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Abstract

With an ever-increasing number of smart edge devices with computation and1

communication constraints, Federated Learning (FL) is a promising paradigm for2

learning from distributed devices and their data. Typical approaches to FL aim to3

learn a single model that simultaneously performs well for all clients. But such an4

approach may be ineffective when the clients’ data distributions are heterogeneous.5

In these cases, we aim to learn personalized models for each client’s data yet still6

leverage shared information across clients. A critical avenue that may allow for7

such personalization is the presence of client-specific side information available to8

each client, such as client embeddings obtained from domain-specific knowledge,9

pre-trained models, or simply one-hot encodings. In this work, we propose a new10

FL framework for utilizing a general form of client-specific side information for11

personalized federated learning. We prove that incorporating side information can12

improve model performance for simplified multi-task linear regression and matrix13

completion problems. Further, we validate these results with image classification14

experiments on Omniglot, CIFAR-10, and CIFAR-100, revealing that proper use15

of side information can be beneficial for personalization.16

1 Introduction17

Federated learning (FL) is a promising paradigm for learning a powerful model from a large amount18

of data distributed among edge devices. Practical challenges of FL include, for instance, privacy19

leakage on each client’s data, communication and computation constraints of clients, system-level20

heterogeneity, and heterogeneously distributed data or task labels across clients [1]. In this paper,21

we focus on the challenge of data heterogeneity. The standard FL approach is Federated Averaging22

(FedAvg), which aims to learn a single model that minimizes the average loss across clients [2].23

This approach is practical when each client has similar data distributions. However, when the data24

distributions differ significantly across clients, FedAvg can degrade in performance and even fail to25

converge [3, 4]. In these cases, learning a single global model may not be reasonable since not all of26

the data across clients may be relevant for solving every client’s task.27

Personalized federated learning addresses data heterogeneity by aiming to learn models tailored to28

each client’s data. A plethora of personalized federated learning methods have been proposed recently,29

with techniques ranging from learning local and global models that interact via linear mixing [5] or30

regularization [6], learning a subset of model parameters locally while sharing the rest globally [7–11],31

and learning hierarchical statistical models consisting of local, global and intermediate parameters32

[12]; please see Appendix A for additional related works.33

While these techniques have demonstrated notable performance improvements over non-personalized34

methods such as FedAvg in data heterogeneous settings, they still suffer from a critical drawback:35

they fail to utilize client-specific side information. Often in FL settings, clients can readily access36
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information about their data distribution that is not in the form of samples from the distribution itself,37

which we refer to as side information. This information is already stored on-device, so does not38

require any increase in memory, and may be beneficial to the client for solving their task. For example,39

one can use knowledge such as user age, location, and browsing history stored in smartphones to40

enhance relevant next-word prediction; one can leverage speaker-specific information for speaker41

identification to personalize voice assistants. However, to our knowledge, a framework for utilizing42

such information in FL has not yet been proposed.43

We fill this vacancy in the literature by introducing a framework, PerFedSI, to utilize side infor-44

mation for personalized federated learning. Based on this framework, we provide theoretical and45

empirical evidence to show how one can effectively leverage various types of side information for46

personalization in settings with different types of data heterogeneity. Our contributions are:47

• Framework for personalization via side information. We establish parametric and non-48

parametric forms for levering side information in FL. Our formulation is generic in that it49

encompasses a variety of methods for employing side information. Yet, it is also specific50

enough to provide clear avenues for employing side information for personalization. In partic-51

ular, our formulation highlights two key routes through which side information can augment52

personalization: biasing the logits and weighting features by their importance.53

• Provable benefits of side information in federated matrix completion. We study matrix54

completion with side information, also known as inductive matrix completion (IMC). We show55

that our practical FL algorithm (essentially FedAvg [2]) converges linearly to the ground-truth56

solution in expectation under reasonable assumptions. Furthermore, our result reveals that57

the stronger the side information, the less communication and samples/client are required for58

convergence. Here, we leverage side information through feature importance weighting. We59

also analyze how side information can be personalized via label biasing.60

• Empirical benefits of side information. We conduct experiments on benchmark image datasets61

(Omniglot, CIFAR-10, and CIFAR-100) with different types of user-specific side information.62

Our results reveal that leveraging side information via PerFedSI in two different forms can63

significantly improve personalized FL performance in each case.64

Notations. Boldface lowercase (uppercase) denotes vectors (matrices). We let ⊙ denote the element-65

wise product, [M ] denote {1, 2, . . . ,M}, and [T ]0 denote {0} ∪ [T ]. Unif(S) is the uniform distribu-66

tion over S, and 1G is the indicator variable that has value 1 if the event G occurs and 0 otherwise.67

2 PerFedSI68

In this section we introduce our framework for Personalized Federated Learning with Side69

Information, termed PerFedSI. We start by providing a non-parametric formulation for the greatest70

generality. We then give examples of parametric forms and discuss the proposed algorithm.71

Suppose there are M clients indexed by m = 1, . . . ,M . Each client has a data distribution pm over72

X ×Y , where X is the input space and Y is the output space, and a vector of side information zm ∈ Z .73

Let F : X × Z → Y be a class of functions that represent possible personalization mechanisms. That74

is, for each f ∈ F , f(x, z) gives the predicted label of the input x for client with side information75

z. For ease of notation, we define fz(x) := f(x, z) for all x ∈ X , z ∈ Z , and f ∈ F . The local76

population loss of a model f ∈ F for client m is given by77

Lm(f) := E(xm,ym)∼pm
[ℓ(fzm(xm),ym)],

where ℓ : Y × Y → R is a loss function that measures the closeness between the prediction and true78

labels, such as the cross-entropy loss for classification or squared loss for regression. Each client79

is ultimately interested in finding a model f̂ that performs well on its population loss Lm, namely80

to achieve an excess risk Em(f̂zm) := Lm(f̂zm) − inff∈F Lm(fzm) close to zero. To operate81

the training from finitely-many observations, a client often solves an empirical risk minimization82

problem. Specifically, suppose the client m accesses a dataset Dm := {(xm,i,ym,i)}nm
i=1 consisting83

of nm i.i.d. samples from pm. It sets the following local training objective: minf∈F L̂m(f) :=84
1

nm

∑nm

i=1 ℓ(f
zm(xm,i),ym,i). Meanwhile, the server aims to minimize the weighted average of the85

2



training losses across clients, with weights proportional to the number of local samples:86

min
f∈F

L̂(f) :=
M∑

m=1

nm

N
L̂m(fzm), (1)

where N :=
∑M

m=1 nm. The side information can provide rich indexing of clients’ models, which87

we will discuss below. Next, we discuss parametric forms in which side information may help clients88

to learn personalized models that generalize well with few samples.89

2.1 Parametric Forms90

We postulate parameterized models that incorporate side information. We use the notation θ ∈ Rd to91

represent the vectorized parameters of a model, and fz
θ to denote a model with parameters θ and side92

information z. The parameterized version of (1) is as follows:93

min
θ∈RD

L(θ) :=
M∑

m=1

nm

N
Lm(fzm

θ ). (2)

The above objective may take many forms, depending on the learning model and how side information94

is incorporated. We will provide two such examples. In recognition that side information may confer95

different benefits and should be leveraged differently in various settings, we keep these examples96

generic to encompass broad uses of side information.97

Model 1: Concatenation. The first method for incorporating side information is to concatenate the98

side information with intermediate layer inputs. That is, we learn a model of the form:99

fz
θ (x) = Hθ3

([Gθ1
(x),Wθ2

(z)]) (3)

where θ = [θ1;θ2;θ3], Gθ1
: X → Rd1 is an embedding of the input data, Wθ2

: Z → Rd2 is an100

embedding of the side information, and Hθ3
: Rd1+d2 → Y is a network that maps the concatenated101

embeddings to Y . The (transformed) side information Wθ2
(z) can be concatenated at any point in102

the network, depending on the setting.103

If Hθ3 is a fully-connected NN with a final softmax layer, as is often the case for the final layers of104

networks trained for classification, then the side information serves as a client-specific bias, since the105

model outputs can be written as fz
θ (x) = σ(H

′

θ3
(Gθ1

(x)) +H
′′

θ4
(Wθ2

(z))) for some mappings H
′

θ3
106

and H
′′

θ4
, and σ being the softmax activation. As we show in Section 4, this use of side information107

can be especially beneficial in heterogeneous data settings with label shift, wherein each client has108

samples from only a small subset of Y . Then, the side information can up-weight the logits for109

popular classes for each client, leading to higher personalized accuracy. If Hθ3 is a Convolutional110

