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Abstract

We focus on a class of reinforcement learning algorithms, Monte-Carlo Tree Search
(MCTS), in stochastic settings. While recent advancements combining MCTS with
deep learning have excelled in deterministic environments, they face challenges
in highly stochastic settings, leading to suboptimal action choices and decreased
performance. Distributional Reinforcement Learning (RL) addresses these chal-
lenges by extending the traditional Bellman equation to consider value distributions
instead of a single mean value, showing promising results in Deep Q Learning.
In this paper, we bring the concept of Distributional RL to MCTS, focusing on
modeling value functions as categorical and particle distributions. Consequently,
we propose two novel algorithms: Categorical Thompson Sampling for MCTS
(CATS), which uses categorical distributions for Q values, and Particle Thompson
Sampling for MCTS (PATS), which models Q values with particle-based distri-
butions. Both algorithms employ Thompson Sampling to handle action selection
randomness. Our contributions are threefold: We introduce a distributional frame-
work for Monte-Carlo Planning to model uncertainty in return estimation. We
prove the effectiveness of our algorithms by achieving a non-asymptotic problem-
dependent upper bound on simple regret of order O(n−1), where n is the number
of trajectories. We provide empirical evidence demonstrating the efficacy of our
approach compared to baselines in both stochastic and deterministic environments.

1 Introduction
Online planning in Markov decision processes (MDPs) involves making real-time decisions based on
the current state of the environment. It requires balancing exploration and exploitation while handling
uncertainty and partial observability. Monte Carlo Tree Search (MCTS) is a highly effective online
planning method for tackling complex MDPs. MCTS has shown impressive performance in various
tasks, including traditional board games like Chess and Go, video games, and real-world challenges.
Notable successes include advancements in Chess (35) and Go (34; 36; 30), video game strategy (28),
robot assembly (16), robot path planning (15; 13), and autonomous driving (24).

Despite these achievements, current MCTS methods are primarily effective in deterministic environ-
ments, often overlooking the significant impact of randomness in real-world scenarios. In highly
stochastic and partially observable environments, conventional MCTS approaches face substantial
challenges due to widespread randomness and limited observability. This leads to compromised value
estimates, suboptimal decisions, and diminished overall performance. Therefore, there is a clear need
for improved methods capable of navigating the complexities of randomness and partial observability
in value estimation.

We now review related works to understand the advancements and limitations in these areas.

Related work In MCTS, value estimation methods and action selection rules are critical factors for
algorithm performance. Traditional value estimation methods, such as using empirical average mean
for value backup as in the Upper Confidence bounds applied to Trees method (UCT) (21), suffer from
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underestimation of optimal values while maximum backup suffers from overestimation of optimal
values (9). The power mean estimator (12) offers a balanced solution by computing a mean between
the average and maximum values. In our approach, we also use power mean for value operator as
each V node stores the power mean of empirical means of succeeding Q-value nodes, eliminating the
need for V to be modeled as a distribution.

For action selection in MCTS, strategies from Multi-Armed Bandits (MAB) are commonly employed.
For instance, UCT extends the UCB1 strategy from bandits to the tree by computing confidence
intervals at each step. However, original UCT’s performance is hindered by the incorrect choice of
logarithmic bonus constant (32). Shah et al. (32) propose an adapted version of UCT incorporating a
polynomial bonus term instead of the "logarithmic" bonus term in UCT and show the non-asymtotic
convergence of rate O(n−1/2), with n is the number of rollout trajectories. On the other hand, our
method improves over this rate with theoretical guarantee of O(n−1). Although Thompson sampling
has been less explored in MCTS, some approaches like those by Bai et al. (1) and Bai et al. (2)
incorporate it for exploration. However, these methods lack convergence rate analysis. Furthermore,
in the article Bai et al. (1), authors model value functions as a mixture of Normal distributions, which
may lack the generality of complex real-world scenarios. Our approach adopts Thompson sampling
for action selection but introduces a novelty by modeling the uncertainty of action value estimates
over the tree as arbitrary categorical and particle-based distributions. This modification enhances our
ability to handle more generality in highly stochastic environments effectively.

Entropy regularization techniques in RL modify value and action selection functions to balance
exploration and exploitation, leading to improved value estimation (25; 17; 31; 18). Several works
have applied these techniques in MCTS. Maximum Entropy Tree Search (MENTS) (40) emphasizes
exploration by integrating MCTS with maximum entropy policy optimization. MENTS aims to
maximize cumulative rewards and policy entropy concurrently, regulated by a temperature parameter.
Dam et al. (14) extend MENTS by incorporating Relative and Tsallis entropy, leading to the RENTS
and TENTS algorithms. However, the effectiveness of MENTS/RENTS/TENTS hinges on the
temperature parameter, which may impede convergence. Furthermore, the value estimation converges
exponentially to the regularized value not the optimal one. In contrast, Painter et al. (27) utilize
a similar action selection approach but employ a maximum backup operator for value estimation.
Although their method exhibits exponential decay of simple regret, it heavily relies on the sensitivity
of the temperature parameter for Boltzmann Exploration, limiting its practicality.

Distributional Reinforcement Learning (RL) (6; 11; 22) addresses the randomness of the value
estimation by introducing a distributional perspective to the traditional Bellman equation. This
approach views the value function as a distribution rather than a single mean, providing a compre-
hensive understanding of uncertainties in rewards and the stochasticity from environments. Through
discretization (26), parameterization (6), and quantization (10), it allows for efficient and effective
approximation of value distributions, leading to improved performance in various RL tasks. However,
these results are only for learning not for planning.

Outline and contribution In this work, we integrate the distributional approach from reinforcement
learning (RL) into the planning framework to tackle the challenges of planning in stochastic environ-
ments. We focus on modeling value functions as categorical and particle distributions. Consequently,
we propose two novel algorithms: Categorical Thompson Sampling for MCTS (CATS) and Particle
Thompson Sampling for MCTS (PATS). CATS represents each Q value function as a categorical
distribution and uses Thompson Sampling for action selection to manage uncertainty. PATS models
each Q value function with a particle-based distribution, using a nuanced Thompson Sampling
approach to handle action selection randomness.

Our contributions are threefold:

(i) In section 3, we introduce a distributional framework for planning to model uncertainty in
return estimation, enhancing the robustness of value estimation in stochastic environments.

(ii) In section 4 Theorem 5 and Theorem 6, we prove the effectiveness of our algorithms by
achieving a non-asymptotic problem-dependent upper bound on simple regret of O(n−1),
which significantly improves upon the current state-of-the-art theoretical analysis of regret,
previously established at O(n−1/2) by Shah et al. (33).

(iii) In section 5, we provide comprehensive empirical evidence demonstrating the efficacy of
our approach compared to baselines, showcasing competitive performance in stochastic
settings and the Atari benchmark.
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In the next section, we describe the problem setting addressed in this paper.

2 Setting
In our study, We address the dynamics of an agent navigating an infinite-horizon discounted Markov
decision process (MDP), defined formally as M = ⟨S,A,R,P, γ⟩. Here, S represents the state
space, A denotes the set of actions, and R quantifies the Reward function of the MDP (R : S ×
A× S → R). Transition dynamics are governed by P(S ×A → S), with γ ∈ (0, 1] as the discount
factor. The agent interacts with the environment via a policy π ∈ Π : S → A, guiding action
selection based on observed states. This yields an action-value function Qπ , indicating the expected
cumulative discounted reward from a state-action pair under π. The agent seeks the optimal policy
maximizing the action-value function, adhering to the Bellman equation (7), given by Q(s, a) ≜∫
S P(s′|s, a)[R(s, a, s′) + γmaxa′ Q(s′, a′)]ds for all states s and actions a. Upon acquiring the

optimal action-value function, we derive the optimal value function V (s) ≜ maxa∈A Q(s, a) for all
states s in S.
Monte-Carlo tree search (MCTS) (20; 8) is a planning approach for complex Markov decision
processes (MDPs). It employs an iterative approach:
Selection: It begins by selecting an action using a specified strategy, followed by executing this action
through Monte Carlo simulation.
Expansion: Subsequently, it assesses the resulting state, either by recursively evaluating if it already
exists in the search tree or by inserting it into the tree.
Simulation: Or employing a rollout policy via simulations. This iterative process continues until
certain termination criteria are met, allowing traversal through the search tree.
Backpropagation: Finally, the outcomes of the simulations are propagated backward through the
chosen nodes to update their statistical metrics.
Simple Regret An MCTS algorithm dynamically gathers trajectories within an MDP starting from
an initial state s0. After processing t trajectories, it provides two outputs:

• ât, a guess for the best action to take at state s0
• V̂t(s0) an estimator of the optimal value in s0,

where s0 is the state at the root node. The algorithm’s performance can be assessed by its convergence
rate r(t) of the simple regret, formulated as:

E [R(s0, t)] = E
[
V ⋆(s0)− V̂t (s0)

]
≤ r(t),

Here, R(s0, t) = V ⋆(s0)− V̂t(s0) is the simple regret of the algorithm at the root node with V ⋆(s0)
representing the optimal value at state s0.

In this article, we analyze an MCTS algorithm employing a maximal planning horizon H and
a playout policy π0 with value V0. We define Ṽ (sH) = V0(sH) recursively as follows: for all
h ≤ H − 1,

Q̃(sh, a) = r(sh, a) + γ
∑

sh+1∈Ash
P(sh+1|sh, a)Ṽ (sh+1), Ṽ (sh) = maxa Q̃(sh, a), (1)

where r(sh, a) defined formally as the mean intermediate reward at state sh after taking action a.
The primary objective of an MCTS algorithm is to estimate a tied rate r(t) by constructing estimates
of Q̃(sh, a) and Ṽ (sh) to ultimately estimate Q̃(s0, a) and consequently Q⋆(s0, a). In practical im-
plementations of the MCTS algorithm, the maximal depth H can sometimes be set to +∞. However,
for theoretical analysis, the maximal depth H is crucial as we will analyze the algorithm that always
collects trajectories of length H.
Distributional Reinforcement Learning The mathematical framework used in reinforcement learn-
ing is based on the Bellman equation (37), which aims to find an agent to maximize the expected
utility Q value. However, the single expected value function cannot encapsulate the stochasticity in
the reward function and the dynamic of the environments. Recently, in the article (5), authors shed
light on the distributional perspective of the Bellman equation by modeling each Q value function as
a distribution instead of a single expected value. The main objective is to study the random return Q
at the state s, action a, and is defined recursively as

Q(s, a)
D
= X (s, a) + γQ(s

′
, a

′
),V(s

′
)

D
= EπQ(s

′
, π(·|s

′
)), (2)

where X (s, a) is the reward distribution at the state s, action a, Q(s, a) is the Q value distribution
at state s, action a, and Q(s

′
, a

′
) is the Q value distribution at state s

′
, action a

′
. s

′
distributed
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according to P(·|s, a), a′
distributed according to a policy π(·|s′

). A D
= B denotes that two random

variables A and B have equal probability laws.

