.0 98.6i2,5 IOO-OiO.O 100-01040 SS-OiO.O 45~7i0.0
Sum 100.0+0.0 51.2479 100.0+0.0 45.7+76 100.040.0 492410 61.0+456 54.3+0.0
Max 100.0+0.0 100.04+0.0 100.040.0 100.0+0.0 100.040.0 100.0+0.0 59.0+6.9 45.9+0.4
Sum IO0.0io,o 87.6;{:11,0 ]00.0;&0_0 65.4i14,3 100.0:{:0_0 80.6i8,8 73~7:t13.8 53-318.8

Max 79.0+0.0 86.040.0 100.04+0.0 100.040.0 100.0+0.0 100.040.0 84.0+0.0 93.310.0
Sum 100.0+0.0 84.1+18.6 100.040.0 61.1+15.0 100.040.0 95.147.3 80.5+0.7 66.2+19.6
Max IO0.0io_o IO0.0io,o 100-0i040 IO0.0io,o IO0.0io,o 100-01040 82.0i1,7 93~1:t0.2
Sum 100.0+0.0 59.1+5.3 100.0+0.0 67.7424.1 100.0+0.0 82.1+12.8 84.040.0 67.0+18.9

Table 2: Overall accuracy on relational reasoning problems. All models are trained on n = 10, and
tested on n = 30. The standard error of all values are computed based on three random seeds.

1-ary GNN

2-ary NLM

2-ary GNN

3-ary NLM

3-ary GNN

4-ary NLM

of the hypothesis space. Hence, scaling to graphs with size n requires additional O(B logn) samples
when considering W, D, X as constants. The proof of Theorem 4.2 can be found in Appendix B.7.

The sample complexity does not depend on the graph size, because under the sequential learning
setting the MLPs are trained with direct supervision. Though this setting can not be implemented in
practice, in our experiments we observe good generalization of models trained end-to-end.

Theorem 4.2 is interesting because it shows that using max or mean aggregation has provably better
sample complexity than using sum aggregation. Combined with the fact that using max aggregation,
ReINN[., B] can realize FOCp with only 3 and V quantifiers (Dong et al., 2019), ReINN with max
aggregation is a strong model class.

5 EXPERIMENTS

We now study how our theoretical results on model expressiveness and learning apply to relational
neural networks trained with gradient descent on practically meaningful problems. We begin by
describing two synthetic benchmarks: graph substructure detection and relational reasoning.

In the graph substructure detection dataset, there are several tasks of predicting whether there input
graph containd a sub-graph with specific structure. The tasks are: 3-link (length-3 path), 4-link,
triangle, and 4-clique. These are important graph properties with many potential applications.

The relational reasoning dataset is composed of two family-relationship prediction tasks and two
connectivity-prediction tasks. They are all binary edge classification tasks. In the family-relationship
prediction task, the input contains the mother and father relationships, and the task is to predict the
grandparent and uncle relationships between all pairs of entities. In the connectivity-prediction tasks,
the input is the edges in an undirected graph and the task is to predict, for all pairs of nodes, whether
they are connected with a path of length < 4 (connectivity-4) and whether they are connected with a
path of arbitrary length (connectivity). The data generation for all datasets is included in Appendix C.

5.1 RESULTS

Our main results on all datasets are shown in Table 2 and Table 3. We empirically compare relational
neural networks with different maximum arity B, different model architecture (GNN and NLM), and
different aggregation functions (max and sum). All models use sigmoidal activation for all MLPs.
For each task on both datasets we train on a set of small graphs (n = 10) and test the trained model
on both small graphs and large graphs (n = 10 and n = 30). We summarize the findings below.

Expressiveness. We have seen a theoretical equal expressiveness between GNNs and NLMs applied
to hypergraphs. That is, a GNN applied to B-ary hyperedges is equivalent to a (B + 1)-ary NLM.
Table 2 and 3 further suggest their similar performance on tasks when trained with gradient descent.

Formally, triangle detection requires RelNNs with at least B = 3 to solve. Thus, we see that all
ReINNs with arity B = 2 fail on this task, but models with B = 3 perform well. Formally, 4-clique
is realizable by RelNNs with maximum arity B = 4, but we failed to reliably train models to reach
perfect accuracy on this problem. It is not yet clear what the cause of this behavior is.
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grand parent uncle connectivity-4° connectivity
Model Agg. n=20 n=80 n=20 n=8 n=10 n=8 n=10 n=280

