
Centralization in Decentralized Web: Challenges and
Opportunities in IPFS’s Data Management

Anonymous Authors

Abstract
The InterPlanetary File System (IPFS) is a pioneering effort
for Web 3.0, well-known for its decentralized infrastructure.
However, some recent studies have shown that IPFS exhibits
a high degree of centralization and has integrated central-
ized components for better performance. While this change
contradicts the core decentralized ethos of IPFS and intro-
duces risks of hurting the data replication level and thus
availability, it also opens some opportunities for better data
management and cost savings through deduplication.
To explore these challenges and opportunities, we start

by collecting an extensive dataset of IPFS internal traffic
spanning the last three years with 20+ billion messages. By
analyzing this long-term trace, we obtain a more complete
and accurate view of how the status of centralization evolves
over an extended period. In particular, (1) IPFS shows a low
replication level in general, with only about 2.71% of data
files replicated more than 5 times. While increasing replica-
tion enhances lookup performance and data availability, it
adversely affects downloading throughput due to the over-
head involved in managing peer connections, (2) there is
a clear growing trend in centralization within IPFS in the
last 3 years, with just 5% of peers now hosting over 80% of
the content, significantly decreasing from 21.38% 3 years
ago, which is largely driven by the increase of cloud nodes,
(3) the IPFS default deduplication strategy using Fixed-Size
Chunking (FSC) is largely inefficient, especially with the
current 256KB chunk size, achieving nearly zero efficiency.
Although Content-Defined Chunking (CDC) with smaller
chunks could save significant storage (about 1.8 PB) and
cost, it could impact user performance negatively. We thus
design and evaluate a new metadata format that optimizes
deduplication without compromising performance.

Relevance to WWW: This study conducts a web measure-
ment study utilizing a 3-year dataset from IPFS network.

1 Introduction
From the underlying infrastructure support to the way how
users interact with the web, there has been a clear trend
toward centralization in the current web along the wide
adoption of cloud computing over the past two decades. Al-
though this undeniably provides convenient services for
managing the web data and serving the users, it also raises
growing concerns about data control and monopolies by big

techs, censorship and content moderation, monetization and
fairness, among others.

In response to those concerns, recent years have witnessed
a growing surge in the technology campaign referred to as
"Web 3.0" or "Decentralized Web", such that no individual en-
tity can control or censor the entire operation of the system.
One of the leading efforts in this movement is the InterPlan-
etary File System (IPFS) [7]. IPFS uses a Peer-to-Peer (P2P)
architecture, where identical data copies are distributed and
shared among multiple peers in the system. Upon a request,
a client can be served by any of available peers having a copy
of the data. The adoption of IPFS is widespread, with over
250K active daily nodes and spanning 152 countries [27]. It
also serves as the storage layer for various Decentralized
Applications, including Non-Fungible Token (NFT) [30].

Although IPFS is meant to be a decentralized system, some
recent studies [6, 22] have looked into snapshots of the client
accesses in IPFS and shown that IPFS exhibits a surprising
degree of centralization when serving the client requests,
where a small group of cloud-based nodes serve the majority
of the client accesses. The centralization in IPFS has indeed
improved performance (as users are often served by faster
cloud nodes) and enabled easier client access by integrat-
ing gateways to serve users not running the IPFS protocol
directly [31]. However, such centralization has many down-
sides as mentioned before and raises questions on whether
this is due to a limited number of copies of each data file dis-
tributed in the system, and more importantly, whether such
observations are temporal effects due to dynamic system
factors, such as peer churns, and thus do not fully capture
the complete state of IPFS.
On the other hand, regardless of the underlying reasons,

from a practical standpoint, such centralization, if it exists,
could present an opportunity for improved web data man-
agement and cost savings through deduplication [33], which
is important for those cloud nodes. By default, IPFS em-
ploys deduplication locally to ensure faster publication per-
formance and uses a fixed-size chunking (FSC) [19] for data
deduplication. However, how efficient such data deduplica-
tion in IPFS remains unclear.

To explore answers to the above questions, we began our
study by massively collecting the IPFS internal content ex-
change traces in the past 3 years, spanning from March 2021
to August 2024, with over 20 billion messages. This 3-year
trace of internal IPFS traffic can help reveal the evolving of

1

centralization changes, given the instant snapshots used in
previous analysis [22]. By performing a systematic measure-
ment and analysis on these traces, we aim to answer the
following key questions: RQ1: how are the identical data
copies distributed? i.e., what is the data replication level in
current IPFS and how does it impact the users’ accesses?
RQ2: how has the decentralization of IPFS evolved over the
past three years and what is the trend of the changes? Our
measurement and analysis lead to the following findings.
• [Replication] IPFS exhibits a low replication level with
only about 29.20% of CIDs replicated more than once,
and a mere 2.71% more than 5 times. Increasing repli-
cation in IPFS generally enhances lookup performance
due to a higher possibility of being discovered. However,
the increased replication negatively impacts downloading
throughput after a certain level as a result of the extra over-
head involved in consistently choosing (and switching to)
better peers for downloading.

• [Centralization] There is a significantly growing trend of
centralization in IPFS over the past 3 years, where 5% of the
peers are now responsible for hosting 80.55% of the content
in terms of storage capacity. In contrast, at the beginning
of our measurement period, a more distributed 21.38%
of the peers hosted 80% of the content. This increasing
centralization can be attributed to the growing adoption
of cloud nodes, whose share has increased from 50.02% to
87.33% over the same period.

The centralization trend further leads us to seek an answer
to RQ3: how efficient is the default deduplication method
(FSC) in IPFS? Our study shows the following.
• [Deduplication] Currently, IPFS achieves nearly zero

deduplication efficiency by using the default FSC method
with the default 256KB chunk size, where the storage sav-
ings could be upto 1.8 PB using Content-Defined Chunk-
ing method with a smaller chunk size such as 4KB. We
further show that a smaller chunk size could negatively
impact user performance in terms of the deduplication
speed and downloading throughput. To balance the user
performance and deduplication efficiency, we propose a
new meatadata format exploiting storage locality to sig-
nificantly reduce the IO overhead and improve the user
performance comparable to the original IPFS.