This distributional approach offers a deeper understanding of uncertainty and variability, especially
in complex, stochastic systems where traditional expected value representations may fail to capture
the true dynamics of the problem. which has been successfully used in Deep Q Learning (5).
Categorical Value Distribution Based on the distributional Bellman equation, In the article (5), au-
thors approximate the Q value distribution Q(s, a) as a discrete categorical distribution parametrized
by N ∈ N, which denotes the number of atoms (N+1) at fixed-sized locations. This method effectively
divides the Q value function into a set of equally spaced atoms zi(s, a) = Qmin + i△z : 0 ≤ i ≤ N,
where Qmin and Qmax are respectively the minimum and maximum values at state s, action a. The
size of each atom is set as △z := Qmax−Qmin

N .

This discrete distribution approach is highly expressive and computationally efficient, making it ideal
for practical applications. For instance, in the article (5), authors successfully used this representation
in Deep Q Learning (C51), showing promising results in several Atari games. In the next section, we
demonstrate how to apply this idea to MCTS.

3 Distributional Thompson Sampling in Tree Search
In this section, we introduce two novel distributional approaches for MCTS based on Thompson
sampling. The first method represents each Q-value node as a categorical distribution, while the
second uses particle-based distributions for greater flexibility. Both methods integrate Thompson
sampling for improved exploration and performance.

3.1 Distributional Monte-Carlo Tree Search
We leverage the success of distributional reinforcement learning (4; 3; 6) and apply this concept to
MCTS. In MCTS, there are two types of nodes: V-nodes and Q-value nodes. Instead of treating each
V value and Q value as a single expected value, we model these functions as distributions.
Based on equation (2), we can derive

Q(s, a)
D
= X (s, a) + γV(s′

),V(s′
)

D
=
∑

a′∼π̄(.|s′ ) Q(s
′
, a

′
), (3)

with s
′ ∼ P(·|s, a), where π̄(.|s′

) is formally defined as the tree policy at state s′. We can model
any Q distribution with equal law distributed as the sum of the distributions of the next reward and
the Q distributions of the next states actions. We further model each V distribution, having equal
probability law to the expectation of the chosen policy of the next Q-value distributions (3).

Our method follows the same four basic steps of MCTS but is different in Value Backup and Action
selection steps. We introduce two distinct methodologies: categorical-based and particle-based. In
the categorical based approach, we parameterize each V value and Q value function in the tree as a
categorical distribution. In contrast, in the particle-based approach, we model each value distribution
as a set of sampling particles, representing the values observed during the tree planning. We provide
a detailed explanation for the value backup and action selection of each method in the next section.

3.2 Value Backup
In this work, we employ two approaches to represent the Q value distribution.

Categorical distribution: we represent each node in the tree as a categorical distribution. In each
Q-value node, we: (1) store the empirical mean value of that Q-value node (same as in UCT), and
(2) maintain a categorical distribution of the Q value function. To define a categorical distribution Q
function, we require three essential pieces of information:

• The number of atoms (N+1): We choose a consistent number of atoms (N+1) that remains
the same for all Q distributions along the tree.

• Minimum and maximum values (min and max): Each node in the tree may have different
ranges for its minimum (Qmin)1 and maximum (Qmax) values, depending on its state/action
in the environment. When a new Q-value node is added to the tree, we initially set Qmin

to 0 (assuming we have scaled the reward range to [0, R]) and initialize Qmax to a small
number, e.g., Qmax = 0.001. Since the min and max values are unknown, we start with a
small range, that will get updated accordingly to the scale of the observed values.

1Since reward is scaled in [0, R], Qmin is not updated in our setup.
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Algorithm 1 CATS
SelectAction (sh)

for a ∈ [A] do
L(sh, a) ∼ Dir(α0(sh, a), . . . , α

N (sh, a))
ϕ(sh, a) = [z0(sh, a), . . . , zN (sh, a)]

⊤L(sh, a)

a = argmax
a

{
ϕ(sh, a)

}
return a

SimulateV (sh, t)
a =SelectAction (sh)
SimulateQ (sh, a, t)
Tsh(t) = Tsh(t) + 1

Q̂(sh, a) =
∑
i

zi(sh, a)pi(sh, a)

V̂ (sh) =

(∑
a

Tsh,a(t)

Tsh
(t) Q̂p(sh, a)

) 1
p

SimulateQ (sh, a, t)
sh+1 ∼ P(·|sh, a), rt(sh, a) ∼ R(sh, a, sh+1)
if Node sh+1 not expanded then

Rollout(sh+1)

else
SimulateV (sh+1, t)

Tsh,a(t) = Tsh,a(t) + 1

Qt(sh, a) = rt(sh, a) + γV̂ (sh+1)
if Qt(sh, a) ̸∈ [Qmin(sh, a), Qmax(sh, a)] then

Qmax(sh, a) = max{Qt(sh, a), Qmax(sh, a)}
Qmin(sh, a) = min{Qt(sh, a), Qmin(sh, a)}
△z = Qmax−Qmin

N
zi(sh, a) = Qmin + i△z : 0 ≤ i ≤ N

Update p(sh, a) = [p0(sh, a), . . . , pN(sh, a)]

Algorithm 2 PATS
SelectAction (sh)

for a ∈ [A] do
L(sh, a) ∼ Dir(α(sh, a))
ϕ(sh, a) = S(sh, a)⊤L(sh, a)

a = argmax
a

{
ϕ(sh, a)

}
return a

SimulateV (sh, t)
a =SelectAction (sh)
SimulateQ (sh, a, t)
Ts(t) = Ts(t) + 1

Q̂(sh, a) =
∑

αt(sh, a)Qt(sh, a)

V̂ (sh) =

(∑
a

Tsh,a(t)

Tsh
(t) Q̂p(s, a)

) 1
p

SimulateQ (sh, a, t)
sh+1 ∼ P(·|sh, a), rt(sh, a) ∼ R(sh, a, sh+1)
if Node sh+1 not expanded then

Rollout(sh+1)

else
SimulateV (sh+1, t)

Tsh,a(t) = Tsh,a(t) + 1

Qt(sh, a) = rt(sh, a) + γV̂ (sh+1)
if Qt(s, a) ∈ {S(sh, a)} then

αt(sh, a) += 1 //αt(sh, a) : weight of Qt(sh, a)
else

S(sh, a) := (S(sh, a), Qt(sh, a))
α(sh, a) := (α(sh, a), 1)

Figure 1: Comparing CATS (left) and PATS (right) The main distinction is in the Q value function
backup(SimulateQ) and action selection function (SelectAction); the two methods are identical in
other procedures. In CATS, we init (α0(s, a), . . . , αN (s, a)) = (1, . . . , 1) and in PATS, S(s, a) =
(1), α(s, a) = (∅) for each s, a.

• Probabilistic parameterization: The probability of each atom (pi(s, a)) is determined based
on the visitation count ratio. In detail, each atom stores statistical information about the
visitation count, and the probability of that atom will be calculated as the visitation count
divide with the total visitation count of that Q-value node. When we backpropagate the
rt(s, a) + γV̂t(s

′) value to a specific node, we identify the atom whose value range includes
the rt(s, a) + γV̂t(s

′) value. At this point, we increase its visitation count.
Additionally, as we backpropagate Monte-Carlo Q values over time, we empirically adjust the Qmin

and Qmax values to account for the dynamic range of Q values observed in the tree. This dynamic
scaling ensures that the atom locations are effectively rescaled to adapt to the changing conditions.
This representation method allows us to encapsulate the knowledge gained through exploration in the
form of categorical distributions, which helps in making informed decisions during the tree search.

Paricle based distribution: We represent each Q value distribution as a collection of sampling
particles, which encapsulate the observed values during tree planning. Initially, we maintain an empty
set of particles for the Q value distribution, denoted as S(s, a). At time step t, upon receiving an
intermediate reward Qt(s, a) = rt(s, a) + γV̂t(s

′), with s′ ∼ P(·|s, a), we add Qt(s, a) to the set
S(s, a) if the particle does not already exist within it. If the particle Qt(s, a) already exists in S(s, a),
we increase the visitation count ratio associated with that particle.

Value function: The Q-value node is crucial in the tree because its representation influences action
selection, as detailed in the next section. We now discuss modeling each V-value node. The V-value
distribution is based on the expected outcomes of the chosen policy and the subsequent Q-distributions.
Thus, the mean of the V-function corresponds to the tree policy’s expectation of the means of all
succeeding Q-value nodes. The common approach is to use empirical average mean for the value
backup, as in UCT (21). However, this approach underestimates the optimal value, while using the
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maximum value overestimates it (9). The power mean estimator (12) provides a balanced solution,
falling between the average and maximum values. In our methods, each V node stores the power
mean of the empirical means of all succeeding Q-value nodes, eliminating the need to model V as a
distribution.

V̂ (s) =

(∑
a

Ts,a(n)
Ts(n)

Q̂p(s, a)

) 1
p

, p ≥ 1,

where Ts(n), Ts,a(n) are the number of visitations at s and s, a at timestep n respectively. Next, we
show how to select actions in the tree based on the categorical distribution of Q-value nodes.

3.3 Action Selection
Thompson sampling has shown promising results in real bandit scenarios due to the randomness of
action selection. Taking advantage of the established categorical based distribution and particle based
distribution, we use the Thompson sampling method for action selection. We maintain a Dirichlet dis-
tribution of parameter of the Q value distribution. We denote the Dirichlet distribution of parameters
(α0, α1, . . . , αN ) by Dir(α0, α1, . . . , αN ), whose density function is given by Γ(

∑N
i=0 αi)

ΠN
i=0Γ(α

i)
ΠN

i=0x
αi−1
i

for (x0, . . . , xN ) ∈ [0, 1]N+1 such that
∑N

i=0 xi = 1.

Categorical distribution: The probability mass function of the discrete categorical distribution at
each Q-value node at state s, action a: p(s, a) = [p0(s, a), p1(s, a), . . . , pN (s, a)], where pi(s, a)
represents the probability of selecting the i-th atom zi(s, a), N +1 is the number of atoms. We main-
tain a Dirichlet distribution Dir(α0(s, a), α1(s, a), . . . , αN (s, a)) as the prior for the Q-value node
at state s, action a. At each time step t we sample Lt(s, a) ∼ Dir(α0(s, a), α1(s, a), . . . , αN (s, a))
and compute ϕt(s, a) = [z0(s, a), z1(s, a), . . . , zN (s, a)]⊤Lt(s, a). Then, the action at is selected
as follows:

at = argmax
a

{
ϕt(s, a)

}
After taking action at and get an intermediate reward Qt(s, at) = rt(s, at) + γV̂t(s

′). The posterior
is also a Dirichlet: Dir(α0(s, a), . . . , αt(s, a) + 1, . . . , αN (s, a)) with the intermediate reward at
time step t: Qt(s, at) is in the range of the atom zt(s, a). We denote this mechanism as Categorical
Thompson sampling for Tree Search (CATS) method.

