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Abstract

Explainable AI (XAI) is a rapidly growing domain with a myriad of proposed
methods as well as metrics aiming to evaluate their efficacy. However, current
studies are often of limited scope, examining only a handful of XAI methods and
ignoring underlying design parameters for performance, such as the model architec-
ture or the nature of input data. Moreover, they often rely on one or a few metrics
and neglect thorough validation, increasing the risk of selection bias and ignoring
discrepancies among metrics. These shortcomings leave practitioners confused
about which method to choose for their problem. In response, we introduce LATEC,
a large-scale benchmark that critically evaluates 17 prominent XAI methods using
20 distinct metrics. We systematically incorporate vital design parameters like
varied architectures and diverse input modalities, resulting in 7,560 examined
combinations. Through LATEC, we showcase the high risk of conflicting metrics
leading to unreliable rankings and consequently propose a more robust evaluation
scheme. Further, we comprehensively evaluate various XAI methods to assist
practitioners in selecting appropriate methods aligning with their needs. Curiously,
the emerging top-performing method, Expected Gradients, is not examined in any
relevant related study. LATEC reinforces its role in future XAI research by publicly
releasing all 326k saliency maps and 378k metric scores as a (meta-)evaluation
dataset. The benchmark is hosted at: https://github.com/IML-DKFZ/latec.

1 Introduction

Explainable AI (XAI) methods have become essential tools in numerous domains, allowing for a
better understanding of complex machine learning decisions. The most prevalent XAI methods are
saliency maps [58]. As the diversity and abundance of proposed saliency XAI methods expand
alongside their growing popularity, ensuring their reliability becomes paramount [2]. Given that
there is no clear “ground truth” for individual explanations (e.g., discussed in Adebayo et al. [3]),
the trustworthiness of XAI methods is typically determined by examining three key criteria: their
accuracy in reflecting a model’s reasoning (“faithfulness”) [8, 55], their stability under small changes
(“robustness”) [71, 5], and the understandability of their explanations (“complexity”) [12, 10].
Beyond qualitative assessment of saliency maps such as in Doshi-Velez and Kim [21], Ribeiro et al.
[50], Shrikumar et al. [57], which can be influenced by human biases and does not scale to large-scale
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  XAI Method:  

Studies:

Attribution Attention 
OC LIME KS VG IxG GB GC SC C+ IG EG DL DLS LRP RA RoA LA

Adebayo et al. (2018) 
(nA = 5 (8), nE = 2) F F F F F

Nie et al. (2019) 
(nA = 2 (3), nE = 0) F F

Kindermans et al. (2019) 
(nA = 4 (8), nE = 1) F F F

Ghorbani et al. (2019) 
(nA = 3, nE = 3) R R R

Hooker et al. (2019) 
(nA = 3 (12), nE = 1) F F F
Yang & Kim (2019) 
(nA = 6 (9), nE = 3) F F F F F
Yeh et al. (2019) 

(nA = 4 (6), nE = 2) R R R R
Nguyen & Martìnez (2020) 

(nA = 3, nE = 4) C C C
Chefer et al. (2020) 

(nA = 5, nE = 1) F F F F F
Bhatt et al. (2020) 

(nA = 6, nE = 3) F/R F/R F/R F/R F/R
Arun et al. (2021) 
(nA = 5 (8), nE = 4) F F F F

Singh et al. (2021) 
(nA = 9 (12), nE = 0) C C C C C C C C

Kakogeorgiou et al. (2021) 
(nA = 8 (12), nE = 3) F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C

Dombrowski et al. (2022) 
(nA = 5, nE = 1) R R R R R

Arras et al. (2022) 
(nA = 6 (12), nE = 2) F F F F F F
Hesse et al. (2023) 

(nA = 11, nE = 3) F F F F F F
Li et al. (2023) 

(nA = 3 (6) , nE = 3 (6)) F F F
Zhang et al. (2023) 

(nA = 8 , nE = 2) F F F F F F F

Ours * 
(nA = 17, nE = 20) F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C

Positive Neutral Negative
Relative assessment to other XAI methods in study:Evaluated Criteria: F Faithfulness, R Robustness, C Complexity


* Results for image modality

Table 1: Showing gaps and inconsistencies between 18 related studies evaluating XAI methods. To
compare their results, colors coincide with the aggregated evaluation result of each XAI method
across all metrics used in the study and belonging to one criterion. nA: Amount of distinct and total
XAI methods. nE : Number of evaluation metrics. If nE = 0, the study is conducted qualitatively.

datasets (as shown by Wang et al. [64], Rosenfeld [53]), a wide array of metrics have been introduced
to evaluate XAI methods based on these three criteria quantitatively. These metrics are deployed in
several studies (see Table 1) to determine "What XAI method should I (not) use for my problem?".
However, the current approach to quantitatively validate XAI methods has two major shortcomings,
which we address in this work:

Shortcoming 1: Gaps and inconsistencies in XAI evaluation. Many studies restrict their analyses
to a limited set of design parameters such as input modalities, (toy-)datasets, model architectures,
attention or attribution-based XAI methods, and metrics, which all directly impact the performance of
XAI methods (we define the first three parameters as underlying design parameters, as they directly
influence the XAI method). Table 1 demonstrates this fragmented landscape specifically for the
domain of computer vision, including discrepancies found across studies, with some methods, such
as GradCAM (GC) [56], receiving contradictory assessments depending on the evaluation setup. As
a consequence, our current understanding of XAI performance is limited, making it challenging for
practitioners to determine a reliable XAI method for their specific use case.

Shortcoming 2: Individual XAI metrics lack trustworthiness. Recently, numerous metrics have
been proposed to approximate the three stated XAI evaluation criteria. These metrics reflect the
diversity of perspectives on the criterion. Studies typically apply one or two metrics to assess a
certain criterion (see nE in Table 1). Arguably, this is not a reliable measure of success, as these
limited subsets of perspectives on a criterion can lead to selection bias and overfitting to one metric
or perspective. This selection bias becomes even more severe when reporting the mean across several
metrics, which is a common procedure in XAI evaluation to summarize metric results [38, 29]. The
small number of considered metrics along with their brittle and nontransparent aggregation diminishes
the trustworthiness of results from recent XAI evaluation studies.

In response to these shortcomings, we present LATEC: the first comprehensive benchmark tailored
for large-scale attribution & attention evaluation in computer vision. LATEC encompasses 17 of the
most widely-used saliency XAI methods, including attention-based methods, and evaluates them
using 20 distinct metrics (see Figure 1). Notably, LATEC integrates a variety of model architectures,
and, to extend the evaluation spectrum beyond traditional 2D images, we included 3D point cloud
and volume data, adapting XAI methods and metrics as necessary to suit these modalities. In total,
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Figure 1: Structure of the LATEC framework including all design parameters and the output data of
each stage provided as the LATEC dataset. Final rankings are analyzed in the benchmark.

LATEC assesses 7,560 unique combinations. LATEC addresses Shortcoming 1 by systematically
incorporating all prevalent methods and metrics, as well as all vital underlying design parameters
affecting XAI methods, and quantifying their effect on XAI methods. LATEC further addresses
Shortcoming 2 by performing a dedicated analysis of the metrics themselves (also referred to as
"meta-evaluation"), including a quantitative validation of the metrics’ ranking behaviors, resulting in
the identification of a more robust evaluation scheme. Moreover, in support of future research, we’ve
made all intermediate data, including 326,790 saliency maps and 378,000 evaluation scores, as well
as the benchmark publicly accessible.

2 The LATEC benchmark

The LATEC benchmark includes a framework and a dataset with the method rankings as the final
output. The framework allows for diverse large-scale studies, structuring the experiments in six stages
(see Figure 1), and the LATEC dataset provides reference data for evaluation and exploration. As the
benchmark is easily extendable and leverages the high-quality dataset for standardized evaluation, it
also serves as a foundation for future benchmarking of new XAI methods and metrics (see Appendix B
for more information about the LATEC dataset).

Utilized input datasets For the image modality, we use ImageNet (IMN) [19], UCSD OCT retina
(OCT) [32] and RESISC45 (R45) [16], the volume modality the Adrenal-(AMN), Organ-(OMN) and
VesselMedMNIST3D (VMN) datasets [69], and the point cloud modality the CoMA (CMA) [49],
ModelNet40 (M40) [68] and ShapeNet (SHN) [13] datasets.

Model architectures On each utilized dataset except IMN, where we take pretrained models, we
train three models to achieve the architecture-dependent SOTA performance on the designated test set
(if available, see Appendix A for a detailed description of the model training and hyperparameters).
For the image modality, we use the ResNet50, EfficientNetb0, and DeiT ViT [63] architectures, for
the volume modality the 3D ResNet18, 3D EfficientNetb0, and Simple3DFormer [66] architectures,
and for the point cloud modality the PointNet, DGCNN and PC Transformer [26] architectures. The
first two architectures are always CNNs and the third is a Transformer.

XAI methods In total, we include 17 XAI methods, 14 attribution methods: Occlusion (OC) [72],
LIME (on feature masks) [50], Kernel SHAP (KS, on feature masks) [39], Vanilla Gradient (VG) [58],
Input x Gradient (IxG) [57], Guided Backprob (GB) [61], GC, ScoreCAM (SC) [65], GradCAM++
(C+) [14], Integrated Gradients (IG) [62], Expected Gradients (EG, also called Gradient SHAP) [23],
DeepLIFT (DL) [57], DeepLIFT SHAP (DLS) [39], LRP (with ϵ-,γ- and 0+-rules depending on the
model architecture) [11], and three attention methods: Raw Attention (RA) [22], Rollout Attention
(RoA) [1] and LRP Attention (LA) [15]. While the attribution methods are applied to all model
architectures, the attention methods can only be applied to the Transformer-based architectures.
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XAI Method: OC LIME KS VG IxG GB GC SC C+ IG EG DL DLS LRP RA RoA LA Average

Faithfulness 0.0 0.56 0.78 0.67 0.22 0.22 0.56 0.11 0.56 0.33 1.0 0.22 0.67 0.22 0.17 0.17 0.17 0.44

Robustness 0.33 0.56 1.0 0.56 0.0 0.56 0.44 0.22 0.33 0.11 0.33 0.0 0.89 0.33 0.33 0.5 0.45 0.4

Complexity 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Weighted Average 0.27 0.63 0.89 0.68 0.26 0.46 0.58 0.28 0.55 0.35 0.77 0.26 0.80 0.38 0.35 0.41 0.41 0.51

a. Ranking-(Dis)agreement between Metrics (Model: ResNet50, Dataset: ImageNet)

Model Architectures Utilized Datasets 
ResNet50 EffNetb0 DeiT ViT IMN OCT R45

Faithfulness 3.35 3.31 3.45 3.43 3.25 3.43

Robustness 3.19 3.2 2.96 3.25 3.09 3.01

Complexity 0.43 0.48 0.47 0.38 0.63 0.37

Weighted Average 2.86 2.85 2.83 2.91 2.80 2.82

b. Avg. Standard Deviation between Metrics for Image Model 

Architectures and Datasets

> 0.7 < 0.3

c. Proportion of smaller Metric Ranking Variance than Random Ranking Variance based on one-sided Levene Test 

over all Image Datasets and Model Architectures

Attention Methods only on Transformer Architectures

Figure 2: a. Ranking of four XAI methods based on all evaluation metrics of each criterion for one
specific set of design parameters. b. Average standard deviation per model architectures and utilized
datasets for the imaging modality. Weighted average per column is based on the number of metrics
per criterion. c. Proportion of accepted one-sided Levene-Tests for significantly smaller ranking
variance compared to the variance of an entire random ranking. Larger values show higher agreement
between metrics. The weighted average is based on the number of metrics per criterion.

Related work by Hooker et al. [30] and Yang and Kim [70] showed that advancing methods by
VarGrad [2] or SmoothGrad [60] can, in general, improve results. We conduct an ablation study
in Appendix O to validate these findings for our benchmark. Contrary to Hooker et al. [30], we
find no substantial improvements w.r.t faithfulness or robustness, only SmoothGrad notably reduces
complexity by producing more localized saliency maps. Thus, we only consider the original methods
without adaptations in the benchmark.

We qualitatively tuned the XAI hyperparameters per dataset (see Appendix B), as also commonly
done to avoid biasing the quantitative evaluation results (see Appendix C for all hyperparameters).
We observe that most hyperparameters generalize well across the datasets within a modality. To
further validate the non-sensitivity of the benchmark rankings to reasonably selected hyperparameters,
we conduct an ablation study including the top five ranked XAI methods in Appendix N, validating
the robustness of their performance.

Evaluation metrics We utilize a total of 20 well-established evaluation metrics, which are grouped
into three criteria: faithfulness ("Is the explanation following the model behavior?"), robustness ("Is
the explanation stable?"), and complexity ("Is the explanation concise and understandable?"). 11
metrics evaluate faithfulness: Faithfulness Correlation (FC) [9], Faithfulness Estimate (FE) [44],
Pixel Flipping (PF) [8], Region Perturbation (RP) [55], Insertion (INS) and Deletion (DEL) [47],
Iterative Removal of Features (IROF) [51], Remove and Debias (ROAD) [52], Sufficiency (SUF) [18]
and Infidelity (INF) [71], 6 metrics evaluate robustness: Local Lipschitz Estimate (LLE) [5], Max
Sensitivity (MS) [71], Continuity (CON) [42] and Relative Input/Output/Representation Stability
(RIS, ROS, RRS) [4], and 3 metrics evaluate complexity: Sparseness (SP) [12], Complexity (CP) and
Effective Complexity (ECP) [44]. See Appendix D for a description of every metric. We select the
hyperparameters per dataset as some depend on dataset properties (see Appendix subsection D.2 for
all parameters). As the raw evaluation scores have no semantic meaning and can be extremely skewed
in their distributions, making them hard to interpret and compare, we analyze the XAI methods and
metrics based on their ranking.

