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ABSTRACT

Offline reinforcement learning (RL) is a compelling framework for learning op-
timal policies from past experiences without additional interaction with the envi-
ronment. Nevertheless, offline RL inevitably faces the problem of distributional
shifts, where the states and actions encountered during policy execution may not
be in the training dataset distribution. A common solution involves incorporating
conservatism into the policy or the value function to safeguard against uncertain-
ties and unknowns. In this work, we focus on achieving the same objectives of
conservatism but from a different perspective. We propose COmpositional COn-
servatism with Anchor-seeking (COCOA) for offline RL, an approach that pursues
conservatism in a compositional manner on top of the transductive reparameteri-
zation (Netanyahu et al., 2023), which decomposes the input variable (the state in
our case) into an anchor and its difference from the original input. Our COCOA
seeks both in-distribution anchors and differences by utilizing the learned reverse
dynamics model, encouraging conservatism in the compositional input space for
the policy or value function. Such compositional conservatism is independent of
and agnostic to the prevalent behavioral conservatism in offline RL. We apply
COCOA to four state-of-the-art offline RL algorithms and evaluate them on the
D4RL benchmark, where COCOA generally improves the performance of each
algorithm. The code is available at https://github.com/runamu/compositional-
conservatism.

1 INTRODUCTION

Reinforcement learning (RL) has achieved notable successes across various domains, from guiding
robotic movements (Dasari et al., 2020) and optimizing game strategies (Mnih et al., 2015) to re-
cently promising training of language models (Rajpurkar et al., 2016). Despite these achievements,
the challenges posed by real-time interaction in complex and sensitive environments have prompted
the development of offline RL as a viable direction. Offline RL (Wiering & Van Otterlo, 2012;
Levine et al., 2020) or batch RL (Lange et al., 2012) learns policies solely from pre-existing data,
without any direct interaction with the environment. Offline RL is becoming increasingly popular
in real-world applications such as autonomous driving (Yu et al., 2020a) or healthcare (Gottesman
et al., 2019) where prior data are abundant.

By its nature of learning from prior datasets, offline RL is often susceptible to distributional shifts.
This issue arises when the distribution of states and actions encountered during policy execution
differs from that of the training dataset, a situation particularly challenging in machine learning
(Levine et al., 2020). Numerous existing offline RL algorithms tackle this by reducing distributional
shifts through conservative approaches, including constraining the policy or estimating uncertainty
to measure distributional deviations (Kim & Oh, 2023; Ran et al., 2023; Kostrikov et al., 2022;
Kumar et al., 2020; Wu et al., 2019; Kumar et al., 2019; Fujimoto et al., 2019; Sun et al., 2023;
Rigter et al., 2022; Wang et al., 2021; Yu et al., 2021; 2020b; Kidambi et al., 2020). These strategies
aim to keep the agent within known distributions, mitigating risks of unexpected behaviors. In this
work, we also pursue the same goal of conservatism, focusing on aligning the test data distribution
with the seen distribution, but from a different perspective.
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We begin by recognizing that the state distributional shift problem is closely related to addressing
how to deal with the out-of-support input points of the function approximators. We explore the pos-
sibility of transforming the out-of-support learning problem into an out-of-combination problem by
injecting inductive biases into function approximators of the policy or the Q-value function. Such
a transformation has been previously proposed by Netanyahu et al. (2023), where a transductive
approach named bilinear transduction makes predictions through a bilinear architecture after repa-
rameterizing the target function. This reparameterization decomposes the input variable into two
components, namely an anchor and a delta, where the anchor is a variable in the input space and the
delta is the difference between the input variable and the anchor. If the reparameterized training and
test data distribution satisfy certain assumptions, and if the target function has certain properties, the
bilinear transduction can address the out-of-combination problem, which potentially resolves the
out-of-support problem with the original target function.

We propose COmpositional COnservatism with Anchor-seeking (COCOA) for offline RL, a frame-
work that adopts a compositional approach to conservatism, building upon the transductive repa-
rameterization (Netanyahu et al., 2023). Our approach transforms the distributional shift problem
into an out-of-combination problem. This shifts the key factors for generalizability from data to
decomposed components and the interrelations between them, demanding the anchor and delta to
be selected close to the training dataset distribution.

We suggest a new anchor-seeking approach with an additional policy, named anchor-seeking policy,
which enforces the agent to find anchors within the seen area of the state space. Hence, COCOA
encourages anchors to be close to the offline dataset while confining the deltas within a narrow
range by identifying anchors among neighboring states. This approach can reduce the input space
and guide it toward the space predominantly explored during the training phase. In summary, by
learning a policy to seek in-distribution anchors and differences from the learned dynamics, we
can encourage conservatism in the compositional input space of the function approximator for the
Q-function and policy. This approach is independent of and agnostic to the prevalent behavioral
conservatism in offline RL.

We empirically find that our method improves the performance of four representative offline RL
methods, including CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2022), MOPO (Yu et al.,
2020b), and MOBILE (Sun et al., 2023) on the D4RL benchmark (Fu et al., 2020). We also show
through an ablation study that learning anchor-seeking policy is effective in improving the perfor-
mance of our method. Our main contributions can be summarized as follows:

• We pursue conservatism in the compositional input space for the function approximators
of the Q-function and policy, independently and agnostically to the prevalent behavioral
conservatism in offline RL.

• We introduce COmpositional COnservatism with Anchor-seeking (COCOA) that finds in-
distribution anchors and deltas with the learned dynamics model, which is crucial for com-
positional generalization.

• We empirically show that COCOA improves the performance of four state-of-the-art offline
RL algorithms on the D4RL benchmark. Additionally, our ablation study shows the efficacy
of anchor-seeking policy compared to heuristic anchor selection.

2 PRELIMINARIES

2.1 OFFLINE RL

We assume an MDP problem (S,A, T,R) with a continuous state space S, a continuous action
space A, a transition function T : S × A → S, and a reward function R : S × A → R. The goal
is to find a policy π : S → A that maximizes the expected return J(π) = Eπ [

∑∞
t=0 γ

tR (st, at)],
where γ ∈ [0, 1) is a discount factor.

