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ABSTRACT

In this work, we employ causal reasoning to breakdown and analyze important
challenges of the decoding of Motor-Imagery (MI) electroencephalography (EEG)
signals. Furthermore, we present a framework consisting of dynamic convolu-
tions, that address one of the issues that arises through this causal investigation,
namely the subject distribution shift (or inter-subject variability). Using a publicly
available MI dataset, we demonstrate increased cross-subject performance in two
different MI tasks for four well-established deep architectures.

1 INTRODUCTION

Brain-Computer Interface (BCI) technology primarily aspires to provide a direct neural commu-
nication and control between individuals (subjects) and computers. This is feasible by analyzing
brainwaves captured by EEG signal recordings using signal processing and Machine Learning (ML)
techniques. One of the first and most popular BCI paradigms is Motor-imagery (MI). MI-BCIs are
based on a cognitive process, by which a subject mentally simulates a motor action, for example the
movement of a hand or foot, without actually executing it (Decety & Ingvar (1990)). Developing
MI-BCI systems mainly relies on robust decoding of a subject’s motor intentions from the recorded
EEG signals, under the prior assumption that these signals encode that relevant information, and are
mainly used for movement rehabilitation purposes (e.g. Mane et al. (2020), Robinson et al. (2021),
(Sebastián-Romagosa et al. (2020)).

In recent years, Deep Learning (DL) techniques - and most specifically Convolutional Neural Net-
works (CNNs) - have largely alleviated the need for manual feature extraction, achieving state-of-
the-art performance in various areas, most notably Computer Vision (Chai et al. (2021)). Due to
their massive progress, CNN-based feature extractors have been introduced in various paradigms
in the field of BCIs (e.g. Antoniades et al. (2016), Rezaeitabar & Halici (2017), Längkvist et al.
(2012), Wulsin et al. (2011)), in an effort to become generic EEG signal processing tools. One of
the core challenges that a BCI - or more generally the decoding of EEG signals - faces is to cope with
changes in data distributions across different subjects. Each individual has a unique brain anatomy
and functionality that makes the discovery and exploitation of shared invariant features extremely
difficult. Therefore, modern DL-based BCIs tend to fail to generalize well in unseen subjects due to
this type of data distribution shift.

Causal reasoning provides tools to breakdown and analyze important aspects of a BCI task, iden-
tify and possibly resolve some of these challenges by employing appropriate ML strategies. The
methodical breakdown of a BCI task and the identification of the causal relationships between the
various variables of interest take into account the expert’s knowledge of the involved biological and
neurophysiological processes and can be of vital importance when designing and building ML-based
models in the field of BCI. In this work, we focus mainly on MI-BCI systems, and inspired by the
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work of (Schölkopf et al. (2021)), we analyze the task of MI EEG signal classification through the
lens of causal reasoning. Motivated by this causal analysis, we introduce a framework based on
dynamic convolutions that tackles the identified problem of subject distribution shift.

2 CAUSALITY IN MOTOR-IMAGERY BRAINWAVE DECODING

2.1 TASK DEFINITION

In a Motor-Imagery (MI) classification problem, we want to accurately predict the mentally per-
formed task from a recorded EEG signal. Mathematically, given an input EEG signal X , we train
a statistical model to predict the correct MI task Y , which can be the imagery movement of a hand
or foot. In essence, this statistical model tries to estimate the conditional probability P (Y |X) using
an appropriate objective function. Causal reasoning is the analysis of a task / problem in terms of
cause-effect relationships between the different variables of interest: if a variable A is a direct cause
of variable B, we express it as A→ B (A causes B or B is the effect of A).

In ML-based tasks, given the input X and the prediction target Y , we can establish that the task to
estimate P (Y |X) can be either (Castro et al. (2020)):

• Causal: when X → Y , prediction effect from cause
• Anti-causal: when Y → X , prediction cause from effect

Using the above basis, we can define an MI EEG classification task as an anti-causal problem, since
the true MI intention (observed with the MI label Y ) can be considered the cause of the recorded
EEG signal X . Additionally, inspired by (Castro et al. (2020)), we can consider X as a sequence
of imperfect observed measurements (in sensor-space) of the true unobserved brain activations Z
within, mainly, the cortical areas responsible for the sensorimotor rhythms, i.e. Z → X . Therefore,
using a causal diagram, an MI EEG classification task can be described as:

X ← Z ← Y (1)

As a consequence of the above anti-causal definition and causal diagram, we can explore the problem
of MI EEG classification through the following causal factorization:

P (X,Y, Z) = P (X|Z)P (Z|Y )P (Y ) (2)

2.2 TASK CHALLENGES

Figure 1: Key challenges in machine learning for a MI EEG classification task. X represents input
EEG signals, Y the associated MI labels. Big circles and rectangles represent EEG signals of differ-
ent labels. Dots represent data points of any label and their color represent different EEG acquisition
devices.