3D adaptation While several XAI methods and metrics in LATEC are independent of the input
space dimensions, others had to be adapted to 3D volume and point cloud data, building upon the
implementations for image data by Kokhlikyan et al. [34] and Hedström et al. [28]. Due to the
adaptations, this benchmark provides the first large-scale insights into XAI method performance and
metric behavior on 3D data. We describe the adaptation process, including rigorous testing, for all
respective XAI methods and metrics in Appendix H and show illustrative saliency maps.
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3 Deriving a reliable evaluation scheme for XAI

3.1 How severe is the risk of metric selection bias in XAI evaluation?

In Shortcoming 2, we describe a risk of selection bias due to approximating an evaluation criterion
with only one or a few metrics, possibly overfitting to a limited set of perspectives on the criterion.
In this metrics analysis, we first aim to provide empirical evidence for this risk. A first exploratory
analysis quickly supports the hypothesis, as we encounter strong ranking disagreement between
metrics for various combinations of underlying design parameters. We define ranking agreement as
the consensus among metrics belonging to one criterion about the rank of one XAI method when
evaluating and subsequently ranking this method against all other XAI methods. Consequently,
disagreement in ranking is defined through high variance between the determined ranks of the metrics
for one XAI method. For example, Figure 2 (a.) demonstrates the ranking behavior of four selected
XAI methods for one selection of underlying design parameters. The line charts show how each
metric ranks the four XAI methods in comparison to all other XAI methods, with the mean aggregated
average rank to the right. For faithfulness, we observe high disagreement between metrics in their
ranking of GC and IG, mainly agreeing metrics in the ranking of DLS (with IROF and MC being
noticeable outliers), and agreeing metrics in the case of LIME.

Do metric disagreements depend on underlying design parameters? The inquiry emerges as to
whether the risk of selection bias is generally present in certain combinations of underlying design
parameters or is uniformly distributed across them. To this end, we computed the average standard
deviation (SD) between metric rankings either aggregated across model architectures or datasets
(see Appendix Equation 1 and Equation 2 for the mathematical formulation) to observe the variance
among metrics per modality, model architecture, and datasets. Figure 2 (b.) shows for the imaging
modality that the average standard deviation is generally stable between model architectures or
datasets within each evaluation criterion (see Appendix I for the other two modalities). Thus, we can
conclude that there is no single model architecture, modality, or dataset choice that has a substantial
effect on the disagreement between metric rankings of all XAI methods.

Do metric disagreements vary for individual XAI methods? Now that we can rule out the general
influence of underlying design parameters, we quantify how strong the risk of metric disagreement
is in general and if there is a difference between XAI methods. To this end, we utilize a one-sided
Levene’s Test [37], testing if the rank-variance of a set of metrics is significantly lower than the
variance of a random rank distribution, which can be analytically inferred. We compute this test for all
sets of metrics on every possible combination of design parameters and mean aggregate over model
architectures and datasets (see Appendix Equation 3 for the mathematical formulation). Figure 2 (c.)
shows for the imaging modality the resulting proportion of accepted tests (α = 0.1) for each criterion
and XAI method. By computing the weighted average proportion across criteria at the bottom, we
indeed observe strong variations between the XAI methods. Specifically for KS, EG, and DLS, in a
large majority of cases, metrics agree, while for OC, IxG, SC, and DL only in about ∼ 27% of the
cases variance in metric ranking is significantly lower than random ranking. Concluding, our findings
reveal that metrics disagree and agree in varying degrees depending on the XAI method. We refer to
Appendix J for a study on why metrics disagree.

3.2 How can we identify reliable trends within agreeing and disagreeing metrics?

After providing empirical evidence for the risk of selection bias in XAI evaluation, we identify
three resulting major limitations (1-3) in current practice, collectively summarized as Shortcoming
2. The current practice in XAI evaluation is to employ a small set of metrics and subsequently
mean aggregate over the normalized scores to increase the generalization of results and simplify
data analysis in big datasets (see e.g. Li et al. [38], Hedström et al. [28], Hesse et al. [29]). We
present each limitation of this procedure with a corresponding solution and combine them into a
single evaluation scheme. This proposed scheme aims to reliably benchmark XAI methods across
both agreeing and disagreeing metrics, offering a more robust evaluation approach.

(1) Current practice includes only small sets of metrics, which comes with an increased risk of
biases due to a high dependence on metric selection and individual metric behavior. Further, mean
aggregating in such small samples lacks robustness against "outlier metrics". The subsection 3.1
demonstrates this risk of selection bias extensively. We start addressing this limitation by including
the to-date largest scale of diverse and relevant metrics, minimizing the risk of selection bias and
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the influence of outliers metrics. The adequacy of the selected metrics is ensured by exclusively
choosing standard metrics commonly implemented in widely used software libraries [27, 34], while
also ensuring diversity in their implementation and interpretation of the respective criteria. This
approach is crucial to avoid overfitting to a single perspective.

(2) Aggregation across metrics obfuscates their diverse perspective on the approximated evaluation
criterion. Such aggregation can be further flawed due to unbounded metrics, inconsistent inter-
pretations (e.g. correlation coefficient vs. distance-based metrics), and sensitivity to metric score
outliers and distribution skewness (also shown by Colombo et al. [17]). We address this limitation
by employing an “aggregate-then-rank” scheme, which is already well established for large-scale
evaluation and benchmarks of model performance [40, 17, 54]. By aggregating the median evaluation
score of all model and dataset combinations of one modality and metric we get more robust metric
scores without ignoring the perspective of the individual metric. Subsequently, we rank the computed
scores, as rankings are independent of the scales or units of the metrics and are generally easier
to interpret [54]. However, we acknowledge that in a large-scale study such as ours, abstraction
is necessary to distill meaningful results from the extensive set of rankings. To highlight strong
trends across metrics we compute their average rank per XAI method, indicated by "µ̂" in Table 2.
A consistent high or low average rank for an XAI method implies a general agreement among the
metrics evaluating a specific criterion.

(3) Current studies ignore the extent of disagreement between metrics, which contains crucial
information about a method’s performance. We believe that understanding why metrics disagree
and the situations in which this occurs is vital for evaluating XAI. To determine the presence of
disagreement in general, we deployed the Levene test in Figure 2. In the XAI benchmark, however,
we are interested in comparing the level of disagreement between XAI methods. To this end, we
calculate the SD between ranks of an XAI method as a measure of disagreement, indicated as "σ̂".

Proposed evaluation scheme. We subsequently combine all solutions into one proposed evaluation
scheme. To include all metric perspectives and increase general ranking robustness, we first calculate
the median of the standardized evaluation score from all our included relevant metrics for each
combination of dataset and model. Further, we average these medians and rank the methods according
to each metric (see Appendix F for a detailed flow chart of how we get from evaluation scores to
rankings). Ranking XAI methods across one metric’s evaluation scores from several input datasets
and model architectures makes the ranking more robust to variation within these parameters. To
analyze the large set of ranking results, we jointly utilize the mean µ̂, median xn/2, and SD σ̂ (e.g.
in Table 2) to detect strong ranking trends through µ̂ and xn/2, and determine their trustworthiness
through σ̂, before focusing onto the individual metrics. We determine the threshold values in σ̂,
indicating high or low SD, based on the quantiles of each evaluation criterion’s SD distribution. To
assess the statistical significance of the differences between two methods, we report the p-values of
the Wilcoxon-Mann-Whitney tests for all modalities and evaluation criteria, comparing the rankings
of all XAI methods, as detailed in Appendix P. Based on this evaluation scheme, we achieve more
robust rankings, include a diverse set of metric perspectives, and still leverage a mechanism to
highlight strong trends and (dis-)agreeing metrics from the large set of results.

3.3 Additional insights for robust evaluation

We encountered further pitfalls of the current metric application in XAI, which to our knowledge
have not been discussed before. While all pitfalls are discussed in Appendix L, one pitfall regarding
complexity evaluation is in our opinion especially critical. Suspiciously, Figure 2 (c.) indicates almost
no disagreement between complexity rankings. Further, CAM (GC, SC, C+) and attention (RA, RoA,
LA) methods are ranked significantly more complex (see Table 2). In our opinion, this observation is
counter-intuitive when comparing the complexity rankings to the saliency maps in Appendix B, based
on which we would classify CAM and attention methods as more localized and less noisy. While
all three complexity metrics are also explicitly proposed for image data, we notice that they all treat
each pixel, voxel, or point independently of each other, ignoring locality and favoring methods that
attribute to the smallest set of single pixels. As this approach possibly transfers to low dimensional
images such as MNIST [36] or CIFAR-10 [35], the image datasets the three metrics are originally
presented on, we hypothesize that it may not be effective with higher-dimensional inputs as observed
in our study. Consequently, it is expected that techniques such as LRP would be highly regarded
due to their emphasis on filtering the significance of individual pixels, in contrast to CAM methods
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Faithfulness
FC FE MC PF RP INS DEL IROF ROAD SUF INF

OC 9.3 10.0 5.1 2 3 14 16 3 12 15 5 8 10 14
LIME 14.7 16.0 2.9 14 17 17 17 16 17 17 12 10 9 16

KS 14.3 15.0 2.7 13 16 15 15 17 16 16 13 11 8 17
VG 10.7 11.0 3.0 11 11 6 9 14 15 9 14 13 6 10
IxG 7.1 7.0 3.9 3 14 3 7 7 8 5 8 15 4 4
GB 7.6 8.0 5.3 1 1 16 2 9 10 8 10 17 7 3
GC 8.0 9.0 3.3 9 7 4 11 10 11 12 3 4 12 5
SC 7.9 9.0 4.9 8 9 12 12 2 9 13 1 3 16 2
C+ 9.5 10.0 3.7 10 10 11 13 12 13 14 2 5 5 9
IG 7.5 6.0 3.8 4 13 5 10 6 5 1 6 12 13 8

EG 5.9 6.0 3.4 6 2 2 4 8 1 4 9 7 11 11
DL 7.5 7.0 3.4 7 12 7 6 11 6 2 7 14 3 7

DLS 4.8 4.0 3.1 5 6 1 5 4 2 3 4 9 2 12
LRP 12.5 14.0 4.0 12 15 13 14 15 14 11 11 16 1 15
RA 9.4 8.0 4.7 15 4 8 8 13 7 10 17 6 14 1

RoA 8.8 8.0 5.2 17 8 9 3 5 3 7 15 2 15 13
LA 7.5 6.0 6.0 16 5 10 1 1 4 6 16 1 17 6

̂μ xn/2
Robustness

LLE MS CON RIS ROS RRS
OC 9.0 8.0 4.4 15 14 2 8 7 8

LIME 14.5 16.5 4.7 16 16 4 17 17 17
KS 14.5 16.0 4.3 17 17 5 16 16 16
VG 5.5 5.0 2.6 7 8 9 3 3 3
IxG 9.8 11.0 4.3 5 4 8 14 14 14
GB 8.0 9.0 3.7 2 5 7 12 11 11
GC 6.5 6.0 3.3 8 12 1 6 6 6
SC 10.5 9.5 3.6 11 13 17 7 8 7
C+ 12.3 12.0 2.7 14 15 16 10 10 9
IG 8.3 11.5 5.2 1 1 13 11 12 12

EG 4.2 3.5 3.3 9 7 6 1 1 1
DL 9.3 12.5 4.9 3 2 12 13 13 13

DLS 7.7 9.0 3.0 4 3 11 9 9 10
LRP 11.2 12.5 4.1 6 6 10 15 15 15
RA 6.5 5.5 4.8 10 9 14 2 2 2

RoA 7.0 5.0 3.7 13 11 3 5 5 5
LA 8.2 7.0 4.4 12 10 15 4 4 4

Complexity
SP CP ECP

OC 10.0 10.0 0.8 10 9 11
LIME 6.7 6.0 0.9 6 6 8

KS 14.3 15.0 1.7 16 15 12
VG 12.3 13.0 1.7 13 14 10
IxG 4.3 4.0 0.5 4 5 4
GB 4.7 5.0 0.5 5 4 5
GC 12.0 12.0 0.8 12 11 13
SC 8.0 8.0 0.8 9 8 7
C+ 14.0 14.0 0.8 14 13 15
IG 3.0 3.0 0.0 3 3 3

EG 17.0 17.0 0.0 17 17 17
DL 2.0 2.0 0.0 2 2 2

DLS 7.0 7.0 0.8 8 7 6
LRP 1.0 1.0 0.0 1 1 1
RA 8.7 9.0 1.2 7 10 9

RoA 15.7 16.0 0.5 15 16 16
LA 12.3 12.0 1.2 11 12 14

̂μ ̂σ

a. Image Modality

̂μ :  < 7  > 10 ̂σ :  < 0.15 Quantile  > 0.85 Quantile

Faithfulness
FC FE MC PF RP INS DEL IROF ROAD SUF INF

OC 10.6 10.0 4.7 17 17 17 10 14 4 10 4 8 7 9
LIME 8.8 9.0 4.8 3 3 3 13 17 6 13 9 5 13 12

KS 8.8 8.0 5.0 4 4 4 14 16 8 11 11 3 17 5
VG 10.2 10.0 4.5 5 5 5 15 6 10 15 16 7 15 13
IxG 5.8 6.0 3.7 6 6 6 4 10 15 3 7 2 2 3
GB 6.7 7.0 3.5 7 7 7 6 8 14 7 10 1 6 1
GC 12.8 14.0 3.5 8 8 8 17 13 16 16 14 15 16 10
SC 8.4 11.0 4.6 2 2 2 11 11 5 12 8 11 14 14
C+ 11.5 9.0 3.8 9 9 9 16 9 12 17 17 14 8 6
IG 8.6 11.0 4.3 12 12 12 3 5 13 4 13 9 1 11

EG 7.0 7.0 3.9 11 11 11 1 7 9 1 6 4 12 4
DL 7.2 6.0 4.5 13 13 13 2 12 7 2 5 6 4 2

DLS 9.4 10.0 3.9 14 14 14 9 4 11 5 12 10 3 7
LRP 13.0 15.0 3.4 15 15 15 12 15 17 14 15 12 5 8
RA 10.1 11.0 5.9 16 16 16 8 2 1 9 2 13 11 17

RoA 7.9 10.0 5.2 10 10 10 5 1 2 6 1 17 10 15
LA 6.2 3.0 5.4 1 1 1 7 3 3 8 3 16 9 16

̂μ ̂σ
Robustness

LLE MS CON RIS ROS RRS
OC 9.7 11.0 4.0 12 12 1 13 10 10

LIME 12.3 15.0 5.1 16 16 2 10 15 15
KS 14.5 16.0 4.3 17 17 5 16 16 16
VG 5.7 5.5 4.7 10 10 11 1 1 1
IxG 10.8 13.5 4.5 5 4 15 14 14 13
GB 10.8 11.5 3.1 7 7 16 11 12 12
GC 9.8 8.5 2.7 14 13 8 8 7 9
SC 10.2 8.5 3.5 15 15 9 7 8 7
C+ 10.3 9.5 4.5 13 14 17 6 6 6
IG 6.8 8.5 4.0 2 1 12 9 9 8