In offline RL, also known as batch RL, we are given a dataset Denv = {(si, ai, si+1, ri)}Ni=1 gener-
ated with a behavior policy. The goal in offline RL is to find a policy π that maximizes the expected
return J(π) using only the fixed datasetDenv. Like most model-baed offline RL algorithms, we learn
a dynamics model T̂ (si+1|si, ai) that predicts a next state si+1 given a current state si and action ai.
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In addition to the forward dynamics model, we also learn a reverse dynamics model T̂ (si|si+1, ai)
that predicts a current state si given a next state si+1 and action ai.

2.2 BILINEAR TRANSDUCTION

We follow the formulation of Netanyahu et al. (2023) about the generalization problem. With no
assumption on the train and test distribution, the generalization performance of a function approx-
imator is limited. This problem occurs especially when the test distribution is not contained in
the train distribution, also known as an out-of-support (OOS) learning problem. As a special case
of OOS, an out-of-combination (OOC) problem occurs when the input space is decomposed into
two components, and the marginal of the train distribution of each component includes that of the
test distribution while the joint train distribution does not necessarily contain the joint test distribu-
tion. Under certain assumptions, Netanyahu et al. (2023) propose a transductive reparameterization
method called bilinear transduction to convert an OOS problem into an OOC problem.

Bilinear transduction. It solves extrapolation under certain assumptions. First, the target function
f(x) is reparameterized as

f(x) := f̄(x− x̃, x̃), (1)

where x̃ is termed as an anchor, selected from the training dataset. The difference (x− x̃) between
the input variable x and the anchor x̃ is termed as a delta. The reparameterized target function f̄ is
approximated as a bilinear function of the embeddings φ1 and φ2:

f̄θ(x) = φ1(x− x̃) ·φ2(x̃). (2)

Intuitively, it facilitates the low-rank property of the embeddings φ1 and φ2, enabling the function
approximator to generalize to OOC points.

Sufficient conditions for bilinear transduction. Netanyahu et al. (2023) introduce sufficient con-
ditions for bilinear transduction to be applicable. The assumptions are about both the dataset and
the target function f . The first assumption is about a combinatorial coverage of the dataset. The test
dataset has to have a bounded combinatorial density ratio with respect to the training dataset. It im-
plies that the support of the joint distribution of the training distributions of the components should
include the support of the joint distribution of the test distributions of the components. Second, the
target function f should be bilinearly transducible , i.e., there exists a deterministic function f̄ such
that f(x) = f̄(x − x̃, x̃) for all x, x̃ ∈ X . Lastly, the training distribution of anchors should not
degenerate (Shah et al., 2020). Under these three conditions, it is possible to generalize the target
function to OOC points with a theoretically guaranteed risk bound.

Connection to compositional generalization. In light of the literature on compositional general-
ization (Wiedemer et al., 2023), we interpret bilinear transduction as a special case of compositional
generalization, where the φ1,φ2 models serves as component functions, extracting low-rank fea-
tures of the input, and the inner product serves as a composition function.

3 COMPOSITIONAL CONSERVATISM WITH ANCHOR-SEEKING (COCOA)

3.1 OFFLINE RL WITH BILINEAR TRANSDUCTION

The base algorithms in offline RL, such as Deep Q-Networks (DQN) (Mnih et al., 2015) and Actor-
Critic methods (Mnih et al., 2016; Haarnoja et al., 2018), frequently use deep neural networks as
function approximators. Hence, we employ bilinear transduction (§ 2.2) to the function approxima-
tors of policy and Q-function. In both train and test phases, we decompose the current state s into
an anchor s̃ and a delta ∆s = s− s̃, where s̃ ∼ Denv. Then, the policy and the Q-function will be

π̄θ(s) = φθ,1(∆s) ·φθ,2(s̃), Q̄ϕ(s, a) = φϕ,1(∆s, a) ·φϕ,2(s̃, a). (3)

The architecture of the policy and Q-function is illustrated in Figure 1c. The policy π(a|s) is trained
to maximize the expected return J(π), and the Q-function Q(s, a) is trained to minimize its loss
function LQ defined in the base offline RL algorithm.

Different state decompositions can result in different compositional input spaces, resulting in differ-
ent generalization capabilities. In order to satisfy the assumptions of bilinear transduction in § 2.2,
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Figure 1: (a) An illustration of anchor-seeking rollouts that find anchors close to the seen area of
the state space S. Given the current state s, the anchor-seeking policy π̃ gives actions to reach the
anchor s̃. Its behavior is derived by utilizing reverse model rollouts, which diverge from the offline
dataset. (b) An illustration of the current state s and an anchor s̃. Ideally, the anchor s̃ has been
observed during the training phase when it served as an anchor for another state. Similarly, the
difference, delta, had also been encountered previously in the ideal case but in combination with a
different anchor. (c) The architecture of our policy π(a|s) that aims to generalize to an unfamiliar
state by decomposing the state s into familiar components (seen anchor s̃ and seen delta ∆s) and
applying a transductive predictor. The architecture of the Q-function is similar to that of the policy.

the ideal approach is to find the decomposition that fulfills these two criteria: in-distribution anchor
and in-distribution delta. This ideal case is illustrated in Figure 1c. However, in contrast to the prior
works (Netanyahu et al., 2023; Pinneri et al., 2023) that only focus on the transducible property
of the goal state, we try to handle each state in every step, and it is computationally infeasible to
enforce these constraints using brute-force methods like comparing the current states to all other
points. Hence, we introduce a new anchor-seeking policy that learns to find in-distribution anchors
and deltas and exploit the learned dynamics model that prevents arbitrary decomposition, to exploit
the power of bilinear transduction. We also enforce each delta to be within a distance of a few steps
of the dynamics model to confine the distribution of delta in both the train and test phase to a similar
range. This approach reduces the input space and guides it toward the space that is predominantly
explored during the training phase, thereby further enhancing generalizability.

