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Abstract

Graph Neural Networks (GNNs) have achieved remarkable performance in mod-
eling graphs for various applications. However, most existing GNNs assume
the graphs exhibit strong homophily in node labels, i.e., nodes with similar la-
bels are connected in the graphs. They fail to generalize to heterophilic graphs
where linked nodes may have dissimilar labels and attributes. Therefore, we
investigate a novel framework that performs well on graphs with either ho-
mophily or heterophily. Specifically, we propose a label-wise message passing
mechanism to avoid the negative effects caused by aggregating dissimilar node
representations and preserve the heterophilic contexts for representation learn-
ing. We further propose a bi-level optimization method to automatically select
the model for graphs with homophily/heterophily. Theoretical analysis and ex-
tensive experiments demonstrate the effectiveness of our proposed framework
(https://github.com/EnyanDai/LWGCN) for node classification on both ho-
mophilic and heterophilic graphs.

1 Introduction
Graph-structured data is very pervasive in the real-world such as knowledge graphs, traffic networks,
and social networks. Therefore, it is important to model graphs for downstream tasks such as traffic
prediction [45], recommendation system [19] and drug generation [3]. To capture the topology
information in graphs, Graph Neural Networks (GNNs) [41] adopt a message-passing mechanism
which learns a node’s representation by iteratively aggregating the representations of neighbors. This
can enrich the node features and preserve local topology for various downstream tasks.

Despite the great success of GNNs in modeling graphs, there is a concern in processing heterophilic
graphs where edges often link nodes dissimilar in attributes or labels. Specifically, existing works [50,
9] find that GNNs could fail to generalize to graphs with heterophily due to their implicit/explicit
homophily assumption. For example, Graph Convolutional Network (GCNs) is even outperformed
by MLP that ignores the graph structure on heterophilic website datasets [50]. However, a recent
work [32] argues that homophily assumption is not a necessity for GNNs. They show that GCN
can work well on dense heterophilic graphs whose neighborhood patterns of different classes are
distinguishable. But their analysis and conclusion is limited to the heterophilic graphs under strict
conditions, and fails to show the relation between heterophily levels and performance of GNNs. Thus,
in Sec. 3, we conduct thoroughly theoretical and empirical analysis on GCN to investigate the impacts
of heterophily levels, which cover all the aforementioned observations. As the Theorem 1 and Fig. 2
show, the performance of GCN will firstly decrease then increase with the increment of heterophily
levels. And the aggregation in GCN could even lead to non-discriminative representations under
certain conditions.

Though heterophilic graphs challenge existing GNNs, the heterophilic neighborhood context itself
provides useful information [32, 6]. Generally, two nodes of the same class tend to have similar
heterophilic neighborhood contexts; while two nodes of different classes are more likely to have
different heterophilic neighborhood contexts, which is verified in Appendix 3.3. Thus, a heterophilic
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context-preserving mechanism can lead to more discriminative representations. One promising way
to preserve the heterophilic context is to conduct label-wise aggregation, i.e., separately aggregate
neighbors in each class. In this way, we can summarize the heterophilic neighbors belonging to
each class to an embedding to preserve the local context information for representation learning. As
shown in the example in Fig. 3, for node vA, with label-wise aggregation, vA will be represented
as [1.0, 5.5, 2.0, non-existence], in the order of vA’s attribute, blue, green, and orange neighbors,
respectively. Compared with vB , vA’s representations of central node and neighborhood context
differ significantly with vB . While for the aggregation in GCN, the obtained representations are
rather similar for two nodes. In other words, we obtain more discriminative features on heterophilic
graphs with label-wise aggregation, which is also verified by our analysis in Theorem 2. Though
promising, there is no existing work on exploring label-wise message passing to address the challenge
of heterophilic graphs.