Paricle based distribution: In the particle-based approach, the prior Dirichlet distribution of the
Q-value node at state s, action a is Dir(α(s, a)), with α(s, a) is initiated as [1]. Considering each Q
value distribution at state s, action a has a set of particle {Qt(s, a)} with the corresponding weighted
α(s, a) = {αt(s, a)} At each time step t we also sample Lt(s, a) ∼ Dir(α(s, a)) and compute
ϕt(s, a) = [1, Q0(s, a), Q1(s, a), . . . , QN (s, a)]⊤Lt(s, a). Then the action at is chosen as

at = argmax
a

{
ϕt(s, a)

}
.

After taking action at and get an intermediate reward Qt(s, at) = rt(s, at) + γV̂t(s
′). We update

αt(s, a) = αt(s, a) + 1 if Qt(s, at) is in the set {Qt(s, a)}. If not, we add Qt(s, at) to the set
{Qt(s, a)} and add 1 to the set {αt(s, a)} = {αt(s, a), 1}.

We call this method as Paricle Thompson sampling for Tree Search (PATS) method. Detailed
pseudocode and a comparison of CATS and PATS can be seen in Fig 1. The two methods are identical
in all procedures except for the Q value function backup (SimulateQ) and the action selection
function (SelectAction).

Remark 1. CATS and PATS both use similar action selection strategies within a bandit setting,
specifically referring to Multinomial Thompson Sampling and Non-Parametric Thompson Sampling,
respectively (29). While CATS action selection heavily depends strictly on Thompson Sampling
by maintaining parameters of posterior Q-value distribution, PATS is not based on the posterior
sampling in the strict sense. At each step, it computes an average of the observed rewards with
random weight and is a Non-Parametric approach. Furthermore, CATS maintains a fixed set of atoms,
whereas in PATS, the number of particles increases depending on the observed Q values.

In the next section, we provide a theoretical analysis of the convergence of simple regret for CATS
and PATS.
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Algorithm 3 CATS in Non-stationary bandits
Require: K arms; n: number of plays;
N + 1 support size of categorical distributions
Init (α0

a, . . . , α
N
a ) = (1, . . . , 1) for each a ∈ [K]

Main ()
for t = 0,1,2,. . . , n do

for a ∈ [A] do
La,t ∼ Dir(α0

a, . . . , α
N
a )

ϕa,t = [0, R(t)
N , 2R(t)

N , · · · , R(t)]⊤La,t

a = argmax
a

{
ϕa,t

}
Pull arm a and observe reward
Ra,t =

mR(t)
N where m ∈ {0, 1, . . . N}

Update αm
a = αm

a + 1

Algorithm 4 PATS in Non-stationary bandits
Require: K arms; n: number of plays;
Init αa = (1); Sa = (1) for each a ∈ [K]
Main ()

for t = 0,1,2,. . . , n do
for a ∈ [A] do

La,t ∼ Dir(αa)

ϕa,t = S⊤
a La,t

a = argmax
a

{
ϕa,t

}
Pull arm a and observe reward Ra,t

if Ra,t ∈ {Sa} then
αt
a += 1 //αt

a : weight of Ra,t

else
Sa := (Sa, Ra,t)
αa := (αa, 1)

Figure 2: Comparing CATS (left) and PATS (right) in Non-stationary bandits.

4 Theoretical analysis
Planning in MCTS involves making a sequence of decisions along the tree, where each internal node
functions as a non-stationary bandit, with the empirical mean drifting due to the action selection
strategy. Therefore, we first study the non-stationary multi-armed bandit settings using the action
selections of CATS and PATS, examining the concentration properties of the power mean backup for
each arm relative to the optimal arm. We then apply these results to MCTS.

4.1 Non-stationary multi-armed bandit
We consider a class of non-stationary multi-armed bandit (MAB) problems with K ≥ 1 arms. Let
Ra,t denote the random reward obtained by playing arm a ∈ [K] at the time step t bounded in [0, R].
We consider µ̂a,n = 1

n

∑n
t=1 Ra,t as the average rewards collected at arm a after n plays. We first

define:

Definition 1. A sequence of estimators (V̂n)n≥1 is concentrated and convergent towards some limit
V if the following two properties hold:

(A) Concentration: For all n ≥ 1, for all 1 > ε > 0, ∃c > 0 that P
(
|V̂n − V | > ε

)
≤

cn−1ε−2.
(B) Convergence: lim

n→∞
E[V̂n] = V .

In that case, we write plim
n→∞

V̂n = V .

We assume that the reward sequence {Ra,t} , t ≥ 1 is a non-stationary process satisfying the
convergence and concentration properties from Definition 1, by making the following assumption:

Assumption 1. Consider K arms that for a ∈ [K], let (µ̂a,n)n≥1 be a sequence of estimator satisfying

plim
n→∞

µ̂a,n = µa.

The action selection of CATS and PATS follows closely as in Section 3.3 and pseudocode are shown

in Fig. 2. Let us define µ̂n(p) =
(∑K

a=1
Ta(n)

n µ̂p
a,Ta(n)

) 1
p

as the power mean value backup operator
after n rounds. Here 1 ≤ p < ∞ is a constant. We denote Ta(n) is the number of visitations of the
arm a.

We define µ⋆ = maxa∈[K]{µa} and assume that µ⋆ is unique. Then, we establish the concentration
and convergence properties of the power mean backup operator µ̂n(p) towards the optimal value µ⋆,
as shown in Theorem 1 and Theorem 2, respectively for CATS and PATS.

Theorem 1. For a ∈ [K], let (µ̂a,n)n≥1 be a sequence of estimator satisfying plim
n→∞

µ̂a,n = µa and let

µ⋆ = max
a

{µa}. Assume that all the estimators are bounded in [0, R]. We consider a bandit algorithm

that selects each arm according to CATS once in each round n ≥ K. Then, plim
n→∞

µ̂n(p) = µ⋆.
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Theorem 2. For a ∈ [K], let (µ̂a,n)n≥1 be a sequence of estimator satisfying plim
n→∞

µ̂a,n = µa and let

µ⋆ = max
a

{µa}. Assume that all the estimators are bounded in [0, R]. We consider a bandit algorithm

that selects each arm according to PATS once in each round n ≥ K. Then, plim
n→∞

µ̂n(p) = µ⋆.

Detailed proofs of the two Theorems can be found in the appendix. Based upon these results we
analyse the concentration properties for any internal node and convergence of the simple regret in the
MCTS in the next section.

4.2 Monte-Carlo Tree Search
Before presenting the main results (Theorem 3 Theorem 4), we first show an important Lemma

Lemma 1. Let (V̂m,n)n≥1, m ∈ [M ], be a sequence of estimator satisfying plim
n→∞

V̂m,n = Vm.

Assume that there exists a constant L > 0 such that L = supremum{V̂m,n}n≥1. Let Ri be an iid
sequence with mean µ and Si be an iid sequence from a distribution p = (p1, . . . , pM ) supported
on {1, . . . ,M}. Introducing the random variables Nn

m = #|{i ≤ n : Si = sm}|, we define the
sequence of estimator

Q̂n = 1
n

∑n
i=1 Ri + γ

∑M
m=1

Nn
m

n V̂m,Nn
m
.

Then plim
n→∞

Q̂n = µ+
∑M

m=1 pmVm.

The significance of Lemma 1 lies in demonstrating the concentration and convergence of an estimated
Q value, conditioned on the concentration and convergence of a child V-value node. Here, V̂·,n
represents the value estimation at time step n, and Ri denotes an intermediate reward received by
taking a specific action at a particular state.

Next, we first start with Theorem 3 to show the convergence and concentration of any V-Node and
Q-node in the tree for CATS.
Theorem 3. When we apply the CATS algorithm, we have

(i) For any node sh at the depth hth in the tree, plim
n→∞

Q̂n(sh, ak) = Q̃(sh, ak).

(ii) For any node sh at the depth hth in the tree, plim
n→∞

V̂n(sh) = Ṽ (sh).

We can derive a similar result for PATS as shown in Theorem 4.
Theorem 4. When we apply the PATS algorithm, we have

(i) For any node sh at the depth hth in the tree, plim
n→∞

Q̂n(sh, ak) = Q̃(sh, ak).

(ii) For any node sh at the depth hth in the tree, plim
n→∞

V̂n(sh) = Ṽ (sh).

The results of Theorems 4 and 4 demonstrate that, at any node in the tree, both the V-value and
Q-value nodes are convergent and concentrated. These results are applicable to any power mean
backup operator of V-value nodes with p ∈ [1,+∞). Finally, we show important results in Theorem 5,
and Theorem 6, since they show the convergence of simple regret of CATS and PATS, respectively.
Theorem 5. (Convergence of Simple Regret of CATS) We have at the root node s0,∣∣∣E [V ⋆(s0)− V̂n (s0)

]∣∣∣ ≤ O(n−1).

Theorem 6. (Convergence of Simple Regret of PATS) We have at the root node s0,∣∣∣E [V ⋆(s0)− V̂n (s0)
]∣∣∣ ≤ O(n−1).

Remark 2. These results demonstrate that both CATS and PATS share the same convergence rate for
value estimation at the root node of O(n−1), which improves over the rate O(n−1/2) of Stochastic-
Power-UCT (33). Furthermore, Our finding more broadly applies to the power mean estimator with
p ∈ [1,+∞).

5 Experiments

We compare our methods with UCT (21), Fixed-Depth-MCTS (33), MENTS (40), RENTS,
TENTS (14), BTS (27) and DNG (1) in a stochastic setting (SyntheticTree) to highlight the benefits of
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CATS and PATS in stochastic environments. Additionally, we test on 17 Atari games, comparing our
algorithms with DQN (base network without planning) and other non-distributional planning methods
(Power-UCT (12), MENTS (40), TENTS (14)) to demonstrate CATS and PATS’ competitiveness and
put results in Appendix. In all settings, we use 100 atoms for CATS, and set the discount factor γ to
0.99 for Atari, and γ to 1 for SyntheticTree.

SyntheticTree: We evaluate CATS and PATS using the synthetic tree toy problem (14). This problem
involves a tree with depth d and branching factor k. Each tree edge has a random value between 0
and 1. Returns at the leaf nodes are simulated using Gaussian distributions with means equal to the
sum of edge values from the root to the leaf, and a standard deviation of 0.5. Means are normalized
between 0 and 1. An agent traverses the tree from the root, aiming to find the leaf node with the
highest mean value. Internal nodes give zero reward, while leaf nodes provide a reward sampled
from their Gaussian distribution. We introduce stochasticity into the environment by altering the
transition probabilities: there is a 50% chance of moving to the intended node and a 50% chance of
moving to a different node with equal probability. We conduct 25 experiments on five trees with five
runs each, covering all combinations of branching factors k = {2, 4, 6, 8, 10, 12, 14, 16, 100, 200}
and depths d = {1, 2, 3, 4}. We compute the value estimation error at the root node. Fig. 3 shows
the convergence of the value estimations of CATS and PATS at the root node in the Synthetic Tree
environment which shows they archives faster convergence compared to other methods.
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Figure 3: Performance of CATS and PATS in SyntheticTree.