EG 5.3 4.5 3.8 6 6 13 2 2 3
DL 8.2 9.0 4.1 3 3 7 12 13 11

DLS 9.8 10.5 4.1 4 5 10 15 11 14
LRP 11.3 15.5 7.0 1 2 14 17 17 17
RA 6.0 5.5 2.4 9 9 6 5 5 2

RoA 5.0 4.0 2.2 8 8 3 4 3 4
LA 6.3 4.5 3.3 11 11 4 3 4 5

̂μ ̂σ
Complexity

SP CP ECP
OC 4.7 6.0 2.6 7 1 6

LIME 11.7 11.0 2.5 9 15 11
KS 11.7 12.0 2.1 12 14 9
VG 14.3 15.0 0.9 15 13 15
IxG 5.3 2.0 4.7 2 12 2
GB 8.3 8.0 2.1 6 11 8
GC 11.3 10.0 1.9 14 10 10
SC 15.3 16.0 1.7 17 16 13
C+ 13.0 14.0 2.9 16 9 14
IG 4.7 4.0 1.7 4 7 3

EG 7.0 7.0 0.8 8 6 7
DL 4.0 4.0 0.8 3 5 4

DLS 4.7 5.0 0.5 5 4 5
LRP 1.7 1.0 0.9 1 3 1
RA 8.3 11.0 4.5 11 2 12

RoA 11.3 10.0 3.4 10 8 16
LA 15.7 17.0 1.9 13 17 17

̂μ ̂σ

b. Volume Modality

̂μ :  < 7  > 10 ̂σ :  < 0.15 Quantile  > 0.85 Quantile

Faithfulness
FC FE MC PF RP INS DEL IROF ROAD SUF INF

OC 8.5 10.0 4.3 1 14 13 11 6 7 10 10 14 4 3
LIME 5.2 6.0 2.7 8 1 1 6 8 1 6 6 6 6 8

KS 7.0 7.0 3.6 6 7 8 2 1 5 8 11 10 5 14
VG 7.9 9.0 3.4 9 9 9 8 2 10 11 1 7 8 13
IxG 6.7 5.0 4.0 7 4 2 4 3 9 5 3 11 14 12
GB 5.3 4.0 3.8 4 2 3 1 10 8 1 2 5 11 11
IG 7.5 7.0 3.1 10 6 5 5 7 4 3 8 13 12 9

EG 8.0 9.0 3.2 11 13 10 9 5 3 2 7 9 9 10
DL 5.8 4.0 3.8 14 5 4 3 4 2 4 5 4 13 6

DLS 8.2 8.0 2.2 12 11 7 7 9 6 9 4 8 10 7
LRP 9.4 10.0 2.6 13 12 6 10 11 11 7 9 12 7 5
RA 8.0 11.0 5.4 2 3 11 14 14 12 14 12 3 2 1

RoA 8.7 12.0 4.5 5 8 12 12 12 13 12 14 1 3 4
LA 8.9 13.0 5.3 3 10 14 13 13 14 13 13 2 1 2

̂μ ̂σ
Robustness

LLE MS CON RIS ROS RRS
OC 10.5 10.0 1.9 13 13 10 8 10 9

LIME 13.2 14.0 1.9 14 14 9 14 14 14
KS 9.0 8.5 2.3 12 12 6 7 9 8
VG 6.7 5.0 2.4 10 10 5 5 5 5
IxG 8.8 9.0 3.3 7 6 4 12 11 13
GB 8.8 9.0 1.1 9 9 7 10 8 10
IG 7.3 8.0 4.2 5 4 1 11 12 11

EG 7.5 7.5 3.5 11 11 11 4 4 4
DL 9.0 9.5 3.9 6 7 3 13 13 12

DLS 7.0 7.0 1.0 8 8 8 6 6 6
LRP 5.7 6.0 2.3 4 5 2 9 7 7
RA 4.7 3.0 4.2 3 3 14 3 2 3

RoA 4.0 2.0 4.0 2 2 13 2 3 2
LA 2.8 1.0 4.1 1 1 12 1 1 1

̂μ ̂σ
Complexity

SP CP ECP
OC 8.3 8.0 2.1 11 8 6

LIME 8.3 8.0 1.2 8 10 7
KS 9.3 9.0 0.5 10 9 9
VG 8.0 7.0 1.4 7 7 10
IxG 2.0 2.0 0.8 3 2 1
GB 4.0 4.0 0.0 4 4 4
IG 2.7 3.0 0.5 2 3 3

EG 10.3 11.0 0.9 9 11 11
DL 1.3 1.0 0.5 1 1 2

DLS 6.3 6.0 1.2 5 6 8
LRP 5.3 5.0 0.5 6 5 5
RA 12.0 12.0 0.0 12 12 12

RoA 13.7 14.0 0.5 14 14 13
LA 13.3 13.0 0.5 13 13 14

̂μ ̂σ

c. Point Cloud Modality

̂μ :  < 6  > 9 ̂σ :  < 0.15 Quantile  > 0.85 Quantile

̂σ ̂μ xn/2 ̂σ

xn/2

xn/2

xn/2 xn/2

xn/2

xn/2

xn/2 xn/2

xn/2,

xn/2,

xn/2,

Table 2: Metric rankings of the XAI methods for all three modalities based on the ranking computation
across model architectures and datasets outlined in section 2. For each XAI method µ̂ (mean) and
xn/2 (median) indicate strong ranking trends, and σ̂ (SD) high or low disagreement between metrics.
Coloring of µ̂ and xn/2 coincide with top and bottom positions as point cloud rankings are of length
14 and all others are of length 17. σ̂ coloring coincides with the upper 0.15 and red with the lower
0.85 quantiles of each evaluation criterion.

that attribute importance to broader local regions. Whether these XAI methods are less complex and
more human-understandable on computer vision modalities is debatable and subsequent complexity
evaluation results should be interpreted with caution.

4 XAI benchmark results

Based on the proposed evaluation scheme, we highlight six main findings, each of which consists
of an observation followed by a recommendation. These findings encompass general trends across
design parameters as well as specific trends pertinent to particular XAI methods. We ensure the
robustness of highlighted results by focusing on observations with low SD between metrics.

Expected Gradients consistently rank among the top methods in terms of faithfulness and
robustness. However, no XAI method ranks consistently high on all evaluation criteria and modalities.
Further, EG consistently exhibits an average SD between metrics. We would recommend EG as an
initial approach in various situations, also due to its low dependence on hyperparameter selection and
input modalities, especially when baseline values are non-trivial to select.

Rankings of XAI methods typically generalize well over datasets and model architectures. The
tables in Appendix K show minimal ranking disparities between datasets or model architectures within
individual modalities. This suggests that a method selected for one dataset or model architecture
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can transfer well to others if data dimensionality and characteristics are not too distinct. For model
architectures, however, there are two notable exceptions. CAM methods generally show higher
ranking dissimilarities between architectures, which could be attributed to differences in latent
representations of the models, as the semantics captured in the last convolutional or cls-token layers
do not have to coincide between models. Thus, we recommend increasing the robustness by averaging
the activation map of several hidden layers, which has shown effective in application [25], but can
lead to less localized saliency maps. LRP shows additionally high dissimilarity between CNN
and Transformer architectures, especially for the 3D modalities. We use the recommended γ- and
ϵ-rules in LRP for the CNN models. However, on Transformer architectures, LRP does not preserve
the conservation rule and only works with the 0+-rule (see Chefer et al. [15]). Both implemented
changes to LRP bias the relevance computation, which consequentially impacts its performance on
Transformer architectures. Thus, we recommend using LA instead of LRP as a relevance-based
method on Transformer architectures, as it leverages the Transformer-inherent attention and performs
better regarding faithfulness and robustness.

Ranks of XAI methods are highly dependent on the input modality, especially for linear
surrogate and CAM methods. In general, we observe substantial ranking differences across
modalities. Especially both linear surrogate methods (LIME, KS) underperform on image and volume
compared to the lower dimensional point cloud modality in terms of faithfulness. On these modalities,
their performance also strongly depends on the suitability of the feature mask computed via a grid
or super-pixels, which is very time-consuming to fine-tune for single observations. Further, their
evaluated robustness is very low across all modalities. Concluding, we advise against using them
for high-dimensional and complex relationships. CAM methods achieve always higher faithfulness
on image than on volume data. When comparing the saliency maps between both modalities, we
observe that the volume-based maps are much coarser (i.e. more "blocky") and less focused. We
attribute this observation to less accurate latent model representations and subsequent up-sampling in
3D compared to 2D space, subsequently not recommending them for volume data. Overall, results
indicate higher consistency in robustness across modalities, with greater variability in faithfulness
and complexity. Notably, the standard deviation of robustness metrics differs significantly between
volume and point cloud data, suggesting an influence on metric disagreement.

Attention methods are more robust compared to attribution methods but can exhibit strong
disagreement among metrics We observe a very large SD for the three attention methods (RA,
RoA, LA) as faithfulness and robustness metrics rank them either very high or low (except for
robustness on volume data). Therefore, we would strongly recommend investigating the interaction
between metrics, attention methods, and also the transformer architectures in more depth as the risk
of selection bias is by far the highest for this subgroup of methods. Among the attention methods,
the relevance-filtered-based LA method scores primarily higher than non-filtered raw attention. In
addition, LA allows to visualize input features that attribute to a specific outcome and are not only
detected by the model in general, making it much more versatile.

Compared to other method subgroups, SHAP methods differ strongly in performance. Contrar-
ily to other method subgroups such as linear surrogate methods (LIME, KS), CAM methods (GC,
SC, C+), and attention methods (RA, RoA, LA), the Shapely value approximating SHAP methods
(EG, KS, and DLS) differ extensively in their performance. This observation is consistent with the
results of Molnar et al. [41], which are, however, not in the context of XAI evaluation. Therefore, it
is advisable not to select a single SHAP method with the expectation of achieving similar results to
others but rather to employ multiple such methods. For more results regarding behavioral similarities
among XAI methods, we refer to Appendix M.

For LRP we observe a trade-off between faithfulness and complexity. In subsection 3.3 we already
discussed our reservation against the complexity metrics and why especially CAM and attribution
methods rank low. However, besides the attention methods, we also observe a strong trade-off between
faithfulness and complexity for LRP, which we would also relate to the mathematical formulation
of the complexity metrics. We can explain this observation by LRP’s tendency to attribute to a very
small set of input features: Faithfulness is low due to the absence of important input features in the
attributed set, and robustness is low as the relative change in this set can occur fast, but complexity, as
evaluated in our metrics, is also low due to the small set size. The attributed set size can be influenced
by the model-layer assigned relevance propagation rule, e.g. switching the ϵ-rule with the 0-rule,
or hyperparameters, but this has to be fine-tuned per observation, making LRP only versatile when
explaining single observations.
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5 Comparison with related work

Our study addresses the limitations of previous research, which uses small and varying subsets of XAI
methods and metrics, by providing a comprehensive and robust analysis that includes measurements
of disagreement between metrics, thereby significantly enhancing validity and resolving gaps and
inconsistencies between related studies. These gaps and inconsistencies become particularly evident
from Table 1, which presents a summary of 18 related relevant studies (all on image data as there are
none for volume or point cloud). While some "evergreen" XAI methods, i.e., VG, IxG, GB, and IG,
stand out, the sparsity of Table 1 is very notable, especially for attention methods. In comparison,
we present our results for the imaging modality indicated at the bottom, demonstrating the extensive
difference in scale. Surprisingly, our consistently top-ranking method in terms of faithfulness and
robustness, EG, is not evaluated in any of the related studies.

Back-referencing to Table 1, we observe in several cases similar results to other studies on image
data: low faithfulness of VG, LIME, or LRP by Chefer et al. [15], and high faithfulness of IG (can
depend highly on the selected baseline [6]) and LA (but only two studies including attention methods).
Regarding the conflicting outcomes reported for GC, our results show average faithfulness but high
robustness on image data (but can depend on the underlying model, as our work suggests). On the
contrary, our results contradict the findings on high faithfulness and robustness of KS (Bhatt et al. [9]
uses lower dimensional image data), high faithfulness of LRP, or low faithfulness of IG. However,
these results can differ between modalities, as GC, for example, obtains very low scores in faithfulness
and robustness on volume data. No related studies that examine both attention and attribution methods
address the notably higher SD observed in attention methods compared to attribution methods when
evaluating faithfulness.

Most evaluation of complexity is qualitative (e.g. Singh et al. [59]), with only those studies that
introduce a metric themselves conducting also quantitative evaluations (i.e. Nguyen and Martínez
[44], Kakogeorgiou and Karantzalos [31]). We consider the high fluctuation between quantitative
and especially qualitative complexity evaluation outcomes as further support for our hypothesis that
there is a gap between the aim of the metrics and the human conception of low complexity, strongly
recommending the development of either new metrics or falling back to robust qualitative user studies.

6 Conclusion and discussion

Although our benchmark is one of the most comprehensive in the field, we restrict ourselves to the
computer vision modalities with the, in our opinion, most unique and not overlapping characteristics,
ignoring e.g. videos. Non-computer vision modalities, such as language, introduce new modality-
specific XAI methods and metrics, rendering large-scale comparisons between these modalities
infeasible. We also did not include more unconventional post-hoc XAI methods such as symbolic
representations and meta-models or niche evaluation criteria like localization and axiomatic properties
as they either require ground-truth bounding boxes or can not be applied to all XAI methods. Further,
our benchmark focuses on the comparison between methods, not on the evaluation to what extent
an individual method may or may not be faithful or robust in general, thus ignoring e.g. synthetic
baselines.