Therefore, in this paper, we investigate novel label-wise aggregation for graph convolution to facilitate
the node classification on heterophilic graphs. In essence, we are faced with two challenges: (i)
the label-wise aggregation needs the label of each node; while for node classification, we are only
given a small set of labeled nodes. How to adopt label-wise graph convolution on sparsely labeled
heterophilic graphs to facilitate node classification? (ii) In practice, the homophily levels of the
given graphs can be various and are often unknown. For homophily graphs, the label-wise graph
convolution might not work as well as previous GNNs embedded with homophily assumption. How
to ensure the performance on both heterophilic and homophilic graphs? In an attempt to address these
challenges, we propose a novel framework Label-Wise GCN (LW-GCN). LW-GCN adopts a pseudo
label predictor to predict pseudo labels and designs a novel label-wise message passing to preserve
the heterophilic contexts with pseudo labels. To handle both heterophilic and homophilic graphs,
apart from label-wise message passing GNN, LW-GCN also utilizes a GNN for homophilic graphs,
and adopts bi-level optimization on the validation data to automatically select the better model for the
given graph. The main contributions are:
• We theoretically show impacts of heterophily levels to GCN and demonstrate the potential limita-

tions of GCN in learning on heterophilic graphs;
• We design a label-wise graph convolution to preserve the local context in heterophilic graphs,

which is also proven by our theoretical and empirical analysis;
• We propose a novel framework LW-GCN, which deploys a pseudo label predictor and an automatic

model selection module to achieve label-wise aggregation on sparsely labeled graphs and ensure
the performance on both heterophilic and homophilic graphs; and

• Extensive experiments on real-world graphs with heterophily and homophily are conducted to
demonstrate the effectiveness of LW-GCN.

2 Related Work
Graph neural networks (GNNs) have shown great success for various applications such as social
networks [19, 12, 47], financial transaction networks [39, 17] and traffic networks [45, 46]. Based on
the definition of the graph convolution, GNNs can be categorized into two categories, i.e., spectral-
based [4, 16, 25, 27] and spatial-based [38, 42, 1]. Spectral-based GNN models are defined according
to spectral graph theory. Bruna et al. [4] firstly generalize convolution operation to graph-structured
data from spectral domain. GCN [25] simplifies the graph convolution by first-order approximation.
For spatial-based graph convolution, it aggregates the information of the neighbors nodes [33, 19, 7].
Recently, to learn better node representations, deep graph neural networks [8, 26, 28] and self-
supervised learning methods [37, 24, 44, 48] have been investigated. Moreover, explainable graph
neural networks [13, 43, 14] and robust GNNs [10, 22, 11, 15] are also studied to address the problem
of lacking trustworthiness in GNNs.

However, the aforementioned methods are generally designed based on the homophily assumption of
the graph. Low homophily level in some real-word graphs can largely degrade their performance [50].
Some efforts [34, 2, 21, 50, 49, 9, 20, 30, 29] have been taken to address the problem of heterophilic
graphs. For example, H2GCN [50] investigates three key designs for GNNs on heterophilic graphs.
SimP-GCN [21] adopts a node similarity preserving mechanism to handle graphs with heterophiliy.
FAGCN [2] adaptively aggregates low-frequency and high-frequency signals from neighbors to learn
representations for graphs with heterophily. GPR-GNN [9] proposes a generalized PageRank GNN
architecture that can learn positive/negative weights for the representations after different steps of
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propagation to mitigate the graph heterophily issue. Recently, BM-GCN [20] proposes to utilize
pseudo labels in the convolutional operation. Specifically, the pseudo labels are used to obtain a
block similarity matrix to re-weight the edges in heterophilic graphs. Then, node pairs belonging to
different label combinations could have different information exchange. Our LW-GCN is inherently
different from these methods: (i) We propose a novel label-wise graph convolution to better capture
the neighbors’ information in heterophilic graphs; and (ii) Automatic model selection is deployed to
achieve state-of-the-art performance on both homophilic and heterophilic graphs.

3 Preliminaries
In this section, we first present the notations and definition followed by the introduction of the GCN’s
design. We then conduct the theoretical analysis to investigate the impacts of heterophily to GCN.