6 Conclusion
To conclude, our work introduces Categorical Thompson Sampling for MCTS (CATS) and Particle
Thompson Sampling for MCTS (PATS), distributional planning approaches specifically designed to
tackle complexities arising from stochasticity. CATS uses a categorical distribution, while PATS uses
a particle-based distribution to represent and model the uncertainty inherent in return outcomes. We
also propose exploration strategies based on Thompson Sampling that leverage this distributional
modeling. Our methods come with a rigorous theoretical convergence guarantee, achieving a simple
regret polynomial decay of the order O(n−1), which improves over the O(n−1/2) rate of the fixed
version of UCT (32). Empirical findings conclusively demonstrate the effectiveness of our approach
in stochastic environments.
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A Outline
• Notations will be described in Section B.
• Supporting Lemmas are presented in Section C.
• The Convergence of CATS and PATS in Non-stationary multi-armed bandits is shown in

Section D.
• Section E presents the concentration and convergence guarantee of CATS and PATS in

MCTS.
• Section F discusses about Limitations and possible improvements.
• Experimental setup is provided in Section G.
• Additional Experimental results are shown in Section H.

B Notations

Table 1: List of all notations for Non-stationary Multi-arms bandit.

Notation Type Description

K N Number of arms

Ta(t) N Number of visitations at arm a after t timesteps

µa R mean value of arm a

a⋆ A optimal action

µ⋆ R mean value of an optimal arm. We assume it is unique.

µ̂n(p) R power mean estimator, with a constant p ∈ [1,+∞)

µ̂a,n R mean estimator of arm a after n visitations

C Supporting Lemmas

We start with a result of the following lemma which plays an important role in the analysis of our
MCTS algorithm.

Lemma 1. For m ∈ [M ], let (V̂m,n)n≥1 be a sequence of estimator satisfying plim
n→∞

V̂m,n = Vm.

Assume that there exists a constant L > 0 such that L = supremum{V̂m,n}n≥1. Let Ri be an iid
sequence with mean µ and Si be an iid sequence from a distribution p = (p1, . . . , pM ) supported
on {1, . . . ,M}. Introducing the random variables Nn

m = #|{i ≤ n : Si = sm}|, we define the
sequence of estimator

Q̂n =
1

n

n∑
i=1

Ri + γ

M∑
m=1

Nn
m

n
V̂m,Nn

m
.

Then there exists some constant c′ (which depends on pi (i=1,2,...,M), γ, µ) such that

plim
n→∞

Q̂n = µ+

M∑
m=1

pmVm.

Proof. Let p = (p1, p2, ...pM ), p ∈ △M where △M = {x ∈ RM :
∑M

i=1 Ri = 1, Ri ≥ 0} is the
(M − 1)-dimensional simplex. Let us study a random vector p̂n = (

Nn
1

n ,
Nn

2

n , ...,
Nn

M

n ). Let us define
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Table 2: List of all notations for Monte-Carlo Tree Search.

Notation Type Description

γ R Discount factor

N N Number of atoms

sh S state at depth h

V̂t(s) R Estimated Value function at state s after t visitations

Ts(t) N Number of visitations at state s after t timesteps

Ts,a(t) N Number of visitations at (s, a) after t timesteps

T s′

s,a(t) N Number of visitations at (s, a) that goes to s′ after t timesteps

Q̂t(s, a) R Estimated Q Value function at state s action a after t visitations

Qmin(s, a) R Minimum value for the Q value distribution at state s, action a

Qmax(s, a) R Maximum value for the Q value distribution at state s, action a

R(s, a) Reward distribution at state s action a

V(s) Value distribution at state s

Q(s, a) Q Value distribution at state s action a

pi(s, a) R Probability of the ith atom at the Q Value distribution at state s action a

△z R Size of each atom

zi(s, a) R value of the atom ith at state s, action a.

Qt(s, a) R intermediate Q value at time t at (s, a)

V = (V1, V2, ...VM ). Let R̂n = 1
n

∑n
i=1 Ri, V̂n = (V̂1,Nn

1
, V̂2,Nn

2
, ..., V̂M,Nn

M
),
∑M

i=1 N
n
i = n, Nn

i

is the number of times that population i was observed. We have Q̂n = R̂n + γ
〈
p̂n, V̂n

〉
. Therefore,

P
(
Q̂n −

(
µ+ γ ⟨p, V ⟩

)
≥ ϵ

)
≤ P

(
R̂n − µ ≥ 1

2
ϵ

)
+ P

(
γ
〈
p̂n, V̂n

〉
− γ ⟨p, Y ⟩ ≥ 1

2
ϵ

)
≤ exp{−2n

ϵ2

4
}+ P

(〈
p̂n, V̂n

〉
− ⟨p, Y ⟩ ≥ 1

2γ
ϵ

)
︸ ︷︷ ︸

A

.

To upper bound A, let us consider
〈
p̂n, V̂

〉
− ⟨p, V ⟩ =

〈
(p̂n − p), V̂n

〉
+
〈
p, (V̂ − V )

〉
. Then,

A ≤ P
(〈

(p̂n − p), V̂n

〉
≥ 1

4γ
ϵ

)
︸ ︷︷ ︸

A1

+P
(〈

p, (V̂n − V )
〉
≥ 1

4γ
ϵ

)
︸ ︷︷ ︸

A2

.
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By applying a Hölder inequality to p̂n − p and V̂ , we obtain〈
(p̂n − p), V̂n

〉
≤∥ p̂n − p ∥1∥ V̂n ∥∞=∥ p̂n − p ∥1 L,

with L is the supremum of V̂ . Then we can derive

A1 = P
(〈

(p̂n − p), V̂n

〉
≥ 1

4γ
ϵ

)
≤ P

(
∥ p̂n − p ∥1 L ≥ 1

4γ
ϵ

)
= P

(
∥ p̂n − p ∥1≥

1

4γL
ϵ

)
.

According to (39), we have for any M ≥ 2 and δ ∈ [0, 1]

P
(

∥ p̂n − p ∥1≥
√

2M ln(2/δ)

n

)
≤ δ.

Define ϵ =
√

2M ln(2/δ)
n , therefore δ = 2 exp{−nϵ2

2M }, we have

P
(

∥ p̂n − p ∥1≥ ϵ

)
≤ 2 exp{−nϵ2

2M
}.

Therefore,

A1 ≤ P
(

∥ p̂n − p ∥1≥ ϵ

)
≤ 2 exp{ −nϵ2

32Mγ2L2
}.

We also have

A2 = P
( M∑

m=1

pm(V̂m,Nn
m
− Vm) ≥ 1

4γ
ϵ

)

≤
M∑

m=1

E
[
P
(

1

Nn
m

Nn
m∑

t=1

Vm,t − Vm ≥ 1

4γpm
ϵ
∣∣Nn

m

)]

≤
M∑

m=1

E
[
c(Nn

m)−1(
ϵ

4γpm
)−1

]
.

Let us define an event E =

{
Nn

m ≥ npm

2

}
. Therefore,

A2 ≤
M∑

m=1

E
[
c(
npm
2

)−1(
ϵ

4γpm
)−1

]

+

M∑
m=1

E
[
P(Nn

m <
npm
2

)

]
=

M∑
m=1

(c21+2γ1p−1+1
m )n−1ϵ−1

+

M∑
m=1

E
[
P(Nn

m − pmn ≤ −pmn

2
)

]

≤
M∑

m=1

(c23γ)n−1ϵ−1 +

M∑
m=1

exp

{
− 2n(

pmn

2
)2
}

We consider pm > 0 only since if pm = 0, pm(V̂m,Nn
m

− Vm) = 0, and has been eliminated.
Therefore,

A ≤ A1 +A2 ≤ 2 exp{ −nϵ2

32Mγ2L2
}+

M∑
m=1

(c23γ)n−1ϵ−1 +

M∑
m=1

exp

{
− 2n(

pmn

2
)2
}
.
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That leads to

P
(
Q̂n −

(
µ+ γ ⟨p, V ⟩

)
≥ ϵ

)
≤ exp{−2n

ϵ2

4
}

+ 2 exp{ −nϵ2

32Mγ2L2
}+

M∑
m=1

(c23γ)n−1ϵ−1 +

M∑
m=1

exp

{
− 2n(

pmn

2
)2
}

≤ c
′
n−1ϵ−2,

with c
′
> 0 depends on c,M, pi. We have the last inequality because to argue that exp(−cnε2) =

O(n−1ε−2). Furthermore, with 0 < ϵ < 1, n−1ϵ−1 ≤ n−1ϵ−2, and exp(−cn3) ≤ O(n−1ε−2). So
that

P
(
Q̂n −

(
µ+ γ ⟨p, V ⟩

)
≥ ϵ

)
≤ c

′
n−1ϵ−2,

By following the same steps, we can derive

P
(
Q̂n −

(
µ+ γ ⟨p, V ⟩

)
≤ −ϵ

)
≤ c

′
n−1ϵ−2.

Therefore, with n ≥ 1, ϵ > 0,

P
( ∣∣∣Q̂n −

(
µ+ γ ⟨p, V ⟩

)∣∣∣ ≥ ϵ

)
≤ c

′
n−1ϵ−2.

Furthermore,

Q̂n −
(
µ+ γ ⟨p, V ⟩

)
= (R̂n − µ) +

(
γ
〈
p̂n, V̂n

〉
− γ ⟨p, Y ⟩

)
= (R̂n − µ) + γ

(〈
(p̂n − p), V̂n

〉
+
〈
p, (V̂ − V )

〉)
Therefore,

⇒
∣∣∣E[Q̂n]−

(
µ+ γ ⟨p, V ⟩

)∣∣∣ ≤ ∣∣∣E[(R̂n − µ)]
∣∣∣+ γ

(
|E[p̂n − p]|

∣∣∣V̂n

∣∣∣+ p
∣∣∣E[V̂ − V ]

∣∣∣ )
⇒
∣∣∣E[Q̂n]−

(
µ+ γ ⟨p, V ⟩

)∣∣∣ ≤ ∣∣∣E[(R̂n − µ)]
∣∣∣+ γ

(
L |E[p̂n − p]|+ p

∣∣∣E[V̂ − V ]
∣∣∣ )

Also because lim
n→∞

E[V̂m,n] = Vm, lim
n→∞

N̂n
m

n = pm, and E[(R̂n − µ)] = 0 so that,

lim
n→∞

E[Q̂n] = µ+ γ

M∑
m=1

pmVm.

That mean

plim
n→∞

Q̂n = µ+ γ

M∑
m=1

pmVm,

which concludes the proof.

Results from Lemma 1 is important as it shows the concentration for the Q value estimation given the
concentration of V value of the children nodes.
Lemma 2. Let consider non-negative variables x, y ∈ R+, and a constant m that 0 ≤ m ≤ 1. Then

(x+ y)m ≤ xm + ym.

Proof. With y = 0, or x = 0, the inequality (2) becomes correct. Let consider the case where
x > 0, y > 0, the inequality (2) can be written as

(
x

y
+ 1)m ≤

(
x

y

)m

+ 1.
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Let us define a function
f(t) = (t+ 1)m − tm − 1, (t > 0).

We can see that

f
′
(t) = m(t+ 1)m−1 −mtm−1 = m

(
(t+ 1)m−1 − tm−1

)
≤ 0 with m ∈ [0, 1], t > 0,

because g(x) = xm−1 is a decreasing function with m ∈ [0, 1], x > 0. Therefore,

f(t) ≤ f(0) = 0 with t > 0.