3.2 LEARNING TO SEEK IN-DISTRIBUTION DECOMPOSITION

We describe the reverse dynamics model, the anchor-seeking trajectory, and the random divergent
reverse policy, which are required components before training the anchor-seeking policy.

3.2.1 ANCHOR-SEEKING TRAJECTORY

Training a reverse dynamics model. Given a transition (s, a, s′) sampled from the dataset Denv,
we train a reverse transition dynamics model T̂r(s|s′, a) (Wang et al., 2021; Lai et al., 2020; Goyal
et al., 2018; Edwards et al., 2018; Holyoak & Simon, 1999) to predict the state s given the next state
s′ and action a. In other words, the reverse dynamics model T (s′, a) predicts “From which state s
do we come if we arrive at s′ by taking action a?”. This is done by minimizing the loss function
with the dataset’s state s defined as

Lr = E(s,a,s′)∼Denv

[∥∥∥T̂r(s
′, a)− s

∥∥∥2
2

]
. (4)

Random divergent reverse policy. We do not use a trained reverse policy but instead use a heuristic
reverse policy that randomly selects an action from the dataset Denv. The subsequent actions in
reverse rollouts, after the initial action, follow the same direction as the initial action but are slightly
scaled down with a small added Gaussian noise. This ensures that the reverse rollout diverges away
from the dataset. Since we use random actions and maintain a consistent direction throughout the
reverse rollout, it is more likely to venture into unexplored regions beyond the offline dataset. In
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Algorithm 1 Generation of Anchor-Seeking Trajectory

Require: Offline dataset Denv, reverse dynamics T̂r, anchor-seeking horizon h, rollout epoch e.
1: for k in 1 . . . e do
2: Sample anchor state st ∼ Denv .
3: Generate reverse model rollout τ̂ = {(st−i, at−i, rt−i, st+1−i)}hi=1 from st by using the

reverse dynamics T̂r and random divergent actions {at−i}hi=1.
4: Add model rollouts to replay buffer, Dreverse ← Dreverse ∪ {(st−i, at−i, rt−i, st+1−i)}hi=1.
5: end for
6: return Dreverse

Algorithm 2 Anchor-Seeking Rollout

Require: State s, anchor-seeking policy π̃, forward dynamics model T̂ , anchor-seeking horizon h.
1: Set the initial state for anchor-seeking: s̃ = s.
2: for i = 1 to h do
3: Compute the anchor-seeking action η ← π̃(s̃).
4: Update anchor s̃← T̂ (s̃, η).
5: end for
6: return s̃

summary, the reverse policy gives an action aj at each rollout step j as follows:

aj = ϕa+ ϵj , where a ∼ Denv, ϵj ∼ N (0, σ2), j = 1, 2, . . . , h. (5)

h is a horizon length, ϕ is a scale coefficient, and σ is a noise coefficient. We set ϕ = 0.8 and
σ = 0.1 when the maximum action value is 1.0.

Anchor-seeking trajectory. We use rollouts of the reverse model to make anchor-seeking trajec-
tories for training the anchor-seeking policy. First, we sample an anchor state from the dataset and
generate a reverse transitionDreverse = {(si+1, ai, si, ri)}ji=1 from the anchor state using the reverse
dynamics model and the random divergent reverse policy. Note that the direction of anchor-seeking
trajectory is reverse to that of reverse transition, Dreverse. By doing so, we can effectively generate
anchor-seeking trajectories for training of the anchor-seeking policy. Utilizing reverse model roll-
outs to address the OOD problem is first proposed by Wang et al. (2021), who augment the offline
dataset with reverse transition, train a policy using this augmented dataset, and demonstrate the ef-
ficacy of such an approach in the offline RL setting. Finally, the detail of generating anchor-seeking
trajectory is summarized in Algorithm 1.

3.2.2 TRAINING OF DYNAMICS-AWARE ANCHOR-SEEKING POLICY

We train the anchor-seeking policy π̃(a|s) before training the main policy. We utilize anchor-seeking
trajectories in § 3.2.1, which are the reverse direction to the dataset Dreverse. By following the path
of an anchor-seeking trajectory, the anchor-seeking policy is trained to select actions η that guide
the agent in a direction moving from the external boundary towards the seen area as illustrated in
Figure 1a. Given the anchor-seeking rollout is generated by the anchor-seeking policy π̃(a|s) and
the dynamics model T̂ (s, a), the reverse transition Dreverse relies on T̂r(s, r|s′, a). Since the reverse
transition was designed to diverge from the offline dataset, the anchor-seeking trajectory, with its
reversed direction, ensures the transition converges back to the dataset from unfamiliar states. As a
result, we train the anchor-seeking policy to minimize the MSE loss between the predicted action
and the action in the dataset Dreverse. The loss function is defined as

Lanchor(θ) = E(s′,a,s)∼Dreverse,η∼π̃θ(a|s)

[
(η − a)2

]
. (6)

In this way, the anchor-seeking policy π̃(a|s) can provide a proper action to move toward an in-
distribution anchor. This action is given to the dynamics model T̂ (s, a) to predict the next state.
Thereby, as shown in Figure 1, the anchor-seeking rollout is a sequence of transitions that starts
from the current state s and ends at the anchor state s̃.
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Algorithm 3 Bilinear Transduction with Anchor-Seeking (Actor)

Require: Input state s, anchor-seeking policy π̃, forward dynamics model T̂ , anchor-seeking hori-
zon h, embedding layers {φ1,φ2}.

1: Start from s0 ← s and perform anchor-seeking rollout τ̂ = {(si, ai, si+1)}h−1
i=0 by using the

anchor-seeking policy π̃(ai|si) and forward dynamics T̂ (si+1|si, ai).
2: Decompose the state s by using the final state as an anchor: s̃← sh, ∆s← s− sh.
3: Bilinear transduction of the target function: f̄ ← φ1(s− s̃) ·φ2(s̃).
4: Process f̄ with an additional MLP layer: f̄ ← MLP(f̄).
5: return f̄

3.3 SUMMARY OF THE METHOD

We illustrate the integration of the anchor-seeking model into the bilinear transduction framework.
We choose the Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018) as a representative RL
algorithm that employs function approximators. We utilize the bilinear transduction supplemented
with anchor-seeking for the SAC’s actor and critic networks.