Neural Network (CNN), similar behavior (up to normalization) of the side information serving as a111

bias also holds. Concatenating the side information may do more than simply biasing the predictions.112

For example, suppose the side information is concatenated to the inputs of long short-term memory113

(LSTM) blocks in a particular layer. In that case, it is ultimately used to parameterize a non-linear114

function of the features.115

Model 2: Element-wise multiplication. The second generic parametric model that utilizes side116

information applies the (transformed) side information as a “mask” by element-wise multiplying117

it with an intermediate layer output. The intuition for this approach is that the user-specific mask118

selects the important features for that user’s task. Formally, we propose to learn models of the form:119

fz
θ (x) = Hθ3(Gθ1(x)⊙Wθ2(z)). (4)

Ideally, the side information embedding Wθ2(z) up-weights the important features in Gθ1 and down-120

weights the non-important ones in accordance with each client’s data distribution. This approach can121

be utilized in settings in which there may exist features of the input data that are broadly relevant122

across clients, but their importance for each client’s task varies in a manner revealed by the side123

information. For instance, if Wθ2
(zm) is sparse, the side information removes a large number of124

features which are irrelevant for client m’s task.125

Remark 2.1 (Personalization without local parameters). All parameters are global in the aforemen-126

tioned parametric forms, meaning they are commonly shared by all clients. We can modify these127

forms to allow for additional personalization by including local, client-specific parameters as in other128

personalized federated learning approaches [8, 9, 11, 7, 5]. However, the more local parameters, the129
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larger sample size per client required to learn them – leading to poor performance in settings with130

few samples per client. Thus, we leave the parameters as global to highlight that employing side131

information can yield personalization without local parameters.132

Remark 2.2 (Adaptivity to cases with weak side information). In some cases, the side information133

may not contain useful information. We want models to be robust to these scenarios by not relying134

critically on the side information. Both Model 1 and Model 2 have this potential since Model 1 can135

learn a Wθ2 that maps to the vector of zeros, and Model 2 can learn a Wθ2 that maps to the vector of136

ones to ignore the side information.137

Algorithm. PerFedSI employs the FedAvg algorithm [2] to solve (2). FedAvg alternates between138

local updates and aggregation as the server. At communication round t, the server sends the current139

global model θt down to a batch of selected clients Bt. Then, each selected client m executes τ steps140

of SGD on its local data starting from θt, i.e. it computes θt,m,s+1 = θt,m,s − ηĝt,m,s(θt,m,s) for141

s = 0, . . . , τ−1 and θt,m,0 := θt, where ĝt,m,s(θt,m,s) is an unbiased stochastic gradient of client142

m’s loss evaluated at θt,m,s. Then, the clients send θt,m,τ back to the server, which computes the next143

global iterate θt+1 = 1
|Bt|

∑
m∈Bt

θt,m,τ . This synchronous procedure repeats until convergence.144

Importantly, client m’s private side information zm is never communicated with the server.145

3 Theoretical Analysis146

In this section, we analyze how side information can improve personalized FL performance via an147

instance of Model 2. We defer analysis of a Model 1 example – multi-task linear regression with148

personalized biases – to Appendix B in the interest of space. To show the benefit of side information149

via Model 2, we study a version of the well-known matrix completion problem [13]. In matrix150

completion, we aim to learn a rank-r matrix L∗ ∈ Rd×M from a strict subset of its entries. Often L∗151

is a ratings matrix in which column m gives user m’s ratings for each item. We denote r = rank(L∗)152

and assume r ≪ min(d,M). In the federated setting, the server aims to learn a model that allows153

each client to accurately predict its own ratings, while maintaining the privacy of the ratings, as in e.g.154

private movie recommendation systems. The key that enables this is side information.155

We assume there is a matrix Z ∈ RM×k, k ≥ r, whose m-th row is an embedding of client m. This156

embedding is held by client m as side information, and is informative in the sense that the column157

space of Z contains the column space of L∗. Thus, we can re-write L∗ = M∗Z
⊤ for a rank-r matrix158

M∗ ∈ Rd×k. The server aims to learn M̂ ≈ M∗ in order to allow each client to predict its ratings by159

computing M̂zm ≈ L∗,m, where L∗,m is the m-th column of L∗. To protect the privacy of both the160

clients’ embeddings and their ratings, Z is not shared with the server, so the server cannot compute161

L∗ even if it knows M∗. Nevertheless, we can see how side information is beneficial for the learning162

process despite not being shared with the server. The smaller k, the stronger the side information and163

the fewer parameters the server needs to learn.164

Since M∗ is rank-r, the server tries to learn two thin matrices U ∈ Rd×r and V ∈ Rk×r such that165

UV⊤≈M∗. That is, given input ei for client m, the learning model predicts e⊤i UV⊤zm. In this way166

we can see that the learning model is an instance of (4), with Gθ1
(ei) = U⊤ei, Wθ2

(zm) = V⊤zm,167

and H(·) fixed as the Sum(·) operation. Moreover, the side information zm provides a client-specific168

weighting of the input features U⊤ei. The global loss is:169

L(U,V) := 1
M

M∑
m=1

{Lm(U,V) :=

d∑
i=1

(e⊤i (UV⊤ −M∗)zm)2}= 1
2M ∥(UV⊤ −M∗)Z

⊤∥2F (5)

where ei is the i-th standard basis vector in Rd. The local updates involve stochastic gradient170

updates on the local losses Lm(U,V) as detailed in Appendix C.3. Although matrix completion171

with side information (also known as inductive matrix completion) has been well-studied (please172

see Appendix A for details), to our best knowledge, no work has shown that (5) can be minimized173

efficiently by FedAvg, which is difficult to analyze because it executes multiple updates on local174

losses between communication rounds. These local updates can be problematic in data heterogeneous175

settings because local gradients may drift away from global gradients, causing FedAvg to not solve176

the global objective [3, 4]. However, this is not an issue for this problem in simulations with Gaussian177

data (please see Figure C.4), and we show in Theorem 3.3 that as long as the iterates satisfy regularity178

properties throughout, then the product UtV
⊤
t linearly converges in expectation to M∗. The crux is179
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that as long as the regularity conditions are satisfied, then the average local gradient is close to the180

global gradient, which leads to convergence. Letting Et,m,s := Ut,m,sV
⊤
t,m,s−M∗, σ1,∗ := ∥M∗∥2181

and σr,∗ := σr(M∗), where σr(M∗) is the r-th singular value of M∗, then the event that the iterates182

satisfy regularity properties on the s-th local update of round t is defined as follows.183

Definition 3.1 (Iterates are regular). Define A0,0 := {(U0,V0) : L(U0,V0) ≤184

c0σ
2
r,∗,max(∥U0∥2, ∥V0∥2) ≤ cσ1,∗} for some constants c0, c. Furthermore, for all (t, s) ∈185

{[T ]0 × [τ ]0} \ (0, 0) and constant µ, define186

At,s :=

{
{(Ut,m,s,Vt,m,s)}m∈[M ] : max(∥Ut,m,s∥2, ∥Vt,m,s∥2) ≤ c

√
σ1,∗,

max
i∈[d]

∥e⊤i Ut,m,s∥ ≤
√

µrσ1,∗
d , max

i∈[d]
∥e⊤i Et,m,szm∥2 ≤

√
µ
d ∥Et,m,szm∥2,

Lm(Ut,m,s,Vt,m,s) ≤ cmin(L(Ut,Vt), c0σ
2
r,∗)

}
.