So that,
(t+ 1)m − tm − 1 ≤ 0, (t > 0).

with t = x
y ≥ 0, we can derive the inequality (2).

We use Minkowski’s inequality as shown below
Lemma 3. (Minkowski’s inequality) Given p ≥ 1, {xi, yi} ∈ R, i = 1, 2, ..., n, then we have the
following inequality(∑

i

(|xi + yi|)p
) 1

p

≤

(∑
i

(|xi|)p
) 1

p

+

(∑
i

(|yi|)p
) 1

p

.

Proof. This is a basic result.

Lemma 4. (Markov’s inequality) If X is a nonnegative random variable and a > 0, then the
probability that X is at least a is at most the expectation of X divided by a:

Pr(X > a) ≤ E[X]

a
.

Proof. This is a well-known result.

D Convergence of CATS and PATS in Non-stationary multi-armed bandits

We note that in an MCTS tree, each node is considered a non-stationary multi-armed bandit where
the average mean drifts due to the given action selection strategy. Therefore, we first study the
convergence of CATS and PATS in non-stationary multi-armed bandits where the action selection is
Thompson sampling, with the power mean backup operator at the root node. Detailed descriptions of
the CATS and PATS in Non-stationary multi-armed bandits settings can be found in the main article
in the Theoretical Analysis section.

We first establish the convergence and concentration properties for the power mean backup operator
in non-stationary bandits, detailed in Theorem 1 for CATS and Theorem 2 for PATS.

To achieve these results, we demonstrate that the expected payoff of the power mean backup operator
decays polynomially at a rate of O( logn

n ). This is supported by Lemma 7 for CATS and Lemma 8 for
PATS. Critical to this analysis are Lemma 5 and Lemma 6, which establish an upper bound of log(n)
for the expected number of suboptimal arm pulls.

We introduce some important definitions. Fn
a represents the empirical cumulative distribution function

of arm a after n visitations, and Fa represents the cumulative distribution function of arm a. We
employ the following distance measure: If P and Q are two distributions characterized by parameters
p = (p0, p1, · · · , pN ) and q = (q0, q1, · · · , qN ) respectively, then the distance is defined as

d(P,Q) :=∥ p− q ∥∞= sup
i∈[0,N ]

|pi − qi|

This represents the L∞ distance between p and q in R
N+1. We also denotes

KL(P ∥ Q) as the Kullback–Leibler divergence between P and Q, and denote
Kinf(Fa, µ⋆) = infG:E[G]>µ⋆

KL(Fa ∥ G). In addition, we denote K(N)
inf (Fa, µ⋆) =

inf
{

KL(Fa ∥ G)

∣∣∣∣ the support of G ∈
{
0, R(t)

N , 2R(t)
N , · · · , R(t)

}
,E[G] > µ⋆

}
.
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We see that the definition of Kinf(Fa, µ⋆) and K(N)
inf (Fa, µ⋆) is only difference in the support set.

We denote the true parameter of arm a by pa = (p0a, p
1
a, . . . , p

N
a ) with pia = PrX∼Fa

[X = i
N ]. We

denote the parameter of the posterior distribution of arm a as αa = (α0
a, α

1
a, . . . , α

N
a ). Since

each arm a is non-stationary, we also denote the parameter of arm a after n visitations by
pa(n) = (p0a(n), p

1
a(n), . . . , p

N
a (n)) with pia(n) = PrX∼Fn

a
[X = i

N ]. The parameter of the
posterior distribution of arm a denoted as αa(n) = (α0

a(n), α
1
a(n), . . . , α

N
a (n)) We first show the

results of an important Lemma 5. The proof follows closely to the Proof of Proposition 7 (29). The
only difference is that in our settings, we study non-stationary bandits.
Lemma 5. Consider Categorical Thompson Sampling(CATS) strategy applied to a non-stationary
problem where the pay-off sequence satisfies Assumption 1. Let Ta(n) denote the number of plays of
arm a up to timestep n.

If a is the index of a suboptimal arm, Then for any ϵ0, ϵ1 ≥ 0, each sub-optimal arm a is played in
expectation at most

E[Ta(n)] ≤
(1 + ϵ0) log n

K(N)
inf (Fa, µ⋆)− ϵ1

+ o(log n) +O(1),

Proof. We have ϕa,t = [0, R(t)
N , 2R(t)

N , · · · , R(t)]⊤La,t, with La,t ∼ Dir(α0
a(t), . . . , α

N
a (t)).

To analyze the expectation associated with selecting a suboptimal arm a, we decompose it into two
components:

E

[
n∑

t=1

1(I(t) = a)

]
=E

[
n∑

t=1

1(I(t) = a), ϕa,t ≥ µ∗ − ϵ1, d(F̂I(t), FI(t)) ≤ ϵ2)

]
︸ ︷︷ ︸

A1

+ E

[
n∑

t=1

1(I(t) = a), ϕa,t < µ∗ − ϵ1, d(F̂I(t), FI(t)) > ϵ2)

]
︸ ︷︷ ︸

A2

We first find an upper bound for A1:

A1 =

n∑
t=1

n∑
m=1

1

(
I(t) = a, θk(t) ≥ µ⋆ − ϵ1; ∥

αa(t)

Tk(t) +N + 1
− pa(t) ∥∞≤ ϵ2, Tk(t) = m

)
We see that if the event{

I(t) = a, θk(t) ≥ µ⋆ − ϵ1; ∥
αa(t)

Tk(t) +N + 1
− pa(t) ∥∞≤ ϵ2, Tk(t) = m

}
occurs at step t for a certain m ∈ [1, n] , then Tk(t

′) > Tk(t) = m for any t′ > t. Therefore, for any
m ∈ [n]

n∑
t=1

1

(
I(t) = a, θk(t) ≥ µ⋆ − ϵ1; ∥

αa(t)

Tk(t) +N + 1
− pa(t) ∥∞≤ ϵ2, Tk(t) = m

)
≤ 1

We can bound for any m0 ∈ [n]

A1 ≤ m0 +

n∑
t=1

n∑
m=m0

E
[
1

(
I(t) = a, θk(t) ≥ µ⋆ − ϵ1; ∥

αa(t)

Tk(t) +N + 1
− pa(t) ∥∞≤ ϵ2, Tk(t) = m

)]

≤ m0 +

n∑
t=1

n∑
m=m0

Pr

(
θk(t) ≥ µ⋆ − ϵ1; ∥

αa(t)

Tk(t) +N + 1
− pa(t) ∥∞≤ ϵ2, Tk(t) = m

)

≤ m0 +

n∑
t=1

n∑
m=m0

Pr

(
θk(t) ≥ µ⋆ − ϵ1

∣∣∣∣ ∥ αa(t)

Tk(t) +N + 1
− pa(t) ∥∞≤ ϵ2, Tk(t) = m

)
×Pr

(
∥ αa(t)

Tk(t) +N + 1
− pa(t) ∥∞≤ ϵ2, Tk(t) = m

)
(4)
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By applying results of Lemma 13 Appendix F (29), we have

Pr

(
θk(t) ≥ µ⋆ − ϵ1

∣∣∣∣αa, Tk(t) = m

)
≤ C(m+N + 1)N/2 exp{−(m+N + 1)KL(Pαa(t) ∥ P ∗

µ⋆−ϵ1)}

where P ∗
µ⋆−ϵ1 = argminx:u⊤x≥µ⋆−ϵ1 KL(Pαa

∥ x) and Pαa(t) =
1

n+N+1αa(t). And by definition
KL(Pαa(t) ∥ P ∗

µ⋆−ϵ1) = Kinf(Pαa(t), µ⋆ − ϵ1), therefore

Pr

(
θk(t) ≥ µ⋆ − ϵ1

∣∣∣∣αa(t), Tk(t) = m

)
≤ C(m+N + 1)N/2 exp{−(m+N + 1)Kinf(Pαa(t), µ⋆ − ϵ1)},

where C = exp{1/12}
Γ(N+1)

(
1√
2π

)N
. On the other hand, Kinf(x, µ⋆ − ϵ1) is continuous in x ∈ [0, 1]N+1

on the probability simplex with respect to the L∞ distance from ((19), Theorem 7) and Lemma 18 in
Appendix H (29). Therefore, for any ϵ3 > 0, there exists ϵ2 > 0 and constant C ′ > 0 such that

Pr

(
θk(t) ≥ µ⋆ − ϵ1

∣∣∣∣ ∥ αa(t)

Tk(t) +N + 1
− pa(t) ∥∞≤ ϵ2, Tk(t) = m

)
≤ C ′ exp{−(m+N + 1)(Kinf(pa, µ⋆ − ϵ1)− ϵ3)}

And because Pr
(
∥ αa(t)

Tk(t)+N+1 − pa(t) ∥∞≤ ϵ2, Tk(t) = m
)
≤ 1. Therefore,

A1 ≤ m0 + C ′
1

n∑
t=1

exp{−(m+N + 1)(Kinf(pa, µ⋆ − ϵ1)− ϵ3)}

≤ m0 + C ′
1T exp{−(m+N + 1)(Kinf(pa, µ⋆ − ϵ1)− ϵ3)} (5)

Choosing m0 = logn
Kinf(pa,µ⋆−ϵ1)−ϵ3

−N − 1, we have

A1 ≤ log n

Kinf(pa, µ⋆ − ϵ1)− ϵ3
−N − 1 + C ′

1

Furthermore, as from ((19), Theorem 7), it is proven that µ → Kinf(F, µ) is continuous for µ < 1,
when we scale reward from [0,1] to [0, R] therefore µ from [0,1] to [0, R]. We have µ → Kinf(F, µ)
is continuous for µ < R. Therefore, ∀ϵ4 > 0,∃ϵ1 > 0, such that

|Kinf(pa, µ
∗ − ϵ1)−Kinf(pa, µ

∗)| ≤ ϵ4
⇒ Kinf(pa, µ

∗ − ϵ1)− ϵ3 ≥ Kinf(pa, µ
∗)− ϵ3 − ϵ4

Therefore, ∀ϵ0 > 0

A1 ≤ (ϵ0 + 1) log n

Kinf(pa, µ⋆)
−N − 1 + C ′

1

Also According to Proposition 8 (29), for any ϵ0 > 0 we have

A2 ≤ O(1) (6)

Combining inequality (5) and inequality (6) leads us to

E[Ta(n)] ≤
(1 + ϵ0) log n

K(N)
inf (Fa, µ⋆)

+ o(log n) +O(1).

Therefore which concludes the proof.

Lemma 6. Consider Particle Thompson Sampling(PATS) strategy applied to a non-stationary
problem where the pay-off sequence satisfies Assumption 1. Then for any ϵ0 ≥ 0. Let Ta(n) denote
the number of plays of arm a up to timestep n. Then if a is the index of a suboptimal arm, then each
sub-optimal arm a is played in expectation at most

E[Ta(n)] ≤
log n

Kinf(Fa, µ⋆)− ϵ0
+ o(log n) +O(1).
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Proof. In this Theorem, we use the Levy distance. Recall that the Levy distance between two
cumulative distribution functions F and G on [0, 1] is defined as

DL(F,G) = inf{ϵ > 0 : ∀x ∈ [0, 1], F (x− ϵ)− ϵ ≤ G(x) ≤ F (x+ ϵ) + ϵ}.