Max 84.040.3 64.840.0 93.6403 66.140.0 72.6436 67.5+0.5 85.6+03 751419

ary NN Gum 847101 644100 943100 662100 79.6:01 683101 87120 7500
2-ary NLM Max 823105 65.640.1 93.140.0 66.6400 91.2402 51.0406 889426 67.11as
Sum 829401 64.6401 934400 667402 96.04+0.4 683105 84.0+0.0 71.9+0.0
2-ary GNN Max 1OO-O:N:OAO 100-0:{:0.0 IOO'O:N:OAO ]00.0:[:0‘0 100.0;{:0_0 IOO.Oj:OAO 84.0:&0_0 71.9:‘:()‘0
Sum 100.0+0.0 35.710.0 100.040.0 33.9+0.0 100.010.0 513153 84.0100 719100
3-ary NLM Max 100.0+0.0 100.0+0.0 100.040.0 100.0+0.0 100.040.0 100.0+0.0 100.0+09.0 100.040.1
Sum 100.0+0.0 35.710.0 100.040.0 50.81429.4 100.010.0 77.8411.8 100.010.0 88.2+8.0
3-ary NLMys Max 100.0+0.0 100.040.0 100.040.0 100.0100 N/A N/A N/A N/A
Sum 100.0+0.0 35.710.0 100.010.0 33.8429.4 N/A N/A N/A N/A

Table 3: Overall accuracy on relational reasoning problems. Models for family-relationship prediction
are trained on n = 20, while models for connectivity problems are trained on 7 = 10. All model are
tested on n = 80. The standard error of all values are computed based on three random seeds. The
3-ary NLMs marked with “HE” have hyperedges in inputs, where each family is represented by a
3-ary hyperedge instead of two parent-child edges, and the results are similar to binary edges.

Structural generalization. We discussed the structural generalization properties of ReINNs in
Section 4.1, in a learning setting based on fixed-precision networks and enumerative training. This
setting can be approximated by training ReINNs with max aggregation and sigmoidal activation on
sufficient data. In both Table 2 and Table 3 we see that, when models can realize the desired function
and are trained to 100% accuracy on the training split, they also generalize well to larger graphs. In
appendix C, we provide a more detailed study on the generalization performance.

Sample complexity (case study). In Section 4.2, we discussed the sampling complexity differences
induced by different aggregation functions in the sequential learning setting. The primary conclusion
is that models with max aggregation are expected to have better sample complexity than models with
sum aggregation. We test this hypothesis in the end-fo-end learning setting. For the triangle detection
problem, we train 3D-NLM with sum and max aggregation with fewer training samples. We observe
that sum aggregation requires about 300 training samples to reach nearly perfect accuracy, while max
aggregation requires only 30 training samples. More details are included in appendix C.

6 RELATED WORK

Solving problems on graphs of arbitrary size is studied in many fields. ReINNs can be viewed as circuit
families with constrained architecture. In distributed computation, the congested clique model can be
viewed as 2-arity ReINNs, where nodes have identities as extra information. Common graph problems
including sub-structure detection(L.i et al., 2017; Rossman, 2010) and connectivity(Karchmer &
Wigderson, 1990) are studied for lower bounds in terms of depth, width and communication. This
has been connected to GNNs for deriving expressiveness bounds (Loukas, 2020).

Studies have been conducted on the expressiveness of GNNs and their variants. Xu et al. (2019) pro-
vide an illuminating characterization of GNN expressiveness in terms of the WL graph isomorphism
test. Barcelo et al. (2020) reviewed GNNs from the logical perspective and rigorously refined their
logical expressiveness with respect to fragments of first-order logic. Dong et al. (2019) proposed
Neural Logical Machines (NLMs) to reason about higher-order relations, and showed that increasing
order inreases expressiveness. It is also possible to gain expressiveness using unbounded computation
time, as shown by the work of Dehghani et al. (2019) on dynamic halting in transformers.

It is interesting that GNNs may generalize to larger graphs. Xu et al. (2020; 2021) have studied
the notion of algorithmic alignment to quantify such structural generalization. Dong et al. (2019)
provided empirical results showing that NLMs generalize to much larger graphs on certain tasks.

7 CONCLUSION

We have provided a framework for unifying several powerful classes of relational neural networks
and characterized aspects of their representational and generalization power, both theoretically and
empirically. In particular, we have shown the substantial increase of expressive power due to higher-
arity relations and increasing depth, and have characterized very powerful structural generalization
from training on small graphs to performance on larger ones. Although many questions remain open
about the overall generalization capacity of these models in continuous and noisy domains, we believe
this work has shed some light on their utility and potential for application in a variety of problems.
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Reproducibility statement. The proof details for theorems in this paper have been included in the
appendix.
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A  GRAPH PROBLEMS

We listed a number of examples for graph classification and regression tasks, and we provide the
definitions and the current best known RelNNs for learning these tasks from data. For some of the
problems, we will also show why they can not be solved by a simpler problems, or indicate them as
open problems.

A.1 NODE COLOR MAJORITY

Each node is assigned a color ¢ € C where C is a finite set of all colors. The model needs to predict
which color the most nodes have.

Using a single layer with sum aggregation, the model can count the number of nodes of color ¢ for
each ¢ € C on its global representation.

A.2 CoOUNT RED NODES
Each node is assigned a color of red or blue. The model needs to count the number of red nodes.

Similarly, using a single layer with sum aggregation, the model can count the number of red nodes on
its global representation.

A.3 3-LINK DETECTION

Given an unweighted, undirected graph, the model needs to detect whether there is a triple of nodes
(a,b,c) such that @ # c and (a, b) and (b, ¢) are edges.