Note that since IPFS is a distributed system, no one can
collect all the exchange messages in this system. Ours is
not an exception. However, by aggregating data over a 3-
year period, we hope our data can more accurately capture
the system image than previous studies. We hope our find-
ings, presenting both challenges for decentralization and
opportunities under centralization, can help Web 3.0 with
its design and implementation. We will make the artifacts,

including analysis scripts and properly anonymized data,
publicly available upon the acceptance of this paper.
The remainder of the paper is as follows. A brief back-

ground of IPFS is presented in Section 2. We present our
methodology of data collection in Section 3, measurement
analysis regarding replication in Section 4, regarding central-
ization in Section 5 and regarding deduplication in Section 6.
We discuss the related work in Section 7 and make conclud-
ing remarks in Section 8.

2 Background
IPFS Overview. IPFS is a decentralized Web 3.0 system that
builds on top of a P2P network and facilitates a set of proto-
cols. It uses content-based addressing, where each file is split
into multiple chunks and each chunk is represented by an im-
mutable, hashed and self-certifying Content Identifier (CID).
The physical addresses of CIDs are stored in the Distributed
Hash Table (DHT) [18]. This enables a peer, identified by a
unique PeerID, to query the DHT to locate and retrieve the
content without relying on a centralized server. For users
not participating in the IPFS network, Gateway services are
provided for them to access IPFS content via HTTP.
DHT. DHT is a key component of the IPFS routing system,
responsible for storing and retrieving content. It indexes
two types of records: provider records, which map CIDs to
the nodes that advertise and provide the content, and peer
records, which map PeerIDs to the physical addresses of
nodes (e.g., IP addresses). The DHT allows the user to locate
which node is serving the target content and advertise its
own content without the need for a centralized server.
Content Publication andDeduplication. IPFS operates at
the block level as each file is first split into multiple chunks.
These chunks form a Merkle DAG, where each node cor-
responds to a block. Specifically, raw data is stored in leaf
blocks, while parent blocks contain metadata indicating how
the original file is segmented and can be reconstructed. Simi-
lar to centralized deduplication systems, IPFS achieves dedu-
plication at the chunking stage by ensuring that no identical
chunks are stored. The default deduplication algorithm in
IPFS is Fixed Size Chunking (FSC), set at a default size of
256 KB. During the process of chunking, the CID of each
chunk is computed based on its content. The CID can be
configured into two interchangeable formats: version0 and
version1 [3]. Additionally, IPFS supports configurable algo-
rithms like Rabin Fingerprint [8] and Buzhash [9]. Unlike
centralized storage systems, which typically perform dedu-
plication processes on a central server and distribute the
blocks afterwards, IPFS performs deduplication locally.
Content Retrieval and Bitswap Content retrieval in IPFS
involves two main stages: lookup and downloading. In the
lookup stage, IPFS initially attempts to find which peers have
the requested content. Before querying the DHT, IPFS uses

2

the Bitswap [1], the file exchange protocol in IPFS, to send a
WANT-HAVE message to nearby peers, asking if they have
the desired content. If no peers respond within a 1-second
threshold, IPFS resorts to querying the DHT to locate the
content. Once the content is located, the process enters the
downloading stage, where Bitswap requests the actual data
by sending a WANT-BLOCK message to peers holding the
required blocks. Bitswap then transfers the actual data blocks,
completing the retrieval process.

3 Methodology

3.1 Data Collection
Bitswap Logs. We collect Bitswap traces from March 1st,
2021 to Aug 15th, 2024 using a modified IPFS node implemen-
tation with unlimited connections with peers (details similar
to [5]). Our crawler collects all incoming 1-hop Bitswap
broadcast traffic to disk. We log the timestamp, the sender’s
PeerID and network address, the type of request, the re-
ceiver’s PeerID and the target CID. From this, we observe
approximately 21 M requests daily on average with a total
of 1.8 B unique CIDs.
DHT Logs. We also set up a modified version of a DHT
server to collect the IPFS DHT traffic. We set up 2 virtual
peer IDs and log all the incoming DHT requests to disks. The
content of the DHT request is similar to the Bitswap mes-
sages, containing the sender’s PeerID and network address,
the type of request, and the target PeerID or CID denpending
of the request type. The collection of DHT traffic was also
conducted from March 1st, 2021 to Aug 15th, 2024 From this,
we observe about 1 M requests daily on average, covering
120 M unique CIDs.

3.2 Ethical Consideration
This work is conducted under an IRB approval from our
institution. The details of our ethical considerations are in
Appendix A.

4 Data Replication
In this section, we start by examining the degree of replica-
tion within IPFS. Then we look at how different degrees of
file replication across the network influence the efficiency
and reliability of retrieving the content.

4.1 Degree of Replication
Methodology. Using the DHT logs and Bitswap logs, we
have constructed a CID-provider mapping that retains only
the CIDs representing a complete file or directory. This filter-
ing process is facilitated by identifying the request pattern
for CIDs in the logs, where a CID that corresponds to a
complete file or directory is typically requested first. This

allows us to bypass the need to download the CID to verify
its contents.

Based on the CID versioning of IPFS, we further categorize
the CIDs into two classes: version0 and version1. It is impor-
tant to note that while different CID versions of a file can
be inter-converted, they represent distinct objects as IPFS
solely rely on CID to locate a file.
To verify replication accuracy, we send a WANT-HAVE

message to the peer who is assumed to be the provider. If
the recipient fails to respond, we repeat this query every 4
hours for one week. If there is still no response after this
period, we consider that the CID no longer belongs to the
peer. This method ensures that we are not only mapping
CIDs to providers correctly but also verifying the presence
and availability of the content they claim to host.
Result and Analysis. Figure 1 displays the cumulative dis-
tribution of CIDs categorized by version0 and version1. In
this study, we detect a total of 214 million CIDs, with 147
million belonging to version0 and 67 million to version1. The
red curve in the figure represents the cumulative distribution
when all CIDs are converted to a single version, illustrating
the overall trend.
The data reveals a low level of replication across the net-

work. Specifically, only 29.20% of CIDs are replicated more
than once, and a mere 2.71% of CIDs experience replication
more than five times. This indicates that while the network
is capable of hosting multiple copies of the same content, the
actual practice of replication is not extensively utilized.
Interestingly, the analysis uncovers a significant amount

of “replication wastage". We find that 18.24 million files have
both version0 and version1 CIDs, which artificially inflates
the count of unique content due to version differences.