The proof follows the same steps as in Lemma 5. We also can derive

E

[
n∑

t=1

1(I(t) = a)

]
=E

[
n∑

t=1

1(I(t) = a), ϕa,t ≥ µ∗ − ϵ1, DL(F̂I(t), FI(t)) ≤ ϵ2)

]
︸ ︷︷ ︸

B1

+ E

[
n∑

t=1

1(I(t) = a), ϕa,t < µ∗ − ϵ1, DL(F̂I(t), FI(t)) > ϵ2)

]
︸ ︷︷ ︸

B2

We can use the same ways of derivations as in Lemma 5, equation (4) to have the same bound

B1 ≤ m0 +

n∑
t=1

n∑
m=m0

Pr

(
θk(t) ≥ µ⋆ − ϵ1

∣∣∣∣DL

(
F̂a(t), Fa(t)

)
≤ ϵ2, Tk(t) = m

)
×Pr

(
DL

(
F̂a(t), Fa(t)

)
≤ ϵ2, Tk(t) = m

)
(7)

According to Lemma 15 in Appendix G.1 (29) on conditional probabilities, for any ν ∈ (0, 1) we
have

Pr

(
θk(t) ≥ µ⋆ − ϵ1

∣∣∣∣DL

(
F̂a(t), Fa(t)

)
≤ ϵ2, Tk(t) = m

)
≤ 1

ν
exp

{
−n

(
Kinf(F̂a(t), µ⋆ − ϵ1)− ν

µ⋆ − ϵ1
1− (µ⋆ − ϵ1)

)}
Because Kinf(F, µ) is continuous in F with respect to the Levy distance from (19), Theorem 7, for
any ϵ3 > 0 there exists ϵ2 > 0 such that

DL(F̂a(t), Fa) ≤ ϵ2 ⇒
∣∣∣Kinf(F̂a(t), µ⋆ − ϵ1)−Kinf(Fa, µ⋆ − ϵ1)

∣∣∣ ≤ ϵ3

Therefore, ∀ν ∈ (0, 1) and for any ϵ5 > 0, there exists ϵ1, ϵ2 > 0 such that

Pr

(
θk(t) ≥ µ⋆ − ϵ1

∣∣∣∣DL

(
F̂a(t), Fa(t)

)
≤ ϵ2, Tk(t) = m

)
≤ 1

ν

(
−m

(
Kinf(Fa, µ⋆ − ϵ1)− ϵ3 − ν

µ⋆ − ϵ1
1− (µ⋆ − ϵ1)

))
(Theorem 6 (19) )

≤ 1

ν

(
−m

(
Kinf(Fa, µ⋆)

ϵ1
1− µ⋆

− ϵ3 − ν
µ⋆ − ϵ1

1− (µ⋆ − ϵ1)

))
This implies that ∀ϵ0 > 0, there exists ν ∈ (0, 1), ϵ1 > 0 and ϵ2 > 0 such that

Pr

(
θk(t) ≥ µ⋆ − ϵ1

∣∣∣∣DL

(
F̂a(t), Fa(t)

)
≤ ϵ2, Tk(t) = m

)
≤ 1

ν
exp {−m(Kinf(Fa, µ⋆)− ϵ0)}

Therefore, according to inequality (7) and the fact that

Pr
(
DL

(
F̂a(t), Fa(t)

)
≤ ϵ2, Tk(t) = m

)
≤ 1

we have

B1 ≤ m0 +

n∑
t=1

1

ν
exp {−m(Kinf(Fa, µ⋆)− ϵ0)}

≤ m0 +
1

ν
T exp {−m0(Kinf(Fa, µ⋆)− ϵ0)}
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Choose m0 = logn
Kinf(Fa,µ⋆)−ϵ0

we have

B1 ≤ log n

Kinf(Fa, µ⋆)− ϵ0
+

1

ν

Also According to Proposition 10 (29), for any ϵ0 > 0 we have

B2 ≤ O(1)

That leads us to

E[Ta(n)] ≤
log n

Kinf(Fa, µ⋆)− ϵ0
+ o(log n) +O(1),

which concludes the proof.

Lemma 7. Consider Categorical Thompson Sampling(CATS) strategy applied to a non-stationary
problem where the pay-off sequence satisfies Assumption 1. Let us define the power mean estimator

µ̂n(p) as µ̂n(p) =
(∑K

a=1
Ta(n)

n µ̂p
a,Ta(n)

) 1
p

, and δ⋆,n = µ⋆ − µ⋆,n For any p ≥ 1, ϵ0 > 0, we have

|E[µ̂n(p)]− µ⋆| ≤ |δ⋆,n|+
R

n

K∑
a=1,a̸=a∗

{
(1 + ϵ0) log n

K(N)(Fa, µ⋆)
+ o(log n) +O(1)

}

Proof. We observe that

|µ̂n(p)− µ⋆| ≤ |µ̂n(p)− µ⋆,n|+ |µ⋆ − µ⋆,n| = |µ̂n(p)− µ⋆,n|+ |δ⋆,n|
Furthermore,

µ̂a,Ta(n) ≤ µa,n +
∣∣µ̂a,Ta(n) − µa,n

∣∣ . (8)

Since µ⋆,n = maxa∈[K]{µa,n}, we have

µ̂n(p)− µ⋆,n = µ̂n(p)−
K∑

a=1

Ta(n)µ⋆,n ≤

(
K∑

a=1

Ta(n)

n

(
µ̂a,Ta(n)

)p) 1
p

−

(
K∑

a=1

Ta(n)

n
(µa,n)

p

) 1
p

=

(∑K
a=1 Ta(n)

(
µ̂a,Ta(n)

)p) 1
p −

(∑K
a=1 Ta(n) (µa,n)

p
) 1

p

n
1
p

Applying Minkowski’s inequality from Lemma 3, and the result of (8), we have

µ̂n(p)− µ⋆,n ≤

(∑K
a=1 Ta(n)

(
µa +

∣∣µ̂a,Ta(n) − µa,n

∣∣)p) 1
p −

(∑K
a=1 Ta(n) (µa,n)

p
) 1

p

n
1
p

≤

(∑K
a=1 Ta(n)

(∣∣µ̂a,Ta(n) − µa,n

∣∣)p) 1
p

n
1
p

On the other hand,

µ⋆,n − µ̂n(p) =
nµ⋆,n − nµ̂n(p)

n
=

nµ⋆,n − (
∑K

a=1 Ta(n)µa,n) +
∑K

a=1 Ta(n)µa,n − nµ̂n(p)

n

=

∑K
a=1,a̸=a∗

Ta(n) |µ⋆,n − µa,n|+
∑K

a=1 Ta(n)µa,n − nµ̂n(p)

n

≤ R

K∑
a=1,a ̸=a∗

Ta(n)

n
+

K∑
a=1

Ta(n)

n
µa,n − µ̂n(p) (9)
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Because power mean is an increasing function of p, so that

K∑
a=1

Ta(n)

n
µa,n ≤

(
K∑

a=1

Ta(n)

n
(µa,n)

p

)1/p

.

Furthermore, we observe that
µa,n ≤ µ̂a,Ta(n) +

∣∣µ̂a,Ta(n) − µa,n

∣∣ .
So that, from equation (9) we have

µ⋆,n − µ̂n(p) ≤ R

K∑
a=1,a̸=a∗

Ta(n)

n
+

(
K∑

a=1

Ta(n)

n
(µa,n)

p

)1/p

− µ̂n(p)

≤ R

K∑
a=1,a̸=a∗

Ta(n)

n

+

(∑K
a=1 Ta(n)

(
µ̂a,Ta(n) +

∣∣µ̂a,Ta(n) − µa,n

∣∣)p) 1
p −

(∑K
a=1 Ta(n)

(
µ̂a,Ta(n)

)p) 1
p

n
1
p

(Minkovski’s inequality)
≤ R

K∑
a=1,a̸=a∗

Ta(n)

n
+

(∑K
a=1 Ta(n)

(∣∣µ̂a,Ta(n) − µa,n

∣∣)p) 1
p

n
1
p

(Properties of Lp norm)

≤ R

K∑
a=1,a̸=a∗

Ta(n)

n
+

(∑K
a=1 Ta(n)

(∣∣µ̂a,Ta(n) − µa,n

∣∣))
n

1
p

= R

K∑
a=1,a̸=a∗

Ta(n)

n
+

∑K
a=1

(∣∣∣∑Ta(n)
t Ra,t − Ta(n)µa,n

∣∣∣)
n

1
p

Therefore

|E[µ̂n(p)− µ⋆,n]| ≤ R

K∑
a=1,a̸=a∗

E[Ta(n)]

n
+

E
[(∣∣∣∑K

a=1

∑Ta(n)
t Ra,t − Ta(n)µa,n

∣∣∣)]
n

1
p

= R

K∑
a=1,a̸=a∗

E[Ta(n)]

n

Please note that because we study non-stationary bandits, E[
∑n

t Ra,t] = nµa,n, therefore,

E
[(∣∣∣∑K

a=1

∑Ta(n)
t Ra,t − Ta(n)µa,n

∣∣∣)]
n

1
p

= 0

According to Lemma 5, we have

|E[µ̂n(p)− µ⋆,n]| ≤ R

K∑
a=1,a ̸=a∗

E[Ta(n)]

n
≤ R

n

K∑
a=1,a ̸=a∗

{
(1 + ϵ0) log n

K(N)(Fa, µ⋆)
+ o(log n) +O(1)

}
,

which concludes the proof.

Lemma 8. Consider Particle Thompson Sampling(PATS) strategy applied to a non-stationary
problem where the pay-off sequence satisfies Assumption 1. Let us define the power mean estimator

µ̂n(p) as µ̂n(p) =
(∑K

a=1
Ta(n)

n µ̂p
a,Ta(n)

) 1
p

, and δ⋆,n = µ⋆ − µ⋆,n For any p ≥ 1, ϵ0 > 0, we have

|E[µ̂n(p)]− µ⋆| ≤ |δ⋆,n|+
R

n

K∑
a=1,a̸=a∗

{
log n

Kinf(Fa, µ⋆)− ϵ0
+ o(log n) +O(1)

}
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Proof. Similar to Lemma 7, we can derive

|E[µ̂n(p)− µ⋆,n]| ≤ |δ⋆,n|+R

K∑
a=1,a̸=a∗

E[Ta(n)]

n
.

And according to Lemma 6, we have

|E[µ̂n(p)− µ⋆,n]| ≤ R

K∑
a=1,a ̸=a∗

E[Ta(n)]

n
≤ R

n

K∑
a=1,a ̸=a∗

{
log n

Kinf(Fa, µ⋆)− ϵ0
+ o(log n) +O(1)

}
,

which concludes the proof.