Through this causal breakdown, we can categorize the major challenges associated with Motor-
Imagery (MI) EEG classification tasks into three main categories. Challenges related with the:
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1. Training EEG signals. One of the renowned challenges in motor-imagery classification
problem - as in any medical-related machine learning problem - is the scarcity of labelled
data due to the lengthy acquisition process. Subjects are required to spend hours in a labo-
ratory facility performing subsequent motor-imagery tasks. This process has been reported
to cause fatigue and discomfort, even when devices with dry electrodes are utilized. To
make things worse, due to the wide variety of available EEG recorders in the market, the
data acquisition can be undertaken with various devices which have completely different
specifications (e.g. number of electrodes, sampling frequency to name just a few), making
the combination of publically available EEG datasets extremely difficult.

2. Anatomical differences of subjects. Each subject has a unique brain anatomy and func-
tionality that results in polymorphous neural activity patterns when appeared in the surface
observed EEG signal. When designing a generic ML-based MI-BCI, researchers need to
take this inter-subject variability (subject distribution shift) into account.

3. Class Imbalance. Class imbalances can arise between the training and the deployment set
of a MI-BCI. It is necessary for the training set to be as closely balanced to the deployment
set as possible when training machine learning models.

3 PROPOSED FRAMEWORK

Figure 2: Dynamic convolution framework for BCI architectures. X represents input EEG signals,
Y the associated MI labels. K different subjects in the training set are represented by different
colors in the convolutional blocks. Colored rectangles and arrows (namely green, red and dark blue)
demonstrate the different blocks that are taken into account when computing the final convolutional
blocks for the MI classification task.

In this work, we mainly focus on the challenge of subject distribution shift (or inter-subject variabil-
ity). As described in the next section, we will use a publicly available MI dataset - which contains
a large number of different subjects, is class balanced, has relatively enough trials per subject and
all trials come from a single EEG recorder, essentially solving all the above identified challenges
but the subject distribution shift. In terms of the causal factorization 2, the problem of inter-subject
variability can be seen as a distribution shift S where:

P (X,Y, Z) = P (X|Z)PS(Z|Y )P (Y ) (3)

Here, we propose a framework that tackles the problem of subject distribution shift (or inter-subject
variability) and can be applied to any established CNN-based MI-BCI architecture, resulting in a
statistically significant performance increase.
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Our framework is based on the concept of dynamic convolutions as originally introduced in (Chen
et al. (2020)). In their work, they present dynamic convolution layer as an effective way to increase
model’s complexity without increasing the network’s depth and / or width, since each convolutional
layer is computed by dynamically mixing multiple parallel learnt convolutional kernels based on
an input-dependent attention vector. Inspired by this concept, we utilize dynamic convolutions in
the domain of MI brainwave decoding. Instead of having a BCI architecture that tries to discover
a common latent space for all k subjects in the training set, we use k parallel trainable convolu-
tional kernels (corresponding to the k available training subjects) for each convolutional block of
a CNN-based BCI network. Using a subject attention network that learns to distinguish between
the available individuals, we decouple the subjects and essentially train simultaneously k parallel
personalized models of the same BCI architecture, as illustrated in Figure 2.

Our subject attention network consists of the first order wavelet scalogram of the input EEG signal
X followed by a global average pooling across time and frequency. Mathematically, let x(t) ∈ RT

denote a one-dimensional input EEG signal, where T is the number of initial EEG time points, and
ψλ(t) be a wavelet. The 1st order scalogram is defined as X(λ, t) = |x(t) ∗ψλ(t)|. To perform this
operation, the raw input signal from each EEG channel is convolved with a wavelet kernel with size
(1,W ) = (1, Fs

2 ) where Fs is the sampling frequency. This wavelet kernel follows the real Gabor
wavelet format:

ψλ(t) =
1√
2πσ

e−
t2

2σ2 cos(2πλt) (4)

with t ∈ [−W
2 , ..., W

2 ] and 1
σ denotes the bandwidth and λ the normalized frequency of the Gabor

wavelet and these two properties are the only trainable parameters of this layer. During training, λ
is restricted (λ ∈ [0, 1

2 ]) to satisfy the Nyquist theorem.

The proposed framework takes the EEG signal X as input and tries to learn both the correct MI
task Y (estimate the conditional probability P (Y |X)) as well as the correct subject id π (estimate
the conditional probability P (π|X)). The subject attention network and the k parallel convolutional
kernels are trained simultaneously using the following loss function:

Loss = (1− acc) ∗ ℓAttention + acc ∗ ℓMI (5)

where acc is the training accuracy of the subject attention network and ℓ denotes the cross-entropy
function (ℓAttention for the subject attention network and ℓMI for the MI classification task). This
loss function effectively enforces first the training of the subject attention network and, as the at-
tention’s accuracy increases, it switches its focus to train the parallel convolutional kernels for the
different MI tasks. As also suggested in (Chen et al. (2020)), since softmax does not work well due
to its near one-hot output, we use a large temperature of 30 in the softmax of the attention network
during training in order to flatten the framework’s attention, allow a broader gradient backpropaga-
tion and effectively assist in the attention network’s training in the early epochs. On the other hand,
during evaluation we use the hard softmax (temperature of 1).