This is equivalent to check whether there exists a node with degree at least 2. We can use a Reduction
operation with sum aggregation to compute the degree for each node, and then use a Reduction
operation with max aggregation to check whether the maximum degree of nodes is greater than or
equal to 2.

Note that this can not be done with 1 layer, because the edge information is necessary for the problem,
and they require at least 2 layers to be passed to the global representation.

A.4 4-LINK DETECTION

Given an unweighted undirected graph, the model needs to detect whether there is a 4-tuple of nodes
(a,b,c,d) such that a # ¢,b # d and (a,b), (b, ¢), (c,d) are edges (note that a triangle is also a
4-link).

This problem is equivalent to check whether there is an edge between two nodes with degrees > 2.
We can first reduce the edge information to compute the degree for each node, and then expand it
back to 2-dimensional representations, so we can check for each edge if the degrees of its ends are
> 2. Then the results are reduced to the global representation with existential quantifier (realized by
max aggregation) in 2 layers.

A.5 TRIANGLE DETECTION

Given a unweighted undirected graph, the model is asked to determine whether there is a triangle in
the graph i.e. a tuple (a, b, ¢) so that (a, b), (b, ¢), (¢, a) are all edges.

This problem can be solved by ReINN [4,3]: we first expand the edge to 3-dimensional representations,
and determine for each 3-tuple if they form a triangle. The results of 3-tuples require 3 layers to be
passed to the global representation.

We can prove that Triangle Detection indeed requires breadth at least 3. Let k-regular graphs be
graphs where each node has degree k. Consider two k-regular graphs both with n nodes, so that
exactly one of them contains a triangle®. However, ReINNs of breadth 2 has been proven not to be
stronger than WL test on distinguish graphs, and thus can not distinguish these two graphs (WL test
can not distinguish any two k-regular graphs with equal size).

A.6 4-CLIQUE DETECTION AND COUNTING

Given an undirected graph, check existence of, or count the number of tuples (a, b, ¢, d) so that there
are edges between every pair of nodes in the tuple.

Such construction is common. One example is k = 2, n = 6, and the graph may consist of two separated
triangles or one hexagon

12
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This problem can be easily solved by a ReINN with breadth 4 that first expand the edge information
to the 4-dimensional representations, and for each tuple determine whether its is a 4-clique. Then the
information of all 4-tuples are reduced 4 times to the global representation (sum aggregation can be
used for counting those).

Though we did not find explicit counter-example construction on detecting 4-cliques with RelNNs of
breadth 3, we suggest that this problem can not be solved with ReINNs with 3 or lower breadth.

A.7 CONNECTIVITY

The connectivity problems are defined on unweighted undirected graphs. S-T connectivity problems
provides two nodes S and 7" (labeled with specific colors), and the model needs to predict if they are
connected by some edges. All pair connectivity problem require the model to answer for every pair
of nodes. Connectivity-k problems have an additional requirement that the distance between the pair
of nodes can not exceed k.

S-T connectivity-k can be solved by a ReINN of breadth 2 with k iterations. Assume S is colored
with color ¢, at every iteration, every node with color ¢ will spread the color to its neighbors. Then,
after k iterations, it is sufficient to check whether 7" has the color c.

With RelNNs of breadth 3, we can use O(log k) matrix multiplications to solve connectivity-k
between every pair of nodes. Since the matrix multiplication can naturally be realized by ReINNs of
breadth 3 with two layers. All-pair connectivity problems can all be solved with O(log k) layers.

Theorem A.1 (S-T connectivity-k with ReINN[o(k), 2). S-T connectivity-k can not be solved by a
ReINN of maximum arity within o(k) iterations.

Proof. We construct two graphs each has 2k nodes uq, - - - , ug, v1, - - - , vg. In both graph, there are
edges (ui, ui11) and (v;,v,41) for 1 < i < k — 1 i.e. there are two links of length k. We then set
S =wu,T =uyand S = uy,T = v, the the two graphs.

We will analysis GNNs as RelNNs are proved to be equivalent to them by scaling the depth by a
constant factor. Now consider the node refinement process where each node x is refined by the
multiset of labels of =’s neighbots and the multiiset of labels of =’s non-neighbors.

LetC j@ (z) be the label of x in graph j after i iterations, at the beginning, WLOG, we have

) =1, (up) =20 (uy) = 1,0 (v,) = 2
and all other nodes are labeled as 0.

Then we can prove by induction: after ¢ < g — 1 iterations, for 1 < ¢ <7+ 1 we have
i = 65" (un), 0" = €5 (vy)
Oy = O (o), O = O (i)
and fori+2 <t <k — 14— 1 we have
1" = 5 (), Cf") = G5 ()

This is true because before % iterations are run, the multiset of all node labels are identical for the

two graphs (say S(V). Hence each node z is actually refined by its neighbors and S(*) where S)
is the same for all nodes. Hence, before running % iterations when the message between .S and T’
finally meets in the first graph, GNN can not distinguish the two graphs, and thus can not solve the
connectivity with distance k£ — 1. O

A.8 MAX DEGREE
The max degree problem gives a graph and ask the model to output the maximum degree of its nodes.

Like we mentioned in 3-link detection, one layer for computing the degree for each node, and another
layer for taking the max operation over nodes should be sufficient.