Theorem 1. For a ∈ [K], let (µ̂a,n)n≥1 be a sequence of estimator satisfying plim
n→∞

µ̂a,n = µa and

let µ⋆ = max
a

{µa}. Assume that all the estimators are bounded in [0, R]. We consider a bandit
algorithm that selects each arm according to CATS once in each round n ≥ K.

Then, for all p ∈ [1,∞), the sequence of estimators

µ̂n(p) =

(
K∑

a=1

Ta(n)

n
µ̂p
a,Ta(n)

) 1
p

,

where Ta(n) =
∑n−1

t=1 1(at = a) is the number of selections of a prior to round n satisfies

plim
n→∞

µ̂n(p) = µ⋆.

Proof. We first prove that lim
n→∞

E[µ̂n(p)] = µ∗. According to the result of Lemma 7, we have

|E[µ̂n(p)]− µ⋆| ≤ |δ⋆,n|+R

K∑
a=1,a̸=a∗

E[Ta(n)]

n

≤ |δ⋆,n|+
R

n

K∑
a=1,a̸=a∗

{
(1 + ϵ0) log n

K(N)(Fa, µ⋆)
+ o(log n) +O(1)

}
with δ⋆,n = µ⋆ − µ⋆,n, and because lim

n→∞
µ∗,n = µ⋆, we can concludes that

lim
n→∞

E[µ̂n(p)] = µ∗.

Second, we prove that

∀n ≥ 1,∀ε > 0,∃c > 0 that P (|µ̂n(p)− µ⋆| > ε) ≤ cn−1ε−2.

We observe that

|µ̂n(p)− µ⋆| ≤ |µ̂n(p)− µ⋆,n|+ |µ⋆ − µ⋆,n| = |µ̂n(p)− µ⋆,n|+ |δ⋆,n|
=⇒P(|µ̂n(p)− µ⋆| ≥ ϵ) ≤ P(|µ̂n(p)− µ⋆,n| ≥ ϵ/2) + P(|δ⋆,n| ≥ ϵ/2).

Because lim
n→n

|δ⋆,n| = 0, therefore, ∃N0 > 0 such that ∀n ≥ N0, we have |δ⋆,n| < ϵ/2 that means

∀n > N0,P(|δ⋆,n| ≥ ϵ/2) = 0.

Next, according to Lemma 7,

|E[µ̂n(p)]− µ⋆,n| ≤
R

n

K∑
a=1,a ̸=a∗

{
(1 + ϵ0) log n

K(N)(Fa, µ⋆)
+ o(log n) +O(1)

}
= O(n−1),

that leads to

P(|µ̂n(p)− µ⋆,n| ≥ ϵ/2) ≤ |E[µ̂n(p)]− µ⋆,n|
ϵ/2

=
O(n−1)

ϵ/2
.
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Therefore, ∃c > 0,∀0 < ϵ < 1 such that

P(|µ̂n(p)− µ⋆,n| ≥ ϵ/2) ≤ cn−1ϵ−2,

which means

∀n ≥ N0,∀0 < ε < 1,∃c > 0 that P (|µ̂n(p)− µ⋆| > ε) ≤ cn−1ε−2.

Now we see that |µ̂n(p) − µ⋆| ≤ R. With ϵ > max{1, R}, we have |µ̂n(p) − µ⋆| > ϵ ⇔
|µ̂n(p)− µ⋆| > R, therefore the inequality holds as

P (|µ̂n(p)− µ⋆| > ε) = 0 ≤ cn−1ε−2.

with 0 < ϵ < max{1, R}, 1 ≤ n < N0 ⇒ nϵ < max{1, R}N0 ⇒ n−1ε−1 > 1/max{1, R}N0.
Therefore

∀C > 1/max{1, R}N0 ⇒ P (|µ̂n(p)− µ⋆| > ε) ≤ 1 < Cn−1ε−1 < Cn−1ε−2,

which means

∀n ≥ 1,∀0 < ε < 1,∃C > 0 that P (|µ̂n(p)− µ⋆| > ε) ≤ Cn−1ε−2.

That concludes the proof.

Theorem 2. For a ∈ [K], let (µ̂a,n)n≥1 be a sequence of estimator satisfying plim
n→∞

µ̂a,n = µa and

let µ⋆ = max
a

{µa}. Assume that all the estimators are bounded in [0, R]. We consider a bandit
algorithm that selects each arm according to PATS once in each round n ≥ K.

Then, for all p ∈ [1,∞), the sequence of estimators

µ̂n(p) =

(
K∑

a=1

Ta(n)

n
µ̂p
a,Ta(n)

) 1
p

,

where Ta(n) =
∑n−1

t=1 1(at = a) is the number of selections of a prior to round n satisfies

plim
n→∞

µ̂n(p) = µ⋆.

Proof. The proof follows the same steps as Theorem 1. We first prove that lim
n→∞

E[µ̂n(p)] = µ∗.
According to the result of Lemma 8, we have

|E[µ̂n(p)]− µ⋆| ≤ |δ⋆,n|+R

K∑
a=1,a̸=a∗

E[Ta(n)]

n

≤ |δ⋆,n|+
R

n

K∑
a=1,a̸=a∗

{
log n

Kinf(Fa, µ⋆)− ϵ0
+ o(log n) +O(1)

}
with δ⋆,n = µ⋆ − µ⋆,n, and because lim

n→∞
µ∗,n = µ⋆, we can concludes that

lim
n→∞

E[µ̂n(p)] = µ∗.

Second, we prove that

∀n ≥ 1,∀ε > 0,∃c > 0 that P (|µ̂n(p)− µ⋆| > ε) ≤ cn−1ε−2.

We observe that

|µ̂n(p)− µ⋆| ≤ |µ̂n(p)− µ⋆,n|+ |µ⋆ − µ⋆,n| = |µ̂n(p)− µ⋆,n|+ |δ⋆,n|
=⇒P(|µ̂n(p)− µ⋆| ≥ ϵ) ≤ P(|µ̂n(p)− µ⋆,n| ≥ ϵ/2) + P(|δ⋆,n| ≥ ϵ/2).

Because lim
n→n

|δ⋆,n| = 0, therefore, ∃N0 > 0 such that ∀n ≥ N0, we have |δ⋆,n| < ϵ/2 that means

∀n > N0,P(|δ⋆,n| ≥ ϵ/2) = 0.
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Next, according to Lemma 8,

|E[µ̂n(p)]− µ⋆,n| ≤
R

n

K∑
a=1,a̸=a∗

{
log n

Kinf(Fa, µ⋆)− ϵ0
+ o(log n) +O(1)

}
= O(n−1),

that leads to

P(|µ̂n(p)− µ⋆,n| ≥ ϵ/2) ≤ |E[µ̂n(p)]− µ⋆,n|
ϵ/2

=
O(n−1)

ϵ/2
.

Therefore, ∃c > 0 such that

P(|µ̂n(p)− µ⋆,n| ≥ ϵ/2) ≤ cn−1ϵ−2,

which means

∀n ≥ N0,∀ε > 0,∃c > 0 that P (|µ̂n(p)− µ⋆| > ε) ≤ cn−1ε−2.

Now we see that |µ̂n(p) − µ⋆| ≤ R. With ϵ > max{1, R}, we have |µ̂n(p) − µ⋆| > ϵ ⇔
|µ̂n(p)− µ⋆| > R, therefore the inequality holds as

P (|µ̂n(p)− µ⋆| > ε) = 0 ≤ cn−1ε−2.

with 0 < ϵ < max{1, R}, 1 ≤ n < N0 ⇒ nϵ < max{1, R}N0 ⇒ n−1ε−1 > 1/max{1, R}N0.
Therefore

∀C > 1/max{1, R}N0 ⇒ P (|µ̂n(p)− µ⋆| > ε) ≤ 1 < Cn−1ε−1 < Cn−1ε−2,

which means

∀n ≥ 1,∀0 < ε < 1,∃C > 0 that P (|µ̂n(p)− µ⋆| > ε) ≤ Cn−1ε−2.

E Convergence of CATS and PATS in Monte-Carlo Tree Search

Based upon the results of CATS and PATS using power mean as the value backup operator on the
described non-stationary multi-armed bandit problem, we derive theoretical results for CATS in an
MCTS tree.

We derive Theorem 3 for CATS and Theorem 4 for PATS, which show concentration and convergence
for any internal node in the tree. These proofs utilize induction, leveraging the results of Lemma 7
for CATS and Lemma 8 for PATS, and Lemma 5 for CATS and Lemma 6 for PATS. Additionally, we
use Lemma 1, which demonstrates the concentration and convergence of an estimated Q-value based
on the child V-value node, applying it recursively throughout the tree.

Our main results, Theorem 5 for CATS and Theorem 5 for PATS, show that the simple regret
converges non-asymptotically at a rate of O(n−1).
Theorem 3. When we apply the CATS algorithm, we have

(i) For any node sh at the depth hth in the tree,

plim
n→∞

Q̂n(sh, ak) = Q̃(sh, ak).

(ii) For any node sh at the depth hth in the tree,

plim
n→∞

V̂n(sh) = Ṽ (sh).

Proof. We will prove this by induction on the depth D of the tree. If the tree only has depth (1).
The state at the root node is s0, let us assume that at time step t, after taking action ak, the MCTS tree
gets an intermediate reward rt(s0, ak) and traverses to the next state s1. Let us assume that R(s0, ak)
is the mean of the intermediate reward at state s0, after taking action ak. We recall the definition of
Q̃(s0, ak), with π0 is the rollout policy to estimate the newly added node at the leaf,

Q̃(s0, ak) = R(s0, ak) + γ
∑

s1∈As0

P(s1|s0, ak)Ṽ (s1)
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where Ṽ (s1) is the value of the policy π0 at state s1, As0 is the set of feasible actions at state s0,
|As0 | = M , P(s1|s0, ak) is the probability transition of taking action ak at state s0 to state s1. From
((1)), we have

Q̂n(s0, ak) =
1

n

n∑
t=1

rt(s0, ak) + γ
∑

s1∼τ(s0,ak)

T s1
s0,ak

(n)

n
V̂T

s1
s0,ak

(n)(s1)

(i) is a direct result of Lemma 1 with Xt is the intermediate reward rt(s0, ak) at time t, p =
(p1, p2, ...pM ) ∼ P(·|s0, ak), where P(·|s0, ak) is the probability transition dynamic of taking action
ak at state s0. For m ∈ [M ], each (V̂m,t)t≥1 at time step t is the deterministic initial Value function
Ṽ (s1). We have

plim
n→∞

V̂m,n(s1) = Ṽ (s1), with s1 ∈ {sm},m = 1, 2, 3...M, where sm ∼ τ(·|s0, ak)

(ii) Direct results from Theorem 1. In detail, we have from (i),

plim
n→∞

Q̂n(s0, ak) = Q̃(s0, ak), with ak ∈ As0

Because by definition:

Ṽ (s0) = max
ak∈As0

Q̃(s0, ak)

V̂n(s0) =

 ∑
a∈As0

Ts0,a(n)

n

(
Q̂Ts0,a(n)(s0, a)

)p 1
p

for some p ∈ [1,+∞)

Then we have
plim
n→∞

V̂n(s0) = Ṽ (s0)

that concludes for (ii)

Let us assume that with the tree of depth D, the theorem holds for all its children.