Takeaway 1:While IPFS is designed as a file sharing
system, its file replication level typically remains low
with only about 30% of its files replicated more than
once. Moreover, the issue is exacerbated by the fact that
different CID versions can be generated for the same file,
which inflates the perceived uniqueness of files within
the system.

4.2 Replication Impact on Performance
Methodology. To study how the replication level impacts
the file retrieval performance in IPFS, we first set up an IPFS
client (a t2.medium EC2 instance with 2 vCPUs and 4GB of
memory) in central Europe. We let this IPFS client fetch 1,000
files, 10 MB each, in each replication level from 1 to 20. We
timestamp the time to discover the provider (lookup time)
and the time to fetch the blocks (downloading time). We then
calculate the throughput by dividing the downloading time
instead of the entire retrieval time. It is also important to

3

0 20 40 60 80 100
Replication

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

v0
v1
Aggregated

Figure 1: CID replication level in ver-
sion 0, version 1 and after aggregation.

1 5 10 15 20
Replication

500

1000

1500

Lo
ok

up
 T

im
e

(m
s)

80

85

90

95

Su
cc

es
sf

ul
 B

its
wa

p
Ra

tio
 (%

)

Figure 2: The performance of lookup
in different replication levels.

1 5 10 15 20
Replication

5

10

15

Th
ro

ug
hp

ut
 (M

B/
s)

0

10

20

30

Nu
m

be
r o

f S
wi

tc
he

s

Figure 3: The performance of through-
put in different replication levels.

note that the provider can be discovered by Bitswap before
launching the DHT as illustrated in Section 2. As such, we
further examine their Bitswap success ratio as a function of
replication level.
Results and Analysis. Figure 2 demonstrates the average
lookup time (on the left y-axis) and the Bitswap success ra-
tio (on the right y-axis) at each replication level. As can be
seen in this figure, the replication level can significantly im-
prove the lookup time performance. Specifically, the average
lookup time decreases from 1817 ms at a replication level
of 1 to 397 ms at a replication level of 20, while the Bitswap
success ratio concurrently rises from 73.21% to 95.09%. This
improvement is intuitive; as content is held by more peers, it
becomes more readily detectable by Bitswap and DHT mech-
anisms, thereby reducing the time required for lookups.
Figure 3 shows the downloading throughput (on the left

y-axis) at different replication levels. Different from the con-
sistently improving trend observed in lookup time as the
replication level increases, the downloading throughput ini-
tially improves but then decreases. Specifically, the average
throughput peaks at 14.54 MB/s at the replication level of 2.
Beyond this point, the throughput consistently decreases as
the replication level increases.

To understand the underlying dynamics of this pattern, we
further look into its downloading phase driven by Bitswap.
We notice that there is a clear increasing trend of the request-
peer switch as depicted in the blue curve in Figure 3. This
‘switch’ refers to the action of changing the downloading
peer to another peer during the file retrieval process. The
switching is to get a better response time and balance the
specific traffic from certain provider. However, while switch-
ing can optimize the download process under certain con-
ditions, excessive switching can be detrimental. It involves
consistently closing and reopening connections, as well as
re-requesting the target block from a new source. This added
complexity and overhead can significantly delay the entire
downloading process, as each switch consumes time and
potentially disrupts the steady flow of data transfer.

Takeaway 2:While increasing the replication level
in IPFS improves lookup performance due to a higher
Bitswap success ratio, it negatively impact the down-
loading throughput after a certain level because of the
extra overhead involved in consistently choosing (and
switching to) better peers to download from.

5 Measurement of Centralization
Given the low replication level in IPFS found in the last sec-
tion, wewonder how the content distribution changedwithin
our 3-year dataset - potentially centralization as reported
by [6, 22]. To this end, in this section, we aim to analyze
the evolution of IPFS’s centralization over a 3-year period by
employing statistical measures such as the Gini Coefficient
and Shannon entropy to quantify its centralization level.

5.1 Methodology
Entropy. Entropy quantifies the unpredictability or random-
ness in the output of an information source. For IPFS, the
distribution and frequency of file access define the proba-
bility distribution. Files that are accessed more frequently
demonstrate lower entropy, indicating reduced uncertainty
and potential centralization in file access patterns. To quan-
tify the centralization level as entropy, we have

𝐻 = −
𝑛∑︁
𝑖=1

𝑝𝑖 log2 𝑝𝑖

where 𝑛 is the number of unique files/CIDs accessed while
𝑝𝑖 =

Accesses to file 𝑖
Total accesses to all files .

Gini Coefficient. The Gini coefficient is another useful met-
ric, commonly utilized to measure inequality in distribu-
tions [29]. In the context of IPFS, it is used to quantify the
inequality of storage distribution. The formula to calculate
the Gini coefficient is as follows:

𝐺 =

∑𝑛
𝑖=1

∑𝑛
𝑗=1 |𝑥𝑖 − 𝑥 𝑗 |
2𝑛2𝑥

,

where 𝑛 is the number of nodes, 𝑥𝑖 is the amount of data
stored by node 𝑖 , and 𝑥 is the mean amount of data stored
per node.

4

0 20 40 60 80 100 120 140
Weeks

0.0

0.2

0.4

0.6

0.8

1.0

Gi
ni

 C
oe

ffi
cie

nt

0.0

0.5

1.0

1.5

2.0

2.5

En
tro

py

Gini Coefficient
Entropy

Figure 4: Gini Coefficient and
entropy over the 3-year time
period.