13
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A.9 MaX FLow

The Max Flow problem gives a directional graph with capacities on edges, and indicate two nodes S
and T'. The models is then asked to compute the amount of max-flow from S to 7.

Notice that the Breadth First Search (BFS) component in Dinic’s algorithm(Dinic, 1970) can be
implemented on RelNNs as they does not require node identities (all new-visited nodes can augment
to their non-visited neighbors in parallel). Since the BFS runs for O(n) iteration, and the Dinic’s
algorithm runs BFS O(n?) times, the max-flow can be solved by ReINNs with in O(n?) iterations.

A.10 DISTANCE

Given a graph with weighted edges, compute the length of the shortest between specified node pair
(S-T Distance) or all node pairs (All-pair Distance).

Similar to Connectivity problems, but Distance problems now additionally record the minimum
distance from S (for S-T) or between every node pairs (for All-pair), which can be updated using min
operator (using Min-plus matrix multiplication for All-pair case).

B PROOFS AND ANALYSIS

B.1 CONSTANT-LAYER RELNNS AND RECURRENT RELNNS

Theorem B.1. A neural network with representation width W that has D different layers
NNy, - ,NNp can be realized by a neural network that applies a single layer NN’ for D iter-
ations with width (D + 1)(W + 1).

Proof. The representation for NN’ can be partitioned into D + 1 segments each of length W + 1.
Each segment consist of a “flag” element and a W -element representation, which are all 0 initially,
except for the first segment, where the flag is set to 1, and the representation is the input.

NN’ has the weights for all NNy, - - - , NN p, where weights NN are used to compute the representa-
tion in segment ¢ 4 1 from the representation in segment ¢. Additionally, at each iteration, segment
1 4+ 1 can only be computed if the flag in segment 7 is 1, in which case the flag of segment 7 + 1
is set to 1. Clearly, after D iterations, the output of NNy, should be the representation in segment
D+ 1. O

Due to Theorem B.1, we consider the neural networks that recurrently apply the same layer because
a) they are as expressive as those using layers of different weights, b) it is easier to analyze a single
neural network layer than D layers, and c) they naturally generalize to neural networks that runs for
adaptive number of iterations (e.g. GNNs that run O(log n) iterations where n is the size of the input
graph).

B.2 EXPRESSIVENESS EQUIVALENCE OF RELATIONAL NEURAL NETWORKS

We first describe a framework for quantifying if two ReINN models are equally expressive on
regression tasks. The framework view the expressiveness from the perspective of computation.
Specifically, we will prove the expressiveness equivalence between models by showing that their
computation can be aligned.

In complexity, we usually show a problem is at least as hard as the other one by showing a reduction
from the other problem to the problem. Similarly, on the expressiveness of ReINNs, we can construct
reduction from model family .4 to model family B to show that B can realize all computation that .A
does, or even more. Formally, we have the following definition.

Definition B.1 (Expressiveness reduction). For two model families A and B, we say A can be
reduced to 5 if and only if there is a function r : A — B such that for each model instance A € A,
r(A) € B and A have the same outputs on all inputs. In this case, we say B is at least as expressive

as A.

Definition B.2 (Expressiveness equivalence). For two model families .4 and B, if .4 and B can be
reduced to each other, then .4 and B are equally expressive. Note that this definition of expressiveness
equivalence generalizes to both classification and regression tasks.
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Graph Neural Networks. GNNs (Scarselli et al., 2008) is defined based on two message passing
operations.

* Edge update: the feature of each edge is updated by features of its ends.
* Note update: the feature of each node is updated by features of all edges adjacent to it.

This message passing scheme can easily fit in ReINN architecture by storing edge features as tuples
of two nodes. In this case, updating edges by its ends can be realized by the expand and the permute
operation. The message aggregation at each node can be realized by a reduce operation. Hence,
GNNs can be realized by a ReINN of maximum arity B = 2.

High-dimensional GNNs. Computing only node-wise and edge-wise features does not handle
higher-order relations, such as triangles in the graph. In order to obtain more expressive power,
GNNs have be extend to hypergraphs of hier arity (Morris et al., 2019). Specifically, GNNs on B-ary
hypergraph maintains features for all B-tuple of nodes, and the neighborhood is extended to B-tuples
accordingly: the feature of tuple (vq,va,--- ,vp) is updated by the |V| element multiset (contain
|V'| elements for each u € V') of B-tuples of features

(Hilu,v2, -+ ,vBl, Hi—a[v1,u, 02, v, - Hi—a[v1, -+ ,vp—1,u]) (B.1)
where H;_1[v] is the feature of tuple v from the previous iteration.

We now introduce the formal definition of the high-dimensional message passing. We denote v
as a B-tuple of nodes (vy,vs,- - ,vp), and generalize the neighborhood to a higher dimension by
defining the neighborhood of v as all node tuples that differ from v at one position.

Neighbors(v,u) = ((u,ve, - ,vB), (v1,u,v3, -+ ,v8), -, (v1, - ,vB-1,u)) (B.2)
N(v) = {Neighbors(v,u)|lu €V} (B.3)

Then message passing scheme naturally generalizes to high-dimensional features using the high-
dimensional neighborhood.