3.1 Notations and Definition

Let G = (V, E ,X) be an attributed graph, where V = {v1, ..., vN} is the set of N nodes, E ⊆ V × V
is the set of edges, and X = {x1, ...,xN} is the set of node attributes. A ∈ RN×N represents
the adjacency matrix of the graph G, where Aij = 1 indicates an edge between nodes vi and vj ;
otherwise, Aij = 0. In the node classification task, each node belongs to one of C classes. We use yi
to denote label of node vi. Graphs can be split into homophilic and heterophilic graphs based on how
likely edges link nodes in the same class. The homophily level is measured by the homophily ratio:

Definition 1 (Homophily Ratio) It is the fraction of edges in a graph that connect nodes of the
same class. The homophily ratio h is calculated as h =

|{(vi,vj)∈E:yi=yj}|
|E| .

When the homophily ratio is small, most of the edges will link nodes from different classes, which
indicates a heterophilic graph. In homophilic graphs, connected nodes are more likely to belong to
the same class, which will lead to a homophily ratio close to 1.

3.2 How does the Heterophily Affect the GCN?

GCN [25] is one of the most widely used graph neural networks. The operation in each layer of GCN
can be written as:

H(k+1) = σ(ÃH(k)W(k)), (1)

where H(k) is the node representation matrix of the output of the k-th layer and Ã is the normalized
adjacency matrix. Generally, the symmetric normalized form D− 1

2AD− 1
2 or D−1A is used as Ã,

where D is a diagonal matrix with Dii =
∑

i Aij . The adjacency matrix can be augmented with
a self-loop. σ is an activation function such as ReLU. In a single layer of GCN, the process can
be split into two steps. First, GCN layer averages the neighbor features with Z = ÃX. Then, a
non-linear transformation σ(ZW) is applied to obtain intermediate features or final predictions. The
step of averaging the neighbor features can benefit the node classification when the neighbors have
similar features. However, for heterophilic graphs, mixing neighbors that possess different features
may result in poor representations for node classification. This could be justified by the following
theorem, which thoroughly analyzes the impacts of the heterophily level to the linear separability of
the representations after one step aggregation in GCN.

Assumptions. We first discuss the assumptions of the heterophilic graphs: (i) Following previous
works [50], the graph G is considered as a d-regular graph, i.e., each node has d neighbors; For
each node v, the label distribution of its neighbor node u ∈ N (v) follows P (yu = yv|yv) =
h, P (yu = y|yv) = 1−h

C−1 ,∀y ̸= yv. (ii) For nodes in different classes, their heterophilic neighbors’
features follow different distributions and dimensions of features are independent to each other.
Specifically, let Nk(v) denote node v’s neighbors of class k. For two nodes v and s in classes i and j
(i ̸= j), the features of their heterophilic neighbors Nk(v) and Nk(s) in class k ∈ {1, ..., C} follow
two different normal distributions N(µik,σik) and N(µjk,σjk), where µik and µjk represent
the means, σik and σik denote the standard deviations. Intuitively, though nodes in Nk(v) and
Nk(s) belong to the same class k, they are connected to nodes of different classes because of
their different properties. For example, in the molecule, the atom in the same class will exhibit
different features, when they are linked to different atoms. Therefore, this assumption is valid.
And it is also verified by the empirical analysis on large real-world heterophilic graphs in Sec. 3.3.
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Let σi =
√

1
C

∑C
k=1(µik − µ̄i)

⊙
(µik − µ̄i), where µ̄i = 1

C

∑C
k=1 µik and

⊙
represents the

element-wise product. We can have the following theorem.

Theorem 1 For an attributed graph G = (V, E ,X) that follows the above assumptions in Sec. 3.2,
if |µii − µjj | > |µik − µjk| and σi > σii, ∀k ∈ {1, . . . C}, as the decrease of homophily ratio
h, the discriminability of representations obtained by the averaging process in GCN layer, i.e.
Z = D−1AX, will firstly decrease until h = 1

C then increase. When h = 1
C and d <

σ2
i

|µik−µjk|2
,

the representations after averaging process will be nearly non-discriminative.