0 20 40 60 80 100 120 140 160 180
Weeks

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f C
lo

ud
 N

od
es

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f F
ile

s H
os

te
d

Percentage of Cloud Nodes
Percentage of Files Hosted

Figure 5: The share of cloud
nodes and their host files over
the 3-year time period.

Data Synthesis.Using the Biswap andDHT logs, we analyze
changes in the centralization level over time by examining
data weekly. Each week, we calculate the number of times a
CID is requested and identify which peers own these CIDs.
Table 1 lists the characteristics of this dataset. For this analy-
sis, we make three key assumptions: (1) each CID represents
a storage block of 256 KB, as this is the default block size of
IPFS, (2) the peers hosting these CIDs remain consistently
active in the network and continue to provide access to the
CIDs without leaving the network, and (3) for those peers
announcing multiple IP addresses as a result of peer churn,
we count them as a single entity, i.e., provider.

Table 1: Dataset characteristics used in the centraliza-
tion level analysis.

CID Requested By Owned BY Timestamp

𝑐0 <...𝑝𝑖 ...> <...𝑝 𝑗 ...> 𝑊𝑒𝑒𝑘𝑘

5.2 Results
Figure 4 depicts the changes in the Gini coefficient and en-
tropy over the three-year period. Initially, in early 2021, the
Gini Coefficient starts at 0.53, indicating a moderate level
of storage inequality among peers. Over the course of this
period, this coefficient increases significantly, reaching 0.78
by mid-2024. This rise signifies that storage inequality has
become increasingly severe, with a small number of power-
ful peers accumulating a larger share of content. Specifically,
by the last week of our measurement period, only 5% of the
peers are responsible for hosting 80.55% of the content. In
contrast, at the beginning of our measurement period, 21.38%
of the peers hosted 80% of the content.

Similarly, the entropy of IPFS follows a comparable pattern
to the Gini Coefficient, exhibiting a decreasing trend over
the three years. The entropy metric measures the predictabil-
ity of file access within the network; a decline in entropy
suggests that access to popular contents has become more
frequent and predictable. This decrease in entropy, along
with the rise in the Gini Coefficient, points to a growing
level of centralization in IPFS, highlighting a shift towards
more centralized control within the IPFS network.
To understand why such centralization trends may be

occurring, we are inspired by prior studies [6, 22], which

suggest that the rise of centralized cloud nodes could be the
reason. By identifying the IP addresses, we can distinguish
cloud peers located in data centers and gateway nodes main-
tained for users without direct access to IPFS. Obtaining the
IP addresses and PeerID of these gateway nodes is straight-
forward as they typically do not leave the network, making
them easy to track.

We further analyze the share of storage these cloud nodes
manage. Figure 5 depicts the percentage change of cloud
nodes and the files they serve over the 3-year period. The
data shows a clear increasing trend. For instance, at the start
of our study period, cloud nodes comprised 50.02% of the peer
set and hosted 52.32% of the files. By the end of the period,
these figures dramatically increased to 87.33% of the peer set
and 97.43% of the total files. This indicates an increasingly
dominant role of cloud nodes within the IPFS network.

Our findings suggest a higher percentage of cloud node in-
volvement than the results from previous studies [6], which
estimated the percentage by crawling the DHT and building
a network topology. Our results are derived directly from
internal IPFS traffic data, which explains the greater share
attributed to cloud nodes. More importantly, we observed a
concerning trend towards centralization within our measure-
ment period. This increased reliance on cloud nodes suggests
a movement towards centralization within an ecosystem that
fundamentally aims for decentralization.

Takeaway 3: Both the entropy and Gini Coefficient
studies clearly show a significant centralization trend in
IPFS over the 3-year dataset, suggesting that in practice,
IPFS is on the opposite direction of its decentralized goal.
As a result, file access in IPFS becomes more predictable
and concentrated among fewer and powerful entities,
further highlighting the centralization within IPFS.

6 Deduplication

In the last section, we show that the centralization has kept
growing quickly in the past three years in IPFS. While this is
on the opposite direction of its original design goal and de-
serves more research, from a practical standpoint view, serv-
ing the majority users from a small number of cloud based
nodes does improve the user experience and attract users.
Furthermore, this may allow these cloud nodes to efficiently
perform deduplication for storage savings. To assess this,
we begin by examining the efficiency of the default dedu-
plication algorithm employed by IPFS, and compare with
other alternatives. We then show the trade-offs involved in
incorporating those deduplication methods, and propose and
evaluate new solutions designed to balance these trade-offs.

5

FSC RF BH FastCDC
Deduplication Algorithms

0

2

4

6

8

10

De
du

pl
ica

tio
n

Ra
tio

Chunk Sizes
1KB
4KB
16KB
64KB
256KB

(a) SNP

FSC RF BH FastCDC
Deduplication Algorithms

0

2

4

6

8

10

De
du

pl
ica

tio
n

Ra
tio

Chunk Sizes
1KB
4KB
16KB
64KB
256KB

(b) NFT

FSC RF BH FastCDC
Deduplication Algorithms

0

2

4

6

8

10

12

De
du

pl
ica

tio
n

Ra
tio

Chunk Sizes
1KB
4KB
16KB
64KB
256KB

(c) MMA

FSC RF BH FastCDC
Deduplication Algorithms

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

De
du

pl
ica

tio
n

Ra
tio

Chunk Sizes
1KB
4KB
16KB
64KB
256KB

(d) TXT

Figure 6: Comparison of different deduplication algorithms on different datasets.

6.1 Analysis of Deduplication Ratio
Motivation. Current IPFS employs a sequential and fixed-
size chunking approach (FSC), where files are divided into
multiple 256 KB chunks. However, FSC suffers from a boundary-
shift problem that significantly lowers deduplication effi-
ciency. For example, if one single bit is deleted at the begin-
ning of a file, all current chunk cutpoints (i.e., boundaries)
declared by FSC will be shifted and no duplicate chunks will
be detected. As such, in order to evaluate the deduplication
technique employed by IPFS, we perform our deduplication
ratio measurements on four traces, detailed in Table 2. (1)
SNP: This trace is the "snapshot" of top 180 providers by
sampling 1% the CIDs in the Bitswap logs and DHT logs. (2)
NFT: This is an NFT trace, scraped from the web of top-1000
NFT digital assets of OpenSea [2] that has an IPFS url. (3)
MMA: This is a multimedia trace, obtained from a previous
public gateway dataset [10]. (4) TXT: This is a text trace. This
category includes plain text and JSON files from the same
dataset as the multimedia traces, reflecting previous findings
that these file types are among the most prevalent in IPFS.
Table 2: Dataset characteristics used in the deduplica-
tion analysis.