Given an input state sn, we use rollout to obtain an action from the anchor-seeking policy. The
anchor s̃ is derived by this action through the forward step of dynamics and then updated to be
the next state sn+1. After rolling out a few times we can pinpoint the final anchor and use it to
decompose the state into the anchor and delta. The difference between the initial state sn and this
anchor s̃, delta, is computed as ∆s = s̃− sn.

We then carry out the bilinear transduction as described in Eq.(2). We respectively embed ∆s and
s̃ as φ1(∆s) and φ2(s̃), and compute the inner product between them. The output is then fed into
a small MLP layer to enhance the flexibility of the function approximator. This step introduces
nonlinearity, as the policy or Q-function may not be linear to their inputs.

Algorithm 3 summarizes the whole process in the actor module. In the critic module, we concatenate
the action with both the anchor and delta in the forward operation before executing bilinear trans-
duction. Subsequently, the values of action and Q-value, derived as f̄actor and f̄critic respectively, are
employed to update the actor and critic networks of the SAC policy.

4 EXPERIMENTS

In our experiments, we aim to empirically answer the following two questions: (i) how much does
our method improve the performance of prior model-free and model-based algorithms? and (ii) what
is the effect of the anchor-seeking on performance?

4.1 RESULTS OF D4RL BENCHMARK TASKS

We evaluate our method on the Gym-MuJoCo tasks in D4RL benchmark (Fu et al., 2020), which
consists of 12 tasks from the OpenAI Gym (Brockman et al., 2016) and MuJoCo (Todorov et al.,
2012) environments. Refer to A.1 for the details of the tasks.

Baselines. We apply COCOA to several prior offline RL algorithms, both model-based and model-
free methods. They include (i) CQL (Kumar et al., 2020) that penalizes Q-values on out-of-
distribution samples for safety, (ii) IQL (Kostrikov et al., 2022) that leverages the generalization
capability of the function approximator by viewing the state value function as a random variable,
(iii) MOPO (Yu et al., 2020b) as a model-based approach that penalizes rewards based on uncertainty
from predicting subsequent states, and (iv) MOBILE (Sun et al., 2023) that quantifies uncertainty
through the inconsistency of the Bellman estimation using an ensemble of dynamics models. We
also report the results of (v) Behavior Cloning (BC), which learns tasks by imitating expert data. To
stabilize training, all baseline algorithms are reproduced with layer normalization applied.

Results. Table 1 summarizes the results of our experiments. The baseline algorithms are denoted
as “Alone”, and our method is denoted as “+COCOA”. We report the average return of the last 10
training epochs across 4 seeds, with the standard deviation. For all algorithms, we reproduce the
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Table 1: Results of the D4RL benchmark. We report the normalized average return of the last 10
training epochs across 4 seeds on the D4RL benchmark tasks.

Task BC CQL IQL MOPO MOBILE
Alone +COCOA Alone +COCOA Alone +COCOA Alone +COCOA

halfcheetah-random 2.2 31.3 23.8 ± 0.8 - - 37.3 33.9 ± 2.3 40.9 29.5 ± 2.4
hopper-random 3.7 5.3 8.8 ± 1.6 - - 31.7 32.3 ± 1.2 17.4 11.5 ± 8.3
walker2d-random 1.3 5.4 5.5 ± 8.5 - - 4.1 23.7 ± 0.5 9.9 21.4 ± 0.1
halfcheetah-medium 43.2 46.9 49.0 ± 0.2 47.4 47.1 ± 0.1 72.4 70.8 ± 3.7 73.5 69.2 ± 1.0
hopper-medium 54.1 61.9 66.0 ± 1.4 66.3 65.5 ± 1.5 62.8 39.5 ± 2.3 92.9 103.7 ± 6.1
walker2d-medium 70.9 79.5 83.1 ± 0.3 78.3 81.9 ± 0.2 84.1 89.4 ± 1.4 80.8 84.4 ± 1.3
halfcheetah-medium-replay 37.6 45.3 46.4 ± 0.4 44.2 40.3 ± 1.4 72.1 67.0 ± 0.5 66.8 68.6 ± 0.9
hopper-medium-replay 16.6 86.3 96.5 ± 1.9 94.7 88.2 ± 5.9 92.8 71.4 ± 30.1 87.9 105.3 ± 1.7
walker2d-medium-replay 20.3 76.8 83.9 ± 2.9 73.9 66.9 ± 10.0 85.2 93.1 ± 5.1 81.1 83.5 ± 1.7
halfcheetah-medium-expert 44.0 95.0 92.4 ± 3.1 86.7 91.4 ± 1.4 83.6 109.1 ± 1.4 86.75 104.1 ± 2.0
hopper-medium-expert 53.9 96.9 103.3 ± 1.4 91.5 105.3 ± 2.0 74.9 101.4 ± 13.9 102.3 109.1 ± 4.7
walker2d-medium-expert 90.1 109.1 109.4 ± 0.4 109.6 109.1 ± 0.9 105.3 109.1 ± 0.4 107.0 107.5 ± 0.9
Average 36.5 61.6 64.0 77.0 77.3 67.2 70.1 70.6 74.8
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Figure 2: Performance of CQL, IQL, MOPO, and MOBILE with and without COCOA on the
halfcheetah-medium-expert-v2 task of D4RL.

results with the codebase described in Appendix A.3. Our method enhances the performance of all
baseline algorithms, as measured by the average improvement across tasks excluding the random
tasks of IQL as the original IQL paper does. In summary, our COCOA improves the performance
of the original methods in 10 out of 12 tasks for CQL, 3 out of 9 tasks for IQL, 7 out of 12 tasks for
MOPO, and 9 out of 12 tasks for MOBILE.