The detailed proof can be found in Appendix C. The conditions in this theorem generally hold. Since
the intra-class distance is often much smaller than inter-calss distance, |µii − µjj | > |µik − µjk| is
generally meet in real-world graphs. As for σi, it computes the standard deviations of mean neighbor
features in different classes. As a result, σi is usually much larger than the σii and |µik − µjk|.
Therefore, the Theorem 1 generally holds for the real-world graphs. And we can observe from
Theorem 1 that (i) heterophily level in a certain range will largely degrade the performance of
GCN; (ii) GCN will be more negatively affected by the heterophilic graphs with lower node degrees.
Though our analysis is based on GCN, it can be easily extended to GNNs that average neighbor
representations in the aggregation (e.g. GraphSage [19], APPNP [26], and SGC [40]). For the
extension of the analysis on more complex message-passing mechanism, we leave it as future work.

3.3 Empirical Analysis on Heterophilic Graphs

Justification of Assumption (ii) in Sec.3.2. Specifically, we aim to show (i) For nodes in the same
class, features of their neighbors in the same class are similar; (ii) For nodes in different classes,
features of their neighbors in the same class follow different distributions. Let Xik = {xu : yu =
k, yv = i, u ∈ N (v), v ∈ V} be the set of neighbors which belong to class k and are linked by the
central node in class i. For neighbors in class k, we analyze the average similarity scores between
Xik and Xjk to investigate whether neighbors in class k that are linked by center nodes in different
classes follow different distributions. Specifically, the average similarity score between Xik and Xjk

is obtained by

s(Xik,Xjk) =
1

|Xik| × |Xjk|
∑

vi∈Xik

∑
vj∈Xjk

xi · xj

∥xi∥∥xj∥
, (2)

where xi and xj are features of node vi ∈ Xik and vj ∈ Xjk, respectively. The results on Crocodile,
Chameleon, and Squirrel for representative neighbor classes are presented in Fig. 1, where (i, j)-th
element in the similarity matrix denotes the average node feature cosine similarity between Xik and
Xjk. From this figure, we can observe that:
• For Xik,∀i ∈ 1, . . . , C, its intra-group similarity score is very high. This proves that the het-

erophilic neighbors’ features are similar when the nodes are in the same class.
• The similarity scores between Xik and Xik are very small when i ̸= j. This indicates that for nodes

in different classes their heterophilic neighbors belonging to the same class still differs a lot.
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Figure 1: Similarity matrices of neighbors linked with centered nodes in different classes on
Crocodile, Squirrel, and Chameleon.
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With the above observations, Assumption (ii) is justified.

Figure 2: Impacts of the het-
erophily levels to GCN and GAT.

Verification of Theorem 1. To empirically verify the theoretical
analysis of Theorem 1, we synthesize graphs with different
homophily ratios and node degrees by deleting/adding edges
in the crocodile graph following Appendix E.1. The results
of GCN and GAT [38] on graphs with various node degrees
are shown in Fig. 2. We can observe that (i) as the homophily
ratio decreases the performance of GCN will keep decreasing
until h is around 0.2 (h ≈ 1

C ), then the performance will start
increase;(ii) when h is around 1

C , the performance can be very
poor and even much worse than MLP on the graph with low node
degrees. The observations are in consistent with our Theorem 1,
which further demonstrates the general limitations of current
GNN models in learning on graphs with heterophily. This trend
has also be reported in [50, 32, 31]. Moreover, theoretical analysis is conducted in [32] to prove the
effectiveness of GCN on heterophilic graphs with discriminative neighborhoods. However, it can
only explain the observation when h < 1

C . By contrast, our theoretical analysis can well explain
the whole trend of GCN performance w.r.t the homophily ratio. A similar conclusion is made with
the theoretical analysis in [31], but node features are not incorporated and are replaced by label
embedding vectors in their analysis.

3.4 Problem Definition

Based on the analysis above, we can infer that current GNNs are effective on graphs with high
homophily; while they are challenged by the graphs with heterophily. In real world, we are usually
given graphs with various homophily levels. In addition, the graphs are often sparsely labeled. And
due to the lack of labels, the homophily ratio of the given graph is generally unknown. Thus, we
aim to develop a framework that works for semi-supervised node classification on graphs with any
homophily level. The problem is defined as:

Problem 1 Given an attributed graph G = (V, E ,X) with a set of labels YL for node set VL ⊂ V ,
the homophily ratio h of G is unknown, we aim to learn a GNN which accurately predicts the labels
of the unlabeled nodes, i.e., f(G,YL) → ŶU , where f is the function we aim to learn and ŶU is the
set of predicted labels for unlabeled nodes.