Name Size # of Files Description

SNP 18.2 TB 9.10 M A snapshopt of the top-
180 providers.

NFT 6.7 TB 8.22 M Top-1000 collections of
OpenSea.

MMA 2.8 TB 1.37 M Multimedia files col-
lected from a public
gateway dataset [10].

TXT 13.3 GB 4.01 M Text and json files col-
lected from a public gate-
way dataset [10].

Methodology. One common metric to evaluate deduplica-
tion efficiency is the deduplication ratio, which represents
the ratio of the input dataset’s size before and after dedupli-
cation. This metric reflects the ability of a deduplication tech-
nique to identify and eliminate duplicate data from the input.

For instance, a deduplication ratio of 2 indicates that 50% of
the input data is redundant and can be eliminated. Another
important metric is deduplication speed, which measures the
volume of data processed within a given time frame. This
metric assesses the efficiency of the deduplication process in
terms of throughput.
To investigate the deduplication performance of the de-

fault FSC deduplication algorithm in IPFS, we utilize various
chunk sizes ranging from 1KB to 1MB, incrementing each
by powers of four. This approach allows us to understand
how different chunk sizes impact the effectiveness of the FSC
algorithm across the 4 datasets we employ. At the same time,
we conduct controlled experiments to evaluate three alter-
native deduplication algorithms: Rabin Fingerprint (RF) [8],
Buzhash (BH) [9], and FastCDC [34]. Each of these algo-
rithms is configured to match the expected average chunk
size used in the FSC approach. Our experiments are carried
out using the original algorithms rather than the IPFS client
to avoid other interferences. These tests are performed on an
EC2 instance (t2.xlarge, 4 vCPUs, 16GB memory), applying
each algorithm to the four datasets as specified.
Results. Figure 6 shows the deduplication ratio of different
deduplication algorithms across different datasets. Notably,
FSC shows a particularly low deduplication ratio, especially
with the current default 256KB chunk size. For instance,
FSC manages to eliminate only about 4% of duplicates in the
snapshots of the top-180 providers. In stark contrast, content-
based algorithms such as RF, BH, and FastCDC can reduce
nearly 90% of duplicates in the same scenario, which can
result in substantial storage savings of nearly 16 TB. These
top-180 providers primarily use cloud services like AWS and
Cloudflare. Given that our analysis sampled only 1% of the
stored files, the total potential savings on these platforms
could be around 1.8 PB. Considering the EC2 storage pricing
of $0.08 per GB per month, the effective cost savings could
exceed $100k per month. This significant financial impact
highlights the economic benefits of optimizing deduplica-
tion strategies within IPFS, especially in cloud environments
where storage costs are non-trivial.

6

Takeaway 4: The FSC achieves about zero dedupli-
cation efficiency at the default chunk size in all datasets.
Applying CDC methods can save up to 90% storage. It
is worthwhile especially considering that top providers
in IPFS are mostly residing in the cloud centers.

6.2 Trade-off of Deduplication Algorithms
Although Content-Defined Chunking (CDC) based dedupli-
cation algorithm can effectively eliminate duplicates and
save storage space, it is at the expense of high chunking over-
head, the process of splitting file into chunks. To evaluate this
overhead, we measure the deduplication speed in IPFS using
a 100MB dummy file under different chunk sizes and dedupli-
cation algorithms. The measurement is performed on an EC2
instance (t2.xlarge). Note that we implement FastCDC in IPFS
as it is not provided in the configurations and the chunk-
ing process only utilizes one thread. Table 3 presents the
deduplication speed of different deduplication algorithms
at different chunk sizes. As can be seen in this table, we
observe that (1) FSC outperforms other 3 CDC based dedu-
plication algorithms across all chunk sizes as it operates on
a straightforward splitting of predetermined chunk size, (2)
the deduplication speed becomes extremely slower when
employing small chunk sizes like 1KB, despite these sizes
offering better deduplication ratios.
Table 3: Deduplication speed (MB/s) by algorithm and
chunk size in original IPFS.

Alg. / Chunk Size 1KB 4KB 16KB 64KB 256KB

FSC 0.12 0.37 1.92 7.91 30.3
RF 0.08 0.22 0.92 3.45 15.25
BH 0.08 0.28 1.12 4.05 16.32

FastCDC 0.09 0.32 1.57 5.21 21.55

1KB 4KB 16KB 64KB 256KB
Chunk Size

0
2
4
6
8

10
12

Do
wn

lo
ad

in
g

Th
ro

ug
hp

ut
 (M

B/
s)

FSC
RF
BH
FastCDC

Figure 7: The downloading speed
(MB/s) as a function of chunk size.

Another trade-
off of applying the
deduplication algo-
rithm introduces is
the downloading
throughput. Previ-
ousworks (e.g., [22])
have shown that
a small chunk size
can be detrimental
to the download-
ing throughput. Fig-
ure 7 further demon-

strates this degradation with chunk size when downloading
a 100MB file repeated 100 times. As shown in this figure, a
256KB chunk size offers a downloading throughput that is

Root

Metadata_1 Metadata_n

Merkle DAG

Metadata_1 Block_1_1 … … Block_1_n

Metadata_2 Block_2_1 … …

… …
… …

Block_2_n

Metadata_n Block_n_1 … … Block_n_n

Disk

CID references First Data Last Data

Figure 8: Overview of the metadata design.

50× larger than that of a 1KB chunk size when using the
FastCDC. Although CDC can help improve the speed of data
transfer as it can reduce the transferred data blocks, the im-
provement is minimal, improving by only 4.8% at a chunk size
of 256KB compared to FSC. Nevertheless, the CDC method
still experiences throughput degradation with decreasing
chunk size. This significant difference underscores the need
to balance the deduplication efficiency without compromis-
ing the overall performance of network data transfer and
publication.

