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ABSTRACT

Enabling robots to learn novel tasks in a data-efficient manner is a long-standing
challenge. Common strategies involve carefully leveraging prior experiences, es-
pecially transition data collected on related tasks. Although much progress has
been made for general pick-and-place manipulation, far fewer studies have inves-
tigated contact-rich assembly tasks, where precise control is essential. We intro-
duce SRSA (Skill Retrieval and Skill Adaptation), a novel framework designed
to address this problem by utilizing a pre-existing skill library containing policies
for diverse assembly tasks. The challenge lies in identifying which skill from the
library is most relevant for fine-tuning on a new task. Our key hypothesis is that
skills showing higher zero-shot success rates on a new task are better suited for
rapid and effective fine-tuning on that task. To this end, we propose to predict
the transfer success for all skills in the skill library on a novel task, and then use
this prediction to guide the skill retrieval process. We establish a framework that
jointly captures features of object geometry, physical dynamics, and expert actions
to represent the tasks, allowing us to efficiently learn the transfer success predic-
tor. Extensive experiments demonstrate that SRSA significantly outperforms the
leading baseline. When retrieving and fine-tuning skills on unseen tasks, SRSA
achieves a 19% relative improvement in success rate, exhibits 2.6x lower standard
deviation across random seeds, and requires 2.4x fewer transition samples to reach
a satisfactory success rate, compared to the baseline. In a continual learning setup,
SRSA efficiently learns policies for new tasks and incorporates them into the
skill library, enhancing future policy learning. Furthermore, policies trained with
SRSA in simulation achieve a 90% mean success rate when deployed in the real
world. Please visit our project webpage https://srsa2024.github.io/.

1 INTRODUCTION

Humans excel at solving new tasks with few demonstrations or trial-and-error interactions. In robot
learning, a key challenge is to similarly enable robots to learn control policies from sensory input in
a data-efficient manner. Achieving data-efficient learning is crucial for deploying robots in diverse
real-world environments, such as the household and industry. A compelling approach to efficient
policy learning is the development of a foundation model or generalist policy that spans multiple
tasks, as the model or policy can offer long-term efficiency gains by providing a strong base for
adaptation to novel tasks. Significant advancements have been made in manipulation tasks, particu-
larly in visual pre-training (Parisi et al., 2022; Nair et al., 2022), multi-task policy learning (Shridhar
et al., 2022; Goyal et al., 2024), and policy generalization (Jang et al., 2022; Ebert et al., 2021).

Despite this progress, efficiently solving new tasks in contact-rich environments, such as robotic as-
sembly, remains underexplored. Robotic assembly plays a critical role in industries like automotive,
aerospace, and electronics, but learning assembly policies is uniquely difficult. These tasks require
contact-rich interactions with high levels of precision and accuracy, compounded by the physical
complexity of the environments, part variability, and strict reliability standards. Much of the exist-
ing research focuses on training specialist (i.e., single-task) policies for individual assembly tasks
(Spector & Di Castro, 2021; Spector et al., 2022; Tang et al., 2023). Building on the strengths
of these specialist approaches, we propose a novel method for tackling new assembly tasks. Our
approach leverages a skill library – a collection of diverse specialist policies and associated infor-
mation (such as object geometry and task-relevant trajectories) for various assembly tasks. These
policies and data, regardless of the training strategies or learning approaches used to develop them,
can be harnessed to efficiently solve previously-unseen assembly challenges.
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Figure 1: Overview of SRSA. We address assembly tasks, where the goal is to use a robot arm to
insert diverse plugs (i.e., the white parts) into or onto corresponding sockets (i.e., the green parts).
Specifically, we propose to predict the transfer success of applying prior skills (i.e., policies) to a
new task, retrieve the skill with the highest predicted success rate, and fine-tune it on the new task.
During fine-tuning, we accelerate and stabilize adaptation by incorporating imitation learning of
high-rewarding transitions from the agent’s own replay buffer.

To utilize prior task experiences, previous work on general pick-and-place tasks has explored meth-
ods such as imitating state-action pairs from expert demonstrations (Du et al., 2023; Lin et al., 2024;
Kuang et al., 2024) and encoding sub-task skills as macro-action choices (Lynch et al., 2020; Pertsch
et al., 2021; Nasiriany et al., 2022). Unlike these approaches, which focus on reusing data or sub-
task skills, our approach centers on adapting policies from previous tasks to solve novel tasks. These
policies encapsulate essential task-solving knowledge in a generative form, making them a valuable
starting point for further refinement. Despite having access to a library of policies, identifying the
most relevant ones for fine-tuning on new tasks is still an open question, and the success of fine-
tuning hinges on making the right selection. In this paper, we introduce SRSA (Skill Retrieval and
Skill Adaptation), a novel framework designed to retrieve policies for similar tasks and adapt them
to new tasks, as illustrated in Fig. 1. The key contributions of this paper are as follows:

(1) Skill Retrieval Method: We propose a skill retrieval method that simultaneously and explicitly
learns embeddings for three fundamental components of assembly tasks: part geometry, interaction
dynamics, and expert action choices. We subsequently introduce a novel objective that leverages
these embeddings to predict transfer success between any source policy and target task, implicitly
capturing additional critical factors for policy transfer. This approach enables the effective retrieval
of relevant skills, resulting in higher zero-shot transfer success when applied to new tasks.