4.2 ABLATION STUDY: THE EFFECT OF ANCHOR-SEEKING

To examine the impact of anchor selection on performance, we experiment with a variant of our
method that does not use anchor-seeking. For this ablation study, we use CQL (Kumar et al., 2020) as
the base algorithm due to its computational efficiency as a model-free algorithm and its completeness
in supporting all task types, including “random” tasks.

Baseline. The baseline for this ablation study is denoted as “+COCOA (w/o A.S.)” in Table 2.
In this baseline, we adapt the heuristic anchor selection procedure from Netanyahu et al. (2023),
incorporating key modifications for our context. Unlike the original method, which selects anchors
based on goal states, our baseline selects anchors based on the current state, addressing the absence
of a goal state in our setting. To mitigate the computational demands of this method, we limit our
selection to a subset of candidate anchors, randomly sampled from the dataset.

The heuristic anchor selection operates as follows. We initially draw N candidate anchors si from
the dataset and calculate the difference ∆s between the candidates and the current state, defined by

∆sn = s− sn, n ∈ {1, . . . , N}, sn ∈ Denv. (7)

Subsequently, we assess every pairwise difference among another N sampled states from Denv as

∆si,j = si − sj , i, j ∈ {1, . . . , N}, i ̸= j, si, sj ∈ Denv. (8)
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Finally, we select the candidate anchor that minimizes the distance to the current state:

s̃ = sñ, with ñ = argmin
n

{
min
i,j
∥∆sn −∆si,j∥

}
. (9)

Table 2: Ablation study for anchor-seeking. We
report the normalized average return of the last
10 training epochs across 4 seeds on the D4RL
benchmark tasks.

Task CQL

Alone +COCOA
(w/o A.S.) +COCOA

halfcheetah-random 31.3 22.5 ± 0.5 23.8 ± 0.8
hopper-random 5.3 25.8 ± 7.4 8.8 ± 1.6
walker2d-random 5.4 8.7 ± 5.3 5.5 ± 8.5

halfcheetah-medium 46.9 47.6 ± 0.2 49.0 ± 0.2
hopper-medium 61.9 54.0 ± 2.4 66.0 ± 1.4
walker2d-medium 79.5 80.3 ± 0.9 83.1 ± 0.3
halfcheetah-medium-replay 45.3 45.1 ± 0.3 46.4 ± 0.4
hopper-medium-replay 86.3 84.7 ± 2.9 96.5 ± 1.9
walker2d-medium-replay 76.8 78.7 ± 2.2 83.9 ± 2.9
halfcheetah-medium-expert 95.0 15.8 ± 3.2 92.4 ± 3.1
hopper-medium-expert 96.9 30.4 ± 9.8 103.3 ± 1.4
walker2d-medium-expert 109.1 86.8 ± 2.3 109.4 ± 0.4
Average 61.6 48.4 64.0

This baseline enforces the results of state de-
composition to be close to in-distribution data
through direct distance calculation. While it
can be effective and feasible if the dataset is
small and N is sufficiently large, its scalabil-
ity is limited as the required amount of com-
putation scales quadratically with the data size.
Since the computation cost escalates cubically
with the sample size, we set N to 30, matching
our computation budget with “+COCOA”.

Results. We examine whether this variant im-
proves the performance of CQL. The results are
summarized in Table 2. We report the average
return of the last 10 training epochs across 4
seeds, with the standard deviation. The baseline
“+COCOA (w/o A.S.)” achieves higher perfor-
mance in only two tasks, “hopper-random” and
“walker2d-random”, and comparable or lower
performance in the other tasks compared to
the original “Alone” baseline. In contrast, our
method “+COCOA” improves the performance
of the CQL models in 10 out of 12 tasks. This result suggests that the anchor-seeking is a crucial
component for the success of our method.

5 RELATED WORK

Offline RL. In offline RL, agents use a predefined dataset without additional interactions with the
environment, typically following either the model-based or model-free strategy. Model-free RL
algorithms (Kim & Oh, 2023; Ran et al., 2023; Kostrikov et al., 2022; Kumar et al., 2020; Wu et al.,
2019; Kumar et al., 2019; Fujimoto et al., 2019) optimize policy directly using prior experiences
in the replay buffer, applying conservatism to the value function or policy. In contrast, model-
based offline RL methods (Sun et al., 2023; Rigter et al., 2022; Wang et al., 2021; Yu et al., 2021;
2020b; Kidambi et al., 2020) use a model trained in the environment to create additional data that
are employed for policy learning. Through such synthesized data, this approach becomes stronger
in generalization and robust even to unseen states.

Out-of-Distribution Generalization in Offline RL. Much study has been done to improve the
out-of-distribution (OOD) generalization of offline RL algorithms. Lou et al. (2022) tackles the
action distributional shift problem by introducing a mutual information-based approach to learn an
action embedding model. In a similar pursuit, Gu et al. (2022) propose a pseudometric action rep-
resentation learning method that measures both behavioral and data-distributional relations between
actions. Bai et al. (2022) develop an uncertainty-driven method that uses the disagreement of boot-
strapped Q-functions. It augments the dataset with OOD data on which a more refined penalty is
imposed. Pitis et al. (2022) propose a local factorization of transition dynamics and state augmenta-
tion for improved generalization of offline RL algorithms. They also provide theoretical proofs for
sample complexity and generalization ability. Our method is similar to theirs in that we also employ
the factorized architecture of the policy and Q-function. Unlike them, however, we do not use a
factorized dynamics model and instead leverage a bilinear transduction framework.

Compositional Generalization and Extrapolation. Compositional generalization, which strives to
generalize to unseen combinations of components, is explored by various studies. Wiedemer et al.
(2023) highlight a two-step generative procedure as essential for tackling a wide range of composi-
tional problems. This procedure involves the complex generation of individual components and their
straightforward combination into a single output. They provide a set of sufficient conditions under
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which models trained on the data can generalize compositionally. On a related note, Shah et al.
(2020) presents a sample-efficient RL algorithm that exploits the low-rank structure of the optimal
Q-function, which is a bilinear function of states and actions. They prove a quantitative sample com-
plexity improvement for RL with continuous state and action spaces via low-rank structure. Dong
& Ma (2023) explore the extrapolation of nonlinear models for structured domain shift. They prove
that a specific family of nonlinear models can successfully extrapolate to unseen distributions, pro-
vided the feature covariance is well-conditioned. (Netanyahu et al., 2023) propose an extrapolation
strategy based on bilinear embeddings to enable combinatorial generalization, thereby addressing
the out-of-support problem under certain conditions.