4 Methodology
As the analysis in Sec. 3 shows, the aggregation process in GCN will mix the neighbors in various
labels/distributions in heterophilic graphs, resulting in non-discriminative representations for local
context. Based on this motivation, we propose to adopt label-wise aggregation in graph convolution,
i.e., neighbors in the same class are separately aggregated, to preserve the heterophilic context. Next,
we give the details of the label-wise aggregation along with the theoretical analysis that verifies its
capability in obtaining distinguishable representations for heterophilic context. Then, we present how
to apply label-wise graph convolution on sparsely labeled graphs and how to ensure performance on
both heterophilic and homophilic graphs.

4.1 Label-Wise Graph Convolution

In heterophilic graphs, we observe that the heterophilic neighbor context itself provides useful
information. Let Nk(v) denote node v’s neighbors of label class k. As shown in Appendix 3.3, for
two nodes u and v of the same class, i.e., yu = yv, the features of nodes in Nk(u) are likely to be
similar to that of nodes in Nk(v); while for nodes u and s with yu ̸= ys, the features of nodes in
Nk(u) are likely to be different from that in Nk(s). Therefore, for each node v ∈ V , we propose to
summarize the information of Nk(v) by label-wise aggregation to capture the useful heterophilic
context. Let av,k be the aggregated representation of neighbors in class k, the process of obtaining
representation for heterophilic context with the label-wise aggregation can be formally written as:

av,k =
∑

u∈Nk(v)

1

|Nk(v)|
xu, hc

v = CONCAT(av,1, . . . ,av,C), (3)

5



Label-Wise Graph Convolutional Network for Heterophilic Graphs
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Figure 3: The illustration of label wise aggregation and overall framework of our LW-GCN.

where C is the number of classes. hc
v denotes the representation of the neighborhood context. As

it is shown in Eq.(3), concatenation is applied to obtain representation of context to preserve the
heterophilic context. When there is no neighbor of v belonging to class k, zero embedding is
assigned for class k. We then can augment the representation of the centered node with the context
representation as the general design of GNNs. Specifically, we concatenate the context representation
hc
v and centered node representation xv followed by the non-linear transformation:

hv = σ(W · CONCAT(xv,h
c
v)), (4)

where W denotes the learnable parameters in the label-wise graph convolution and σ denotes the
activation function such as ReLU.

In this section, we further prove the superiority of label-wise graph convolution in learning discrima-
tive representations for heterophilic context by the following theorem.

Theorem 2 We consider an attributed graph G = (V, E ,X) that follows the aforementioned assump-

tions in Sec. 3.2. If |µik −µjk| >
√

C
d σik,∀k ∈ {1, . . . , C}, the heterophilic context representation

hc
v that is obtained by the label-wise aggregation with Eq.(3) will keep its discriminability regardless

the value of homophily ratio h.

The detailed proof is presented in Appendix D. The difference between the groups of neighbors is

naturally larger than the intra-group variance. Since
√

C
d is usually small (e.g. around 1.8 in the

Texas graph), the condition |µik − µjk| >
√

C
d σik is generally satisfied in real-world scenarios. We

also adopt the label-wise graph convolution on the synthetic graphs with different homophily ratios
to empirically show its effectiveness. The results can be found in Appendix E.2.

4.2 LW-GCN: A Unified Framework for Graphs with Homophily or Heterophily

Though the analysis in Sec.3.1 proves the effectiveness of label-wise graph convolution in processing
graphs with heterophily, there are still two major challenges for semi-supervised node classification
on graphs with any heterophily levels: (i) how to conduct label-wise graph convolution on heterophilic
graphs with a small number of labeled nodes; and (ii) how to make it work for both heterophilic
and homophilic graphs. To address these challenges, we propose a novel framework LW-GCN,
which is illustrated in Fig. 3. LW-GCN is composed of an MLP-based pseudo label predictor fP ,
a GNN fC using label-wise graph convolution, a GNN fG for homophilic graph, and an automatic
model selection module. The predictor fP takes the node attributes as input to give pseudo labels.
fC utilizes the estimated pseudo labels from fP to conduct label-wise graph convolution on G for
node classification. To ensure the performance on graphs with any homophily level, LW-GCN also
trains fG, i.e., a GNN for homophilic graphs, and can automatically select the model for graphs with
unknown homophily ratios. For the model selection module, a bi-level optimization on validation set
is applied to learn the weights for model selection. Next,we give the details of each component.