(2) Skill Adaptation Method: We propose a skill adaptation method that fine-tunes retrieved skills
on new tasks while incorporating a self-imitation learning method (Oh et al., 2018) to enhance
performance and stability during fine-tuning. In a simulation-based, dense-reward setting explored
in the leading assembly baseline (Tang et al., 2024), SRSA achieves a relative improvement of 19%
in success rate with 2.4x faster training and 2.6x lower standard deviation across random seeds. In
simulation-based, sparse-reward settings without demonstrations or curricula (closely aligning with
real-world fine-tuning scenarios), SRSA outperforms the baseline with a relative improvement of
135% in success rate. Furthermore, we demonstrate that policies fine-tuned in simulation can be
directly transferred to real-world robots, achieving a 90% average success rate without the need for
additional training. This capability of effectively fine-tuning policies in simulation on novel tasks,
and transferring these policies to the real world in zero-shot, highlights the potential for deploying
high-performance solutions in real-world assembly tasks.

(3) Continual Learning with SRSA: Instead of training numerous specialist (i.e., single-task) poli-
cies from scratch, we propose gradually expanding a small set of initial skills via retrieval and
adaptation to cover a broader range of tasks. This strategy improves sample efficiency by over 80%
compared to (Tang et al., 2024) and stays consistently efficient as the skill library and target tasks
evolve. Thus, SRSA provides an efficient solution for accumulating a large-scale collection of skills.

2 RELATED WORK

Robotic Assembly Tasks Robotic assembly is a critical manufacturing process in the automotive,
aerospace, electronics, and medical device industries, but adaptive robotic assembly (e.g., robustness
to part types, initial part poses, perceptual noise, control error, and environmental perturbations)
is largely unsolved. Research (Beltran-Hernandez et al., 2020; Luo et al., 2021; Narang et al.,
2022; Tang et al., 2023; Zhang et al., 2023; Noseworthy et al., 2024) on adaptive assembly has seen
significant growth in recent years. Despite advancements in datasets and real-world benchmarks
for assembling small, realistic parts (Kimble et al., 2020; 2022; Willis et al., 2022; Tian et al.,
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2022), the exploration of policy learning across a wide variety of parts remains relatively limited.
Many recent efforts in robotic assembly have concentrated on perception (Fu et al., 2022; Wen
et al., 2022) or planning (Tian et al., 2022; 2024), rather than learning policies that are robust to
disturbances and noise. Additionally, the policy-learning efforts that have addressed the widest
range of assemblies have typically been restricted to <30 parts (Spector & Di Castro, 2021; Spector
et al., 2022; Zhao et al., 2022). The largest study, AutoMate (Tang et al., 2024), introduced a
diverse dataset featuring 100 assembly tasks with simulation environments and 3D-printable parts,
and explores policy learning across these tasks. However, its approach primarily focuses on learning
specialist (i.e., single-task) policies from scratch without leveraging prior experience or knowledge
from related tasks. In contrast, our goal is to solve novel assembly tasks by leveraging skills from
previously-solved assembly tasks.

Retrieval-based Policy Learning Many studies have explored techniques for utilizing datasets from
other tasks for pretraining, such as visual pretraining (Parisi et al., 2022; Nair et al., 2022; Xiao et al.,
2022) and multi-task imitation learning (Jang et al., 2022; Ebert et al., 2021; Shridhar et al., 2022).
Recently, in robotic manipulation, some works have investigated how to selectively incorporate of-
fline data from other tasks during policy learning, i.e., retrieving prior data according to expert
demonstrations on the target task (Nasiriany et al., 2022; Belkhale et al., 2024; Shao et al., 2021;
Zha et al., 2024). For instance, Du et al. (2023) selects pertinent state-action pairs based on visual
and action similarity from offline, unlabeled datasets and jointly trains a policy using a small amount
of expert demonstrations and the queried data via imitation learning. Lin et al. (2024), on the other
hand, emphasizes motion similarity rather than semantic similarity by retrieving state-action pairs
based on optical flow representations, followed by few-shot imitation learning with expert demon-
strations and the retrieved data. Kuang et al. (2024) takes a different approach by extracting a unified
affordance representation from diverse data sources and hierarchically retrieving and transferring 2D
affordance information based on language instructions to perform zero-shot robotic manipulation.
These works primarily study data retrieval for general pick-and-place manipulation tasks. (Zhu
et al., 2024) introduces a policy retriever for pick-and-place tasks, which selects policy candidates
from a memory bank to align closely with the current input, based on the cosine similarity between
instruction and observation features. In contrast to these works, we focus on challenging contact-rich
manipulation tasks, especially investigating transfer success predictor for policy retrieval