Our results demonstrate vividly the need for rethinking the evaluation of XAI methods and the risks
of inconsistent benchmarking for practitioners and researchers. As a solution, we offer practitioners
profound benchmarking capabilities, practical takeaways for applying and selecting XAI methods, and
adapted XAI methods and metrics for 3D modalities. This includes the most all-encompassing answer
to "What XAI method should I (not) use for my problem?" to date, based on the extensive evidence
in our provided result tables and the LATEC dataset. For researchers, we propose a new evaluation
scheme, address the risk of conflicting metrics, and introduce LATEC as a platform for standardized
benchmarking of methods and metrics in XAI. LATEC offers researchers the opportunity to explore
and answer numerous critical questions in XAI, thereby playing a pivotal role in the advancement of
the field.
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Appendix

A Model performance and hyperparameter

A.1 Test set performance

Model Performance Metric

Dataset:
Model 
Architecture: Accuracy Precision Recall F1 AUROC

OCT 

(MC: 4)

ResNet 50 0.999 0.999 0.999 0.999 1.0

EfficientNet b0 0.9969 0.9969 0.9969 0.9969 1.0

DeiT ViT 0.999 0.999 0.999 0.999 1.0

R45 

(MC: 45)

ResNet 50 0.9535 0.9536 0.9538 0.9535 0.9995

EfficientNet b0 0.9554 0.9554 0.9549 0.9549 0.9995

DeiT ViT 0.9568 0.957 0.9568 0.9567 0.9995

a. Testset Performance on Image Modality

Model Performance Metric

Dataset:
Model 
Architecture: Accuracy Precision Recall F1 AUROC

AMN 

(BC)

3D ResNet 18 0.8003 0.8013 0.7987 0.8 0.8699

EfficientNet3D b0 0.8003 0.7954 0.8087 0.802 0.8647

Simple3DFormer 0.7936 0.7907 0.7907 0.7907 0.8728

OMN 

(MC: 11)

3D ResNet 18 0.9115 0.9248 0.9248 0.9226 0.9953

EfficientNet3D b0 0.8754 0.8924 0.8936 0.8914 0.9893

Simple3DFormer 0.8131 0.8463 0.8381 0.84 0.9815

VMN 

(BC)

3D ResNet 18 0.9359 0.937 0.9346 0.9358 0.98

EfficientNet3D b0 0.9162 0.9162 0.9162 0.9162 0.9229

Simple3DFormer 0.8861 0.8871 0.8848 0.886 0.9394

b. Testset Performance on Volume Modality

Model Performance Metric

Dataset:
Model 
Architecture: Accuracy Precision Recall F1 AUROC

CMA 

(MC: 12)

PointNet 0.9852 0.9743 0.9876 0.98 0.998

DGCNN 0.9535 0.9373 0.9498 0.9423 0.9989

PC Transformer 0.9751 0.9645 0.9688 0.9662 0.9996

M40 

(MC: 40)

PointNet 0.8914 0.8374 0.8564 0.8438 0.9958

DGCNN 0.9177 0.8844 0.891 0.8864 0.9973

PC Transformer 0.9149 0.8779 0.8842 0.8796 0.9969

SHN 

(MC: 16)

PointNet 0.9878 0.9673 0.9689 0.9668 0.9991

DGCNN 0.9903 0.966 0.9847 0.9745 0.9995

PC Transformer 0.9896 0.9642 0.9819 0.9716 0.9997

c. Testset Performance on Point Cloud Modality

MC #: Multi-Class (# Classes), BC: Binary-Class

Table 3: a., b. & c. Test set performance measured with the metrics: accuracy, precision, recall, F1,
and area under the receiver operating characteristic (AUROC) curve, for each modality. In the case of
IMN we use pretrained weights for the Transformer architecture from Huggingface1 and the CNN
architectures from TorchHub2,3.
1 https://huggingface.co/facebook/deit-small-patch16-224
2 https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet50.html
3 https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b0.html

Architectures were chosen based on their popularity and, to a limited extent, comparability between
modalities, e.g. ResNet-50 and 3D ResNet-18 which both emerge from the same family of ResNet
architectures. While 3D volume architectures could also be applied to point cloud data, we choose
point cloud specific architectures for the modality. All models were trained on a NVIDIA GeForce
RTX 3090.
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A.2 Hyperparameter

We tuned all hyperparameters on either the declared validation set or sampled a validation set based
on 20% of the train set. The tuning was performed via grid search for each model. The primary
metric for hyperparameter tuning was the F1 score.

Utilized Computer Vision Datasets
Model Architecture: Hyperparameter: OCT R45

ResNet 50

Batch size 128 128
Max Epochs 8 60

Learning rate (LR) 0.0001 0.0001
Optimizer Madgrad Madgrad

LR Scheduler Cosine Annealing Cosine Annealing
Weight Decay 0 0

Momentum 0.9 0.9

Augmentations

Train:

Resize (256,256)

RandomCrop (224,224)

RandomAffine (shear=0.2,

degrees=5)

RandomHorizontalFlip

Grayscale (channels=3)


Test:

Resize (256,256)

CenterCrop (224,224)

Grayscale (channels=3)

Train:

Resize (256,256)

RandomCrop (224,224)

RandomHorizontalFlip

RandAugment

Normalize (mean=(0.485, 0.456,

0. 406), std=(0.229, 0.224, 0.225))


Test:

Resize (256,256)

Normalize (mean=(0.485, 0.456,

0. 406), std=(0.229, 0.224, 0.225))

Sampling Weighted Random Sampling None

EfficientNet b0

Batch size 128 128
Max Epochs 5 15

Learning rate (LR) 0.0001 0.001
Optimizer Madgrad Madgrad

LR Scheduler Cosine Annealing Cosine Annealing
Weight Decay 0 0

Momentum 0.9 0.9

Augmentations

Train:

Resize (256,256)

RandomCrop (224,224)

RandomAffine (shear=0.2,

degrees=5)

RandomHorizontalFlip

Grayscale (channels=3)


Test:

Resize (256,256)

CenterCrop (224,224)

Grayscale (channels=3)

Train:

Resize (256,256)

RandomCrop (224,224)

RandomHorizontalFlip

RandAugment

Normalize (mean=(0.485, 0.456,

0. 406), std=(0.229, 0.224, 0.225))


Test:

Resize (256,256)

Normalize (mean=(0.485, 0.456,

0. 406), std=(0.229, 0.224, 0.225))

Sampling Weighted Random Sampling None

DeIT ViT

Batch size 128 128
Max Epochs 6 60

Learning rate (LR) 0.0001 0.0001
Optimizer Madgrad Madgrad

LR Scheduler Cosine Annealing Cosine Annealing
Weight Decay 0 0

Momentum 0.9 0.9

Augmentations

Train:

Resize (256,256)

RandomCrop (224,224)

RandomAffine (shear=0.2,

degrees=5)

RandomHorizontalFlip

Grayscale (channels=3)


Test:

Resize (256,256)

CenterCrop (224,224)

Grayscale (channels=3)

Train:

Resize (256,256)

RandomCrop (224,224)

RandomHorizontalFlip

RandAugment

Normalize (mean=(0.485, 0.456,

0. 406), std=(0.229, 0.224, 0.225))


Test:

Resize (256,256)

Normalize (mean=(0.485, 0.456,

0. 406), std=(0.229, 0.224, 0.225))

Sampling Weighted Random Sampling None

Hyperparameter for Image Modality

Table 4: Hyperparameter for all three architectures and CV datasets, excluding IMN as we load
pretrained weights.
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Utilized Computer Vision Datasets
Model Architecture: Hyperparameter: AMN OMN VMN

3D ResNet18

Batch size 32 32 32
Max Epochs 100 100 100

Learning rate (LR) 0.001 0.001 0.001
Optimizer SGD Adam Adam

LR Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Weight Decay 0 0 0

Momentum 0.9 0 0

Augmentations

Train:

RandomBrightness(U(0,1))


Test:

FixedBrightness(0.5)

None

Train:

RandomBrightness(U(0,1))


Test:

FixedBrightness(0.5)

Sampling Weighted Random Sampling None Weighted Random Sampling

3D EfficientNet b0

Batch size 32 32 64
Max Epochs 100 100 100

Learning rate (LR) 0.001 0.001 0.001
Optimizer SGD AdamW Adam

LR Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Weight Decay 0.0005 0.0005 0

Momentum 0.9 0 0

Augmentations

Train:

RandomBrightness(U(0,1))


Test:

FixedBrightness(0.5)

None

Train:

RandomBrightness(U(0,1))


Test:

FixedBrightness(0.5)

Sampling Weighted Random Sampling None Weighted Random Sampling

Simple3DFormer

Batch size 32 32 64
Max Epochs 150 100 100

Learning rate (LR) 0.001 0.000001 0.001
Optimizer SGD Madgrad Adam

LR Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Weight Decay 0.0005 0 0

Momentum 0.9 0.9 0

Augmentations

Train:

RandomBrightness(U(0,1))


Test:

FixedBrightness(0.5)

None

Train:

RandomBrightness(U(0,1))


Test:

FixedBrightness(0.5)

Sampling Weighted Random Sampling None Weighted Random Sampling

Hyperparameter for Volume Modality

Table 5: Hyperparameters for all three architectures and CV datasets.
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Utilized Computer Vision Datasets
Model Architecture: Hyperparameter: CMA M40 SHN

PointNet

Batch size 32 24 32
Max Epochs 100 200 200

Learning rate (LR) 0.001 0.001 0.001
Optimizer AdamW AdamW AdamW

LR Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Weight Decay 0.0001 0.0001 0.0001

Momentum 0 0 0

Augmentations

Pretransforms:

NormalizeScale


Train:

SamplePoints (1024)

RandomScale (0.67,1.5)

RandomRotate (degrees=15)

RandomJitter (0.02)


Test:

SamplePoints (1024)

Pretransforms:

NormalizeScale


Train:

SamplePoints (1024)

RandomScale (0.67,1.5)

RandomJitter (0.02)


Test:

SamplePoints (1024)

Pretransforms:

NormalizeScale


Train:

RandomScale (0.67,1.5)

RandomJitter (0.01)

RandomRotate(degress=15, 

axis = (0,1,2))


Test:

None

Sampling None None None

DGCNN

Batch size 32 32 32
Max Epochs 100 250 200

Learning rate (LR) 0.001 0.001 0.001
Optimizer AdamW AdamW AdamW

LR Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Weight Decay 0.0001 0.0001 0.0001

Momentum 0 0 0

Augmentations

Pretransforms:

NormalizeScale


Train:

SamplePoints (1024)

RandomScale (0.67,1.5)

RandomRotate (degrees=15)

RandomJitter (0.02)


Test:

SamplePoints (1024)

Pretransforms:

NormalizeScale


Train:

SamplePoints (1024)

RandomScale (0.67,1.5)

RandomJitter (0.02)


Test:

SamplePoints (1024)

Pretransforms:

NormalizeScale


Train:

RandomScale (0.67,1.5)

RandomJitter (0.01)

RandomRotate(degress=15, 

axis = (0,1,2))


Test:

None

Sampling None None None

PC Transformer

Batch size 32 32 32
Max Epochs 150 250 200

Learning rate (LR) 0.01 0.01 0.01
Optimizer SGD SGD SGD

LR Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Weight Decay 0.0005 0.0005 0.0005

Momentum 0.9 0.9 0.9

Augmentations

Pretransforms:

NormalizeScale


Train:

SamplePoints (1024)

RandomScale (0.67,1.5)

RandomRotate (degrees=15)

RandomJitter (0.02)


Test:

SamplePoints (1024)

Pretransforms:

NormalizeScale


Train:

SamplePoints (1024)

RandomScale (0.67,1.5)

RandomJitter (0.02)


Test:

SamplePoints (1024)

Pretransforms:

NormalizeScale


Train:

RandomScale (0.67,1.5)

RandomJitter (0.01)

RandomRotate(degress=15, 

axis = (0,1,2))


Test:

None

Sampling None None None

Hyperparameter for Point Cloud Modality

Table 6: Hyperparameters for all three architectures and CV datasets.

B The LATEC dataset: Reference data for standardized evaluation

Class: Runway Occlusion ScoreCAM Expected Grad.

Attribution (ResNet50)

Raw Attention Rollout Attention LRP Attention

Attention (DeiT ViT)

Modality: Image   Utilized CV Dataset: RESISC45
Original

Class: Vessel Occlusion ScoreCAM Expected Grad.

Attribution (3DResNet18)

Raw Attention Rollout Attention LRP Attention

Attention (Simple3DFormer)

Modality: Volume   Utilized CV Dataset: VesselMNIST3D
Original
Class: Airplane Occlusion Guided Backprob Expected Grad.

Attribution (DGCNN)

Raw Attention Rollout Attention LRP Attention

Attention (PC Transformer)

Modality: Point Cloud   Utilized CV Dataset: ShapeNet
Original

10 0,5 10,1 0,55 10 0,1 0,5

Figure 3: Illustrative saliency maps for all three modalities. The upper row shows three attributions,
respectively, and the lower row, three attention-based methods. We observe how all XAI methods
highlight the runway in the image and the vessel for the volume modality but with different granularity
and focus. For the point cloud plane, explanations are less understandable, with attribution methods
highlighting single points at the front tip, rudder, or wing tips.

The resulting data of the three stages, which comprise the LATEC dataset, include pretrained model
weights (excluding IMN), saliency maps, and evaluation scores. Thanks to the LATEC dataset,
future experiments can start at a certain stage and use the results from the previous stage without
recomputing everything again, e.g. when testing out a new evaluation metric on the existing saliency
maps, preserving comparability. For the LATEC dataset, we compute per dataset saliency maps for
the entire test set or 1000 observations depending on which size is smaller (on the validation set if
the test set is unavailable), from which we sample 50 observations to compute evaluation scores for
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all 7,560 combinations. In total, the LATEC dataset consists of 326,790 saliency maps and 378,000
evaluation scores. As for such large datasets, the size can go into the hundreds of gigabytes. To save
disk space, saliency maps could be cast from 64-bit precision to 32 or even 16-bit. We would, however,
strongly advise against this, as even casting to 32-bit precision introduced numerical instability in
our experiments due to the rounding of attribution and attention values, resulting in all-zero saliency
maps and nan or inf evaluation scores. Further, as ranking lengths between CNN and Transformer
architectures differ (attention methods only for Transformer architectures), we recompute rankings in
the subsequent study, which aggregate over all three architectures by first combining the normalized
evaluation scores per model architecture and then computing the ranking, preserving equal length
between rankings (see Appendix F).

To ensure a standardized setting with fair comparability between XAI methods over all possible
experiment set-ups and aggregation levels, we take precautions regarding e.g. different types of
feature attributions or the conversion of all metrics to single scores (see Appendix E for all detailed
procedures). LRP requires non-negative activation outputs [43], leading us to a replacement of such
activation functions (i.e. GeLU, leakyReLU) in CNN models, but we keep them for Transformer
models, as they are central to the architecture and therefore also to our benchmark, and apply the
0+-rule instead.

C XAI methods overview and parameters

C.1 Overview

C.1.1 Attribution Methods

Occlusion [OC] [72] Systematically obscures different parts of the input data and observes the
resulting impact on the output, to determine which parts of the data are most important for the model’s
predictions.