4.2.1 Pseudo Label Prediction.

In label-wise graph convolution, neighbors in different classes are separately aggregated to update
node representations. However, only a small number of nodes are provided with labels. Thus, a
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pseudo label predictor fP is deployed to estimate labels for label-wise aggregation. Specifically, a
MLP is utilized to obtain pseudo label of node v as ŷP

v = MLP(xv), where xv is the attributes of
node v. Note that, we use MLP as the predictor because message passing of the GNNs may lead to
poor predictions on heterophilic graphs. The loss function for training fP is:

min
θP

LP =
1

|Vtrain|
∑

v∈Vtrain

l(ŷPv , yv), (5)

where Vtrain is the set of labeled nodes in the training set, yv denote the true label of node v, θP
represents the parameters of the predictor fP ,and l(·) is the cross entropy loss.

4.2.2 Architecture of LW-GCN for Heterophilic Graphs.

With fP , we can get pseudo labels ŶP
U for unlabeled nodes VU = V\VL. Combining it with the

provided YL, we have labels YP ∈ (ŶP
U ∪ YL) necessary for label-wise aggregation in Eq.(3). Then,

node representations can be updated with the heterophilic context by Eq.(4). Multiple layers of
label-wise graph convolution can be applied to incorporate more hops of neighbors in representation
learning. The process of one layer label-wise graph convolution with pseudo labels can be rewritten
as:

a
(l)
v,k =

∑
u∈NP

k (v)

1

|NP
k (v)|

h(l)
u , hl+1

v = σ
(
W(l) · CONCAT(h(l)

v , a
(l)
v,1, . . . , a

(l)
v,C)

)
, (6)

where NP
k (v) = {u : (v, u) ∈ E ∧ ŷPu = k} stands for node v’s neighbors with estimated label k.

h
(l)
v is the representation of node v at the l-th layer label-wise graph convolution with h

(0)
v = xv . In

heterophilic graphs, different hops of neighbors may exhibit different distributions which can provide
useful information for node classification. Therefore, the final node prediction can be conducted by
combining the intermediate representations of the model with K layers:

ŷC
v = softmax

(
WC · COMBINE(h(1)

v , ...,h(K)
v )

)
, (7)

where WC is a learnable weight matrix, ŷC
v is predicted label probabilities of node v. Various

operations such as max-pooling and concatenation [42] can be applied as the COMBINE function.

4.2.3 Automatic Model Selection

In heterophilic graphs, the homophily ratio is very small and even can be around 0.2 [34]. With a
reasonable pseudo label predictor, the label-wise aggregation with pseudo labels will mix much less
noise than the general GNN aggregation. In contrast, for homophilic graphs such as citation networks,
their homophily ratios are close to 1. In this situation, directly aggregating all the neighbors may
introduce less noise in representations than aggregating label-wisely as the pseudo-labels contain
noises. Therefore, it is necessary to determine whether to apply the label-wise graph convolution or
the state-of-the-art GNN for homophilic graphs. One straightforward way is to select the model based
on the homophily ratio. However, graphs are generally sparsely labeled which makes it difficult to
estimate the real homophily ratio. To address this problem, we propose to utilize the validation set to
automatically select the model.