Embedding Learning for Task and Skills Task embedding learning has been extensively explored
in meta-reinforcement learning and multi-task reinforcement learning problems, where shared
knowledge across tasks can significantly enhance learning efficiency for new tasks. Most previous
approaches focus on capturing task features related to visual appearance in 2D images or dynamics
in transitions (James et al., 2018; Rakelly et al., 2019; Lee et al., 2020). Contrastive learning is
often employed to bring similar tasks closer together in the embedding space while pushing dissim-
ilar tasks farther apart (James et al., 2018). Skill embedding learning, on the other hand, leverages
unstructured prior experiences (i.e., temporally extended actions that encapsulate useful behaviors)
and repurposes them to solve downstream tasks. Existing methods typically train a high-level policy
where the action space consists of the extracted skills (Pertsch et al., 2021; Nasiriany et al., 2022;
Hausman et al., 2018; Sharma et al., 2019; Lynch et al., 2020). Although most previous approaches
use skills to solve subtasks and combine sequences of skills for long-horizon tasks, we focus on
selecting and adapting a single relevant skill for a new task; our tasks of interest are assembly tasks,
which are typically short-horizon but difficult to train due to exploration challenges and precise con-
trol requirements. Additionally, we integrate multiple embedding-learning approaches by jointly

capturing three fundamental components of assembly tasks: part geometry, interaction dynamics,
and expert actions. We consolidate these perspectives for more robust task representation.

3 PROBLEM SETUP
In this work, we consider the problem setting of solving a new target task leveraging pre-existing
skills from a skill library. This library contains policies, each designed to solve a specific previously-
encountered task. Our approach is motivated by situations (Rusu et al., 2016; Tirinzoni et al., 2019;
Huang et al., 2021) where an agent can draw on knowledge from previously-learned policies to adapt
quickly to a new task at hand. Similar to the multi-task reinforcement learning (RL) formulation
(Borsa et al., 2016; Sodhani et al., 2021; Calandriello et al., 2014), we consider a task space T
where each task T 2 T is defined as a Markov decision process (MDP) (S,A, p, r, �, ⇢). In this
formulation, S represents the state space, A the action space, p(st+1|st, at) the transition dynamics,
r(st, at) the reward function, � 2 [0, 1) the discount factor, and ⇢ the initial state distribution.
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(b) 3D-printed assembly parts in real world

(c) Keyframes of assembly tasks in real-world deployment
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Figure 2: Illustration of assembly tasks in AutoMate and SRSA. (a) Samples of assembly tasks
in the AutoMate benchmark. (b) 3D-printed parts of corresponding real-world assembly tasks in
SRSA. (c) Keyframes from video recordings of our real-world deployments of performant policies.

.
Our study focuses on two-part assembly tasks, as depicted in Fig. 2. Following the setup of Au-
toMate (Tang et al., 2024), each environment includes a Franka robot, a plug (i.e., a part to be
inserted), and a socket (i.e., the part that mates with the given plug). In the initial state, we random-
ize the robot’s joint configuration and socket pose, as well as the pose of the plug within the robot’s
gripper. The goal of each task is to insert a plug into its corresponding socket. (See Appendix A.1)

The state space S consists of the robot arm’s joint angles and velocities, the end-effector pose and
its linear/angular velocities, the current plug pose, and the end-effector goal pose. The action space
A consists of incremental pose targets for a task-space impedance controller. As described in (Tang
et al., 2024), although assembly trajectories are infeasible to procedurally generate, disassembly

paths can be easily generated, serving as reverse demonstrations that can be used by an RL agent.
Specifically, the RL reward function is composed of terms that penalize the distance to the goal,
penalize simulation error, reward task difficulty in a curriculum, and imitate the reversed disassembly
paths. The assembly tasks all share the same state space S and action space A, but vary in part
geometries, transition dynamics p, and initial state distribution ⇢.

Given a target task T 2 T , we assume access to a prior task set Tprior = {T1, T2, · · · , Tn} ✓ T .
With policy space ⇧ : S ! A, the skill library contains policies ⇧prior = {⇡1,⇡2, · · · ,⇡n} ✓ ⇧
that solve each of the prior tasks, respectively. To solve a target task, the goal of RL is to find a
policy ⇡(at|st) that produces an action for each state to maximize the expected return. We propose
to first retrieve a skill (i.e., policy) for the most relevant prior task (Sec. 4.1), and then rapidly and
effectively adapt to the target task by fine-tuning the retrieved skill (Sec. 4.2).