LIME [LIME] [50] Creates an interpretable model around the prediction of a complex model to
explain individual predictions locally (patch-based in our case), using perturbations of the input data
and observing the corresponding changes in the output.

Kernel SHAP [KS] [39] Using a weighted linear regression model as the local surrogate and
selecting a suitable weighting kernel, the regression coefficients from the LIME surrogate can estimate
the SHAP values.

Vanilla Gradient [VG] [58] The raw input gradients of the model.

Input x Gradient [IxG] [57] Multiples the input features by their corresponding gradients with
respect to the model’s output.

Guided Backprob [GB] [61] Modifies the standard backpropagation process to only propagate
positive gradients for positive inputs through the network, thereby creating visualizations that highlight
the features that strongly activate certain neurons in relation to the target output.

GradCAM [GC] [56] Uses the gradients of the target class flowing into the final convolutional
layer to produce a coarse localization map by, highlighting the important regions in the image by
up-scaling the map.

ScoreCAM [SC] [65] Eliminates the need for gradient information by determining the importance
of each activation map based on its forward pass score for the target class, producing the final output
through a weighted sum of these activation maps.

GradCAM++ [C+] [14] Generates a visual explanation for a given class label by employing a
weighted sum of the positive partial derivatives from the final convolutional layer’s feature maps,
using them as weights with respect to the class score.

Integrated Gradients [IG] [62] Explains model predictions by attributing the prediction to the
input features, calculating the path integral of the gradients along the straight-line path from a baseline
input to the actual input.

Expected Gradients [EG] [23] Also called Gradient SHAP. Avoids the selection of a baseline
value compared to IG, by leveraging a probabilistic baseline computed over a sample of observations.
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DeepLIFT [DL] [57] Assigns contribution scores to each input feature based on the difference
between the feature’s activation and a reference activation, effectively measuring the feature’s impact
on the output compared to a baseline.

DeepLIFT SHAP [DLS] [39] Combines the DeepLIFT method with Shapley values to assign
importance scores to input features by computing their contributions to the output relative to a
reference input, while ensuring consistency with Shapley values.

Layer-Wise Relevance Propagation [LRP] [11] Explains neural network decisions by backprop-
agating the output prediction through the layers, redistributing relevance scores to the input features
to visualize their contribution to the final decision. We use the ϵ-,γ- and 0+-rules depending on the
model architecture for relevance backpropagation.

C.1.2 Attention Methods

Raw Attention [RA] [22] Rearranged and up-scaled attention values of the last attention head.

Rollout Attention [RoA] [1] Averages attention weights of multiple heads to trace the contribution
of each part of the input data through the network.

LRP Attention [LA] [15] Assigns local relevance scores to attention weights based on the Deep
Taylor Decomposition principle and propagates these relevancy scores through the model.

C.2 Parameters

XAI Method: OC LIME KS CAM (all) SC IG EG DL LRP RA

Parameter: strides
sliding_window_


shapes baseline
perturbations_


per_eval alpha n_samples
perturbations_


per_eval baseline n_samples
perturbations_


per_eval layer batch_size baseline n_steps n_samples std eps baseline rule eps gamma layer

Image 25 (50, 50) 0 1 1,0 10 5 0 10 5
ResNet50,layer4[-1]


EfficientNetbo,features[-1]

ViT,blocks[-1],norm1

32 0 30 40 0,001 1e-9 0 ε & γ-rule /

0+-rule 0,0001 0,25 ViT,blocks[-1],attn

Volume 4 (7, 7, 7) 0 1 1,0 10 5 0 10 5
3DEfficientNetbo,blocks[-13]


3DResNet18,layer3

S3DF,blocks[-1],norm1

64 0 30 40 0,001 1e-9 0 ε & γ-rule /

0+-rule 0,0001 0,25 S3DF[-1],attn

Point Cloud 1 (3,1) 0 5 4,0 10 5 0 10 5
PointNet,transform,bn1


DGCNN,conv5

PCT,sa4,after_norm

16 0 30 16 0,001 1e-9 0 ε & γ-rule /

0+-rule 0,00001 0,25 PCT,sa4,attn

Table 7: Parameters for each XAI method and modality.

The parameters for each XAI method are derived for each modality via qualitative evaluation which
we deem the most realistic scenario. We tuned the XAI methods on five observations per dataset
and modality, which we argue is a fair trade-off between fitting the methods to the dataset but not
overfitting them to bias the evaluation. We did not tune the parameters per dataset, as the parameters
transfer very well between datasets and only needed minimal adjustments. We computed all saliency
maps on a compute cluster leveraging one NVIDIA A100 to compute saliency maps with a batch size
of 10 for image and volume modality and 32 for point cloud modality.

D Evaluation metrics overview and parameters

D.1 Overview

D.1.1 Faithfulness

FC [9] Gauges an explanation’s fidelity to model behavior. It measures the linear correlation
between predicted logits of modified test points and the average explanation for selected features,
returning a score between -1 and 1. For each test, selected features are replaced with baseline values,
and Pearson’s correlation coefficient is determined, averaging results over multiple tests.

FE [5] Evaluates the accuracy of estimated feature relevances by using a proxy for the "true"
influence of features, as the actual influence is often unavailable. This is done by observing how
the model’s prediction changes when certain features are removed or obscured. Specifically, for
probabilistic classification models, the metric looks at how the probability of the predicted class drops
when features are removed. This drop is then compared to the interpreter’s prediction of that feature’s
relevance. The metric also computes correlations between these probability drops and relevance
scores across various data points.
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MC [44] Evaluates the correlation between the absolute values of attributions and the uncertainty
in probability estimation using Spearman’s coefficient. If attributions are not monotonic the authors
argue that they are not providing the correct importance of the features.

PF [8] The core concept involves flipping pixels with very high, very low, or near-zero attribution
scores. The effect of these changes is then assessed on the prediction scores, with the average
prediction being determined.

RP [55] A step-by-step method where the class representation in the image, as determined by a
function, diminishes as we gradually eliminate details from an image. This process, known as RP,
occurs at designated locations. Finally, the effect on the average prediction is calculated.

INS [47] Gradually inserts features into a baseline input, which is a strongly blurred version of the
image, to not create OOD examples. During this process, the change in prediction is measured and
the correlation with the respective attribution value is calculated.

DEL [47] Deletes input features one at a time by replacing them with a baseline value based on
their attribution score. During this process, the change in prediction is measured and the correlation
with the respective attribution value is calculated.

Iterative Removal of Features (IROF) [51] The metric calculates the area under the curve for
each class based on the sorted average importance of feature segments (superpixels). As these
segments are progressively removed and prediction scores gathered, the results are averaged across
multiple samples.

Remove and Debias (ROAD) [52] Evaluates the model’s accuracy on a sample set during each
phase of an iterative process where the k most attributed features are removed. To eliminate bias,
in every step, the k most significant pixels, by the most relevant first order, are substituted with
noise-infused linear imputations.

Sufficiency [18] Assesses the likelihood that the prediction label for a specific observation matches
the prediction labels of other observations which have similar saliency maps.

Infidelity [71] Calculates the expected mean-squared error (MSE) between the saliency map
multiplied by a random variable input perturbation and the differences between the model at its input
and perturbed input.

D.1.2 Robustness

LLE [5] Lipschitz continuity in calculus is a concept that measures the relative changes in a
function’s output concerning its input. While the traditional definition of Lipschitz continuity is
global, focusing on the largest relative deviations across the entire input space, this global perspective
isn’t always meaningful in XAI. This is because expecting consistent explanations for vastly different
inputs isn’t realistic. Instead, a more localized approach, focusing on stability for neighboring inputs,
is preferred, resulting in a point-wise, neighborhood-based local Lipschitz continuity metric.

MS [71] Measures the largest shift in the explanation when the input is slightly altered. It
specifically evaluates the utmost sensitivity of a saliency map by taking multiple samples from a
defined L-infinity ball subspace with a set input neighborhood radius, using Monte Carlo sampling
for approximation.

Continuity [42] Evaluates, that if two observations are nearly equivalent, then the explanations
of their predictions should also be nearly equivalent. It then measures the strongest variation of the
explanation in the input domain.

Relative Input/Output/Representation Stability [4] All metrics leverage model information to
evaluate the stability of a saliency map with respect to the change in the either, input data, intermediate
representations, and output logits of the underlying prediction model.

D.1.3 Complexity

Sparseness [12] Measures the Gini Index on the vector of absolute saliency map values. The
assessment ensures that features genuinely influencing the output have substantial contributions,
while insignificant or only slightly relevant features should have minimal contributions.
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Complexity [9] Determines the entropy of the normalized saliency map.

Effective Complexity [44] Evaluates the number of absolute saliency map values that surpass a
threshold. Values above this threshold suggest the features are significant, while those below indicate
they are not.

D.2 Parameters

We tuned the parameters of the evaluation metrics per dataset based on the distribution of their
scores. We applied the suggested parameters from [27] or the respective papers. If the resulting score
distributions were collapsed, almost uniform, or too indistinguishable between the XAI methods,
we tuned the respective parameters. This step was completed prior to the ranking analysis, and
no adjustments were made to the metrics once the ranking phase commenced. We computed all
evaluations on a compute cluster leveraging one NVIDIA A100 (40 GB VRAM) per dataset with a
batch size of 2 (Batch size depends on the number of sampling steps of some metrics. See nr_samples
in Table 8 for our number of samples per metric.)
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Image Voxel Point Cloud
Evaluation 
Metric: Parameter: IMN OCT R45 AMN OMN VMN CMA M40 SHN

Faithfulness 
Correlation

nr_runs 100 100 100 100 100 100 100 100 100

subset_size 224 224 224 56 56 56 32 32 32

perturb_baseline black black black black black black center center center

Faithfulness 
Estimate

features_in_step 224 224 224 56 56 56 32 32 32

perturb_baseline black black black black black black center center center

Monotonicity 
Correlation

nr_samples 10 10 10 10 10 10 10 10 10

features_in_step 3136 3136 3136 392 392 392 256 256 256

perturb_baseline uniform uniform uniform uniform uniform uniform uniform uniform uniform

Pixel Flipping
features_in_step 224 224 224 56 56 56 32 32 32

perturb_baseline black black black black black black center center center

Region 
Perturbation

patch_size 14 14 18 4 4 4 3 3 3

regions_evaluation 10 10 20 20 20 20 32 32 32

perturb_baseline uniform uniform uniform uniform uniform uniform uniform uniform uniform

Insertion

pixel_batch_size 50 50 50 50 50 50 50 50 50

sigma 5.0 120.0 40.0 2.5 2.5 2.5 0.05 0.1 0.05

kernel_size 15 39 19 1 1 1 1 1 1

Deletion pixel_batch_size 50 50 50 50 50 50 50 50 50

IROF
segmentation Slic Slic Slic 3D Slic 3D Slic 3D Slic KMeans KMeans KMeans

perturb_baseline mean mean mean black black black center center center

ROAD
noise 0.1 0.1 0.1 4.0 2.5 50.0 0.02 0.15 0.3

percentages_max 100 100 100 100 100 100 100 100 100

Sufficiency threshold 0.9 0.6 0.6 0.02 0.75 0.0002 0.75 0.75 0.6

Local Lipschitz 
Estimate

nr_samples 5 5 5 10 10 10 5 5 5

perturb_std 0.1 0.0002 0.1 0.2 0.2 0.2 0.1 0.1 0.1

perturb_mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MaxSensitivity
nr_samples 10 10 10 10 10 10 10 10 10

lower_bound 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Continuity

patch_size 56 56 56 7 7 7 3 3 3

nr_steps 20 20 20 20 20 20 20 20 20

perturb_baseline uniform uniform uniform uniform uniform uniform uniform uniform uniform

RIS nr_samples 10 10 10 10 10 10 10 10 10

ROS nr_samples 10 10 10 10 10 10 10 10 10

RRS nr_samples 10 10 10 10 10 10 10 10 10

Infidelity n_perturb_samples 50 50 50 50 50 50 50 50 50

Effective 
Complexity

eps 0.01 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001

Table 8: Parameters for all evaluation metrics on each CV dataset.

D.3 Adaption of XAI methods

In this section, we explain how we adapted XAI methods in our framework to seamlessly work with
3D modalities. We neglect the methods that did not need any adaption (besides e.g. unit tests etc.) as
they work independently of the input dimensions. All XAI methods are adapted, such that they only
return positive attribution.

Occlusion For the 3D modalities we implemented a 3D kernel as the perturbation baseline for
volumes and a 1x3 mask (one point) for the point clouds. The image and volume mask transverse
with overlap and the point cloud mask without overlap over all dimensions of the input object.
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LIME & Kernel SHAP For both methods, we implemented feature masks for each modality, as
training the linear surrogate models on the original input features is not informative and computa-
tionally very expensive. Each mask groups the input features to the same interpretable feature. We
use predefined grids as feature masks, as superpixel computing algorithms are too computational
and time-expensive, especially for 3D modalities and evaluation metrics that perturb the input space
or refit the XAI method multiple times. For the image modality, we use a 16x16x3, for volume
7x7x7, and for point cloud 1x3 (one point) mask, which is distributed as a non-overlapping grid in
all dimensions over the whole object. For point clouds we use ridge regression and for the other
modalities lasso regression.

GradCAM, ScoreCAM & GradCAM++ For all CAM methods on volume data we adapted
the gradient averaging and the subsequent weighting of the activations and used nearest-neighbor
interpolation to upscale the weighted activations to 3D volumes. In the case of ScoreCAM we also
use nearest neighbor up-sampling instead of bilinear up-sampling, to upscale the activations for
weighting the output of the previous layer. To correctly reshape the upscaled images and volumes in
the case of the Transformer architectures (taking the channels to the first dimension as for CNNs), we
use two different reshape functions for images and volumes when the CAM methods are applied to
Transformer architectures. Further, we use the absolute activation output, not the non-negative for
Transformer architectures, as the leaky-ReLU/GeLU function output otherwise would sometimes be
zero.

LRP For CNNs, we assigned the ϵ-rule to the linear or identity layers, the identity rule to all
non-linear layers, and to all other layers (convolutions, pooling, batch normalization, etc.) the
γ-rule. For Transformer architectures we implemented the 0+-rule for all layers. However, for the
Simple3DFormer and the PC Transformer, we had to add custom relevance propagation through the
whole model, as the architectures come with several sub-modules such as "local gathering" for the
PC Transformer, which are non-trivial to backpropagate through.