In the model selection module, we combine predictions of the label-wise aggregation model for
heterophilic graphs and traditional GNN models for homophilic graphs. Predictions from the GNN
fG for homophilic graphs are given by ŶG = GNN(A,X), where the GNN is flexible to various
models for homophilic graphs. Here, we select GCNII [8] which achieves state-of-the-art results
on homophilic graphs. The model selection can be achieved by assigning higher weight to the
corresponding model prediction. The combined prediction is given as:

ŷv =
exp (ϕ1)∑2
i=1 exp (ϕi)

ŷC
v +

exp (ϕ2)∑2
i=1 exp (ϕi)

ŷG
v , (8)

where ŷG
v ∈ ŶG is the prediction of node v from fG. ϕ1 and ϕ2 are the learnable weights to control

the contributions of two models in final prediction. ϕ1 and ϕ2 can be obtained by finding the values
that lead to good performance on validation set. More specifically, this goal can be formulated as the
following bi-level optimization problem:
min
ϕ1,ϕ2

Lval(θ
∗
C(ϕ1, ϕ2), θ

∗
G(ϕ1, ϕ2), ϕ1, ϕ2) s.t. θ∗C , θ

∗
G = arg min

θC ,θG
Ltrain(θC , θG, ϕ1, ϕ2)

(9)
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where Lval and Ltrain are the average cross entropy loss of the combined predictions {ŷv : v ∈ Vval}
and {ŷv : v ∈ Vtrain} on validation set and training set, respectively.

4.3 An Optimization Algorithm of LW-GCN

Computing the gradients for ϕ1 and ϕ2 is expensive in both computational cost and memory. To
alleviate this issue, we use an alternating optimization schema to iteratively update the model
parameters and the model selection weights.

Updating Lower Level θC and θG. Instead of calculating θ∗C and θ∗G per outer iteration, we fix ϕ1

and ϕ2 and update the mode parameters θG and θC for T steps by:

θt+1
C = θtC − αC∇θCLtrain(θ

t
C , θ

t
G, ϕ1, ϕ2), θt+1

G = θtG − αG∇θGLtrain(θ
t
C , θ

t
G, ϕ1, ϕ2),

(10)
where θtC and θtG are model parameters after updating t steps. αC and αG are the learning rates for
θC and θG.

Updating Upper Level ϕ1 and ϕ2. Here, we use the updated model parameters θTC and θTG to
approximate θ∗C and θ∗G. Moreover, to further speed up the optimization, we apply first-order
approximation [18] to compute the gradients of ϕ1 and ϕ2:

ϕk+1
1 = ϕk

1 − αϕ∇ϕ1
Lval(θ̄

T
C , θ̄

T
G, ϕ

k
1 , ϕ

k
2), ϕk+1

2 = ϕk
2 − αϕ∇ϕ2

Lval(θ̄
T
C , θ̄

T
G, ϕ

k
1 , ϕ

k
2), (11)

where θ̄TC and θ̄TG means stopping the gradient. αϕ is the learning rate for ϕ1 and ϕ2.

More details of the training algorithm are in Appendix A.

5 Experiments
In this section, we conduct experiments to demonstrate the effectiveness of LW-GCN. In particular,
we aim to answer the following research questions:
• RQ1 Is our LW-GCN effective in node classification on both homophilic and heterophilic graphs?
• RQ2 How do the quality of pseudo labels and the automatic model selection affect LW-GCN?
• RQ3 Can label-wise aggregation learn representations that well capture information for prediction?

5.1 Experimental Settings

Datasets. For homophilic graphs, we choose the widely used benchmark datasets, Cora, Citeseer,
and Pubmed [25]. The dataset splits of homophilic graphs are the same as the cited paper. As for
heterophilic graphs, we use three webpage datasets Texas, Cornell, and Wisconsin [34], and three
subgraphs of wiki, i.e., Squirrel, Chameleon, and Crocodile [36]. Following [50], 10 dataset splits
are used in each heterophilic graph for evaluation. In addition, we also use a large scale heterophilc
citation network, i.e., arxiv-year [30]. 5 public splits of arxiv-year are used for evaluation. The
statistics of the datasets are presented in Table 3 in the Appendix.

Compared Methods. We compare LW-GCN with state-of-the-art GNNs, which includes GCN [25],
MixHop [24], SuperGAT [23], and GCNII [8]. We also compare with the following state-of-the-art
models designed for heterophilic graphs: FAGCN [2], SimP-GCN [21], H2GCN [50], GRP-GNN [9],
BM-GCN [20], ASGC [5], LINKX [30] and GloGNN++ [29]. In addition, the MLP are evaluated on
the datasets for reference. The details of these compared methods can be found in Appendix B.2.