Takeaway 5: Typically, a smaller chunk size can fa-
cilitate a better deduplication ratio. However, such a
small chunk size can negatively impact the user’s per-
formance: the deduplication speed and downloading
throughput.

6.3 Metadata Based Deduplication
The relative poorer downloading and publication perfor-
mance of IPFS is multidimensional not only because of the
choice of the chunk size. There are other techniques like
concurrent chunking or connections and employing dedi-
cated nodes [31]to accelerate the performance of IPFS, which
are orthoganal to the deduplication algorithms. Under the
current framework of IPFS, we next discuss how to achieve
higher deduplication ratio and maintain a comparable down-
loading and publication performance. As such, we propose
a new metadata based deduplication technique for content
delivery network like IPFS.
Design of Metadata. The poor performance of IPFS down-
loading stems from its linear processingmanner using a small
chunk size, linearly retrieving and writing small chunks. To
improve the downloading performance and maintain a de-
cent deduplication ratio, we introduce a new Merkle DAG as
metadata for each IPFS file. The overview of the new Merkle
DAG is presented in Figure 8. The core ideology is as follows.
(1)Metadata format. In the original IPFS, the internal nodes of
the Merkle tree merely contain the children CIDs. In contrast,
the new metadata design incorporates additional details: it
specifies the range of bytes that the metadata represents.

7

1KB 4KB 16KB 64KB 256KB
Chunk Size

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

IO Busy (%) - Original
IO Idle (%) - Original
IO Busy (%) - Enhanced
IO Idle (%) - Enhanced

0

5

10

15

20

25

30

35

40

Pu
bl

ica
tio

n
Pe

rfo
rm

an
ce

 (M
B/

s)

Original
Enhanced

(a) Publication

1KB 4KB 16KB 64KB 256KB
Chunk Size

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

IO Busy (%) - Original
IO Idle (%) - Original
IO Busy (%) - Enhanced
IO Idle (%) - Enhanced

0

2

4

6

8

10

Do
wn

lo
ad

in
g

Th
ro

ug
hp

ut
 (M

B/
s)

Original
Enhanced

(b) Downloading

Figure 9: Performance comparison between the origi-
nal IPFS and the enhanced IPFS.

This is denoted as "First Data" and "Last Data," indicating
the relative positions of the metadata block. In addition, the
new metadata references the CIDs based on their occurrence
order and aggregates this with the count and size of occur-
rences in the form of <CID, num, size>, whereas the original
IPFS system logs each CID sequentially without considering
block locality. (2) Storage locality. Unlike the original IPFS,
which stores blocks based on hash order to facilitate quick
searches, our new design groups blocks that belong to the
same file together and places the corresponding metadata
adjacent to these blocks. For duplicated blocks, our system
stores a pointer to the actual position. In other words, our
new design organizes data file by file, as opposed to the
original IPFS’s method of storing data block by block.

In the original IPFS, files are fetched block by block. When
using small chunk sizes, such as 1KB, the IPFS client must per-
form repetitive I/O operations to read and write these small
blocks, which delays the entire downloading and publication
process. Our proposed solution addresses this inefficiency
by aggregating these small blocks into a larger block be-
fore any read/write operations on the disk, accelerating the
downloading/publication process.
Performance Evaluation. In order to compare the en-
hanced IPFS with new metadata design, we deploy the en-
hanced IPFS on a private IPFS cluster with 5 nodes (EC2
instance t2.xlarge, HDD storage). We first let the original
IPFS and enhanced IPFS upload a 1GB identical dummy file,
respectively. We repeat the uploading 100 times and the IPFS
client is re-configured after every experiment. In both sys-
tems, the duplicate data is removed by FastCDC algorithm
and we log the disk time and the publication throughput. Fig-
ure 9(a) shows the result of the IO-busy percentage and the
publication throughput. As shown in this figure, the average
publication throughput is 2.24× larger than the original IPFS.
This is due to the fact that the enhanced IPFS can largely
reduce the I/O time as a result of sequential access of the disk,
where the average I/O-busy percentage is 19.82% compared
to 50.07% of the original IPFS. Then, we let the original IPFS
and enhanced IPFS clients to fetch the uploaded 1GB file re-
motely and log the corresponding disk time and downloading
throughput. Figure 9(b) shows the the IO-busy percentage

and the downloading throughput when retrieving the files.
As can be seen in this figure, the downloading throughput
of the enhanced IPFS client outperforms the original IPFS is
more resilient to the reduction in chunk size as a result of
lower I/O overhead.

7 Related Work
Decentralized Storage Network. As a supplement to tra-
ditional cloud storage system, decentralized storage net-
work (DSN) has been undergoing a fast development and
widespread adoption as a result of the evolving blockchain
technology. Besides IPFS, the most well-known DSNs are
Storj [17], Sia [23], Filecoin [16] and Swarm [26], all of
which aim to provide a censorship-resilient alternative to
cloud storage. There are also prototypes of DSNs. For ex-
ample, FileDAG [14] uses DAG-Rider as the consensus algo-
rithm and builds a two-layer DAG-based blockchain ledger,
facilitating flexible file indexing and multi-versioned file
storage. As for the data management in DSNs, previous
work have investigated load balancing [12, 25, 39], data se-
curity [13, 36, 38] and deduplication [35, 40, 41].
IPFS. As the most popular storage layer for Web3 applica-
tions, many prior studies have investigated various aspects of
IPFS, ranging from measuring its performance [4, 20, 22, 27],
analyzing its decentralization [6, 10, 22, 31], discussing its
design and implementation [11, 15], exploring optimization
methods [21, 24, 28, 37], and potential to support applica-
tions such as video streaming [32], among others. Previous
works [6, 10, 22, 31] on the measurement of IPFS central-
ization are limited to snapshots of centralization at specific
moments—essentially, the times at which the experiments
are conducted. In contrast, our study aims to analyze the
evolution of IPFS’s centralization over a three-year period,
presenting a more comprehensive view of centralization
trends within IPFS rather than at isolated points.