Now let’s consider the tree with depth (D + 1). When we take one action at the root node at the state
s0, it comes to a subtree with depth (D). According to the induction assumption, the results hold for
any internal node in the tree after we take the first action. We have s1 ∼ τ(s0, ak). By the definition,
Ṽ (sH) = V0(sH) and, for all h ≤ H − 1,

Q̃(sh, a) = R(sh, a) + γ
∑

sh+1∈As

P(sh+1|sh, a)Ṽ (sh+1)

Ṽ (sh) = max
a

Q̃(sh, a)

By the assumption of the induction the root node of a subtree with depth (D) at state s1 we have

plim
n→∞

V̂n(s1) = Ṽ (s1)

(i) Let’s apply Lemma 1 with {Xt} is the intermediate reward {rt(s0, ak)}, p = (p1, p2, ...pM ) ∼
P(·|s0, ak). For m ∈ [M ], each (V̂m,t)t≥1 at time step t is the empirical Value function V̂t(s1). We
will have

plim
n→∞

Q̂n(s0, ak) = Q̃(s0, ak), with ak ∈ As0

(ii) follows the results of Theorem 1 as at the root node s0 of depth D + 1, with

Ṽ (s0) = max
ak∈As0

Q̃(s0, ak)

V̂n(s0) =

(∑
a∈As

Ts0,a(n)

n

(
Q̂Ts0,a(n)(s0, a)

)p) 1
p

for some p ∈ [1,+∞)
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And because
plim
n→∞

Q̂n(s0, ak) = Q̃(s0, ak), with ak ∈ As0

Then, we have
plim
n→∞

V̂n(s0) = Ṽ (s0).

that concludes for (ii)

The results of Theorem 3 hold for any node in the tree with the tree of depth (D + 1). By induction,
we can conclude the proof.

Similarly we can derive the following Theorem

Theorem 4. When we apply the PATS algorithm, we have
(i) For any node sh at the depth hth in the tree,

plim
n→∞

Q̂n(sh, ak) = Q̃(sh, ak).

(ii) For any node sh at the depth hth in the tree,

plim
n→∞

V̂n(sh) = Ṽ (sh).

Proof. The proof follows the same steps as Theorem 3 by applying the results of Lemma 1 and
Theorem 2.

Theorem 5. (Convergence of Expected Payoff of CATS) We have at the root node s0,

E
[∣∣∣V̂n (s0)− V ⋆(s0)

∣∣∣] ≤ O(n−1).

Proof. We prove the result by induction and use the results of Theorem 3 to prove this Theorem. Let
us assume that the depth of the tree is D = 1, as the results of Lemma 7, we have∣∣∣E[V̂n(s0)]− V ⋆(s0)

∣∣∣ ≤ |δ⋆,n|+O(
log n

n
) = |δ⋆,n|+O(n−1).

And because the tree only have the depth D = 1, we have |δ⋆,n| = 0, so that the result holds at
the depth D = 1. Let us assume that we have the result of the tree at the depth D. Now when the
depth of the tree is D + 1, at the root node s0, the conditions of Assumption 1 hold as the results of
Theorem 3 then we have∣∣∣E[V̂n(s0)]− V ⋆(s0)

∣∣∣ (Lemma 7)

≤ |δ⋆,n|+O(
log n

n
) = |δ⋆,n|+O(n−1),

where the bias

|δ⋆,n| =
∣∣∣E[Q̂n(s0, a⋆)]−Q⋆(s0, a⋆)

∣∣∣ (contraction)
≤ γ ∥ E[V̂ (1)

n ]− V ⋆ ∥∞
(by induction)

≤ γO(n−1),

with V̂
(1)
n is the vector of value function at state s1 = P(·|s0, a⋆). Therefore,∣∣∣E[V̂n(s0)]− V ⋆(s0)

∣∣∣ ≤ O(n−1),

that concludes the proof.

Next, we present the results of Theorem 6. The proof follows the same steps as Theorem 5.

Theorem 6. (Convergence of Expected Payoff of PATS) We have at the root node s0,

E
[∣∣∣V̂n (s0)− V ⋆(s0)

∣∣∣] ≤ O(n−1).
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F Limitations

Computational Demands: The CATS distributional Monte Carlo Tree Search (MCTS) faces chal-
lenges in managing computational demands while maintaining and updating probability distributions,
leading to a slightly increased complexity.
Fixed precision: The PATS set of particles can increase in size if the observed value are different.
We prevent this in the implementation by fixing the float precision.
Number of atoms: Our approach’s performance is slightly influenced by hyperparameters, with the
number of atoms being a critical factor. Suboptimal choices may affect performance.

G Experimental setup

All the experiments were done on 8 Intel Xeon Gold 6130 (Skylake), x86_64, 2.10GHz, 2 CPUs/node,
16 cores/CPU. Whenever feasible, we opted for open-source implementations of algorithms and
environments.

Parameters selection We search the number of atoms from {10,20,...,100} and choose the
results with best performances. We set the discount factor γ = .99 for MDPs, and γ = .95 for
POMDPs. For UCT, we use the exploration constant C =

√
2× (Rmax −Rmin).

Atari hyperparameters We run CATS in Atari with 10 random seeds, where each seed with 512
samples and collect the average score. We found that only 512 simulations were necessary due to the
utilization of a pretrained neural network. We run CATS with 100 atoms. The temperature parameter
τ of MENTS and TENTS is tuned from {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The selected parameter τ are shown in Table 4. The exploration
constant ϵ for MENTS and TENTS are set to 0.01. For Power-UCT, we select the power mean p = 2.

Atari

Table 3: Average scores in Atari with 512 samples (10 seeds) ± 2 times std.
CATS PATS UCT DQN Power-UCT TENTS MENTS

Phoenix 3290.00± 1599.52 3619.00± 891.72 2450.00± 786.22 340.0± 0.00 560.00± 0.00 4423.00 ± 642.38 3098.30± 919.65
MsPacman 2058.00 ± 243.93 2232.00 ± 896.29 1792.00± 62.85 1930.00± 224.83 1982.00± 473.45 1922.00± 416.91 2018.30± 316.98
Alien 1765.0 ± 801.03 1724.00± 649.63 1900.00 ± 00.00 1094.00± 122.83 1748.00± 120.21 1613.00± 296.96 1508.60± 322.58
SpaceInvaders 826.0 ± 194.76 791.0 ± 332.52 525.00± 00.00 525.00± 0.00 672.00± 148.42 742.50± 193.53 832.55± 211.95
BeamRider 1952.00± 500.04 1848.0± 320.29 1889.60± 171.09 1952.00± 0.00 1577.60± 112.47 3013.00 ± 778.89 2822.18± 697.31
Asterix 6040.00 ± 1560.89 5495.00 ± 3106.64 5380.00± 1464.05 6220.00± 156.80 5540.00± 863.39 5180.00± 528.19 5576.00± 1397.91
Robotank 11.50 ± 2.11 11.9 ± 1.51 12.2± 1.04 10.20± 0.39 11.00± 1.55 12.10± 1.47 11.59± 1.36
Seaquest 3170.00± 787.61 3288.0± 889.41 3564.00 ± 86.83 2304.00± 531.31 2704.00± 318.93 2928.00± 801.11 3312.40± 390.77
Solaris 1062.0 ± 519.21 1196.00 ± 524.45 392.00± 198.61 1112.00± 521.53 452.00± 153.19 1168.00± 516.33 1118.20± 513.00
Asteroids 930.00 ± 100.12 953.00 ± 107.05 5380.00± 1464.05 860.00± 48.89 930.00± 54.66 1518.00± 121.48 1414.70± 261.59
Enduro 142.40 ± 31.21 131.10 ± 17.16 127.00± 10.07 133.60± 8.73 134.00± 6.69 115.40± 18.82 128.79± 16.26
Atlantis 35890.00 ± 1914.28 36180.0 ± 2592.70 34300.00± 00.00 34480.00± 119.76 35420.00± 1494.63 36280.00± 1476.24 36277.00± 1811.53
Hero 3006.50± 9.16 3020.50 ± 27.24 3011.50± 17.04 3005.00± 9.53 2998.00± 35.16 3008.00± 0.00 3044.55 ± 181.04
Frostbite 1582.00± 1041.37 1580.00± 1127.23 1900.00± 00.00 2407.00 ± 116.76 1754.00± 651.38 2357.00± 398.45 2388.20± 320.37
WizardOfWor 670.0± 192.09 590.00± 359.02 200.00± 00.00 530.00± 92.63 640.00± 134.53 1210.00± 183.52 1211.00 ± 314.30
Breakout 315.00± 85.80 302.10± 70.47 271.8± 54.63 288.10± 53.01 289.00± 44.46 337.00 ± 15.91 309.03± 35.13

Atari environments (4) provide diverse video game-inspired scenarios commonly used in reinforce-
ment learning research. These environments offer challenges based on classic Atari 2600 games
(23; 38; 6). To explore enhanced exploration in deep reinforcement learning, we employ a Deep
Q-Network pre-trained following the experimental setup outlined in (23). This pre-trained network
initializes action-values for each node, combined with a Monte-Carlo Tree Search method similar to
the AlphaGo one. Here, Pprior represents the Boltzmann distribution derived from the action-values
Q(s, .) computed by the network. The results in Table 3 show that CATS and PATS outperform UCT,
DQN, Power-UCT, TENTS and MENTS in most of the games. For example, CATS is significant
better than other methods in Breakout, Enduro, while PATS is significant better than other methods
in MsPacman, Solaris. Our intention in this experiment is not to assert exceptional superiority, but
rather to emphasize that CATS and PATS actually work in complicated Atari benchmark.
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Table 4: The hyperparameter τ (temperature) for MENTS and TENTS in Atari.

MENTS TENTS
Phoenix 0.07 0.6
MsPacman 0.09 0.03
Alien 0.1 0.03
SpaceInvaders 0.02 0.06
BeamRider 0.02 0.03
Asterix 0.02 0.1
Robotank 0.01 0.05
Seaquest 0.02 0.03
Solaris 0.03 0.06
Asteroids 0.08 0.2
Qbert 0.02 0.4
Enduro 0.02 0.1
Atlantis 0.08 0.03
Hero 0.4 0.03
Frostbite 0.01 0.02
WizardOfWor 0.1 0.01
Breakout 0.02 0.04

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

(i) Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] ,
Justification: We discuss the problem of planning in stochastic environments and we present
a method to tackle problem with clear contributions.
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Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

(ii) Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitation in Section 6

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

(iii) Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the main theorems in the main paper and proofs in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
(iv) Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Code and reproducibility steps are provided in supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

(v) Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Full code is available in supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

(vi) Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setting is detailed in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

(vii) Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars for the plots. For Atari, we report the standard deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

(viii) Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details about the computer resources used (CPU and number
of cores).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

(ix) Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

(x) Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The research conducted in the paper has no societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

(xi) Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The research proposed in this paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

(xii) Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We do not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

(xiii) New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The provided code is well documented.
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Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

(xiv) Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

(xv) Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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