We define Gt,s := (∩t
t′=1 ∩τ

s′=1 At′,s′)
⋂

∩s
s′=0At,s′ . If GT−1,τ holds, then the norms of Ut,m,s and187

Vt,m,s are balanced, Ut,m,s and the error Ut,m,sV
⊤
t,m,s −M∗ are incoherent with respect to the188

standard basis and the local loss is never more than a constant factor of the most recent global loss189

for all t ∈ [T − 1]0,m ∈ [M ], and s ∈ [τ ]0. Theorem 3.3 bounds L(UT ,VT )1GT−1,τ
, so it is only190

meaningful when GT−1,τ holds. Next, we assume a reasonable scaling of Z.191

Assumption 3.2 (Scaling, incoherence of side information). There exist constants 1 ≤ cz, µz < ∞192

such that M
cz
Ik ⪯ Z⊤Z ⪯ czMIk and maxm∈[M ] ∥zm∥22 ≤ µzk.193

Now we informally state our main result. The formal statement and proof are found in Appendix C.3.194

Theorem 3.3 (Informal). Suppose η = O( 1
k3/2rτ

) and Assumption 3.2 holds. Then FedAvg run on195

(5) with a constant number of clients participating per round and fresh samples drawn on each local196

update converges linearly to the ground-truth matrix in expectation, namely, for a constant c′,197

E[L(UT ,VT )1GT−1,τ
] ≤ (1− c′ητ

d )T−1L(U0,V0). (6)

Benefit of side information. Theorem 3.3 shows that T = O(dk3/2r log(1/ϵ)) communication198

rounds are required to achieve ϵ-error in terms of the global population loss (5) in expectation. Since199

each client makes O(τ/M) samples per round on average, this implies that Õ(dk3/2r/M) samples200

are required per client, so the clients benefit from stronger side information (smaller k). Without201

collaboration, client m would need d observations to learn its ground-truth solution M∗zm ∈ Rd, so it202

benefits from participating in FL as long as the side information is sufficiently strong (k3/2 ≪ M/r).203

Moreover, in the centralized setting without side information, the information-theoretic lower bound204

on the sample size required to recover L∗ is Ω((d+M)r) [14], so using side information can improve205

on this bound when k3/2 ≪ M . A limitation is that our result is for recovery in expectation, but it206

can be extended to a high-probability guarantee using martingale analysis [15] in future work.207

4 Experiments208

In this section, we experimentally investigate how side information can be leveraged effectively in209

settings involving various forms of data heterogeneity. Full details are deferred to Appendix D.210

Baselines. We compare against five baselines in all experiments, none of which use side information:211

(1) FedAvg [2]; (2) Ditto [16], a method that learns local models subject to regularization penalizing212

their distance from a global model; (3) SR-PH, i.e., learning a shared representation and personalized213

‘head,’ or last layer of the model, as in [8, 9]; (4) PR-SH, i.e., learning personalized representations214

and a shared head, as in [7]; (5) Local, i.e., performing only local training without any communication.215

All methods sample 20% of clients and execute one epoch of SGD locally on each round.216

Omniglot. We start with the Omniglot dataset [17], which consists of images of 1623 handwritten217

characters from 50 different languages. To simulate a realistic heterogeneous dataset, we assign218

images to clients, so each client’s images are from a single alphabet. In other words, each client has219

observations from classes (characters) belonging to only one out of 50 possible alphabets. The model220

is a four-layer CNN with a final linear layer. For side information, we train an alphabet classifier221
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Figure 1: Omniglot test accuracies for varying number of clients (and samples per client).
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Figure 2: CIFAR-10, CIFAR-100 test accuracies with M ∈ {100, 500} clients and heterogeneity due
to affine shifts of the images. Standard deviations over three random trials are shown.

using all training samples across clients. Then, client m’s side information is the average embedding222

output by the alphabet classifier on its training data. Thus, the side information reveals relationships223

between users, as two clients have similar side information if their samples come from the same or224

similar alphabets, analogous to client embeddings that may serve as side information in practice.225

Here, PerFedSI concatenates a two-layer mapping of the side information to the input to the network’s226

final (linear) layer, meaning it takes the form of Model 1, and the side information biases the logits.227

Figure 1 plots the test accuracies against communication rounds for all methods, with varying228

numbers of clients (and hence, training samples per client) in each plot. On the left, there are 50229

clients (one client per alphabet) and an average of 519 training samples per client. On the right, there230

are 500 clients (ten clients per alphabet) and an average of 32 training samples per client. SR-PH231

performs best when there are many samples per client (left), but PerFedSI achieves the highest test232

accuracy when there are fewer samples per client (right). In the latter case, local parameters overfit,233

whereas PerFedSI utilizes side information for personalization without relying on local parameters.234

A limitation is that public data is required for training the alphabet classifier, however, in practice235

there is often such a dataset (or embeddings from a pre-trained user identification model) available.236

CIFAR-10, CIFAR-100. Next, we experiment with CIFAR-10 and CIFAR-100 [18], two image237

classification datasets with 10 and 100 classes, respectively. Unlike the previous experiment in which238

the data heterogeneity was due to each client having samples from a small fraction of the total classes,239

here we realize data heterogeneity by applying different affine shifts to the input data across clients.240

Specifically, we first partition data i.i.d. among clients, then apply one of four affine shifts consisting241

of a rotation followed by a shearing operation. These affine shifts represent different camera settings242

among clients. The side information is a four-dimensional one-hot encoding of the particular shift243

applied to each client. Again we use a four-layer CNN with a fifth linear layer, but PerFedSI uses244

an instance of Model 2. In particular, we multiply the side information with the features in the third245

convolutional layer. Since the side information is a one-hot encoding, some channel outputs are set246

to zero. Thus, the side information serves as a mask that selects the features relevant to each client.247

Figure 2 shows that PerFedSI achieves the best test accuracy in all four settings.248

Conclusion. We have introduced PerFedSI, to our best knowledge, the first framework for utilizing249

client-specific side information for personalized FL. PerFedSI is general enough to encompass250

various uses of side information, and we provide theoretical and empirical evidence supporting how251

particular methods for leveraging side information can improve performance. Future work remains to252

characterize the benefit of side information in FL from a learning-theoretic standpoint and perform253

further experiments to obtain a broader picture of when it is useful for personalization.254
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A Related Work398

Learning with side information. Many works have noticed the utility of side information for399

learning in centralized settings [19]. This line of work has included using side information in the400

form of word2vec embeddings for natural language processing [20], movie year and overall rating for401

movie recommendation [21], camera angle and height, caption embeddings, and depth information402

for computer vision [22–24]. Other works have analyzed how to leverage structural side information403

for learning Bayesian networks [25–27] and state space side information for reinforcement learning404

[28]. The two most similar works to our are [29] and [30]. [29] considers that each data point comes405

with side information in the form of an “index” variable that is correlated with the label of the data406

point but is insufficient to predict the label on its own. They propose a post-processing procedure407

that smoothes the predictions based on their index. Our work also leverages side information in the408

form of indexing, but over clients in FL, not over individual data points in centralized learning. In409

particular, their smoothing technique would not apply to FL because it would require each client to410

access the predictions of other clients. [30] proposed a differentially-private algorithm that employs411

side information for feature importance weighting in distributed settings, including FL. However, the412

considered side information is global, ideally obtained from a public dataset, whereas we consider413

client-specific side information that may benefit personalization.414

Personalized FL. In recent years, there has been a surge of interest in Personalized FL; please see415

[31] for a detailed summary. The two high-level approaches to Personalized FL are to (i) learn a set416

of global parameters that can be easily adapted to local datasets and (ii) learn local (device-specific)417

parameters that can be effectively combined with global parameters (shared across all devices) to418

yield high-performing personalized models. Approaches of the form (i) start by learning a global419

model via meta-learning [32, 33] or a general-purpose FL algorithm [2, 4], then fine-tuning this420

model on each client to obtain personalized models [34, 35]. In contrast, we aim to learn global421

parameters that effectively leverage side (device-specific) information to give personalized predictions422

for each client without any fine-tuning needed. Approaches of the form (ii) aim to balance local and423

global information by either learning local models that are combined with a global model via linear424

interpolation [5, 36], regularization [6, 16], or hierarchical statistical methods [12], or, they learn a425

subset of a single model’s parameters locally and the rest of the parameters globally [37, 10, 38, 9, 8].426