4 METHOD

4.1 SKILL RETRIEVAL

To effectively retrieve skills from ⇧prior that are useful for a new target task T , we require a means
to estimate the potential of applying a source policy ⇡src 2 ⇧prior to task T . Concretely, we aim
to obtain a function F : ⇧⇥ T ! R, which takes as input a source policy and a target task and
produces a scalar score measuring how well the source policy can be adapted to the target task.

According to the simulation lemma (Agarwal et al., 2019), the difference in expected value when ap-
plying the same policy to different tasks partially depends on their difference in transition dynamics
and initial state distributions. We execute a source policy ⇡src on both target task Ttrg and its orig-
inal source task Tsrc. Let rsrc,trg denote the zero-shot transfer success of ⇡src on Ttrg and rsrc,src
its success rate on Tsrc. These success rates reflect the expected value of ⇡src on Ttrg and Tsrc

respectively. Notably, if rsrc,trg is similar to rsrc,src, it suggests that the transition dynamics and
initial state distributions of the two tasks are closely aligned. Since ⇡src is already an expert on Tsrc

with a high success rate rsrc,src, a high zero-shot transfer success rate rsrc,trg indicates strong task
similarity. Thus, we use the high transfer success rate as a heuristic indicator of similar dynamics
and initial state distributions between source and target tasks. Details are in Appendix A.2.

Subsequently, we hypothesize that fine-tuning a source policy on a target task with similar dynamics
will be efficient, as it only requires adaptation to small differences in dynamics. Therefore, we
propose using zero-shot transfer success as a metric to gauge the potential of efficiently adapting a
source policy on a target task. To identify a source policy with high zero-shot transfer success on a
given target task, we propose to learn a function F to predict the zero-shot transfer success for any
pair of source policy ⇡src and target task Ttrg . The prediction F (⇡src, Ttrg) serves as an indicator of
whether ⇡src is a strong candidate to initiate fine-tuning for the target task Ttrg . Below, we describe
data collection (Sec. 4.1.1), featurization (Sec. 4.1.2), training (Sec. 4.1.3) and inference(Sec. 4.1.4)
for the transfer success predictor F.
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Figure 3: Illustration of skill retrieval approach. We decompose skill retrieval into task feature
learning(abc) and transfer success prediction(d). (a) Geometry features are learned from point-cloud
input using a PointNet autoencoder. (b) Dynamics features are learned from transition segments
using a state-prediction objective. (c) Expert-action features are learned from transition segments
using an action-reconstruction objective. (d) The zero-shot transfer success rate (of applying a
source policy to a target task) is predicted using these task features from source and target tasks.

4.1.1 DATASET FORMULATION

In order to train the prediction function F , we construct a dataset of tuples (⇡src, Ttrg, rsrc,trg).
We treat any two tasks from the prior task set Tprior as a source-target task pair. For each pair
(⇡src, Ttrg), we evaluate the source policy ⇡src on the target task Ttrg to obtain the zero-shot trans-
fer success rate rsrc,trg . In cases where multiple distinct policies exist for the same source task,
each solving it in a different manner, policy-specific features would be necessary to capture nuances
between different policies. However, in our setting, each policy in the skill library is trained as
an expert for a specific source task, with a one-to-one mapping between policies and their corre-
sponding training tasks. Consequently, we use the features of the source task Tsrc as a proxy for
representing the source policy ⇡src. This process enables us to collect a training dataset of tuples
(Tsrc, Ttrg, rsrc,trg) from the prior skill library.

4.1.2 LEARNING TASK FEATURES

Given the limited number of (Tsrc, Ttrg) pairs (specifically, during training, we have n ⇥ n pairs
for a total of n tasks in Tprior), we need a strong featurization of both the source policy and target
task for efficient learning of F . For assembly tasks, each task differs along three fundamental axes:
part geometry, interaction dynamics, and expert actions that solve the task. Thus, we propose a
framework that jointly captures features of geometry, dynamics, and expert actions to represent the
tasks, allowing us to efficiently learn the transfer success predictor F (Fig. 3).

When learning geometry features, we assume access to object meshes for both seen and novel tasks;
this assumption is well-grounded in industry, where CAD models are widely available, allowing us
to learn embeddings of 3D geometry. However, learning features for dynamics and expert actions
poses a unique challenge. For new assembly tasks, we assume that expert demonstrations are not

available, as these are typically tedious to obtain and often suboptimal for assembly tasks. This
deficit prevents us from easily computing dynamics or action embeddings.