Received;[v] = Y (NNy (H;_1[v]; CONCAT yeneighbors(v,u) Hi1[v']))  (B4)

u

Recall that the normal GNNs can be realize by ReINN[-, 2]. Similarly, since features of B-tuples
can be stored in RelNNs with arity B and the high-dimensional message passing involves at most
B + 1 nodes at the same time, (vy, - - - ,vp and u), we can extend the previous result to that GNNs
on B-arity hypergraphs can be realized by ReINNs with maximum arity B + 1.

Equivalence between hypergraph GNNs and RelNNs. We will prove the equivalence between
hypergraph GNNs and RelNNs by making reductions in both directions.

Lemma B.2. A GNN on B-ary hypergraphs and depth D can be realized by a ReINN with maximum
arity B + 1 and depth 2D.

Proof. We prove lemma B.2 by showing that one layer of GNNs on B-ary hypergraphs can be
realized by two ReINN with maximum arity B + 1.

Firstly, a GNN layer maintain features of B-tuples, which are stored in correspondingly in an ReINN
layer at dimension B. Then we will realize the message passing scheme using the ReINN features of
dimension B and B + 1 in two steps.

Recall the message passing scheme generalized to high dimensions (to distinguish, we use H for
GNN features and 1" for ReINN features.)

Receivedi('u) = Z (NN1 (Hi—l,B['U]§ CONCATv’eneighbors(v,u)Hi—l['vl])) (BS)

u
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At the first step, the Expand operation first raise the dimension to B + 1 by expanding a non-related
variable u to the end, and the Permute operation can then swap u with each of the elements (or no

swap). Particularly, T; g[v1,v2, - -+, vp] will be expand to
Tiv1,B+1[w,v2,v3, - v, v1], Tiv1,B41[v1,u,v3, - -+ ,vB, V2], -+,
Tiv1,8+1[v1,v2, -+ ,vp_1,u,vgl.and Tj41,p+1[v1, V2, - ,VB_1, VB, U]

Hence, T;+1,5+1[v1, U2, V3, -+, up, u] receives the features from

T; Blv1,va, - -+ ,vB|, T; Blu, v2,vs, - - - ,vBl, Ti B[vi,u,v3,- -+ ,vB],- -+, Ti B[v1,v2, -+ ,vB_1,U]

These features matches the input of NN; in equation B.5, and in this layer NN; can be applied to
compute things inside the summation.

Then at the second step, the last element is reduced to get what tuple v should receive, so v can be
updated. Since each GNN layer can be realized by such two RelNN layers, each GNN on B-ary
hypergraphs with depth D can be realized by a ReINN of maximum arity (B + 1) and depth 2D. [

To complete the proof we need to find a reduction from ReINNs of maximum arity B + 1 to GNNs
on B-ary hypergraphs. The key observation here is that the features of (B + 1)-tuples in ReINNs can
only be expanded from sub-tuples, and the expansion and reduction involving (B + 1)-tuples can be
simulated by the message passing process.

Lemma B.3. The features of (B + 1)-tuples feature T; g41[v1,v2, - - ,Up+1] can be computed
from the following tuples

(Ti,B[U2aU37"' ,UB+1}77§,B[U17US"" 7'UB+1]>"' aTi,B[UI;U%"' ,UB])~

Proof. Lemma B.3 is true because (B + 1)-dimensional representations can either be computed
from themselves at the previous iteration, or expanded from B-dimensional representations. Since
representations at all previous iterations j < ¢ can be contained in T; g, it is sufficient to compute
T; B+1[v1,v2, -+ ,vp+1] from all its B-ary sub-tuples. O

Then let’s construct the GNN for given ReINN to show the existence of the reduction.

Lemma B.4. A ReINN of maximum arity B + 1 and depth D can be realized by a GNN on B-ary
hypergraphs with no more than D iterations.

Proof. We can realize the Expand and Reduce operation with only the B-dimensional features using
the broadcast message passing scheme. Note that Expand and Reduce between B-dimensional
features and (B + 1)-dimensional features in the ReINN is a special case where claim B.3 is applied.

Let’s start with Expand and Reduce operations between features of dimension B or lower. For the
b-dimensional feature in the ReINN, we keep ntn”~?% copies of it and store them the representation
of every B-tuple who has a sub-tuple that is a permutation of the b-tuple. That is, for each B-tuple
in the GNN on B-ary hypergraphs, for its every sub-tuple of length b, we store b! representations
corresponding to every permutation of the b-tuple in the ReINN. Keeping representation for all
sub-tuple permutations make it possible to realize the Permute operation. Also, it is easy to notice
that Expand operation is realized already, as all features with dimension lower than B are naturally
expanded to B dimension by filling in all possible combinations of the rest elements. Finally, the
Reduce operation can be realized using a broadcast casting message passing on certain position of
the tuple.

Now let’s move to the special case — the Expand and Reduce operation between features of dimensions
B and B + 1. Claim B.3 suggests how the (B + 1)-dimensional features are stored in B-dimensional
representations in GNNs, and we now show how the Reduce can be realized by message passing.