8 Conclusion
IPFS showcases the Web 3.0 design and implementation.
While many aspects of IPFS have been explored, a concern-
ing trend reported by some prior studies shows that IPFS
exhibits high degree of centralization when serving clients,
contradicting its decentralization goal. In this paper, we have
conducted a measurement and analysis study based on a
3-year trace collected from IPFS internal traffic. Our findings,
including a low data replication level, a high and increasing
degree of centralization, and negligible deduplication effi-
ciency, offer a more complete view of the IPFS evolution over
time, presenting both challenges and opportunities that IPFS
(andWeb 3.0) face(s). We hope our work can provide insights
into the development and optimization of IPFS in the next
stage.

8

References

[1] Ipfs bitswap website. https://docs.ipfs.tech/concepts/bitswap/.
[2] Opensea, the largest nft marketplace. https://opensea.io/.
[3] Cid version. https://docs.ipfs.tech/concepts/content-addressing/#cid-

conversion, 2024.
[4] Omar Abdullah Lajam and Tarek Ahmed Helmy. Performance evalua-

tion of ipfs in private networks. In 2021 4th International Conference
on Data Storage and Data Engineering, pages 77–84, 2021.

[5] Leonhard Balduf, Sebastian Henningsen, Martin Florian, Sebastian
Rust, and Björn Scheuermann. Monitoring data requests in decen-
tralized data storage systems: A case study of ipfs. In 2022 IEEE 42nd
International Conference on Distributed Computing Systems (ICDCS),
pages 658–668. IEEE, 2022.

[6] Leonhard Balduf, Maciej Korczyński, Onur Ascigil, Navin V Keizer,
George Pavlou, Björn Scheuermann, and Michał Król. The cloud
strikes back: Investigating the decentralization of ipfs. arXiv preprint
arXiv:2309.16203, 2023.

[7] Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv
preprint arXiv:1407.3561, 2014.

[8] Andrei Z Broder. Some applications of rabin’s fingerprinting method.
In Sequences II: Methods in Communication, Security, and Computer
Science, pages 143–152. Springer, 1993.

[9] Jonathan D Cohen. Recursive hashing functions for n-grams. ACM
Transactions on Information Systems (TOIS), 15(3):291–320, 1997.

[10] Pedro Ákos Costa, João Leitão, and Yannis Psaras. Studying the
workload of a fully decentralized web3 system: Ipfs. arXiv preprint
arXiv:2212.07375, 2022.

[11] Erik Daniel and Florian Tschorsch. Ipfs and friends: A qualitative
comparison of next generation peer-to-peer data networks. IEEE
Communications Surveys & Tutorials, 24(1):31–52, 2022.

[12] Yuefeng Du, Anxin Zhou, and Cong Wang. Dware: Cost-efficient
decentralized storage with adaptive middleware. IEEE Transactions on
Information Forensics and Security, 2024.

[13] Hechuan Guo, Minghui Xu, Jiahao Zhang, Chunchi Liu, Rajiv Ranjan,
Dongxiao Yu, and Xiuzhen Cheng. Bft-dsn: A byzantine fault tolerant
decentralized storage network. IEEE Transactions on Computers, 2024.

[14] Hechuan Guo, Minghui Xu, Jiahao Zhang, Chunchi Liu, Dongxiao
Yu, Schahram Dustdar, and Xiuzhen Cheng. Filedag: A multi-version
decentralized storage network built on dag-based blockchain. IEEE
Transactions on Computers, 72(11):3191–3202, 2023.

[15] Huawei Huang, Jianru Lin, Baichuan Zheng, Zibin Zheng, and Jing
Bian. When blockchain meets distributed file systems: An overview,
challenges, and open issues. IEEE Access, 8:50574–50586, 2020.

[16] Protocol Labs. Filecoin documentation, 2024.
[17] Storj Labs. Storj - decentralized cloud storage, 2024.
[18] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer

information system based on the xor metric. In Peter Druschel, Frans
Kaashoek, and Antony Rowstron, editors, Peer-to-Peer Systems, 2002.

[19] Athicha Muthitacharoen, Benjie Chen, and David Mazieres. A low-
bandwidth network file system. In Proceedings of the eighteenth ACM
symposium on Operating systems principles, pages 174–187, 2001.

[20] Jiajie Shen, Yi Li, Yangfan Zhou, and Xin Wang. Understanding i/o
performance of ipfs storage: A client’s perspective. In 2019 IEEE/ACM
27th International Symposium on Quality of Service (IWQoS), 2019.

[21] Lin Shi, Jun Lu, Xu Zhang, Yuan Cao, and Jinchuan Kang. Ipfs keyword
retrieval system based on merkle dag inverted index. International
Journal of Computer Science and Information Technology, 2(2):146–154,
2024.

[22] Ruizhe Shi, Ruizhi Cheng, Bo Han, Yue Cheng, and Songqing Chen. A
closer look into ipfs: Accessibility, content, and performance. Proceed-
ings of the ACM on Measurement and Analysis of Computing Systems,

8(2):1–31, 2024.
[23] Sia. Decentralized storage for the post-cloud world, 2024.
[24] Saidu Sokoto, Leonhard Balduf, Dennis Trautwein, Yiluo Wei, Gareth

Tyson, Ignacio Castro, Onur Ascigil, George Pavlou, Maciej Kor-
czyński, Björn Scheuermann, et al. Guardians of the galaxy: Con-
tent moderation in the {InterPlanetary} file system. In 33rd USENIX
Security Symposium (USENIX Security 24), pages 1507–1524, 2024.

[25] Victor J Sosa-Sosa, Alfredo Barron, Jose Luis Gonzalez-Compean, Je-
sus Carretero, and Ivan Lopez-Arevalo. Improving performance and
capacity utilization in cloud storage for content delivery and sharing
services. IEEE Transactions on Cloud Computing, 10(1):439–450, 2020.