Our work generalizes such approaches since a special case of our framework is the case that the side427

information is a one-hot vector indicating the index of the device index.428

Inductive matrix completion. The problem of inductive matrix completion was originally motivated429

by movie recommendations wherein the goal is to recover a client-movie rating matrix given a430

subset of its elements and side information about the clients and movies [39]. IMC has also been431

studied in the context of disease prediction with genetic data as side information, link prediction432

in networks using features of the nodes as side information, and multi-label learning with features433

of the inputs as side information [40]. A variety of IMC algorithms have been analyzed, including434

nuclear norm minimization [40], alternating minimization [39], multi-phase Procrustes flow [41], and435

Gauss-Newton iteration [42]. Interestingly, simulations show that simple gradient descent and simple436

variants often perform at least as well as these more sophisticated methods [42]. In this work, we437

present the first study of whether FedAvg, a simple gradient-based method, can solve this problem438

while realizing the sample complexity-benefits of using side information.439

B Model 1 Toy Example: Multi-Task Linear Regression440

To demonstrate the advantages of employing side information for personalized FL via Model 1, we441

study a simplified version of multi-task linear regression with a ground-truth model. Suppose that442
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data (xm, ym) for the m-th client are drawn from the distribution pm as follows:443

xm ∼ px, ym = ⟨θ∗,xm⟩+ bm,∗ + ζm, (7)

where px has mean zero and identity covariance, ζm is mean-zero random noise, θ∗ ∈ Rd encodes444

the shared information across clients in the form of a ground-truth regressor, and bm,∗ encodes445

data heterogeneity in the form of a client-specific bias, analogous to a label shift in classification.446

Without side information, client m aims to find a model (θ, b) that achieves small excess risk447

Em(θ, b) = 1
2∥θ− θ∗∥22 + 1

2 |b− bm,∗|2. Given n samples {(xm,j , ym,j)}nj=1 from each distribution448

pm, the standard server objective is to minimize the average loss across clients:449

min
θ∈Rd,b∈R

1
2Mn

M∑
m=1

n∑
j=1

{
(⟨θ,xm,j⟩+ b− ym,j)

2 ≡ (⟨θ − θ∗,xm,j⟩+ b− bm − ζm,j)
2

}
. (8)

We can show that as the sample size n goes to infinity, the solution to (8) approaches (θ∗, b̄∗ :=450

1
M

∑M
m=1 bm,∗). Thus, even in the ideal setting of each client having infinite samples, solving (8)451

results in each client having excess risk (bm,∗ − b̄∗)
2, which, on average over m, grows with the452

degree of data heterogeneity.453

Now suppose each client has side information in the form of client embedding zm ∈ Rk that encodes454

some information that distinguishes their data distribution from other clients’ data distributions,455

which in this case corresponds to information about bm. The server aims to learn a model the form456

(3), where Gθ1
(x) = θ⊤

1 x, Wθ2
(z) = θ⊤

2 z, and H(·) is fixed as the identity mapping, by solving457

min
θ1∈Rd,θ2∈Rk

1
2Mn

M∑
m=1

n∑
j=1

(⟨θ1 − θ∗,xm,j⟩+ ⟨θ2, zm⟩ − bm − ζm,j)
2.

Then, each client can achieve zero excess risk if there exists θ2 such that ⟨θ2, zm⟩ = bm for all m, i.e.458

the side information is sufficiently expressive. Granted, learning such a θ2 entails learning additional459

parameters if k ≥ 2. But this is mitigated in settings with many clients since θ2 is shared globally.460

As a result, this example shows how learning a model of the form (3) can effectively leverage side461

information to achieve personalization.462

C Inductive Matrix Completion with FedAvg463

C.1 Further Background464

Recall the server’s population objective is:465

min
U,V

L(U,V) := 1
2M ∥UV⊤Z⊤ −M∗Z

⊤∥2F (9)

where M∗ = L∗Z
⊤ ∈ Rd×M is the ground-truth client-item ranking matrix, and M̄∗ ∈ Rd×k. Note466

that the global loss f can be written as the average of local losses Lm:467

L(U,V) = 1
M

M∑
m=1

{Lm(U,V) := 1
2

d∑
i=1

(e⊤i (UV⊤ −M∗)zm)2}. (10)

Algorithm. As mentioned in Section 3, the PerFedSI algorithm in this case is FedAvg on the IMC468

objective (10), with local updates being stochastic gradient descent steps on the local losses {Lm}m.469

In particular, the local updates by client m on the t-th communication round are:470

Ut,m,s+1 = Ut,m,s − ηet,m,se
⊤
t,m,s(Ut,m,sV

⊤
t,m,s −M∗)zmz⊤mVt,m,s, (11)

Vt,m,s+1 = Vt,m,s − ηzmz⊤m(Vt,m,sU
⊤
t,m,s −M∗)et,m,se

⊤
t,m,sUt,m,s, (12)

for s + 1 ∈ [τ ], where each et,m,s is an independent sample from Unif({e1, . . . , ed}), i.e. the471

uniform distribution over the standard basis vectors on Rd. That is, each local update involves a472

fresh sample. Client m’s training dataset can be taken to be the set of samples observed throughout473

training, namely Dm := {(et,m,s, e
⊤
t,m,sM∗zm)}t∈[T ]0,s∈[τ−1]0 . We will show that the total number474

of rounds required to reach ϵ-error is sufficiently small such that |Dm| ≪ d as long as ϵ ≫ e−d.475
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Table 1: Summary of notations used in the analysis.

Name Description

M Number of clients
m Index over clients
T Number of communication rounds
t Index over communication rounds
τ Number of local updates
s Index over local updates
d Number of items
i Index over items
r Rank of ground-truth matrix
k Dimension of side information
η Step size

Ut,m,s Locally-updated U matrix after t comm. rounds and s local updates by client m
Ût,m,sRt,m,s QR decomposition of Ut,m,s

Vt,m,s Locally-updated V matrix after t comm. rounds and s local updates by client m
V̂t,m,sR

′
t,m,s QR decomposition of Vt,m,s

M∗Z
⊤ Ground-truth matrix ∈ Rd×M

X̂∗Σ∗Ŷ
⊤
∗ SVD of M∗Z

⊤

Z (resp. zm) Side information matrix (resp. m-th row of Z)
L(U,V) Global population loss function (see (10))
Lm(U,V) Local population loss function (see (10))
ei The i-th standard basis vector in Rd (deterministic)
et,m,s i.i.d. sample from Unif({e1, . . . , ed}) by client m on s-th local update on round t
Et,m,s Local error Ut,m,s,V

⊤
t,m,s −U∗V∗

σ1,∗ Maximum singular value of U∗V
⊤
∗

σr,∗ Minimum singular value of U∗V
⊤
∗

µz Incoherence parameter for Z (see Assumption ??)
µU Incoherence parameter for U (see Assumption (??))
µE Incoherence parameter for E := UV⊤ −M∗ (see Assumption (??))
µ max(µz, µU , µE)

St, St,s σ-algebra induced by stochastic gradients up to round t,
s-th local update on round t, respectively

Et[·] E[·|St]
Gt,s Event that all global and local updates stay in good local regions (see (??))

up to the start of the s-th local updates on round t.