6 CONCLUSION

We explored a new perspective of conservatism for offline RL that does not regard the behavior space
of the agent but the compositional input space of the policy and Q-function. We proposed a practical
framework, COCOA, for finding better decomposition of states to encourage such conservatism.
COCOA is a simple yet effective approach that can be applied to any offline RL algorithm that
utilizes a function approximator. We empirically found that our method generally enhanced the
performance of offline RL algorithms through our experiments across various tasks in the Gym-
MuJoCo environment of the D4RL benchmark.

As our study primarily engages in empirical exploration, further investigation may be demanded
for a more comprehensive understanding of the mechanism behind the performance improvement
or the properties of the compositional input space. Moreover, since our experiments were limited
to control-based robotics environments with continuous state and action spaces, it could be a valu-
able extension of this work to apply our compositional conservatism framework to other domains,
including environments with discrete action spaces, image-based observations, or highly complex
dynamics.
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8 REPRODUCIBILITY STATEMENT

For reproducibility, we provide the code of our method at https://github.com/runamu/compositional-
conservatism. For the codebase for the baseline algorithms, please refer to Appendix A.3. The
hyperparameters and the model architecture are described in Appendix A.4 and Appendix A.2, re-
spectively.
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A EXPERIMENT SETTINGS AND IMPLEMENTATION DETAILS

A.1 D4RL BENCHMARK TASKS

HalfCheetah: The half-cheetah is a two-dimensional bipedal robot composed of 8 solid links,
encompassing two legs and a torso, coupled with 6 motorized joints. The state space is 17-
dimensional, encompassing both joint angles and velocities. An adversary destabilizes it by exerting
a 6-dimensional action with 2-dimensional forces on the torso and each foot.

Hopper: The hopper is a planar monopod robot, assembled with 4 solid links that represent the
torso, upper leg, lower leg, and foot, and includes 3 motorized joints. It has an 11-dimensional state
space, including joint angles and velocities. An adversary employs a 2-dimensional force on the
foot to disrupt its stability.

Walker2D: The walker operates as a two-dimensional bipedal robot with a structure of 7 links,
representing two legs and a torso, along with 6 actuated joints. Within its 17-dimensional state
space, joint angles and velocities are included. An adversary employs a 4-dimensional action with
2-dimensional forces on both feet to disrupt its equilibrium.

Adroit: Adroit is a complex task where a simulated robotic hand with 24 Degrees of Freedom is
used for tasks such as hammering a nail, opening a door, spinning a pen, or moving a ball. We
use two kinds of datasets for this: the “human” dataset, which includes 25 human demonstration
trajectories, and the “cloned” dataset, which is an equal mix of demonstration data and behavior
cloned from the demonstration policy.

NeoRL: NeoRL(Qin et al., 2022) is a benchmark designed to mirror real-world conditions by gath-
ering datasets using a more cautious policy, aligning closely with realistic data collection methods.
The scarcity and specificity of the data present a significant challenge for offline RL algorithms.
Our research examines nine datasets, encompassing three different environments (HalfCheetah-v3,
Hopper-v3, Walker2d-v3) and three levels of dataset quality (L, M, H), indicating low, medium,
and high quality, respectively. Notably, NeoRL offers varying quantities of training data trajectories
(100, 1000, 10000) for each environment. For our experiments, we uniformly chose 1000 trajecto-
ries.

A.2 MODEL ARCHITECTURE

Dynamics Model Architecture: As with previous works, we used a neural network as the back-
bone for our dynamics model, which outputs a Gaussian distribution for the next state and reward.
By ensembling these networks, we achieved greater stability and enhanced performance. From an
ensemble of seven, we selected the top five models based on validation error. The backbone of the
dynamics model comprises four layers, each with a hidden dimension of 200.

Actor & Critic Architecture: The actor-critic framework like SAC (Haarnoja et al., 2018) com-
prise actor and critic modules. Typically, an actor possesses a backbone constructed from a neural
network. Features embedded within this backbone are relayed through a last layer that outputs a
Gaussian distribution, yielding a non-deterministic result. Although MOPO, MOBILE, CQL, and
IQL (Yu et al., 2020b; Sun et al., 2023; Kostrikov et al., 2022; Kumar et al., 2020), traditionally use
2, 2, 3, and 2 backbone layers with a dimension of 256 respectively, upon integrating COCOA, we
standardized the use of two backbone layers with 100 hidden dimensions.

Anchor-seeking Policy Architecture: The anchor-seeking policy acts as an add-on module shared
between the actor and critic. The input data, consisting of delta and anchor, is embedded through a
neural network and subsequently processed by a bilinear architecture. Initially, inputs are embedded
to the dimension of 4 with two neural networks with 64 channels, and the bilinear architecture
produces an output with a dimension of 64 using those embedded features. Then, the outputs of
bilinear architecture are passed through the actor and critic backbone architectures, resulting in the
determination of the action and Q value, respectively.

Parameter Size: The anchor-seeking policy is built upon a compact neural network. For model-
based algorithms like MOPO and MOBILE, the dynamics parameter size is approximately 1.9M,
similar to that of COCOA. However, the parameter size needed to train the actor and critic for
MOPO and MOBILE is equivalent to 0.21M. However, when COCOA is added to these algorithms,
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the parameter size decreases to 0.19M. Given the significant magnitude of the dynamics parameters,
the cumulative parameter requirement for training across COCOA-added model-based algorithms
consistently stands at 2.2M. In contrast, IQL+COCOA and CQL+COCOA, which operate without a
dynamics model, each have a parameter size of 2.0M.