We draw insight from (Tian et al., 2022; Tang et al., 2024), which noted that, although procedu-
rally generating assembly demonstrations for new tasks is intractable (narrow-passage problem),
disassembly paths can be trivially generated by employing a compliant low-level controller to lift an
inserted plug from its socket and moving it to a randomized pose. We propose learning features for
dynamics and expert actions by using these disassembly paths and hypothesize that such features
are useful for predicting transfer success for assembly; we later empirically support this hypothesis.

From each task, we randomly sample a certain number of points from the parts’ mesh as the point
cloud P and and also randomly sample the transition segments ⌧ from disassembly trajectories.
Using the point clouds P or transition sequences from disassembly ⌧ , we learn encoders EG, ED,
and EA to capture features zG (representing geometry), zD (representing forward dynamics), and
zA (representing expert actions). We also train decoders DG, DD, and DA conditioned on these
features to predict point cloud for geometry, next state for dynamics, and action sequence for expert
action choices. In Appendix A.4, we explain the implementation details for learning these features.

4.1.3 LEARNING TRANSFER SUCCESS PREDICTOR

We consolidate task features of source Tsrc and target tasks Ttrg to develop the transfer success
predictor F . We feed the sampled point cloud Psrc and transition segments ⌧src from Tsrc, and Ptrg
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and ⌧trg from Ttrg , into encoders EG, ED, and EA which are pre-trained and frozen. The geometry,
dynamics, and expert action features are concatenated together to get task features zsrc and ztrg . We
then pass the concatenated task features through an MLP to predict the transfer success rsrc,trg , as
illustrated in Fig. 3(d). Formally, we train the function F to minimize the objective function (Eq. 1):

L= kF (⇡src, Ttrg)� rsrc,trgk2 = kMLP (zsrc, ztrg)� rsrc,trgk2

= kMLP (EG(Psrc), ED(⌧src), EA(⌧src), EG(Ptrg), ED(⌧trg), EA(⌧trg))� rsrc,trgk2 (1)

4.1.4 INFERRING TRANSFER SUCCESS FOR RETRIEVAL

At test time, we use the well-trained function F to predict the transfer success of applying any
prior policy to a new task Ttrg as F (⇡src, Ttrg). As described in Sec. 4.1.2, for each task,
we can randomly sample a certain number of points from parts’ meshes as point clouds and
randomly sample transition segments from disassembly trajectories. For each source and tar-
get task pair, we sample the input data for m times and average the output from F to obtain a
more robust transfer success prediction. Specifically, we sample point clouds P1, P2, · · · , Pm and
transition segments ⌧1, ⌧2, · · · , ⌧m and then compute the averaged prediction for these samples,
i.e. F (⇡src,Ttrg)= 1

m

Pm
i=1 MLP (EG(Psrc,i),ED(⌧src,i),EA(⌧src,i),EG(Ptrg,i),ED(⌧trg,i),EA(⌧trg,i)). In this

manner, we infer the predicted transfer success F (⇡src, Ttrg) for any source policies ⇡src in the
prior skill library ⇧prior = {⇡1,⇡2, · · · ,⇡n}.

Although the well-trained F provides transfer success prediction as an effective guidance for re-
trieval, its predictions may not always be perfectly accurate. To mitigate this, we retrieve the top-k
source skills ranked by the predictor F . Among these k candidates, we identify the most relevant
skill by evaluating their zero-shot transfer success on the target task, ultimately selecting the skill
with the best transfer performance. This technique is grounded in the same intuition as introduced
in Sec. 4.1: zero-shot transfer success serves as a reliable metric for skill relevance. In experiments
in Sec. 5.2, we set k to 5. Details are in Appendix A.12.

4.2 SKILL ADAPTATION

As mentioned in Sec. 3, our ultimate goal is to solve the new task as an RL problem. The re-
trieved skill is used to initialize the policy network ⇡✓(at|st), and we subsequently use proximal
policy optimization (PPO) (Schulman et al., 2017) to fine-tune the policy on the target task. Our
initialization provides a strong start for policy learning, as the initial trials with the retrieved skills
can achieve a reasonable success rate. Inspired by self-imitation learning (Oh et al., 2018), we
fully exploit these positive experiences gained during the initial phase of fine-tuning. We maintain
a replay buffer D = {(st, at, Rt)} to store the transitions encountered throughout training, where
Rt =

PT
k=t �

k�trk is the discounted sum of rewards. We prioritize the state-action pairs (st, at)
based on Rt and imitate those pairs with high rewards. The objective function is defined in Eq. 2:

Lsil = E(s,a,R)2D[Lsil
policy + �Lsil

value] (2)

where Lsil
policy = � log ⇡✓(a|s)(R� V (s))+, Lsil

value =
1
2k(R� V (s))+k2, (·)+ = max(·, 0),

and ⇡✓ and V are the policy and value function (see details in Appendix A.3).