Sk =nx(n—1)x---x (n—k+1).
IThe sub-tuple does not have to be consecutive, but instead can be a any subset of the tuple that keeps the
element order.
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We first bring in claim B.3 to the GNN message passing, where we have Received;[v] to be

Z (NNy (T;-1,8[v2, vs, -+, vp,u), Ti—1,B[v1,vs, -+ vp,ul, -+ Ti—1y, B[V, v2, - -+ ,vB]))

u

Note that the last term T;_1 g[v1, va, - -+ ,vpg] is contained in H;_1(v) in equation B.5, and other
terms are contained in H;_1(v’) for v’ € neighbors(v, u). Hence, equation B.5 is sufficient to
simulate the Reduce operation. O

Theorem B.5. GNNs on B-ary hypergraphs are equally expressive as ReINNs with maximum arity
B+1.

Proof. This is a direct conclusion by combining Lemma B.2 and Lemma B 4. O

B.3 EXPRESSIVENESS OF HYPERGRAPH CONVOLUTION AND ATTENTION

Hypergraph convolution(Feng et al., 2019; Yadati et al., 2019; Bai et al., 2021), attention(Ding
et al., 2020) and message passing(Huang & Yang, 2021) focus on updating node features through
hyperedges instead of hyperedges. These approaches can be viewed as instances of ReINNs, and they
have smaller time complexity because they do not model all high-arity tuples. However, they are less
expressive than ReINNs with equal max arity.

These approaches can be formulated to two steps at each iteration. At the first step, each hyperedge is
updated by the features of nodes it connects.

hie = AGGyee fim1,0 (B.6)

At the second step, each node is updated by the features of hyperedges connecting it.

fi,'u = AGGUEehi,e (B7)

where f; , is the feature of node v at iteration ¢, and h; ,, is the aggregated message passing through
hyperedge e at iteration ¢ + 1.

It is not hard to see that B.6 can be realized by B iterations of ReINN layers with Expand operations
where B is the max arity of hyperedges. This can be done by expanding each node feature to every
high arity features that contain the node, and aggregate them at the tuple corresponding to each
hyperedge. Then, B.7 can also be realized by B iterations of ReINN layers with Reduce operations,
as the tuple feature will finally be reduced to a single node contained in the tuple.

This approach has lower complexity compared to the GNNs we study applied on hyperedges, because
it only requires communication between nodes and hyperedges connecting to them, which takes
O(|V| -|E|) time at each iteration. Compared to them, ReINNs takes O(|V'|?) time because ReINNs
keep features of every tuple with max arity B, and allow communication from tuples to tuples instead
of between tuples and single nodes. An example is provided below that this approach can not solve
while RelNNs can.

Consider a graph with 6 nodes and 6 edges forming two triangles (1,2, 3) and (4, 5, 6). Because of
the symmetry, the representation of each node should be identical throughout hypergraph message
passing rounds. Hence, it is impossible for these models to conclude that (1,2, 3) is a triangle but
(4,2, 3) is not, based only on the node representations, because they are identical. In contrast, ReINNs
with max arity 3 can solve them (as standard triangle detection problem in Table 1).

B.4 PROOF OF THEOREM 3.1: ARITY HIERARCHY.

Morris et al. (2019) have connected high-dimensional GNNs with high-dimensional WL tests. Specifi-
cally, they showed that the GNNs on B-ary hypergraphs are equally expressive as B-dimensional WL
test on graph isomorphism test problem. In Theorem B.5 we proved that GNNs on B-ary hypergraphs
are equivalent to ReINN of maximum arity B + 1 in terms of expressiveness. Hence, ReINN of
maximum arity B + 1 can distinguish if two non-isomorphic graphs if and only if B-dimensional
WL test can distinguish them.
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However, Cai et al. (1992) provided an construction that can generate a pair of non-isomorphic graphs
for every B, which can not be distinguished by (B — 1)-dimensional WL test but can be distinguished
by B-dimensional WL test. Let G} and G% be such a pair of graph.

Since ReINN of maximum arity B + 1 is equally expressive as GNNs on B-ary hypergraphs, there
must be such a ReINN that classify G} and G% into different label. However, such ReINN can not
be realized by any ReINN of maximum arity B because they are proven to have identical outputs on
GL and G%.

In the other direction, ReINNs of maximum arity B + 1 can directly realize Re]lNNs of maximum
arity B, which completes the proof.

B.5 PROOF OF THEOREM 3.4: UPPER DEPTH BOUND FOR UNBOUNDED-PRECISION RELNN.

The idea for proving an upper bound on depth is to connect ReINNs to WL-test, and use the O(n?)
upper bound on number of iterations for B-dimensional test (Kiefer & Schweitzer, 2016), and FOC
formula is the key connection.

For any fixed n, B-dimensional WL test divide all graphs of size n, G—,,, into a set of equivalence
classes {C1,Ca, - ,Cp, }, Where two graphs belong to the same class if they can not be distinguished
by the WL test. We have shown that ReINNs of maximum arity (B + 1) must have the same input
for all graphs in the same equivalence class. Thus, any ReINN of maximum arity B + 1 can be view
as a labeling over Cy, - -+ ,Cpp,.