Note that Ut,m,0 := Ut and Vt,m,0 := Vt. For analysis purposes only, we define these local updates476

for all m ∈ [M ] on each round, even though only a subset of the clients participate in each round.477

Next, we make the following assumption on the manner in which the clients are sampled by the478

server.479

Assumption C.1. Each selected client on each round is drawn independently from Unif({1, . . . ,M}).480

Note that Assumption C.1 allows for the same client to be selected twice on the same round. In481

this case, our analysis treats the local updates resulting from each selection as independent samples482

from the same random process. However, since C is a constant and M is often very large in practice,483

selecting the same client more than once on the same round is a low-probability event.484

The global updates are then485

Ut+1 =
1

C

∑
j∈Bt

Ut,j,τ ,

Vt+1 =
1

C

∑
j∈Bt

Vt,j,τ .
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Note that each j ∈ Bt is a random variable, and by Assumption C.1, j ∼ Unif({1, . . . ,M}). By the486

linearity of expectation,487

Et[Ut+1] =
1

C

∑
j∈Bt

Et[Ut,j,τ ] =
1

C

∑
j∈Bt

1

M

M∑
m=1

Et[Ut,m,τ ] =
1

M

M∑
m=1

Et[Ut,m,τ ]. (13)

Remark C.2 (Privacy). To enhance the privacy of side information, one may add noise to each488

client’s Vt,m,τ before it is received by the server. We do not consider the effect of this noise on the489

algorithm’s convergence in this analysis, and leave it for future work.490

Recall Assumption 3.2 from the main paper. The scaling of Z outlined in Assumption 3.2 corresponds491

roughly to the case that each client embedding zm is sampled from a multivariate Gaussian distribution492

with zero mean and identity covariance.493

Now, we define incoherence, which is a key property that defines the events {At,s}t,s (and hence,494

{Gt,s}t,s) and is used critically in matrix sensing analysis [14]. The importance of incoherence stems495

from the fact that the ground-truth matrix can only be recovered with an efficient sample size if it is496

non-aligned with the sampling vectors.497

Definition C.3 (Incoherence). A matrix A ∈ Rd×r is said to be µ-incoherent if498

max
i∈[d]

∥e⊤i A∥2 ≤
√

µr

d
∥A∥2. (14)

The event At,s entails that Ut,m,s and Et,m,s are incoherent with respect to the standard basis.499

Likewise, Assumption 3.2 entails that Z is incoherent with respect to the standard basis. For ease of500

notation we denote µ := max(µU , µE , µz).501

C.2 Proof Sketch502

The proof leverages that if GT,0 is satisfied, then the global updates remain in a favorable global region503

within which the objective is β-smooth and the Polyak-Lojasiewicz (PL) Inequality is satisfied with504

parameter γ, i.e. ∥∇L(Ut,Vt)∥2F ≥ γL(Ut,Vt). Further, if GT,0 holds, then the client drift on each505

round is small, specifically
∥∥∑τ−1

s=0
d
M

∑M
m=1 Et[∇L(Ut,m,s;Vt,m,s)]− τ∇L(Ut,Vt)

∥∥
F
1GT,0

=506

O(ητ2)
√

L(Ut,Vt). Using these properties, we can show, conditioned on GT,0 the history up to507

time t,508

Et[L(Ut+1,Vt+1)]

≤ L(Ut,Vt) + ⟨∇L(Ut,Vt),Et[Ut+1;Vt+1]− [Ut;Vt]⟩
+ β

2Et[∥Ut+1 −Ut∥2 + ∥Vt+1 −Vt∥2]

≤ L(Ut,Vt)−
ητ

d
∥∇L(Ut,Vt)∥2F

+
η

d
∥∇L(Ut,Vt)∥F

∥∥ τ−1∑
s=0

d

M

M∑
m=1

Et[∇L(Ut,m,s;Vt,m,s)]− τ∇L(Ut,Vt)
∥∥
F

+O(η
2τ2

d )L(Ut,Vt)

≤ (1− ητ
d γ +O(η

2τ2

d ))L(Ut,Vt),

which completes the proof by choosing a sufficiently small α. We have omitted the dependence on k509

here for brevity. The full proof is given in the following subsection.510

C.3 Formal Theorem Statement and Proof511

Theorem C.4 (Formal). Suppose that η ≤ σr,∗
132k3/2rτµ2σ2

1,∗c
5c4z

and Assumptions 3.1, 3.2, and C.1512

are satisfied. Then PerFedSI run on the matrix completion with side information problem with a513

constant C ≥ 1 clients participating per round and τ local updates per round, converges linearly in514

expectation to the ground-truth matrix, in particular515

E[L(Ut,Vt)1GT−1,τ
] ≤ (1− 0.5ητ

σr,∗
cc3zdk

)T−1L(U0,V0). (15)
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Throughout the proof, let Û denote the left singular vectors of the matrix U, for any matrix U, and516

let PÛ denote the orthogonal projection onto col(Û), and PÛ⊥
denote the orthogonal projection517

onto the subspace perpendicular to col(Û).518

The next two lemmas are adaptations of Lemmas C.2, C.3, and C.4 in [15] to our setting with side519

information.520

Lemma C.5 (PL Condition). Within the region {(U,V) : U ∈ Rd×r,V ∈ Rk×r, σmin(U
⊤
∗ U) ≥521

γ, σmin(V
⊤
∗ V) ≥ γ}, the function L(U,V) := 1

2M ∥(UV⊤ −U∗V
⊤
∗ )Z

⊤∥2F satisfies522

∥∇L(U,V)∥2F ≥ γL(U,V), (16)
where γ :=

σr,∗
cc3z

.523

Proof. For the gradient with respect to U, we have524

∥∇UL(U,V)∥2F =
1

M2
∥(UV⊤ −M∗)Z

⊤ZV∥2F

=
1

M2
∥PÛ((UV⊤ −M∗)Z

⊤ZV)∥2F +
1

M2
∥PÛ⊥

(UV⊤ −M∗)Z
⊤ZV∥2F

=
1

M2
∥PÛ(UV⊤ −M∗)Z

⊤ZV∥2F +
1

M2
∥PÛ⊥

M∗Z
⊤ZV∥2F

≥ σ2
min(ZV)

M2
∥PÛ(UV⊤ −M∗)Z

⊤PZV∥2F +
σ2
min(Ŷ

⊤
∗ ZV)

M2
∥PÛ⊥

X̂∗Σ∗∥2F

≥ σ2
min(ZV)

M2
∥PÛ(UV⊤ −M∗)Z

⊤PZV∥2F +
σ2
min((Ŷ

⊤
∗ ZV)

M2
∥PÛ⊥

M∗Z
⊤∥2F
(17)

For the gradient with respect to V, we have525

∥∇VL(U,V)∥2F =
1

M2
∥U⊤(UV⊤ −M∗)Z

⊤Z∥2F

≥ σ4
min(Z)

M2
∥U⊤(UV⊤ −M∗)∥2F

≥ σ4
min(Z)

M2∥Z∥22
∥U⊤(UV⊤ −M∗)Z

⊤∥2F . (18)

where (18) follows since for any matrix A with commensurate dimension,526

∥AZ⊤∥2F ≤ ∥A∥2F ∥Z∥22.
Next, we have527

∥U⊤(UV⊤ −M∗)Z
⊤∥2F

= ∥U⊤(UV⊤ −M∗)Z
⊤PZV∥2F + ∥U⊤(UV⊤ −M∗)Z

⊤P(ZV)⊥∥
2
F

≥ σ2
min(U)∥PÛ(UV⊤ −M∗)Z

⊤PZV∥2F + ∥U⊤M∗Z
⊤P(ZV)⊥∥

2
F

≥ σ2
min(U)∥PÛ(UV⊤ −M∗)Z

⊤PZV∥2F + σ2
min(U

⊤Û∗)∥Σ∗Y
⊤
∗ P(ZV)⊥∥

2
F

≥ σ2
min(U)∥PÛ(UV⊤ −M∗)Z

⊤PZV∥2F + σ2
min(U

⊤Û∗)∥M∗Z
⊤P(ZV)⊥∥

2
F (19)

Combining (17), (18) and (19) yields528

∥∇L(U,V)∥2F = ∥∇UL(U,V)∥2F + ∥∇VL(U,V)∥2F

≥ σ2
min(ZV)

M2
∥PÛ(UV⊤ −M∗)Z

⊤PZV∥2F +
σ2
min(Ŷ

⊤
∗ ZV)

M2
∥PÛ⊥

M∗Z
⊤∥2F

+
σ4
min(Z)

M2∥Z∥22
σ2
min(U)∥PÛ(UV⊤ −M∗)Z

⊤PZV∥2F

+
σ4
min(Z)

M2∥Z∥22
σ2
min(U

⊤Û∗)∥M∗Z
⊤P(ZV)⊥∥

2
F

≥ 1

M
min

(
σ2
min(Ŷ

⊤
∗ ZV), 1

c2z
σ2
min(Z)σ

2
min(Û

⊤
∗ U)

)
L(U,V) (20)

≥ σr,∗
cc3z

L(U,V) (21)
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using that cz ≥ 1 and σmin(Ŷ
⊤
∗ ZV) ≥