As training progresses, the agent collects higher rewards on the target task, leading to an expanding
replay buffer filled with improved experiences. As analyzed in (Tang, 2020), this self-imitation
mechanism accelerates the agent’s convergence to encountered high-reward behavior, even though
it may introduce some bias into the policy. In our case, the behavior derived from the retrieved skill
is advantageous for the target task. We find that self-imitation learning significantly enhances and
stabilizes policy fine-tuning, proving especially beneficial in sparse-reward scenarios.

4.3 CONTINUAL LEARNING WITH SKILL-LIBRARY EXPANSION

Continual learning investigates learning various tasks in a sequential fashion. The primary objective
is to overcome the forgetting of previously-learned tasks and to leverage earlier knowledge for better
performance and/or faster convergence on incoming tasks (Ring, 1994; Xu & Zhu, 2018; Abel et al.,
2024). We integrate SRSA in the continual-learning setup and gradually expand the skill library.
Specifically, we begin with an initial skill library ⇧prior corresponding to prior tasks Tprior. When
faced with a new batch of tasks T j = {T1, T2, · · · , Tk}, we apply SRSA to retrieve and fine-tune
policies for each new task Ti. The learned policies are then incorporated as Tprior = Tprior [ {Ti};
⇧prior = ⇧prior [ {⇡i}. This approach allows us to efficiently tackle new tasks by leveraging the
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skill library, as well as simultaneously prevent the forgetting of all learned tasks by maintaining and
expanding the skill library. See Appendix A.3 for the algorithm pseudocode.

5 EXPERIMENTS

We design experiments to answer questions: (1) Compared with baseline retrieval approaches, can
SRSA retrieve source policies that achieve a better zero-shot transfer success rate on test tasks? (2)
Can policy fine-tuning in SRSA improve learning performance, stability, and efficiency on test tasks?
(3) After fine-tuning, can SRSA high-performing policies from simulation be deployed in zero-shot
to the real-world? (4) Can SRSA be applied in the continual-learning scenario to improve learning
efficiency by gradually expanding a skill library? We investigate these questions on the AutoMate
benchmark (Tang et al., 2024), which consists of 100 two-part assembly tasks with diverse parts,
enabling us to study challenging contact-rich assembly tasks in simulation and the real world.

5.1 SKILL RETRIEVAL

AutoMate provides meshes and disassembly trajectories for each task. We use these data to learn
the task embedding for retrieval. We the following retrieval strategies. Signature: retrieve the
task with the closest path signature(Barcelos et al., 2024; Chen, 1958; Kidger et al., 2019), which
represents disassembly trajectories as a collection of path integrals (Tang et al., 2024). Behavior:
retrieve the task with the closest VAE embedding of state-action pairs on disassembly trajectories.
Forward: retrieve the task with the closest latent vector for transition sequence on disassembly
trajectories, where the latent vector was trained to to predict forward dynamics. Geometry: retrieve
the task with the closest PointNet(Qi et al., 2017; Wang et al., 2023) encoding for point clouds of
the assembly assets. SRSA: retrieve the source task with the highest prediction of transfer success
on the target task. Implementation details can be found in Appendix A.4.

Figure 4: Zero-shot transfer success of retrieved skills when applied to test tasks. For each test
task, we retrieve a policy from the prior skill library using 5 different approaches (4 baselines and
SRSA). If the approach involves training neural networks, we train on 3 random seeds. Left: Mean
and standard deviation of transfer success rate, averaged over 10 test tasks with 3 seeds each. Right:
Mean and standard deviation of success rate for each test task, averaged over 3 seeds. Overall, SRSA
substantially outperforms baselines. tas

Given the 100 tasks in the AutoMate benchmark, we split the task set into 90 prior tasks (to build
the skill library) and 10 test tasks (as the new tasks to solve). For both SRSA and baseline methods,
we train the retrieval model over three random seeds and report the average and standard deviation
of transfer success over the three seeds. Fig. 4 shows the result on the test task set. SRSA performs
best or second-best on all test tasks, except for one very challenging assembly where all methods
perform poorly (01029). In Appendix A.5, we show additional comparisons for other splits of prior
and test task sets. Overall, SRSA retrieves source policies that obtain around 20% higher success
rates on the test tasks, compared with baselines.