Stated by Cai et al. (1992), B-dimensional WL test are as powerful as FOCpg_; in differentiating
graphs graphs. Combined with the O(n) upper bound of WL test iterations, for each C;, there must
be an FOCp ; formula of quantifier depth O(n?) that exactly recognize C; over G_,,.

Finally, with unbounded precision, for any f(n), ReINN of maximum arity B + 1 and depth f(n)
can compute all FOC .1 formulas with quantifier depth f(n). Note that there are finite number of
such formula because the supscript of counting quantifiers is bounded by n.

For any graph in some class C;, the class can be determined by evaluating these FOC formulas, and
then the label is determined. Therefore, any ReINN of maximum arity B + 1 can be realized by a
ReINN of maximum arity B + 1 and depth O(n?).

B.6 THE TIME AND SPACE COMPLEXITY OF RELNNS

Handling high-arity features and using deeper models usually increase the computational cost in
terms of time and space. As an instance that use the architecture of ReINN, NLMs with depth D
and max arity B takes O(Dn?) time when applying to graphs with size n. This is because both
Expand and Reduce operation have linear time complexity with respect to the input size (which is
O(nP?) at each iteration). If we need to record the computational history (which is typically the case
when training the network using back propagation), the space complexity is the same as the time
complexity.

GNNs applied to (B — 1)-ary hyperedges and depth D are equally expressive as ReINNs with depth
O(D) and max arity B. Though up to (B — 1)-ary features are kept in their architecture, the broadcast
message passing scheme scale up the complexity by a factor of O(n), so they also have time and
space complexity O(Dn?). Here the length of feature tensors W is treated as a constant.

B.7 PROOF OF THEOREM 4.2: PAC BOUNDS FOR RELNNS

We first formally define the (¢, ) approximation on functions mapping real number factors.

Definition B.3. We say M is an (e, §)-approximation of M, : R" — RW if and only if with
probability at least (1 — 0), || M7 (x) — Ma(x)|| < e.

The proof builds on bounding the error between the representations computed by M and M’.
Assuming the Lipschitz continuity with constant A, we will show four facts that are sufficient to
bound the error between M and M’, and thus claim the approximation of M on f.

* (a) Feed-forward networks increase the error by at most a factor of A.

* (b) The min-max aggregation increase the error by at most a factor v V.

* (c) The mean aggregation keeps the error bounded.
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* (d) The probability to avoid any failures is lower bounded by 1 — O(Dn?6).

Fact (a) is guaranteed under the definition of Lipschitz continuity. For fact (b), we denote ¢ be the
error bound on the representations before aggregation, and ¢ also bounds the error at each position.
In the worst case, min-max aggregation will get the error ¢ at all positions, which implies a new
error bound /Wt on the aggregated representation on the 2-norm. Fact (c) is guaranteed by the
convexity of 2-norm. Fact (d) can be derived by a simple union bound on the failure probability on
all internal representations (they are O(Dn?) representations to compute when applying the layer
for D iterations).

Note that at each iteration we will run all feed-forward network in parallel for all representations, and
aggregate some n-tuple of representations. These operations increase the error bound by a factor of

at most A/ W for min-max aggregation and A for mean aggregation.

Sample complexity for ReINNs with gradient decent. Arora et al. (2019) have derived a more
fine-grained analysis on the of two-layer neural networks optimized by gradient decent, which is
later extended by Xu et al. (2020) under the sequential learning setting i.e. we use a correct network
instance M’ to generate the ground-truth outputs to supervise all feed-forward networks at each layer.
Theorem B.6 (Xu et al. (2020), sample complexity for over-parameterized MLP modules). Let M be
an over-parameterized and random initialized two-layer MLP trained with gradient decent for a suffi-

cient number of iterations. Su RY — RW wi @) = (@) (30T pyrs”
. Suppose g : — with components g(z)'") = >, o (8;7 @),

where BJ@ € R",a € Rand pgi) =1lor pgi) = 2l (I € N}). The sample complexity Cnq(g, €,0) is

) ) @)
max; Y, p3 ol 18115 + log(W/8)
(e/W)?

Crlg,e,0) =0 (B.8)

We combine Theorem B.6 with our theorem 4.2 to derive the sample complexity in order to get

€, 0 )-approximation. We can compute enny = <o op7s ) and ONN = = ) for feed-forwar
§)-approximation. W P O(557557 dés O(525) for feed-f d

network in the ReINN, and bring them as to Theorem B.6 to get the following equation

S DD 1817 4 Bloe(nDW/s
max; >3, p; |og” | - 118, [ly” + Blog(nDW/6)

CM (gv €, 57 ’fL) =0 (B9)

(spwo72)?

(i
J

, N T
where g : R" — RY has components g(z)") = > ozy) (B;l) z)P ', and B,D,W are the
dimension, number of iterations, width for specifying the model family M.