During inference, when an input EEG signal from a new unseen subject Sx is processed, it passes
firstly through the attention network and the subject attention vector π is computed. Empirically,
it was shown that this vector is quite sparse, and if it was used during inference, only a handful of
parallel convolutional kernels would be utilized during the kernel mixing. Instead, we would ideally
like to use knowledge from all k individuals and ”shift” the attention more to the most relevant
subjects. To accomplish that, we compute what we call the ”uniformly attended vector” A*. If there
was no attention network, the k parallel convolutional kernel would be mixed with a uniform factor
Ai =

1
k . To compute the ”uniformly attended vector”, the uniform attention vector A is combined

with the subject attention vector π and the result is passed through a softmax activation to flatten the
attention across all subjects - while maintaining the focus on the most relevant ones. Mathematically,
this operation can be described as:

A1

A2

...
Ak


︸ ︷︷ ︸

A

+

π1

π2

...
πk


︸ ︷︷ ︸

π

σ−→

A∗
1

A∗
2

...
A∗

k


︸ ︷︷ ︸

A*

(6)
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where σ denotes the softmax operation, A the uniform attention vector with Ai =
1
k , π the subject

attention vector with
∑

i πi = 1 and A* the ”uniformly attended” vector where
∑

i A
∗
i = 1.

In other words, using the causal factorization 3, our proposed framework tries to to estimate the
PSx

(Z|Y ) of a new unseeen subject Sx as the linear combination of k learned conditional probabil-
ities. More specifically:

PSx(Z|Y ) = A∗
1 × PS1(Z|Y ) +A∗

2 × PS2(Z|Y ) + ...+A∗
k × PSk

(Z|Y ) (7)

4 EXPERIMENTS

We tested our proposed framework in four well-established BCI architectures, namely DeepConvNet
(Schirrmeister et al. (2017)), ShallowConvNet (Schirrmeister et al. (2017)), EEGNet (Lawhern et al.
(2018)) and EEG-Inception (Santamarı́a-Vázquez et al. (2020)) in two MI tasks formed based on the
publically available MI dataset Physionet (Goldberger et al. (2000)). The one is a binary classifica-
tion task (MI Left vs Right Hand) and the other is a 3-class classification problem (MI Left Hand
/ Right Hand / Feet). The original Physionet dataset includes brain recordings from 109 healthy
participants, registered via 64 EEG sensors with a sampling frequency of 160 Hz, while performing
a series of pseudo-randomized cue-triggered MI tasks. In our experiments, we first excluded data
from 6 participants (subjects 88, 89, 92, 100, 104 and 106) due to differences in either the sampling
frequency or duration of the performed tasks. We evaluated the performance of the normal networks
and their equivalent dynamic networks in a leave-one-subject-out fashion. We trained the normal
networks for 50 epochs with learning rate of 0.001 while their dynamic versions for 30 epochs (to
avoid overfitting) - in the first 20 epochs with learning rate of 0.01, to assist the attention’s Gabor
filters to quickly adapt to the data, and 10 epochs with learning rate of 0.001 and frozen attention, to
fine-tune to the MI task. In both cases, we use an Adam optimizer. Finally, we performed a paired
t-test between the the normal and dynamic results.

Network Task Normal Avg. Accuracy Dynamic Avg. Accuracy Paired t-Test

ShallowConvNet MI Left vs Right Hand 80.6% 83.3% p-value ≈ 0.0055
ShallowConvNet MI Left / Right Hand / Feet 66.3 % 69.0% p-value ≈ 0.0043

DeepConvNet MI Left vs Right Hand 82.5 % 83.5% p-value ≈ 0.13
DeepConvNet MI Left / Right Hand / Feet 67.1% 71.3% p-value ≈ 0.0000328

EEGNet MI Left vs Right Hand 79.5% 80.2% p-value ≈ 0.26
EEGNet MI Left / Right Hand / Feet 66.5% 67.5% p-value ≈0.15

EEGInception MI Left vs Right Hand 81.6% 83.9% p-value ≈ 0.0068
EEGInception MI Left / Right Hand / Feet 67.6% 71.4% p-value ≈ 0.00025

Table 1: Performance of generic (trained and evaluated in a leave-one-subject-out fashion) models
of MI-classification (Left / Right hand and Left / Right hand / Feet) tasks in Physionet for DeepCon-
vNet, ShallowConvNet, EEGNet, EEG-Inception and their Dynamic equivalent networks

5 CONCLUSION

In this work, we analyze the task of MI EEG classification through the lens of causal reasoning. To
the best of our knowledge, this is the first work that brings machine learning in conjunction with
causal reasoning to the domain of EEG. Through this analysis, we identify and analyze some of
the major challenges and we introduce a framework based on dynamic convolutions that tackles the
problem of subject distribution shift (inter-subject variability). Our proposed framework demon-
strates increased performance when applied to different BCI architectures. Although this constitutes
early results in this research direction, we strongly believe that the proposed framework can have
further benefits in MI-BCIs and, in future work, we plan to use it to tackle more, if not all, challenges
detailedly described in this causal analysis.
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