5.2 SKILL ADAPTATION

In this section, we investigate policy learning on test tasks given the skill library. We compare
AutoMate (i.e., learning specialist policies from scratch (Tang et al., 2024) ) and SRSA (i.e., fine-
tuning the retrieved specialist policy with self-imitation learning). Details are in Appendix A.4.
We consider both the dense-reward setting (identical to AutoMate) with a reward term imitating
disassembly demonstrations and a curriculum, and the sparse-reward setting, which only provides a
non-zero reward for task success. The sparse-reward setting is designed to emulate the real-world
RL fine-tuning setting, where dense-reward information can be much more challenging to acquire.
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Figure 5: Learning curves on test tasks. The x-axis and y-axis represent training epochs (where
each epoch consists of 128 environment steps over 256 parallel environments) and success rate,
respectively. The solid line shows the mean success rate over 5 runs with different random seeds,
and the shaded area denotes the standard deviation.

Figure 6: Sample efficiency on test set.
To achieve a desired success rate (here,
0.70, 0.75, 0.80, 0.85, or 0.90), we identify
how many training epochs are required for
each run. We illustrate the mean and stan-
dard deviation of required epochs across 5
runs with the points and error bars in the
figure, averaged over 10 test tasks.

Fig. 5 shows learning curves on the test task set. In
the dense-reward setting, SRSA achieves strong per-
formance with a fewer number of training epochs.
In the sparse-reward setting, AutoMate struggles to
achieve a reasonable success rate, whereas SRSA ben-
efits from the retrieved skill initialization and self-
imitation learning to reach higher performance. Addi-
tionally, in both settings, the learning curves of Auto-
Mate exhibit instability with fluctuating success rates
as training goes on. Tab. 2 and Tab. 3 in Appendix A.5
summarize the mean and standard deviation of the suc-
cess rate at the last epoch of training, across 5 random
seeds, for each test task. In the dense-reward setting,
SRSA reaches an average success rate of 82.6% across
10 test tasks, outperforming AutoMate (69.4%), cor-
responding to a relative improvement of 19% in per-
formance. Moreover, SRSA shows greater stability,
as AutoMate exhibits a 2.6x higher standard devia-
tion. In the sparse-reward setting, SRSA delivers a
notable 135% relative improvement in average success
rate compared to the baseline. Fig. 6 demonstrates the number of training epochs required to reach
a desired success rate in the dense-reward setting. Averaged over 10 test tasks and 5 random seeds,
SRSA requires far fewer training samples, i.e., at least 2.4 times fewer training epochs, to achieve
an arbitrary success threshold.

5.3 REAL-WORLD DEPLOYMENT
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Asset ID 01029 01053 01079 01129 01136 Overall
AutoMate 7/10 1/10 7/10 4/10 8/10 54%

SRSA 9/10 8/10 8/10 10/10 10/10 90%

Figure 7: Real-world evaluation. We take the best
checkpoint of policies across 5 runs within 500 epochs
and report the success rate over 10 trials for each task.

We now deploy the trained specialist poli-
cies in the real world. As in (Tang et al.,
2024), we place the robot in lead-through
(a.k.a., manual guide mode), grasp a plug,
guide it into the socket, and record the pose
as a target pose. We then programmati-
cally lift the plug until free from contact,
apply perturbations to the position and ro-
tation of the end effector, and deploy a policy to assemble the plug into the socket. Such con-
ditions emulate the perceptual noise and control error that are experienced in full robotic assem-
bly pipelines. In Tab. 7, we take the best checkpoint over 500 training epochs in simulation, and
record its performance when deployed in the real world. In this relatively-brief training time,
SRSA reaches higher success rates than the baseline on real-world assembly tasks. We show
keyframes of the real-world deployments in Fig. 2(c). For videos, please refer to the project website
https://srsa2024.github.io/.

5.4 CONTINUAL LEARNING

(a) (b)
Figure 8: (a) Overall sample efficiency. We report the number of training epochs required to reach
desired success rates (0.5, 0.6, 0.7, 0.8) on all tasks. We calculate the mean and standard deviation
of required training epochs over 5 runs, and report the average over 90 tasks. (b) Sample efficiency

in batches. We sequentially introduce 9 batches of new tasks for policy learning, with each batch
containing 10 new tasks. For each batch, we show the mean and standard deviation of training
epochs required to reach a success rate of 0.8. SRSA consistently requires fewer training epochs.

We study the continual-learning setting to obtain policies for each of the 100 AutoMate tasks. Rather
than training 100 policies from scratch in parallel, we start from a skill library with 10 tasks, and
train 10 new policies for 10 new tasks utilizing the skill library. For each new task, we fine-tune
the retrieved policy over 5 runs with different random seeds. We pick the best checkpoint with
highest success rate over 5 runs as the specialist policy for this new task. We repeat this process for
9 iterations, eventually covering the entire AutoMate benchmark. Essentially, we have a skill library
that is gradually expanded with an increasing number of specialist policies.