√
σr,∗/c.529

Lemma C.6 (Smoothness). Within the region Dβ := {(U,V) : U ∈ Rd×r,V ∈ Rk×r, ∥U∥2 ≤530

c
√
σ1,∗, ∥V∥2 ≤ c

√
σ1,∗}, the function L(U,V) := 1

2M ∥(UV⊤ −U∗V
⊤
∗ )Z

⊤∥2F satisfies531

∥∇L(U1,V1)−∇L(U2,V2)∥2F ≤ β2

2
(∥U1 −U2∥2F + ∥V1 −V2∥2F ). (22)

where β2 := c2z
(
32c4 + 4

)
σ2
1,∗.532

Proof. Note that533

∥∇L(U1,V1)−∇L(U2,V2)∥2F
= ∥∇UL(U1,V1)−∇UL(U2,V2)∥2F + ∥∇VL(U1,V1)−∇VL(U2,V2)∥2F
= 1

M2 ∥(U1V
⊤
1 −U∗V

⊤
∗ )Z

⊤ZV1 − (U2V
⊤
2 −U∗V

⊤
∗ )Z

⊤ZV2∥2F
+ 1

M2 ∥U⊤
1 (U1V

⊤
1 −U∗V

⊤
∗ )Z

⊤Z−U⊤
2 (U2V

⊤
2 −U∗V

⊤
∗ )Z

⊤Z∥2F (23)

For the first term, by repeatedly applying the inequalities ∥A + B∥2F ≤ 2(∥A∥2F + ∥B∥2F ) and534

∥AB∥F ≤ ∥A∥2∥B∥F we have535

∥(U1V
⊤
1 −M∗)Z

⊤ZV1 − (U2V
⊤
2 −M∗)Z

⊤ZV2∥2F
≤ 2∥U1V

⊤
1 Z

⊤ZV1 −U2V
⊤
2 Z

⊤ZV2∥2F + 2∥M∗Z
⊤ZV1 −M∗Z

⊤ZV2∥2F
≤ 4∥U1V

⊤
1 Z

⊤Z(V1 −V2)∥2F + 4∥(U1V
⊤
1 −U2V

⊤
2 )Z

⊤ZV2∥2F + 2∥M∗∥22∥Z∥42∥V1 −V2∥2F
≤ 4∥U1V

⊤
1 ∥22∥Z∥42∥V1 −V2∥2F + 8(∥U1(V

⊤
1 −V⊤

2 )∥2F + ∥(U1 −U2)V
⊤
2 ∥2F )∥Z∥42∥V2∥22

+ 2∥M∗∥22∥Z∥42∥V1 −V2∥2F
≤ ∥Z∥22

(
12c4σ2

1,∗ + 2σ2
1,∗
)
∥V1 −V2∥2F + 4c4σ2

1,∗∥Z∥22∥U1 −U2∥2F (24)

A similar argument for the second term in (23) yields536

∥∇L(U1,V1)−∇L(U2,V2)∥2F ≤
(
16c4 + 2

) σ2
1,∗

M2
∥Z∥42 (∥V1 −V2∥2F + ∥U1 −U2∥2F )

≤ c2z
(
16c4 + 2

)
σ2
1,∗ (∥V1 −V2∥2F + ∥U1 −U2∥2F ),

where the last inequality follows by Assumption 3.2.537

Lemma C.7 (Bound on second-order error). For any t,538

Et[∥Ut+1 −Ut∥2F 1Gt,τ
] ≤ η2τ2k

(
1

Cd
+

1

d2

)
cµzσ1,∗L(Ut,Vt)1Gt,0

Et[∥Vt+1 −Vt∥2F 1Gt,τ
] ≤ η2τ2kr

(c+ µU )µzσ1,∗

d2
L(Ut,Vt)1Gt,0

Proof. We have539

Et[∥Ut+1 −Ut∥2F 1Gt,τ ]

= η2Et


∥∥∥∥∥∥ 1C

τ−1∑
s=0

∑
j∈Bt

∇UL̂m(Ut,m,s,Vt,m,s, et,m,s)1Gt,τ

∥∥∥∥∥∥
2

F


= η2Et


∥∥∥∥∥∥ 1C

τ−1∑
s=0

∑
j∈Bt

et,m,se
⊤
t,m,s(Ut,m,sV

⊤
t,m,s −U∗V

⊤
∗ )zjz

⊤
j Vt,m,s1Gt,τ

∥∥∥∥∥∥
2

F


≤ η2τ2 max

s∈{0,...,τ−1}
Et


∥∥∥∥∥∥ 1C

∑
j∈Bt

et,m,se
⊤
t,m,s(Ut,m,sV

⊤
t,m,s −U∗V

⊤
∗ )zjz

⊤
j Vt,m,s1Gt,τ

∥∥∥∥∥∥
2

F


(25)
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Let At,m,s := (Ut,m,sV
⊤
t,m,s −U∗V

⊤
∗ )zjz

⊤
j Vt,m,s. We obtain for any s ∈ {0, . . . , τ − 1},540

Et


∥∥∥∥∥∥ 1C

∑
j∈Bt

et,m,se
⊤
t,m,s(Ut,m,sV

⊤
t,m,s −U∗V

⊤
∗ )zjz

⊤
j Vt,m,s1Gt,τ

∥∥∥∥∥∥
2

F


≤ Et


∥∥∥∥∥∥ 1C

∑
j∈Bt

et,m,se
⊤
t,m,sAt,m,s1Gt,s

∥∥∥∥∥∥
2

F


= Et

Tr

 1

C

∑
j∈Bt

et,m,se
⊤
t,m,sAt,m,s1Gt,s

⊤ 1

C

∑
j∈Bt

et,m,se
⊤
t,m,sAt,m,s1Gt,s





= Tr

 1

C2

∑
j∈Bt

∑
j′∈Bt\j

Et

[
A⊤

t,m,set,m,se
⊤
t,m,set,m′,se

⊤
t,m′,sAt,m′,s1Gt,s

]
+Tr

 1

C2

∑
j∈Bt

Et

[
A⊤

t,m,set,m,se
⊤
t,m,sAt,m,s1Gt,s

] (26)

= Tr

 1

C2

∑
j∈Bt

∑
j′∈Bt\j

Et

[
A⊤

t,m,set,m,se
⊤
t,m,s1Gt,s

]
Et

[
et,m′,se

⊤
t,m′,sAt,m′,s1Gt,s

]
+Tr

 1

C2

∑
j∈Bt

Et

[
A⊤

t,m,set,m,se
⊤
t,m,sAt,m,s1Gt,s

] (27)

where541

Et

[
A⊤

t,m,set,m,se
⊤
t,m,s1Gt,s

]
=

1

dM

M∑
m=1

Et[A
⊤
t,m,s1Gt,s

] (28)

since et,m,s is independent of At,m,s and E[et,m,se
⊤
t,m,s] =

1
dId. Thus542

Tr

 1

C2

∑
j∈Bt

∑
j′∈Bt\j

Et

[
A⊤

t,m,set,m,se
⊤
t,m,s1Gt,s

]
Et

[
et,m′,se

⊤
t,m′,sAt,m′,s1Gt,s

]
=

C − 1

Cd2M2
Tr

(
M∑

m=1

M∑
m′=1

Et

[
A⊤

t,m,s1Gt,s

]
Et

[
At,m′,s1Gt,s

])

=
C − 1

Cd2M2
Tr

(
M∑

m=1

M∑
m′=1

Et

[
V⊤

t,m,szmz⊤mE⊤
t,m,s1Gt,s

]
Et

[
Et,m′,szm′z⊤m′Vt,m′,s1Gt,s

])

≤ µzcσ1,∗k

d2
L(Ut,Vt)1Gt,0

(29)

where (29) follows since if Gt,s holds, then maxm∈[M ] ∥zm∥2 ≤
√
µzk, maxm∈[M ] ∥Vt,m,s∥2 ≤543