A.3 CODE IMPLEMENTATION

Our method is designed as an add-on enhancement to existing offline RL algorithms. Consequently,
rather than developing a new implementation, we adapted the established codebases of base algo-
rithms. For consistent and reliable code adaptation, we relied on Sun (2023) as the foundation for
all base algorithms, including CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2022), MOPO (Yu
et al., 2020b) and MOBILE (Sun et al., 2023). The reliability of this codebase is supported by de-
tailed training logs and results that align with those in the original papers. Additionally, Sun (2023)
offers results for the Gym-MuJoCo-v2 datasets not present in the original CQL and MOPO papers,
satisfying our needs. Note that an author of MOBILE (Sun et al., 2023) provides this codebase. Our
adaptations to the code are shared as a demo in the supplementary material.

A.4 HYPERPARAMETERS FOR EACH ALGORITHM

CQL. For both CQL and CQL+COCOA, we use α = 5.0 for all D4RL-Gym tasks because the
reproduced codebase (Sun, 2023) which provides the results for MuJoCo-v2 tasks, which are not
included in the original paper (Kumar et al., 2020), uses this value. For COCOA, the anchor seeking
horizon length h was set to 1 for most tasks, except for “halfcheetah-medium-expert-v2”, “hopper-
medium-expert-v2”, and “walker2d-medium-expert-v2”, where h was set to 3.

IQL. For both IQL, we use the same hyperparameters described in the original paper (Kostrikov
et al., 2022), τ = 0.7 and β = 3.0, which is also used in the reproduced codebase (Sun, 2023).
For IQL+COCOA, we used τ = 0.6 and β = 3.0. For COCOA, we set the anchor seeking horizon
length h to 1 for all tasks. We reproduce the random value for halfcheetah, hopper, walker2d, which
are 6.62 to 6, 8.1 to 7, 6.1 to 6.5 respectively.

MOPO. For MOPO, we use the hyperparameters used in the reproduced codebase (Sun, 2023),
which provides the results for MuJoCo-v2 tasks not included in the original paper (Yu et al.,
2020b). As in the original paper, we use aleatoric uncertainty for MOPO and MOPO+COCOA.
For MOPO+COCOA, we search for the best penalty coefficient λ and rollout length hr for each
task in the following ranges: λ ∈ {0.1, 0.5, 1.0, 5.0, 10.0}, hr ∈ {1, 5, 7, 10} except for the case of
halfcheetah-medium-expert. The best hyperparameters are described in Table 3. For COCOA, we
set the anchor seeking horizon length h to 1 for all tasks.

MOBILE. We use the same hyperparameters described in the original paper (Sun et al., 2023) for
MOBILE. For MOBILE+COCOA, we search for the best penalty coefficient λ and rollout length hr

for each task in the following ranges: λ ∈ {0.1, 1.0, 1.5, 2.0}, hr ∈ {1, 5, 10} except for the case
of walker-medium-replay. The best hyperparameters are described in Table 3. For COCOA, we set
the anchor seeking horizon length h to 1 for all tasks. Additionally, after verifying convergence,
we limited our training to a maximum of 2000 epochs and obtained results from this specific epoch
range.

A.5 ADDITIONAL EXPERIMENTAL RESULTS

We experimented with two more benchmarks - D4RL Adroit and NeoRL. The outcomes of these ex-
periments are summarized in the table4 and 5. This broader analysis reveals that COCOA enhances
the performance of IQL and MOBILE in most tasks. All experiments on additional benchmarks
were conducted without applying layer normalization to allow for direct comparison with the per-
formance reported in their original papers.

Our method demonstrated consistent performance enhancements across six D4RL Adroit tasks we
tested, showcasing its robustness and adaptability. While COCOA encountered challenges in com-
plex tasks like the door and hammer, akin to its original algorithm, this reflects the inherent difficulty
of these tasks due to sparse rewards. Notably, in tasks like the pen, our method achieved noticeable
performance improvements.
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Table 3: Hyperparameters for MOPO+COCOA and MOBILE+COCOA on D4RL benchmark.

Task MOPO+COCOA MOBILE+COCOA

λ hr λ hr

halfcheetah-random 0.1 7 1.0 10
hopper-random 10.0 5 0.1 1
walker2d-random 0.5 5 1.0 5

halfcheetah-medium 0.5 7 1.0 5
hopper-medium 5.0 10 1.5 10
walker2d-medium 1.0 7 1.0 10

halfcheetah-medium-replay 1.0 10 1.0 10
hopper-medium-replay 0.1 5 1.0 10
walker2d-medium-replay 0.5 10 1.0 3

halfcheetah-medium-expert 2.5 5 2.5 10
hopper-medium-expert 5.0 10 2.0 10
walker2d-medium-expert 1.0 10 1.0 10

Table 4: Adroit benchmark results. We report the normalized average return of the last 10 training
epochs across 2 seeds on the Adroit benchmark tasks.

Task IQL MOBILE
Alone +COCOA Alone +COCOA

door-cloned-v1 2.11 2.81 -0.27 0.92
door-human-v1 5.27 6.81 -0.28 -0.05
hammer-cloned-v1 0.53 0.57 0.23 0.29
hammer-human-v1 1.33 2.21 0.25 1.11
pen-cloned-v1 72.55 73.98 54.95 48.9
pen-human-v1 74.4 78.15 14.76 41.65
Average 26.03 27.22 11.61 15.47

In Adroit, the training epoch is limited to 200 as described in (Sun et al., 2023). Plus, we used the
same hyperparameters for MOBILE+COCOA on Adroit as described in the paper. Hyperparameters
for Adroit and NeoRL benchmark are described in Table 6.

A.6 COMPARISON WITH COMBO ALGORITHM

CQL+COCOA and COMBO exhibit some similarities, notably in their use of dynamics and a less
conservative approach towards state-action space. However, their methodologies in pursuing con-
servatism differ significantly: COCOA focuses on conservatism in the compositional input space,
whereas COMBO emphasizes regularizing the values for unfamiliar actions. Thus, COCOA and
COMBO are orthogonal, it would be an insightful comparison to integrate COCOA with COMBO,
as COCOA can be an add-on to any algorithm.