Raw Attention We always use the raw attention of the last Transformer block and use bilinear
or trilinear interpolation to rescale the attention for image and volume data. For point cloud data,
this procedure is more complicated as the PC Transformer projects the embeddings on which
the Transformer acts via farthest point sampling and k-nearest neighbor grouping. Thus in each
downsampling step, we save which k points are sampled to then use k-nearest neighbor interpolation
to cast the attention values for these remaining points back into the input space onto all 1024 original
points.

Rollout Attention Same procedure as for Raw Attention but before we interpolate back into the
original input space, we use the rollout attention aggregation algorithm over all Transformer modules
in the architecture.

LRP Attention As for LRP we use custom relevance backpropagation for the Simple3DFormer
and PC Transformer architectures. Based on the relevance scores, we filter the attention of each
Transformer module, aggregate the filtered attention with the rollout algorithm, and interpolate the
resulting attention back into the input as described for Raw Attention.

D.4 Adaption of evaluation metrics

In this section, we explain how we adapted the evaluation metrics in our framework to seamlessly work
with 3D modalities. All metrics were adapted for point cloud (n,d) and volume (x,y,z) dimensions
besides classical image dimensions (w,h,c). We neglected the metrics which did not need any further
adaption. All metrics leveraging threshold values expect normalized saliency maps on the observation
level. Otherwise, thresholds have to be selected per observation.

PF We compute the Area Under the Curve (AUC) to receive a single score. For point cloud data
acts on the single coordinates.

RP We compute the AUC to receive a single score. Acts on a 3D kernel for volume data and single
points for point cloud data. Compute the AUC to receive a single score.

INS Use Gaussian noise for 3D data instead of Gaussian blur for images. Inserting single points
for point cloud data and voxels for volume data.
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DEL Deletes single points for point cloud data and voxels for volume data. Compute the AUC to
receive a single score.

Iterative Removal of Features (IROF) Compute the Area Over the Curve (AOC) to receive a
single score. We use 3D Slic for volume segmentation and KMeans clustering with fixed k = 16
clusters for point cloud segmentation. k = 16 was determined by visual inspection. See exemplary
visualization in Figure 4.

Figure 4: Example of KMeans clustering for point cloud data with k=16.

Remove and Debias (ROAD) We use Gaussian noise for 3D modalities. Compute the AUC to
receive a single score.

Sufficiency Use the whole set of saliency maps for similarity comparison and not only the batch
the metric is applied to (see Appendix L). For distance calculation between saliency maps, we use
squared Euclidean distance for volume data and standardized Euclidean distance for image and point
cloud data due to numerical instability.

Continuity We implemented x-axis traversal for volume data along the x-axis with black padding
in all dimensions and for the point cloud data by traversing all points along the x-axis position at
(n, d = 0) (see Figure 5). As removing points for point cloud data would change the input dimension
of the object, we instead map them to the center (0,0,0). We did not observe any OOD behavior by
implementing this solution. We use the Pearson Correlation Coefficient (PCC) between traversals to
compute a single score.

Removed points get 

mapped to center (0,0,0)

x-axis traversal

y

Figure 5: X-axis traversal of point clouds for continuity metric. We can not remove points as this
would change the input dimensionality, thus we map them to the center (0,0,0), which is similar to
black padding for image and volume data.

Relative Representation Stability We use uniform noise (U(0, 0.05)) due to numerical stability
as Gaussian noise could generate infinity values.

E Ensuring comparability of results

To ensure fair comparability between XAI methods over all possible experiment set-ups and aggrega-
tion levels, we take precautions about the XAI methods, evaluation metrics, and model architectures.
Attribution measures the positive or negative contribution of an input feature (e.g. pixel) into the
predicted output class of the model. On the contrary, CAM methods only compute positive attribution,
and attention highlights all general (or absolute) important input features independent of the output
class. However, in practice, attention is only valuable in interpretation if it also highlights features that
are used for prediction. New methods such as LA filter the attention to only show such class-relevant
attention, and their possible better performance to unfiltered attention can only be shown by evaluating
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it as positive attribution. Thus we consider only positive attribution for saliency map comparison
(also suggested by Zhang et al. [73]).

Further, we normalize the saliency maps on the observation level as some metrics have nominal
thresholds or noise intensities which depend on the scale of saliency maps. As not all metrics
compute single scores we have to convert all metrics computing sequences or array of sequences
into single scores either via the AUC for PF, RP, Selectivity and ROAD, AOC for IROF, or the PCC
for SensitivityN and Continuity. All scores are normalized on the metric and dataset level. Score
backpropagation-based metrics such as LRP (excluding the 0+-rule), DS or DLS, and the CAM
methods expect non-negative activation outputs. Thus, we exchanged before the CNN model training
all GeLU or leakyReLU activation functions with standard ReLU functions as they output negative
values, biasing the XAI method. For the Transformer architectures, however, we keep all activation
functions, as well as the skip connections and patchification, as they are central to the architecture.
Their potential effect on different attribution methods is part of the benchmark. For CAM methods
on the Transformer architectures, we interpolate the reshaped absolute cls token, as saliency maps
would otherwise often be empty (also recommended by Chefer et al. [15]).

F Ranking computation flow chart

Full Ranking
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Figure 6: Transformation and aggregation steps from raw evaluation scores to final rankings.

Figure 6 shows the transformation and aggregation steps from raw scores to final rankings depending
if we want to analyze the full ranking or achive a more robust ranking by averaging first across the
median scores of dataset and model architecture combinations of each modality. In the calculation of
the combinations, it must be taken into account that in the case of the Transformer architectures we
have three more XAI methods (attention methods), and in the case of the point cloud modality, we
have three fewer XAI methods (excluding CAM methods). In the case of the full ranking, we then
have 7,560 combinations of input datasets, architectures, XAI models, and evaluation metrics based
on which we compute 50 scores for each combination, but always the same observations per dataset.
If we average medians of the score distributions of each architectures and datasets, we end up with
1,260 combinations but 6 ∗ 50 scores per combination, which are in total again 378,000 scores.

G Mathematical notation and formulas

We introduce a mathematical notation for subsequent calculations and formulas. Here, the parameters
are represented as : modality M , utilized dataset D, model architectures A (CNNs as AC={c1,c2}
and Transformer as AT ), XAI method D (attribution methods as FA and attention methods as
FT ) and evaluation metrics and criteria as C (CF for faithfulness, CR for robustness and CC for
complexity sets of metrics). The Rankings are denoted by R.
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G.1 Average SD between metrics (Figure 2 (b.))

We computed the standard deviation (SD) between metric rankings for each modality, criteria and
model architecture (σ̄m,Ci,a), mean aggregated over XAI methods and datasets, as well as for each
modality, criteria and dataset (σ̄m,Ci,d), mean aggregated over XAI methods and model architecture:

Using the notation introduced in Appendix G and SD as σ(·). Per model architecture (a):

σ̄m,Ci,a =
1

|D||F |
∑

d∈D,f∈F

σ(RCi,a,f,m,d) ∀m ∈ M, ∀a ∈ A, ∀Ci ∈ {CF , CR, CC},

(1)
and dataset (d):

σ̄m,Ci,d =
1

|A||F |
∑

a∈A,f∈F

σ(RCi,a,f,m,d) ∀m ∈ M, ∀d ∈ D, ∀Ci ∈ {CF , CR, CC}

(2)

G.2 Proportion of accepted Levene tests (Figure 2 (c.))

Proportion of accepted tests (ρ̄m,Ci,f ) of each criteria and XAI method, i.e. tests where the computed
p-value — the probability that an observed effect occurs by chance — is below the significance level
α:

With significance level α = 0.1, p-value PVLe(·), indicator function 1[·] and variance σ2(·).

ρ̄m,Ci,f =
1

|D||A|
∑

d∈D,a∈A

1[PVLe(σ
2(RCi,f,m,a,d)) < α] (3)

∀m ∈ M, ∀f ∈ F, ∀Ci ∈ {CF , CR, CC} (4)

G.3 Average absolute rank distance between model architectures (Figure 10)

Distance of ranks between each model architecture for each attribution method and modality:

δ̄1m,f,Aij
=

1

|D||C|
∑

d∈D,c∈C

|Rm,c,f,ai
−Rm,c,f,aj

| (5)

∀m ∈ M, ∀c ∈ C, ∀f ∈ F, ∀{ai, aj ̸= ai} ∈ A (6)

G.4 Average Euclidean distance between metrics (Figure 8)

Average Euclidean ranking distance (δ̄m,c) between all metrics across image datasets and model
architectures:

δ̄m,c =
1

|D||A||F |
∑

d∈D,a∈A,f∈F

√
(Rm,c,d,a,f −Rm,c,d,a,f )2 ∀m ∈ M, ∀c ∈ C (7)

G.5 Ranking correlation between XAI methods (Figure 12 (a.)

Correlation in ranking between XAI methods, indicating their relative similarity.
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With Pearson correlation coefficient PCC.

PCCFij
= PCC(RC̄,M,D,A,fi , RC̄,M,D,A,fj ) ∀fi, fj ∈ F (8)

H Adapting current XAI methods and evaluation metrics for 3D data

While many XAI methods and evaluation metrics are independent of the input space dimensions,
especially methods leveraging perturbations, interpolations for up- and down-scaling or segmentation
are not. Our implementation builds upon the work from Kokhlikyan et al. [34] and Hedström et al.
[28] for XAI methods and evaluation metrics for 1D and 2D images, and we extended it to 3D volume
and point cloud data. Both modalities come with their own specifies, e.g. that local neighborhoods
have to be defined via k-nearest neighbors (KNN) in point cloud data and not 2D or 3D patches as
in image or volume data. For the XAI methods, we advanced e.g. OC, LI, and KS by the adoption
of 3D patches, all three CAM methods with 3D interpolation, all attention-based methods with 3D
and KNN-based interpolations, and LA with relevance backpropagation for the Simple3DFormer
and PC Transformer architectures. As the adoption of the CAM methods for point cloud data and
more complex architectures than PointNet is not trivial, we deem it out of scope for this paper and do
not include them in our point cloud experiments. In the case of evaluation metrics, we adapted e.g.
perturbation applying metrics to 3D patches or point-based perturbations, the superpixel segmentation
in IROF by 3D Slic and KMeans clustering and padded x-axis transversal for the volume and point
cloud data in Continuity. Additionally, we modified all methods and metrics to function with (x, y, z)
volume and (n, 3) point cloud dimensions. All adaptations were tested for their coherency, and
illustrative saliency maps can be observed in Figure 3. We refer to Appendix C and Appendix
subsection D.2 for all implementation details.

I Metric standard deviation for volume and point cloud data

Evaluation Criteria:

Model Architectures Utilized CV Datasets

3DResNet18 3DEffNetb0 S3DF AMN OMN VMN

Faithfulness 3.07 3.41 3.61 3.34 3.19 3.55

Robustness 3.47 3.41 3.42 3.54 3.25 3.51

Complexity 0.45 0.48 0.64 0.51 0.63 0.43

Weighted Average 2.82 2.99 3.1 2.99 2.83 3.07

a. Avg. Standard Deviation for Volume Model Architectures and Datasets

Evaluation Criteria:

Model Architectures Utilized CV Datasets

PointNet DGCNN PCT CMA M40 SHN

Faithfulness 2.9 2.97 3.55 3.23 3.07 3.1

Robustness 2.52 2.74 2.91 2.9 2.8 2.48

Complexity 0.72 0.51 0.29 0.42 0.59 0.51

Weighted Average 2.44 2.52 2.84 2.69 2.6 2.49

b. Avg. Standard Deviation for PC Model Architectures and Datasets

Table 9: Average metric standard deviation per model architectures and utilized datasets for a. volume
and b. point cloud modalities.

J Why do metrics disagree?

We have established that all metrics approximate similar criteria, differing primarily in their interpre-
tation and mathematical formulation. Although these differing perspectives mainly agree with their
rankings, our study reveals that variations in mathematical formulation can significantly contribute to
metric disagreement. Our prior research indicates that the extent of disagreement between metrics is
significantly influenced by the chosen XAI method. This dependency emerges as a critical factor
in why certain metrics may favor or disadvantage specific XAI methods due to their mathematical
structures. Moreover, our further experiments demonstrate that metrics particularly diverge in their
rankings of XAI methods in terms of faithfulness, especially when the mechanism used for evaluation
and the mechanism for computing the explanation (i.e. saliency map) are closely related.

In Figure 2 (c.) we can observe for OC that the SD between faithfulness ranks is never significantly
smaller than the deviation of a random ranking (see exemplary Figure 7 for all individual faithfulness
metric ranks of OC for one set of design parameters). A primary cause of this notable metric
disagreement is OC’s alignment with the RP metric. Both OC and RP involve perturbing a larger
region of the input image with a baseline value, utilizing either a fixed kernel in OC or a set of
pixels determined by ordered attribution values in RP. When the set size for RP matches the OC
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Figure 7: Differences between faithfulness and robustness metrics in ranking OC, SC, RA and LA.
The black circle indicates the overall average rank.

kernel size, and there is no overlap of the sliding kernels, the metric operationally mirrors the XAI
method. However, our study indicates that even when the set size does not align, the metric still tends
to favor the method. Figure 7 highlights OC’s high rankings when evaluated using RP and lower
rankings with metrics that employ finer, incremental pixel-level perturbations, such as PF, INS, or
DEL. This evaluation bias stems from OC’s inherent limitation of attributing to entire regions rather
than individual pixels.

a. Distanced Matrices between Metric Rankings over all Utilized Image Datasets visualizing frequently agreeing or disagreeing Metrics

Avg. Rank

Distance

Figure 8: Average Euclidean ranking distance between metric pairs for model architectures and the
faithfulness and robustness criteria. More often agreeing metric pairs in their rankings appear more
green, and disagreeing pairs more red (see Equation 7).

We observe a dependency not only between specific XAI methods and metrics but also among metrics
that utilize similar evaluation mechanisms or those designed to specifically address the shortcomings
of other metrics. This scenario poses a risk for selection bias, as we observe that several related
studies, such as Li et al. [38], predominantly select such metrics with similar methodologies and
consequently similar ranking behavior.
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Figure 8 illustrates the average Euclidean ranking distance (δ̄m,c) between all metrics across image
datasets and model architectures based on Equation 7. In assessing faithfulness, metrics that involve
incremental pixel perturbation (PF, INS, DEL) and those that correlate attribution values with
predicted logits (FC, FE) tend to rank more similarly. Conversely, metrics designed to mitigate
specific limitations of these methods display notably different rankings. For instance, incrementally
inserting or deleting pixel-based methods may generate out-of-distribution examples for the model,
leading to highly uncertain or even random predictions. This issue is addressed by the ROAD metric,
which consequently ranks distinctly from DEL and PF. Similarly, the MC metric, which evaluates
the correlation between the absolute attribution values and the uncertainty in probability estimates,
addresses shortcomings in FC and FE, leading to divergent rankings. Regarding robustness metrics,
variations are more consistent. There is a notable similarity in rankings between the LLE and MS,
both of which measure relative changes when inputs are slightly altered, as well as between the
Relative Stability metrics. Disparities in rankings among metrics may also arise from variations in
the tuning of hyperparameters.