In Fig. 8, we compare the sample efficiency of SRSA and AutoMate when learning specialist policies
for the 90 tasks outside the initial skill library. We consider different desired success rates, and report
the number of training epochs required to reach each success rate. Overall, SRSA requires fewer
training epochs to reach the desired success rate, demonstrating an 84% relative improvement in
sample efficiency (Fig. 8(a)). For each batch of new tasks, SRSA is more efficient than the baseline
regardless of the skill library and test tasks (Fig. 8(b)). In Fig. 14, we show the success rates for the
highest-reward checkpoints encountered in 5 runs for each task. SRSA achieves an average success
rate of 79% compared to AutoMate’s 70% across 100 tasks, while also exhibiting better training
efficiency. In Appendix A.5, we present learning results for another ordering of batches of tasks,
showing that the advantage of SRSA is insensitive to the order of encountering new tasks.

6 ABLATION STUDY

Effect of Skill Retrieval To verify the effect of skill retrieval, we conduct skill adaptation with
retrieved skills using only a geometry embedding, i.e., the second best skill-retrieval approach eval-
uated in Fig. 3. Fig. 9 shows the performance of policy fine-tuning for both SRSA and the geometry-
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Figure 9: Comparison across variants of SRSA. For each method, we train with 5 different random
seeds. The learning curves show mean and standard deviation of success rate over these seeds. We
show learning curves for more tasks in Appendix A.5.

based skill retrieval (SRSA-Geom). One can observe that retrieving a worse skill hinders learning
efficiency, starting from a lower success rate and requiring more training epochs to reach high per-
formance. Our retrieval approach improves adaptation efficiency.

Effect of Self-imitation Learning To demonstrate the benefits of self-imitation learning (SIL) in
policy fine-tuning, we compare SRSA to the variant without this component (SRSA-noSIL). In
Fig. 9, SRSA outperforms the variant in terms of learning stability. In particular, SRSA-noSIL
suffers from more fluctuations during fine-tuning and a larger standard deviation of success rate
(shaded area) across runs with different seeds.

Effect of Generalist Policy We analyze whether fine-tuning a generalist policy outperforms fine-
tuning a selected specialist policy. For policy initialization, we use the generalist policy for 20
training tasks from (Tang et al., 2024) Although it does not cover numerous tasks, it is the strongest
generalist policy reported to date that can solve a diverse set of assembly tasks with an > 80%
success rate. Fig. 9 shows the learning curves of fine-tuning the generalist policy on unseen tasks
(SRSA-Gen). We observe that SRSA-Gen provides a weaker initialization compared to SRSA,
likely because the generalist policy’s knowledge from the training tasks is less specialized than the
skills retrieved by SRSA. Furthermore, adaptation is less efficient, possibly due to the larger neural
network in the generalist policy, which requires more fine-tuning to adapt to new tasks. As a result,
its asymptotic performance is also lower than that of SRSA.

7 CONCLUSION

Summary: In this work, we propose a pipeline to retrieve and adapt specialist policies to solve new
assembly tasks. To learn a retrieval model, we jointly learn features from geometry, dynamics and
expert actions to represent tasks, and predict transfer success to implicitly capture other transfer-
related factors from tasks. By combining skill retrieval with policy fine-tuning and self-imitation
learning, our method efficiently learns high-performance simulation-based policies. We demon-
strate that these policies are transferable to real-world robots Additionally, we demonstrate that our
approach can continuously expand a skill library through efficient learning of various skills.

Limitations: First, although we train policies for all assembly tasks in a leading benchmark (Tang
et al., 2024), we do not address assemblies requiring rotational or helical motion (e.g., nut-and-bolt
assembly). Second, we primarily concentrate on learning specialist (i.e., single-task) policies; fu-
ture work could explore learning generalist (i.e., multi-task) policies, and furthermore, incorporating
knowledge from both specialist and generalist policies to solve novel tasks with even greater effi-
ciency. Third, although our real-world success rates outperform the state-of-the-art in sim-to-real
transfer for our examined tasks, they still fall short of the 99+% success rates required for industry-
level deployment. We believe that RL fine-tuning directly in real-world settings could help bridge
the sim-to-real gap and further improve success rates.

Future Extensions: How to utilize existing policies for new tasks (rather than training from scratch)
is an open and general question in robotics. This question is relevant not just for insertion tasks, but
also for general pick-and-place tasks, dexterous manipulation tasks, advanced assembly tasks, etc.
Most robotics tasks are governed by geometry, dynamics, and behavior/action. We believe our ideas
of learning task features and predicting zero-shot transfer success for policy transfer can generalize
to other domains. For instance, in tool-use tasks, the skill of using scissors may be beneficial for
learning to operate pliers due to their similar shape and operation mechanism. We leave it as future
work to extend SRSA to these additional robotics applications.
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