√
cσ1,∗, and maxm∈[M ] ∥Et,m,szm∥2 =

√
Lm(Ut,m,s,Vt,m,s) ≤

√
L(Ut,Vt), and 1Gt,s ≤ 1Gt,0 .544

For the second term in (27),545

Et

[
A⊤

t,m,set,m,se
⊤
t,m,sAt,m,s1Gt,s

]
=

1

M

M∑
m=1

Et

[
A⊤

t,m,set,m,se
⊤
t,m,sAt,m,s1Gt,s

]
=

1

dM

M∑
m=1

d∑
i=1

Et

[
A⊤

t,m,seie
⊤
i At,m,s1Gt,s

]
=

1

dM

M∑
m=1

d∑
i=1

Et

[
(e⊤i Et,m,szm)2V⊤

t,m,szmz⊤mVt,m,s1Gt,s

]
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which means546

Tr

 1

C2

∑
j∈Bt

Et

[
A⊤

t,m,set,m,se
⊤
t,m,sAt,m,s1Gt,s

]
=

1

CdM

M∑
m=1

d∑
i=1

Et

[
(e⊤i Et,m,szm)2 Tr

(
V⊤

t,m,szmz⊤mVt,m,s1Gt,s

)]
≤ cσ1,∗µzk

Cd

1

M

M∑
m=1

d∑
i=1

Et

[
(e⊤i Et,m,szm)21Gt,s

]
=

cσ1,∗µzk

Cd
Et

[
1

M

M∑
m=1

Lm(Ut,m,s,Vt,m,s)1Gt,s

]

≤ cσ1,∗µzk

Cd
L(Ut,Vt)1Gt,0

(30)

Combining (27) with (29) and (30) yields547

Et[∥Ut+1 −Ut∥2F 1Gt,τ ] ≤ η2τ2k

(
1

Cd
+

1

d2

)
cµzσ1,∗L(Ut,Vt)1Gt,0 (31)

The bound on Et[∥Vt+1 − Vt∥2F 1Gt,τ
] follows by a similar argument, but with some notable548

differences. We obtain:549

Et[∥Vt+1 −Vt∥2F 1Gt,τ ]

≤ max
s∈{0,τ−1}

η2τ2

C2

∑
j,j′∈Bt,j′ ̸=j

Tr

(
Et

[
U⊤

t,m,set,m,se
⊤
t,m,sEt,m,szmz⊤m1Gt,s

]
×

Et

[
zm′z⊤m′E⊤

t,m′,set,m′,se
⊤
t,m′,sUt,m′,s1Gt,s

])
+

η2τ2

C2

∑
j∈Bt

Tr
(
Et

[
∥zm∥22U⊤

t,m,set,m,se
⊤
t,m,sEt,m,szmz⊤mE⊤

t,m,set,m,se
⊤
t,m,sUt,m,s1Gt,s

])
(32)

For the first term, we have550

Et

[
zmz⊤mE⊤

t,m,set,m,se
⊤
t,m,sUt,m,s1Gt,s

]
=

1

dM

M∑
m=1

Et[zmz⊤mE⊤
t,m,sUt,m,s1Gt,s

] (33)

thus551

1

C2

∑
j,j′∈Bt,j′ ̸=j

Tr

(
Et

[
U⊤

t,m,set,m,se
⊤
t,m,sEt,m,szmz⊤m1Gt,s

]
×

Et

[
zm′z⊤m′E⊤

t,m′,set,m′,se
⊤
t,m′,sUt,m′,s1Gt,s

])
≤ (C − 1)cσ1,∗µzk

Cd2
L(Ut,Vt)1Gt,0

. (34)
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by arguing as in (30). Similarly, for the second term,552

Tr
(
Et

[
∥zm∥22U⊤

t,m,set,m,se
⊤
t,m,sEt,m,szmz⊤mE⊤

t,m,set,m,se
⊤
t,m,sUt,m,s1Gt,s

])
=

1

dM

M∑
m=1

d∑
i=1

∥zm∥22Et

[
∥U⊤

t,m,sei∥22(e⊤i Et,m,szm)21Gt,s

]
≤ µUrσ1,∗

d2M

M∑
m=1

d∑
i=1

∥zm∥22Et[(e
⊤
i Et,m,szm)21Gt,s

] (35)

≤ krµzµUσ1,∗

d2M

M∑
m=1

Et[Lm(Ut,m,s,Vt,m,s)1Gt,s
]

≤ krµzµUσ1,∗

d2
L(Ut,Vt)1Gt,0

(36)

where (35) follows from the incoherence of Ut,m,s with respect to the standard basis. Equation (36)553

implies554

1

C2
Tr

(∑
m∈Bt

Et

[
∥zm∥22U⊤

t,m,set,m,se
⊤
t,m,sEt,m,szmz⊤mE⊤

t,m,set,m,se
⊤
t,m,sUt,m,s1Gt,s

])

≤ krµzµUσ1,∗

Cd2
L(Ut,Vt)1Gt,0 (37)

Combining (37), (34) and (32), and using 1Gt,s
≤ 1Gt,0

yields555

Et[∥Vt+1 −Vt∥2F 1Gt,τ
] ≤ η2τ2kr

d2
(c+ µU )µzσ1,∗L(Ut,Vt)1Gt,0

(38)

as desired.556

Lemma C.8. Define557

at,s :=

∥∥∥∥∥ d

M

M∑
m=1

Et

[
∇UL̂m(Ut,m,s,Vt,m,s, et,m,s)1Gt,s

−∇UL(Ut,Vt)1Gt,s

]∥∥∥∥∥
F

, and

bt,s :=

∥∥∥∥∥ d

M

M∑
m=1

Et

[
∇VL̂m(Ut,m,s,Vt,m,s, et,m,s)1Gt,s

−∇VL(Ut,Vt)1Gt,s

]∥∥∥∥∥
F

1Gt,s
.

Then for any t, s:558

at,s+1 ≤ at,s + 6
η

d
c3µ3/2σ

3/2
1,∗
√
L(Ut,Vt)1Gt,s

, and (39)

bt,s+1 ≤ bt,s + 6
η

d
c3µ3/2σ

3/2
1,∗
√

L(Ut,Vt)1Gt,s
. (40)

Proof. Recall Ut,m,s+1 = Ut,m,s − ηĜt,m,s and Vt,m,s+1 = Vt,m,s − ηĤt,m,s, where559

Ĝt,m,s = et,m,se
⊤
t,m,s(Ut,m,sV

⊤
t,m,s −M∗)zmz⊤mVt,m,s, and (41)

Ĥt,m,s = zmz⊤m(Ut,m,sV
⊤
t,m,s −M∗)

⊤et,m,se
⊤
t,m,sUt,m,s (42)

First, using that et,m,s+1 is independent of all prior samples for all m, and 1Gt,s+1 ≤ 1Gt,s , we have560

at,s+1 =

∥∥∥∥ d

M

M∑
m=1

Et[(et,m,se
⊤
t,m,s(Ut,m,sV

⊤
t,m,s −M∗)zmz⊤mVt,m,s

− 1

d
(UtV

⊤
t −M∗)ZZ

⊤Vt)1Gt,s
]

∥∥∥∥
F

=
1

M

∥∥∥∥ M∑
m=1

Et[((Ut,m,s+1V
⊤
t,m,s+1 −M∗)zmz⊤mVt,m,s+1

− (UtV
⊤
t −M∗)ZZ

⊤Vt)1Gt,s
]

∥∥∥∥
F

. (43)
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Next, we use 1Gt,s+1 ≤ 1Gt,s and the triangle inequality to obtain561

at,s+1

≤ 1

M

∥∥∥∥ M∑
m=1

Et[((Ut,m,s+1V
⊤
t,m,s+1 −M∗)zmz⊤mVt,m,s+1 − (UtV

⊤
t −M∗)ZZ

⊤Vt)1Gt,s ]

∥∥∥∥
F

=
1

M

∥∥∥∥ M∑
m=1

Et[(((Ut,m,s − ηĜt,m,s)(Vt,m,s − ηĤt,m,s)
⊤ −M∗)zmz⊤m(Vt,m,s − ηĤt,m,s)

− (UtV
⊤
t −M∗)ZZ

⊤Vt)1Gt,s
]

∥∥∥∥
F

≤ at,s +

∥∥∥∥ η

M

M∑
m=1

Et[M∗zmz⊤mĤt,m,s1Gt,s ]

∥∥∥∥
F

+

∥∥∥∥ η

M

M∑
m=1

Et[Ut,m,sV
⊤
t,m,szmz⊤mĤt,m,s1Gt,s ]

∥∥∥∥
F

+

∥∥∥∥ η2M
M∑

m=1

Et[Ut,m,sĤ
⊤
t,m,szmz⊤mĤt,m,s1Gt,s

]

∥∥∥∥
F

+

∥∥∥∥ η2M
M∑

m=1

Et[Ĝt,m,sV
⊤
t,m,szmz⊤mĤt,m,s1Gt,s

]

∥∥∥∥
F

+

∥∥∥∥ η3M
M∑

m=1

Et[Ĝt,m,sĤ
⊤
t,m,szmz⊤mĤt,m,s1Gt,s ]

∥∥∥∥
F

+

∥∥∥∥ η

M

M∑
m=1

Et[Ĝt,m,sV
⊤
t,m,szmz⊤mVt,m,s1Gt,s ]

∥∥∥∥
F

+

∥∥∥∥ η2M
M∑

m=1

Et[Ĝt,m,sĤ
⊤
t,m,szmz⊤mVt,m,s1Gt,s

]

∥∥∥∥
F

+

∥∥∥∥ η

M

M∑
m=1

Et[Ut,m,sĤ
⊤
t,m,szmz⊤mVt,m,s1Gt,s

]

∥∥∥∥
F

.