We additionally perform the same analysis through the correlation between metrics. While Euclidean
distance and Pearson correlation both measure similarity, correlation focuses on trends, whereas
distance measures actual differences. When assessing faithfulness in Figure 9, we find that metrics
involving incremental pixel perturbation (PF, INS, DEL) and those correlating attribution values
with predicted logits (FC, FE) are positively correlated. However, metrics specifically designed to
address limitations in these methods, such as ROAD (which addresses the out-of-distribution issue in
pixel perturbation) and MC (which incorporates uncertainty rather than logits), are interestingly even
negatively correlated with them. Regarding robustness, the relative stability metrics show a positive
correlation. In general the results are similar to the findings based on the distance matrices.

In summary, our study demonstrates that the variation in metric rankings for a given XAI method
can be attributed to the similarity or dissimilarity in the mathematical mechanisms employed by the
metrics themselves, as well as between the metrics and the underlying XAI method. However, in
scenarios where there is substantial disagreement among metrics, selection biases may emerge if
only a limited subset of metrics—those that potentially employ similar mechanisms—is considered.
This underscores the importance of incorporating a diverse array of metrics to ensure an accurate
approximation of a criterion, independent of the mathematical mechanisms involved.

a. Correlation between Metric Rankings over all Utilized Image Datasets
Pearson

Correlation

Figure 9: Correlation between metrics for model architectures and the faithfulness and robustness
criteria. Positive correlation in green, negative in red.
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K Differences in ranking between datasets and model architectures.

K.1 Ranking table across datasets

Evaluation 
Criterion: Faithfullness Robustness Complexity
Modality: Image Volume Point Cloud Image Volume Point Cloud Image Volume Point Cloud

Utilized Computer 
Vision Datasets: IMN OCT R45 AMN OMN VMN CMA M40 SHN IMN OCT R45 AMN OMN VMN CMA M40 SHN IMN OCT R45 AMN OMN VMN CMA M40 SHN

OC 10 ±1.97 8 ±1.42 10 ±1.92 9 ±1.29 5 ±0.67 13 ±1.52 11 ±1.07 7 ±1.68 8 ±1.29 11 ±1.96 9 ±1.23 9 ±1.9 11 ±1.77 7 ±1.39 10 ±1.43 9 ±1.67 10 ±1.03 10 ±1.48 8 ±0.67 12 ±0.0 8 ±0.0 7 ±0.33 12 ±1.15 5 ±1.86 11 ±0.33 7 ±1.0 5 ±0.33

LIME 13 ±1.29 14 ±1.16 13 ±1.48 12 ±1.22 13 ±0.84 8 ±1.29 5 ±0.86 6 ±1.3 6 ±1.18 14 ±1.53 15 ±1.08 14 ±1.93 11 ±1.63 13 ±1.62 10 ±1.4 11 ±0.95 11 ±1.3 12 ±1.07 7 ±1.33 13 ±0.88 6 ±0.33 12 ±0.33 6 ±0.33 12 ±1.53 9 ±0.88 7 ±0.88 9 ±0.88

KS 12 ±1.2 15 ±0.6 13 ±1.27 12 ±1.1 12 ±0.7 8 ±1.52 7 ±0.98 5 ±1.25 7 ±0.93 15 ±1.31 15 ±1.62 15 ±1.35 13 ±1.89 14 ±2.08 13 ±1.81 10 ±0.65 10 ±0.81 9 ±0.87 10 ±0.33 16 ±0.33 12 ±0.67 12 ±1.0 9 ±0.67 12 ±1.2 9 ±0.33 9 ±0.67 8 ±0.0

VG 8 ±1.36 12 ±0.89 9 ±1.15 14 ±1.19 12 ±1.56 8 ±1.57 8 ±0.99 8 ±1.07 8 ±1.24 7 ±0.9 7 ±0.94 8 ±1.3 7 ±1.66 7 ±2.24 7 ±2.29 7 ±1.04 8 ±0.81 9 ±1.27 11 ±0.88 14 ±0.67 9 ±0.0 15 ±0.33 11 ±0.88 13 ±0.58 7 ±0.33 8 ±0.58 9 ±0.88

IxG 10 ±1.5 8 ±1.65 8 ±1.8 6 ±1.47 6 ±1.39 9 ±1.46 8 ±1.14 6 ±0.97 7 ±1.01 10 ±1.83 10 ±2.04 11 ±1.78 9 ±1.93 10 ±1.62 10 ±2.11 8 ±1.0 9 ±1.44 9 ±1.13 3 ±0.0 4 ±0.33 3 ±0.33 2 ±0.33 2 ±0.33 5 ±3.38 2 ±0.67 4 ±0.0 3 ±0.67

GB 7 ±1.87 11 ±1.3 7 ±1.93 9 ±1.54 9 ±1.55 10 ±1.58 5 ±1.28 6 ±1.33 5 ±1.01 6 ±1.74 9 ±1.34 9 ±1.22 10 ±1.95 9 ±2.13 8 ±1.57 10 ±1.48 10 ±0.61 9 ±0.4 5 ±0.0 5 ±0.33 5 ±0.0 9 ±0.33 4 ±1.2 9 ±0.88 4 ±0.0 3 ±0.88 6 ±0.33

GC 6 ±0.99 8 ±1.17 10 ±1.22 14 ±0.47 13 ±1.22 12 ±1.08 -  -  -  6 ±2.02 6 ±1.49 5 ±1.36 11 ±1.18 10 ±1.46 11 ±1.43 -  -  -  13 ±0.0 12 ±1.0 14 ±0.0 13 ±1.0 8 ±0.58 9 ±0.58 -  -  -  

SC 6 ±1.2 8 ±1.56 8 ±1.58 10 ±1.35 11 ±1.04 9 ±1.92 -  -  -  9 ±1.76 9 ±1.66 9 ±1.85 12 ±1.77 12 ±1.12 10 ±2.01 -  -  -  12 ±0.33 7 ±1.33 10 ±0.33 16 ±1.33 14 ±2.33 15 ±1.2 -  -  -  

C+ 8 ±1.0 10 ±1.2 10 ±0.86 11 ±1.84 14 ±0.88 11 ±1.38 -  -  -  5 ±1.52 10 ±1.69 8 ±1.98 10 ±1.97 10 ±1.23 9 ±1.93 -  -  -  15 ±0.58 14 ±0.58 13 ±0.33 16 ±0.33 16 ±1.33 13 ±2.08 -  -  -  

IG 7 ±1.32 7 ±1.55 8 ±1.72 5 ±1.14 5 ±1.49 9 ±1.58 6 ±1.32 6 ±1.17 8 ±1.38 9 ±1.7 10 ±1.82 8 ±1.94 7 ±1.65 7 ±1.06 7 ±1.51 8 ±1.93 10 ±2.15 8 ±1.85 4 ±0.0 2 ±0.33 3 ±0.67 4 ±0.33 4 ±0.33 4 ±1.45 5 ±0.0 4 ±1.0 3 ±1.0

EG 6 ±1.32 6 ±0.84 5 ±1.09 8 ±1.29 6 ±0.96 6 ±1.39 8 ±1.2 8 ±1.02 7 ±1.49 7 ±2.04 5 ±1.83 5 ±1.1 6 ±2.18 5 ±1.97 5 ±1.31 8 ±1.3 8 ±1.21 8 ±1.23 16 ±0.67 17 ±0.33 16 ±0.33 6 ±0.33 12 ±0.88 6 ±0.33 10 ±0.88 11 ±0.0 11 ±0.0

DL 9 ±1.12 8 ±1.56 8 ±1.67 6 ±1.2 5 ±0.86 10 ±1.05 8 ±1.24 7 ±1.07 7 ±1.02 9 ±2.07 10 ±2.25 10 ±1.96 7 ±1.82 7 ±1.92 9 ±2.19 8 ±1.15 8 ±1.13 9 ±1.43 2 ±0.0 3 ±0.33 2 ±0.33 3 ±0.33 5 ±0.33 4 ±0.88 2 ±0.0 3 ±0.33 3 ±0.0

DLS 6 ±1.27 7 ±0.78 7 ±1.31 5 ±0.7 7 ±0.69 9 ±1.22 8 ±0.84 9 ±0.53 9 ±1.08 8 ±1.19 9 ±1.46 7 ±1.3 10 ±1.49 8 ±1.54 10 ±1.91 9 ±0.97 7 ±0.34 7 ±0.44 7 ±0.67 8 ±1.2 7 ±0.33 5 ±0.0 8 ±1.33 5 ±0.33 6 ±0.0 8 ±0.88 9 ±0.88

LRP 13 ±1.22 10 ±1.31 13 ±0.87 10 ±1.53 14 ±1.06 12 ±1.46 7 ±1.15 8 ±0.7 10 ±0.85 9 ±1.7 10 ±1.46 12 ±1.75 12 ±2.59 10 ±2.92 12 ±2.38 3 ±0.43 4 ±0.22 4 ±0.34 1 ±0.0 1 ±0.0 1 ±0.0 2 ±1.0 1 ±0.0 2 ±0.67 2 ±0.67 1 ±0.0 1 ±0.33

RA 12 ±1.52 7 ±1.7 11 ±1.35 8 ±1.69 7 ±1.27 9 ±1.9 8 ±1.77 9 ±1.8 7 ±1.53 7 ±2.12 3 ±1.32 6 ±1.93 6 ±1.55 7 ±1.98 9 ±1.94 5 ±1.52 4 ±1.64 3 ±1.6 8 ±0.58 8 ±0.67 11 ±0.67 8 ±0.0 13 ±1.45 11 ±4.7 12 ±0.0 12 ±0.0 12 ±0.0

RoA 11 ±1.4 8 ±2.01 7 ±1.18 8 ±1.75 8 ±1.8 6 ±1.49 9 ±1.38 9 ±1.34 8 ±1.74 9 ±1.6 9 ±2.07 8 ±1.84 6 ±0.95 7 ±1.23 6 ±1.8 5 ±1.95 3 ±1.62 4 ±1.27 16 ±0.58 9 ±0.33 17 ±0.0 11 ±1.53 14 ±0.88 12 ±2.03 14 ±0.33 14 ±0.33 14 ±0.33

LA 8 ±1.81 7 ±2.14 6 ±1.22 7 ±1.58 7 ±1.98 3 ±0.76 8 ±1.89 11 ±1.57 8 ±1.8 11 ±1.54 7 ±1.89 9 ±1.53 6 ±1.15 8 ±1.31 7 ±1.72 4 ±1.72 3 ±1.51 3 ±1.41 15 ±0.67 8 ±0.0 15 ±0.33 13 ±1.86 16 ±0.67 15 ±1.2 13 ±0.33 13 ±0.33 13 ±0.33
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Table 10: Full ranking table for all XAI methods and CV datasets with standard error (SE).

When comparing the average metric rank between datasets belonging to one modality we observe
only minor differences.

K.2 Ranking distance between model architectures

Recent research around Vision-Transformers has shown distinct differences in their learning dynamics
[48, 46], robustness [74] or latent representations [67] compared to classical CNNs. As many of their
mechanisms (e.g., global processing, lack of inductive biases, (self-)attention, negative activations)
can theoretically also affect attribution methods, we want to test if similar distinctions between
Transformer and CNN architectures can also be detected for the performance of attribution methods.
To this end, we analyze the distance of ranks between each model architecture for each attribution
method in Figure 10 based on Equation 5.
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Image Modality

Volume Modality

Point Cloud Modality

Figure 10: Average distance between ranks of XAI methods on different model architectures for all
modalities.

The average rank distance (δ̄1m,f,Aij
) does not change substantially between CNN and Transformer

architectures for most attribution methods (except for CAM methods and LRP), which is mainly
centered around the mean value of the respective modality. This indicates that almost all attribution
methods do not receive significantly different evaluation scores depending on the underlying architec-
ture and we can not support the hypothesis that attribution methods behave fundamentally differently
on Transformer architectures compared to CNNs. Two notable outliers are the CAM methods and
LRP which show genrally higher inter rank distance. Also GB has higher rank distance between
CNNs on the image and volume modality and EG on the point cloud modality.
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K.3 Ranking tables for CNN and Tranformer only

Evaluation Criteria: Faithfullness Robustness Complexity
Modality: Image Volume Point Cloud Image Volume Point Cloud Image Volume Point Cloud

OC 8.5 5.5 9 11.5 5.5 4.5 9 10.5 7.5
LIME 14 9.5 2.5 14 12.5 11 6 8.5 7.5

KS 13 9.5 7 13 14 9 13.5 8.5 10
VG 11.5 11 9 6 2 2 10 13 9
IxG 10 2.5 5 11.5 9.5 7 3.5 1.5 3
GB 8.5 7 1 10 8 8 2 5 5.5
GC 3 14 - 2 11 - 12 7 -
SC 5 8 - 8 9.5 - 7.5 14 -
C+ 4 13 - 4.5 7 - 11 12 -
IG 6 1 5 8 3 4.5 5 4 4

EG 1 5.5 11 2 1 10 13.5 10.5 11
DL 7 2.5 2.5 8 4 4.5 1 3 2

DLS 2 4 9 4.5 5.5 1 7.5 6 5.5
LRP 11.5 12 5 2 12.5 4.5 3.5 1.5 1

Top 1 Top 2-4 Bottom 2-4 Bottom 1Per modality:

Table 11: Average ranking of the CNN architectures. Coloring coincides with top and bottom
positions as no attention methods can be applied to CNN architectures.