[26] EthSwarm Team. Ethswarm, 2024.
[27] Dennis Trautwein, Aravindh Raman, Gareth Tyson, Ignacio Castro,

Will Scott, Moritz Schubotz, Bela Gipp, and Yiannis Psaras. Design
and evaluation of ipfs: a storage layer for the decentralized web. In
Proceedings of the ACM SIGCOMM 2022 Conference, pages 739–752,
2022.

[28] Dennis Trautwein, YiluoWei, Yiannis Psaras, Moritz Schubotz, Ignacio
Castro, Bela Gipp, and Gareth Tyson. Ipfs in the fast lane: Accelerating
record storage with optimistic provide. In IEEE INFOCOM 2024-IEEE
Conference on Computer Communications, pages 1920–1929. IEEE, 2024.

[29] Rajesh Vasa, Markus Lumpe, Philip Branch, and Oscar Nierstrasz.
Comparative analysis of evolving software systems using the gini co-
efficient. In 2009 IEEE international conference on software maintenance,
pages 179–188. IEEE, 2009.

[30] Qin Wang, Rujia Li, Qi Wang, and Shiping Chen. Non-fungible to-
ken (nft): Overview, evaluation, opportunities and challenges. arXiv
preprint arXiv:2105.07447, 2021.

[31] Yiluo Wei, Dennis Trautwein, Yiannis Psaras, Ignacio Castro, Will
Scott, Aravindh Raman, and Gareth Tyson. The eternal tussle: Explor-
ing the role of centralization in {IPFS}. In 21st USENIX Symposium
on Networked Systems Design and Implementation (NSDI 24), pages
441–454, 2024.

[32] Zhengyu Wu, ChengHao Ryan Yang, Santiago Vargas, and Aruna
Balasubramanian. Is ipfs ready for decentralized video streaming? In
Proceedings of the ACM Web Conference 2023, 2023.

[33] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip Shilane, Yu Hua,
Min Fu, Yucheng Zhang, and Yukun Zhou. A comprehensive study of
the past, present, and future of data deduplication. Proceedings of the
IEEE, 104(9):1681–1710, 2016.

[34] Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua, Yuchong
Hu, Qing Liu, and Yucheng Zhang. {FastCDC}: A fast and efficient
{Content-Defined} chunking approach for data deduplication. In 2016
USENIX Annual Technical Conference (USENIX ATC 16), pages 101–114,
2016.

[35] Yuanjian Xing, Zhenhua Li, and Yafei Dai. Peerdedupe: Insights into
the peer-assisted sampling deduplication. In 2010 IEEE Tenth Interna-
tional Conference on Peer-to-Peer Computing (P2P), pages 1–10. IEEE,
2010.

[36] Minghui Xu, Jiahao Zhang, Hechuan Guo, Xiuzhen Cheng, Dongxiao
Yu, Qin Hu, Yijun Li, and Yipu Wu. Filedes: A secure scalable and
succinct decentralized encrypted storage network. arXiv preprint
arXiv:2403.14985, 2024.

[37] Feng Yang, Zongya Ding, Linpeng Jia, Yi Sun, and Qingfeng Zhu.
Blockchain-based file replication for data availability of ipfs consumers.
IEEE Transactions on Consumer Electronics, 2024.

[38] Siyi Yang, Ahmed Hareedy, Robert Calderbank, and Lara Dolecek.
Topology-aware cooperative data protection in blockchain-based de-
centralized storage networks. In 2020 IEEE International Symposium
on Information Theory (ISIT), pages 622–627. IEEE, 2020.

[39] Hao Yin, Zijian Zhang, Liehuang Zhu, Meng Li, Xiaojiang Du, Mohsen
Guizani, and Bakh Khoussainov. A blockchain-based storage system

9

https://docs.ipfs.tech/concepts/bitswap/
https://opensea.io/
https://docs.ipfs.tech/concepts/content-addressing/#cid-conversion
https://docs.ipfs.tech/concepts/content-addressing/#cid-conversion

with financial incentives for load-balancing. IEEE Transactions on
Network Science and Engineering, 8(2):1178–1188, 2020.

[40] Haoran Yuan, Xiaofeng Chen, Jianfeng Wang, Jiaming Yuan,
Hongyang Yan, and Willy Susilo. Blockchain-based public auditing
and secure deduplication with fair arbitration. Information Sciences,
541:409–425, 2020.

[41] Bo Zhang, Helei Cui, Yaxing Chen, Xiaoning Liu, Zhiwen Yu, and
Bin Guo. Enabling secure deduplication in encrypted decentralized
storage. In International Conference on Network and System Security,
pages 459–475. Springer, 2022.

A Ethics
This work is conducted under an IRB approval from our
institution. Both the Bitswap and DHT traces contain IP ad-
dresses, yet our experiment does not attempt tomap those IPs
to any individuals or entities, as such analysis is not within
the scope of our study. Furthermore, the IPs are anonymized

and only mapped to contry-level for usage of geolocation
mapping.

We also note that those Bitswap and DHT traces also con-
tain personal browsing and publication history. However,
we do not attempt to track any personal usage and collect
any personal information. Although we download the CIDs
for the purpose of deduplication analysis, we do not attempt
to perform any content analysis on them and only seek to
understand the deduplication level of its host node. All the
downloaded CIDs are deleted immediately once the dedupli-
cation analysis is done. Furthermore, we recognize that CID
downloading could potentially introduce additional load on
the IPFS network. However, we argue that this impact is min-
imal. The downloading process is spread over a three-week
period, generating an average of 55 GB daily traffic, which
is negligible compared to the estimated over 100 TB daily
traffic on the IPFS network [27].

10

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Data Collection
	3.2 Ethical Consideration

	4 Data Replication
	4.1 Degree of Replication
	4.2 Replication Impact on Performance

	5 Measurement of Centralization
	5.1 Methodology
	5.2 Results

	6 Deduplication
	6.1 Analysis of Deduplication Ratio
	6.2 Trade-off of Deduplication Algorithms
	6.3 Metadata Based Deduplication

	7 Related Work
	8 Conclusion
	References
	A Ethics