We first consider the terms that involve only one stochastic gradient. We have562

∥∥∥∥ η

M

M∑
m=1

Et[M∗zmz⊤mĤt,m,s1Gt,s
]

∥∥∥∥
F

=

∥∥∥∥ η

M

M∑
m=1

Et[M∗zmz⊤mzmz⊤m(Ut,m,sV
⊤
t,m,s −M∗)

⊤et,m,se
⊤
t,m,sUt,m,s1Gt,s ]

∥∥∥∥
F

=

∥∥∥∥ η
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where the last inequality follows by definition of 1Gt,s
and 1Gt,s

≤ 1Gt,0
. We can similarly show that563
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Next, we consider the terms that involve products of two stochastic gradients. Note that564
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]
(47)

Next, the incoherence and norm boundedness conditions in the event Gt,s imply that for each i ∈ [d],565
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√
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Similarly, for the other second-order terms we have567 ∥∥∥∥ η2M
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For the third-order term, we have569
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and using the properties of Gt,s, for each i ∈ [d],570
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This implies that571 ∥∥∥∥ η3M
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Combining the bounds on all terms yields572
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using
√

L(Ut,Vt) ≤ c0σr,∗ and η ≤ c′σr,∗√
krµ3/2

.573

The proof of (40) is analogous so we omit the details.574

Lemma C.9. Let at,s and bt,s be defined as in Lemma C.8. Then, for all s = 0, . . . , τ ,575

max(at,s, bt,s) ≤ 6
ηk3/2τ

d
c3µ3/2σ

3/2
1,∗
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L(Ut,Vt)1Gt,0
. (53)

Proof. First note that since the average local gradient on the first local update is an unbiased estimate576

of the global gradient, we have at,0 = bt,0 = 0. Applying Lemma C.8 recursively completes the577

proof.578

Lemma C.10 (Bound on average client drift).∥∥∥∥∥Et
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Proof. We have579 ∥∥∥∥∥Et
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where at,s and bt,s are defined in Lemmas C.8, respectively, and (55) follows by Lemma C.9.580

Lemma C.11. For any t,581
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Proof. By Lemma C.6 and 1Gt,τ ≤ 1Gt,0 , there exists a particular β > 0 such that582
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We now leverage that given Gt,s, d
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where (58) follows by Lemma C.9 and (59) follows by Lemma C.5, where γ is defined therein, and587

(60) follows by Lemma C.7 and the fact that588
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Plugging in the values of γ and β from Lemmas C.5 and C.6, respectively, yields589
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where the last inequality follows by choice of η ≤ σr,∗
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.590
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Figure 3: Federated matrix completion results on synthetic Gaussian data. Employing the side
information (PerFedSI) leads to linear convergence to the ground-truth matrix, while not using the
side information fails to converge to the ground-truth solution whatsoever.

We are finally ready to prove Theorem 3.3.591

Proof. By Lemma C.11 and the fact that Gt,τ ⊂ Gt−1,τ , we have that for any t,592

E[L(Ut,Vt)1Gt,τ |St−1] ≤ E[L(Ut,Vt)1Gt−1,τ |St−1] ≤ (1− 0.5ητ
σr,∗
cc3zd

)L(Ut−1,Vt−1)1Gt,0

≤ (1− 0.5ητ
σr,∗
cc3zd

)L(Ut−1,Vt−1)1Gt−1,τ

(63)

Combining this with the Law of Total Expectation, we have593

E[L(UT ,VT )1GT−1,τ
] = E[E[L(UT ,VT )1GT−1,τ

|ST−1]]

≤ (1− 0.5ητ
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)E[L(UT−1,VT−1)1GT−1,τ
]

≤ (1− 0.5ητ
σr,∗
cc3zd

)E[L(UT−1,VT−1)1GT−2,τ
] (64)

where (64) follows by the fact that 1Gt,τ ≤ 1Gt−1,τ for all t since Gt,τ ⊂ Gt−1,τ . Applying (64)594

recursively completes the proof.595

C.4 Synthetic data simulations596

Here verify our theoretical results by running an experiment on Gaussian data for the Inductive Matrix597

Completion problem. Here we sample ground-truth matrices U∗,V∗ and side information Z such598

that each element is an i.i.d. standard normal random variable. Then, U∗,V∗ are normalized via the599

QR factorization, and each row of Z is normalized. We use d = 16, M = 20, k = 4, r = 2. We then600

sample 5 indices per client that are the only indices observed for that client throughout the entire601

training process. We run FedAvg with τ local updates with and without side information, where602

each local update approximates the local gradient by sampling one of the pre-sampled 5 indices. The603

results are shown in Figure C.4. Using the side information to solve the dimension-reduced problem604

(PerFedSI) leads to linear convergence to the ground-truth solution, while solving the original problem605

(vanilla FedAvg) does not lead to convergence to the ground-truth.606

D Experiments607

All experiments were run in PyTorch and used four-layer convolutional neural networks with con-608

volutional layer batch normalization, ReLU activation, and 2x2 max pooling, followed by a final609

linear layer. All methods sample 20% of clients are sampled per round, use SGD with momentum610

parameter 0.5 and data batch size 10 for local updates. Grid search over {0.5, 0.1, 0.05, 0.01} was611

used to select the learning rates, and all methods use learning rate of 0.05 for Omniglot and 0.1 for612

the CIFAR experiments, besides Ditto which used learning rate 0.05 in all cases. Ditto also used613

regularization parameter µ = 1 in all cases. Test accuracy was evaluated on the local models. SR-PH614

treats the first two convolutional layers as personalized (local) and the rest of the layers as shared615

across all clients (global). SR-PH treats the four convolutional layers as shared and the linear layer as616

personalized. Additional details regarding the datasets are as follows.617
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Table 2: Number of Omniglot training and testing samples per character per client for different
numbers of total clients M .

M

50 200 500

νtr 16 4 1
νts 4 1 1

Omniglot. Note that there are 20 samples per character in the Omniglot dataset. These were618

partitioned to clients such that if a client was assigned alphabet A, then that client has νtr training619

samples and νts test samples from every character in A, where νtr and νts are functions of the total620

number of clients M as specified in Table D.621

The same network architecture described above was used to train the alphabet embedding (with the622

last layer mapping to R50, corresponding to the number of alphabets, as each alphabet is a class in623

this case, rather than R1623 in the standard FL setup wherein a character is a class). The embedding624

was taken as the 256-dimensional output of the final convolutional layer prior to the linear layer. The625

side information for each client is taken as the average alphabet embedding of their training samples,626

and it is incorporated into the network by passing it through a linear layer mapping to R576 followed627

by a convolutional block, then concatenating the output to the input to the final linear layer of the628

network.629

CIFAR-10, CIFAR-100. The datasets are first partitioned i.i.d. among clients. Then, one of four630

affine shifts is applied to each client’s data (one shift per client). The four affine shifts are as follows:631

(i) 90 degree clockwise rotation + 3 degree clockwise shear, (2) 180 degree clockwise rotation + 6632

degree clockwise shear, (3) 270 degree clockwise rotation + 9 degree clockwise shear, and (4) no633

shift.634
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