Similar to COMBO, MBPO-based methods like MOPO and RAMBO also show a tendency to
outperform model-free methods in random and medium settings. It seems that data augmentation
through MBPO is particularly beneficial in these tasks. It would be interesting to theoretically or
empirically compare the state-specific value functions among CQL, CQL+COCOA, and COMBO
for further analysis.
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Table 5: NeoRL benchmark results. We report the normalized average return of the last 10 training
epochs across 4 seeds on the NeoRL benchmark tasks.

Task MOPO MOPO+COCOA

HalfCheetah-L 40.1 47.47
Hopper-L 6.2 23.02
Walker2d-L 11.6 14.23
HalfCheetah-M 62.3 78.26
Hopper-M 1 61.65
Walker2d-M 39.9 49.80
HalfCheetah-H 65.9 42.44
Hopper-H 11.5 29.31
Walker2d-H 18 53.38
Average 28.5 44.40

Table 6: Hyperparameters of MOBILE+COCOA for Adroit benchmark and MOPO+COCOA for
NeoRL benchmark.

Task λ hr

door-cloned-v1 0.5 7
door-human-v1 3 3
hammer-cloned-v1 3 1
hammer-human-v1 5 1
pen-cloned-v1 0.5 1
pen-human-v1 10 1

HalfCheetah-v3-low 0.5 5
Hopper-v3-low 2.5 5
Walker2d-v3-low 2.5 1
HalfCheetah-v3-medium 0.5 5
Hopper-v3-medium 1.5 5
Walker2d-v3-medium 2.5 1
HalfCheetah-v3-high 1.5 5
Hopper-v3-high 2.5 5
Walker2d-v3-high 2.5 1

B DETAILED RESULTS

B.1 THEORETICAL ANALYSIS

Here, we simply show how our transductive predictor can be approximated in bilinear operation
with the Stone-Weierstrass theorem.

Theorem 1 (Stone-Weierstrass Theorem for Locally Compact Spaces) Suppose X is a locally
compact Hausdorff space and A is a subalgebra of C0(X,R). Then A is dense in C0(X,R) with re-
spect to the topology of uniform convergence if and only if it separates points and vanishes nowhere.

Let X and Y be locally compact Hausdorff (LCH) spaces. Plus, let F ⊂ C(X ;R) and G ⊂ C(Y;R)
be dense subvector spaces in the topology of uniform convergence on compacta. Then the Theorem
1 tells us that{

d∑
k=1

fk(x)gk(y)

∣∣∣∣∣ f1, . . . , fk ∈ F , g1, . . . , gk ∈ G, d ∈ N

}
⊆ C(X × Y;R)

, which forms an algebra, is dense in the topology of uniform convergence on compacta. In other
words, if we have a joint embedding fθ : X → Rd and gϕ : Y → Rd, then hθ,ϕ(x, y) = fθ(x) ·gϕ(y)
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is a universal approximator, such that (d,width) → (∞,∞) and fθ(x), gϕ(y) have depth ≥ 2.
Considering we utilize a parameterized network to approximate a transductive predictor and our
input space (s, a) is a subset of Rm ×Rn, where m and n denote their respective dimensions, φθ,1

and φθ,2 which are described in Section 3.1, can correspond to fθ and gϕ, respectively.

B.2 PERFORMANCE GRAPHS OF D4RL BENCHMARK TASKS

In this section, we provide the performance graphs of each algorithm on D4RL benchmark tasks.
We include only the 9 tasks that are not “random” tasks because the checkpoints of the baseline
methods for the “random” tasks are not provided.
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Figure 3: Performance comparison of CQL, CQL+COCOA and CQL+COCOA without anchor-
seeking across all D4RL tasks except for “random” tasks.
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Figure 4: Performance comparison of IQL and IQL+COCOA across all D4RL tasks except for
“random” tasks.
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Figure 5: Performance comparison of MOPO and MOPO+COCOA across all D4RL tasks except
for “random” tasks.

18



Published as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Training Epochs 1e6

0

10

20

30

40

50

60

70

80

N
or

m
. A

vg
. R

et
ur

ns

halfcheetahmediumv2

MOBILE + COCOA
MOBILE

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Training Epochs 1e6

0

20

40

60

80

100

120

N
or

m
. A

vg
. R

et
ur

ns
hoppermediumv2

MOBILE + COCOA
MOBILE

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Training Epochs 1e6

0

20

40

60

80

N
or

m
. A

vg
. R

et
ur

ns

walker2dmediumv2

MOBILE + COCOA
MOBILE

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Training Epochs 1e6

0

10

20

30

40

50

60

70

N
or

m
. A

vg
. R

et
ur

ns

halfcheetahmediumreplayv2

MOBILE + COCOA
MOBILE

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Training Epochs 1e6

0

20

40

60

80

100

120

N
or

m
. A

vg
. R

et
ur

ns

hoppermediumreplayv2

MOBILE + COCOA
MOBILE

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Training Epochs 1e6

0

20

40

60

80

100

N
or

m
. A

vg
. R

et
ur

ns

walker2dmediumreplayv2

MOBILE + COCOA
MOBILE

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Training Epochs 1e6

0

20

40

60

80

100

N
or

m
. A

vg
. R

et
ur

ns

halfcheetahmediumexpertv2

MOBILE + COCOA
MOBILE

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Training Epochs 1e6

0

20

40

60

80

100

120

N
or

m
. A

vg
. R

et
ur

ns

hoppermediumexpertv2

MOBILE + COCOA
MOBILE

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Training Epochs 1e6

0

20

40

60

80

100

120

N
or

m
. A

vg
. R

et
ur

ns

walker2dmediumexpertv2

MOBILE + COCOA
MOBILE

Figure 6: Performance comparison of MOBILE and MOBILE+COCOA across all D4RL tasks
except for “random” tasks.
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