The sample complexity does not have a requirement of the sample graph size, because under the
sequential learning setting the feed-forward networks are trained under supervision on each node and
tuple at each layer. Though this setting can not be implemented in practice, in our experiments we
observe good generalization of models trained on small graphs.

C EXPERIMENTS

C.1 EXPERIMENT SETUP

For all problems, we have 800 training samples, 100 validation samples, and 300 test samples for
each different n we are testing the models on.

We then provide the details on how we synthesize the data. For most of the problems, we generate
the graph by randomly selecting from all potential edges i.e. the Erd6s—Rényi model. We sample the
number of edges around n, 2n,n logn and n? /2. For all problems, with 50% probability the graph
will first be divided into 2, 3, 4 or 5 parts with equal number of components, where we use the first
generated component to fill the edges for rest of the components. Some random edges are added
afterwards. This make the data contain more isomorphic sub-graphs, which we found challenging
empirically.
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Substructure Detection. To generate a graph that does not contain a certain substructure, we
randomly add edges when reaching a maximal graph not containing the substructure or reaching the
edge limit. For generating a graph that does contain the certain substructure, we first generate one
that does not contain, and then randomly replace present edges with missing edges until we detect
the substructure in the graph. This aim to change the label from “No” to “Yes” while minimizing
the change to the overall graph properties, and we found that data generated using edge replacing is
much more difficult for neural networks compared to random generated graphs from scratch.

Family Tree. We generate the family trees using the algorithm modified from Dong et al. (2019).
We add people to the family one by one. When a person is added, with probability p we will try to
find a single woman and a single man, get them married and let the new children be their child, and
otherwise the new person is introduced as a non-related person. Every new person is marked as single
and set the gender with a coin flip.

We adjust p based on the ratio of single population: p = 0.7 when more than 40% of the population
are single, and p = 0.3 when less than 20% of the population are single, and p = 0.5 otherwise.

Connectivity. For connectivity problems, we use the similar generation method as the substructure
detection. We sample the query pairs so that the labels are balanced.

C.2 MODEL IMPLEMENTATION DETAILS

For all models, we use a hidden dimension 128 except for 3-dimensional HD-GNN and 4-dimensional
NLM where we use hidden dimension 64.

All model have 4 layers that each has its own parameters, except for connectivity where we use
the recurrent models that apply the second layer k times, where k is sampled from integers in
[21log n, 3log n]. The depths are proven to be sufficient for solving these problems (unless the model
itself can not solve).

All models are trained for 100 epochs using adam optimizer with learning rate 3 x 10~* decaying at
epoch 50 and 80.

We have varied the depth, the hidden dimension, and the activation function of different models.
We select sufficient hidden dimension and depth for every model and problem (i.e., we stop when
increasing depth or hidden dimension doesn’t increase the accuracy). We tried linear, ReLU, and
Sigmoid activation functions, and ReLU performed the best overall combinations of models and
tasks.

Generalization on Connectivity-4

100% H
90% A
80% A
>
s 70% 1 (/,—;—-_:!\
8 —— ID-GNN-MAX
Q 60%_ —— |D-GNN-SUM
< —— 2D-NLM-MAX
— 2D-NLM-SUM
50% 1 p.onN-Max
2D-GNN-SUM
40% A 3D-NLM-MAX
—— 3D-NLM-SUM
30% T T T T T T T T

10 20 30 40 50 60 70 80
Test graph sizes, trained on n = 10

Figure 2: How the performance of models drop when generalizing to larger graphs on the problem
connectivity-4 (trained on graphs with size 10).
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Sample Complexity (case study on triangle detection)
100%

90% -
80% -

70%

Accuracy

60% A

50% - —— 3D-NLM-MAX
— 3D-NLM-SUM

40% T T T T T T T T T T T
10 15 20 30 50 80 120 200 300 500 800

#Training Samples

Figure 3: The test accuracy when the number of training samples varies between 10 and 300. All
numbers are averaged over three runs with randomly selected training sets. Note that we do not test
structural generalization here, so n = 10 for both training and testing).

C.3 ADDITIONAL ABLATION STUDIES

Case study on structure generalize. We run a case study on the problem connectivity-4 about how
the generalization performance changes when the test graph size gradually becomes larger. Figure 2
how how these models generalize to gradually larger graphs with size increasing from10to80. From
the curves we can see that only models with sufficient expressiveness can get 100% accuracy on the
same size graphs, and among them the models using max aggregation generalize to larger graphs
with no performance drop. 2-ary GNN and 3-ary NLM that use max aggregation have sufficient
expressiveness and better generalization property. They achieve 100% accuracy on the original graph
size and generalize perfectly to larger graphs.

Case study on sample complexity. In order to better visualize how using max and sum aggregation
functions affect the sample complexity. We run an ablation study on the triangle detection problem
where we try different numbers of training samples from 10 to 800. We test 3-ary NLM with max
and sum aggregation which both reach 100% accuracy on the same graph size (we do not test
generalization here since max aggregation is shown to be more generalizable than sum aggregation).
Figure 3 indicates that the NLM model with max aggregation require much fewer training samples
(~ 30) to reach the perfect accuracy compare to sum aggregation (~ 300.)
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