Evaluation Criteria: Faithfullness Robustness Complexity 
Modality: Image Volume Point Cloud Image Volume Point Cloud Image Volume Point Cloud

OC 13 9 11.5 12.5 12 13 11.5 8.5 6.5
LIME 16.5 15 2 15.5 16 14 9 8.5 5

KS 15 14 4.5 17 17 10 17 12.5 9
VG 11.5 11 8.5 1.5 2 7 13.5 10 6.5
IxG 9.5 3 1 7.5 10 10 1 1 3
GB 5 5 3 10 13 12 4.5 5 4
GC 9.5 16.5 - 12.5 10 - 10 14 -
SC 6.5 11 - 6 15 - 6 16.5 -
C+ 14 16.5 - 15.5 10 - 13.5 16.5 -
IG 6.5 2 6 5 5.5 8 3 3 2

EG 1 1 7 1.5 1 6 15.5 7 12
DL 11.5 4 4.5 10 7.5 10 4.5 2 1

DLS 3 6.5 8.5 3 7.5 5 7 6 8
LRP 16.5 13 13.5 14 14 4 2 4 10.5

         
RA 8 11 10 4 3.5 3 8 12.5 10.5

RoA 4 6.5 11.5 10 3.5 2 15.5 11 14
LA 2 8 13.5 7.5 5.5 1 11.5 15 13

Top 1 Top 2-4 Bottom 2-4 Bottom 1Per modality:

Table 12: Average ranking of the Transformer architectures. Coloring coincides with top and bottom
positions.

Table 11 shows the average metric rank for CNN architectures while Table 12 shows the average
metric rank based on Transformer architectures. Attention methods can only be applied to Transformer
architectures. We observe only minor differences between both tables.
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K.4 Differences in ranking order between model architectures

Robustness ComplexityFaithfulness

a. Average Rank Correlation of Evaluation Metrics between Models

Avg. Kendal 

Rank Corr.

Avg. Kendal 

Rank Corr.

a. Average Correlation between Rank 

and F1 Score (PCCC̄,m )

Avg. Pearson Correlation

Standard Error

Mean Avg. per Modality

b. Average Rank Distance between Model Architectures for selected Attribution Methods (δ̄1
m, f,Aij

)

Figure 11: Kendall’s-τ rank correlation between model architectures averaged over datasets and
faithfulness criteria.

We compare the difference in faithfulness rankings of attribution methods between CNN and Trans-
former architectures, as biased methods should be less faithful to the model. To this end, we compute
the Kendals-τ rank correlation between each of the three architectures per dataset and compute their
average correlation per modality (see Figure 11). We observe a positive correlation between all
rankings. For the point cloud modality, however, the correlation is significantly lower than for the
other two modalities, indicating less similar rankings between model architectures. For volume and
image modality, the similarity between CNN architectures is generally higher.

L Shortcomings of evaluation metrics in practice

While all metrics are theoretically very well founded, we observed for some metrics shortcomings in
applications:

Casting saliency maps from 64-bit to 32 or 16-bit to save disk space in such large evaluations is not
recommended, as our experiments showed that even 32-bit precision can lead to numerical instability,
resulting in all-zero saliency maps and nan or inf evaluation scores.

Sufficiency evaluates the likelihood that observations with the same saliency maps also share the
same prediction label. In practice, this requires several saliency maps from observation with the
same prediction label. While this works well on datasets with a small number of labels and balanced
sampling, for datasets like IMN with 1000 labels, the probability is almost zero that at least 5-10
sampled observations in a set of sizes 50 or 100 have the same label.

Sequence outputting metrics that alter the input space, such as PF, RP, or ROAD, are only limited
suitable for binary prediction tasks. When the input object is too noisy/perturbed to predict accurately,
the probability for each class is 0.5 resulting in sequences converging against 0.5 and not 0. While
the resulting AUC (or AOC in the case of RP) can be compared between XAI methods within this
task, between tasks the AUC would be biased as the area for the binary task would always be larger.

ROAD scores are arrays of binary sequences which are averaged to one sequence. The amount of
noise has to be carefully tuned (also depending on the underlying model) as otherwise, all binary
sequences in the array are only 0 or 1.

LLE approximates the Lipschitz smoothness through several forward passes of a batch of observa-
tions. In application, this results in a large amount of RAM used (depending on modality) if the
approximation should be stable. While the computation is relatively fast on a GPU, stable approxima-
tions exceed 40GB of VRAM by far and have to be partitioned. For the Transformer architectures,
computation on the CPU for our amount of data was too slow to be feasible.

Effective complexity uses a nominal threshold value to determine attributed features. Even through
normalization of the saliency maps, the threshold value can have a large effect on the results, differing
between observations, and we would suggest tuning it per dataset.
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Figure 12: a. Correlation in ranking between XAI methods (see Equation 8). b. Average ranks
of attribution (across all architectures, but across Transformers-only is very alike) and attention
(Transformers-only) methods. The standard error of the mean is larger for attention methods.

IROF superpixel segmentation can result in very defined or binary structures such as in the AMN
dataset in only two superpixels (object and background), ignoring finer structures.

As elaborated, all complexity metrics flatten the input object treating it as a vector and ignoring
spatial dependencies.

M What behavioral similarities exist among XAI methods?

To resolve inconsistencies in current research for method selection, our analysis of XAI behavior
focuses on two key aspects: similarities among methods and distinct performance trends. Similarity
is important in method selection because choosing a heterogeneous set of XAI methods includes
different perspectives on the explanation, which is often advantageous in application. Specifically, we
analyze the similarity between single methods and the subgroups of attention and attribution methods,
obtaining findings 1-4, answering our main question. Figure 12 (a.) shows the correlation in ranking
between XAI methods, indicating their relative similarity, based on Equation 8.

We observe that methods belonging to methodological similar groups are positively correlated: Linear
surrogate methods (LIME, KS), CAM methods (GC, SC, C+), and attention methods (RA, RoA,
LA). Also, CAM and attention methods are slightly positively correlated, indicating their similar
attributing to local regions. We would advise not restricting access to such methodological subgroups
to preserve method diversity in application.

Contrarily to other method subgroups, the Shapely value approximating SHAP methods (EG, KS,
and DLS) are not correlated. Also, their performances in Table 2 differ extensively. This observation
is consistent with the results of Molnar et al. [41], which are, however, not in the context of XAI
evaluation. Therefore, it is advisable not to select a single SHAP method with the expectation of
achieving similar results to others but rather to employ multiple such methods.

CAM and attention methods negatively correlate with IxG, GB, IG, and DL, which contrarily attribute
to single pixels, resulting in more fine-grade saliency maps. Interestingly, we observe a very strong
positive correlation between IG/IxG, DL/IxG, and IG/DL, indicating very homogeneous behavior
between the methods, even though they are based on different mathematical mechanisms. We would
strongly recommend mixing such single-pixel and local-region attributing methods, not only for the
diversity in visualization but also because of their different performance in evaluation.

Due to the success of Transformers, attention methods are one of the most emerging subgroups of XAI
methods. This raises a pressing question for users: should they exclusively use Transformer-based
models for attention methods, or can architecture-independent attribution methods still provide equal
or superior explanations? When comparing the average ranking between both groups for all criteria,
we observe in Figure 12 (b.) a large difference in complexity and a smaller difference in robustness
while the difference in faithfulness is insignificant. The comparatively high robustness of attention
methods extends across all methods and modalities, as can be seen from Table 2. However, attention
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methods exhibit a substantially higher SD between faithfulness metrics compared to attribution
methods (see Table 2), rendering the faithfulness results for attention methods more uncertain.
Considering our concerns about the complexity metrics as well as the high SD between faithfulness
metrics, we would subsequently advocate only for prioritizing attention methods over attribution
methods if robustness is the most desired criterion.

N Sensitivity of the XAI methods hyperparameter

Faithfulness Robustness Complexity

Faithfulness Robustness Complexity
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Figure 13: Metric score distributions for the top five ranked XAI methods with hyperparameters,
evaluated on the image modality. Results are shown for three realistic hyperparameter combinations.

We conducted an ablation study on the top three performing XAI methods with hyperparameters for
the imaging modality to assess the robustness of their performance. Figure 13 presents the evaluation
results for three different hyperparameter combinations applied to EG, IG, and DL on ImageNet. An
F-Test was used to determine whether variations in hyperparameters resulted in significant differences
in the evaluation metrics. Most tests did not indicate significant changes; however, the ’stdevs’
parameter in EG, which introduces noise to subsampled images similar to SmoothGrad, significantly
reduced complexity while enhancing robustness scores.

37



O Effect of Smooth- and VarGrad

Faithfulness
FC FE MC PF RP INS DEL IROF ROAD INF

IxG

Normal 0.391 0.413 0.214 0.562 0.350 0.247 0.095 0.748 0.281 0.093 0.544 0.477 0.514
Smooth

Grad 0.398 0.392 0.238 0.596 0.640 0.263 0.065 0.763 0.275 0.108 0.515 0.243 0.509
VarGrad 0.356 0.365 0.218 0.465 0.434 0.255 0.047 0.773 0.230 0.077 0.549 0.368 0.362

IG

Normal 0.390 0.411 0.175 0.462 0.437 0.514 0.092 0.670 0.313 0.135 0.507 0.385 0.384
Smooth

Grad 0.394 0.385 0.210 0.525 0.523 0.362 0.073 0.811 0.275 0.139 0.470 0.352 0.408
VarGrad 0.384 0.393 0.221 0.468 0.563 0.316 0.090 0.722 0.203 0.064 0.517 0.318 0.582

EG

Normal 0.392 0.397 0.223 0.482 0.541 0.293 0.070 0.719 0.219 0.105 0.574 0.312 0.608
Smooth

Grad 0.383 0.368 0.236 0.469 0.520 0.215 0.085 0.776 0.244 0.083 0.540 0.268 0.626
VarGrad 0.407 0.421 0.200 0.446 0.518 0.394 0.095 0.671 0.239 0.128 0.639 0.396 0.546

DL

Normal 0.422 0.426 0.241 0.464 0.623 0.350 0.069 0.846 0.253 0.112 0.491 0.389 0.618
Smooth

Grad 0.345 0.349 0.223 0.461 0.561 0.327 0.120 0.729 0.222 0.063 0.509 0.371 0.085
VarGrad 0.348 0.323 0.226 0.517 0.543 0.319 0.093 0.734 0.204 0.100 0.537 0.328 0.107

DLS

Normal 0.353 0.378 0.244 0.529 0.514 0.321 0.073 0.765 0.198 0.079 0.554 0.435 0.063
Smooth

Grad 0.362 0.380 0.217 0.485 0.538 0.397 0.109 0.668 0.232 0.122 0.619 0.363 0.085
VarGrad 0.377 0.360 0.261 0.576 0.657 0.383 0.102 0.849 0.245 0.068 0.459 0.336 0.100

̂μ xn/2 ̂σ

Robustness
LLE MS RIS ROS RRS

IxG

Normal 0.407 0.467 0.422 0.467 1.000 2E-06 0E+00 0.568
Smooth

Grad 0.368 0.378 0.412 0.462 1.000 2E-06 0E+00 0.378
VarGrad 0.344 0.345 0.405 0.345 0.991 6E-04 1E-03 0.384

IG

Normal 0.361 0.317 0.414 0.317 1.000 1E-06 0E+00 0.488
Smooth

Grad 0.352 0.320 0.411 0.320 1.000 0E+00 0E+00 0.439
VarGrad 0.370 0.425 0.411 0.425 1.000 1E-06 0E+00 0.427

EG

Normal 0.366 0.371 0.412 0.460 1.000 1E-06 0E+00 0.371
Smooth

Grad 0.372 0.365 0.410 0.502 0.988 1E-03 2E-03 0.365
VarGrad 0.398 0.469 0.418 0.520 1.000 0E+00 0E+00 0.469

DL

Normal 0.369 0.399 0.412 0.448 1.000 1E-06 2E-06 0.399
Smooth

Grad 0.311 0.073 0.430 0.073 0.992 5E-03 5E-04 0.485
VarGrad 0.300 0.087 0.426 0.087 1.000 3E-03 1E-04 0.409

DLS

Normal 0.315 0.126 0.367 0.029 0.918 1E-01 9E-02 0.406
Smooth

Grad 0.320 0.099 0.429 0.099 0.995 5E-03 3E-03 0.496
VarGrad 0.302 0.093 0.424 0.093 0.996 4E-04 1E-03 0.420

̂μ xn/2 ̂σ
Complexity

SP CP ECP

IxG

Normal 0.419 0.376 0.176 0.268 0.612 0.376
Smooth

Grad 0.427 0.391 0.165 0.283 0.607 0.391
VarGrad 0.940 0.959 0.062 0.871 0.959 0.990

IG

Normal 0.360 0.289 0.163 0.246 0.546 0.289
Smooth

Grad 0.902 0.883 0.038 0.876 0.945 0.883
VarGrad 0.888 0.880 0.061 0.880 0.952 0.832

EG

Normal 0.853 0.846 0.080 0.846 0.936 0.777
Smooth

Grad 0.932 0.951 0.067 0.858 0.951 0.987
VarGrad 0.838 0.845 0.096 0.845 0.930 0.738

DL

Normal 0.840 0.816 0.062 0.793 0.909 0.816
Smooth

Grad 0.213 0.175 0.191 0.175 0.419 0.044
VarGrad 0.196 0.157 0.175 0.157 0.387 0.043

DLS

Normal 0.188 0.182 0.131 0.182 0.322 0.059
Smooth

Grad 0.229 0.189 0.216 0.189 0.462 0.035
VarGrad 0.165 0.137 0.137 0.137 0.314 0.043

̂μ xn/2 ̂σ

Table 13: Mean evaluation metric scores for the top 5 XAI methods when applied normal, with
SmoothGrad and with VarGrad. The results are for the image modality.

Table 13 shows the mean evaluation metric score of the top five ranked methods when computing the
saliency map either normally, with SmoothGrad, or with VarGrad. As in Table 2 we show the mean
µ̂, median xn/2, and SD σ̂ for each row. The results are for the image modality. We observe no clear
trend if both advancements improve one XAI method. Only in terms of complexity, SmoothGrad
improves three out of five methods substantially. Due to the noisy sampling of the saliency maps
by SmoothGrad, we assume that the resulting saliency maps are more localized, thus reducing
complexity.
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P Wilcoxon-Mann-Whitney test between all rankings

Faithfulness Robustness Complexity p-value

a. Image Modality

Faithfulness Robustness Complexity p-value

b. Volume Modality

Faithfulness Robustness Complexity p-value

c. Point Cloud Modality

Figure 14: P-value of the Wilcoxon-Mann-Whitney test between all rankings in Table 2 for each
modality and criteria. Through the p-value matrices, we can determine which XAI methods are
significantly differently ranked or could be interpreted as a tie position. We would advise however to
also take the other results in Table 2 into account as the power of the test is limited.
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