Settings of LW-GCN. For the label predictor fP , we adopt a MLP with one-hidden layer. As for the
fC , we adopt two layers of label-wise message passing on all the datasets. More discussion about
the impacts of the depth on LW-GCN is given in Sec. G. The other hyperparameters such as hidden
dimension and weight decay are tuned based on the validation set. See Appendix B.1 for more details.

5.2 Node Classification Performance

To answer RQ1, we conduct experiments on both heterophilic graphs and homophilic graphs. The
average accuracy and standard deviations on homophilic/heterophilic graphs are reported in Table 1.
Additional results on Cornell and Citeseer datasets are presented in Appendix F. The model selection
weight for label-wise aggregation GNN fC is shown along with the results of LW-GCN. Note that this
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Table 1: Node classification results (Accuracy(%) ± Std.) on homophilic/heterophilic graphs.

Dataset Wisconsin Texas Chameleon Squirrel Crocodile arxiv-year Cora Pubmed

Ave. Degree 2.05 1.69 15.85 41.74 30.96 6.9 4.01 4.50
Homo. Ratio 0.20 0.11 0.24 0.22 0.25 0.22 0.81 0.8

MLP 83.5 ±4.9 78.1 ±6.0 48.0 ±1.5 32.3 ±1.8 65.8 ±0.7 36.7 ±0.2 58.6 ±0.5 72.7 ±0.4
GCN 53.1 ±5.8 57.6 ±5.9 63.5 ±2.5 46.7 ±1.5 66.7 ±1.0 46.0 ±0.3 81.6 ±0.7 78.4 ±1.1
MixHop 70.2 ±4.8 60.6 ±7.7 61.2 ±2.2 44.1 ±1.1 67.6 ±1.3 46.1 ±0.5 80.6 ±0.2 78.9 ±0.5
SuperGAT 53.7 ±5.7 58.6 ±7.7 59.4 ±2.5 38.9 ±1.5 62.6 ±0.9 38.1 ±0.1 82.7 ±0.4 78.4 ±0.5
GCNII 82.1 ±3.9 68.6 ±9.8 63.5 ±2.5 49.4 ±1.7 69.0 ±0.7 47.2 ±0.3 84.2 ±0.5 80.2 ±0.2

FAGCN 83.3 ±3.7 79.5 ±4.8 63.9 ±2.2 43.3 ±2.5 67.1 ±0.9 40.6 ±0.4 83.1 ±0.6 78.8 ±0.3
SimP-GCN 85.5 ±4.7 80.5 ±5.9 63.7 ±2.3 42.8 ±1.4 63.7 ±2.3 OOM 82.8 ±0.1 80.3 ±0.2
H2GCN 84.7 ±3.9 83.7 ±6.0 54.2 ±2.3 36.0 ±1.1 66.7 ±0.5 49.1 ±0.1 81.6 ±0.4 79.5 ±0.2
GPRGNN 78.2 ±4.4 77.0 ±6.4 70.6 ±2.1 50.8 ±1.4 65.6 ±0.9 45.1 ±0.2 83.8 ±0.6 79.9 ±0.1
BM-GCN 77.6 ±5.9 81.9 ±5.4 69.4 ±1.7 53.1 ±1.8 64.3 ±1.1 OOM 81.5 ±0.5 77.9±0.4
ASGC 84.3 ±2.6 85.9 ±4.7 68.8 ±1.6 54.5 ±1.6 66.4 ±0.7 39.2 ±0.1 76.8 ±0.2 74.4 ±0.1
LINKX 75.5 ±5.7 74.6 ±8.4 68.4 ±1.4 61.8 ±1.8 79.4 ±0.6 56.0 ±1.3 64.7 ±0.4 70.4 ±0.7
GloGNN++ 88.0 ±3.2 83.2 ±4.3 71.2 ±2.5 57.9 ±2.0 78.4 ±0.9 54.8 ±0.3 66.7 ±1.9 78.1 ±0.2

LW-GCN 86.9 ±2.2 86.2 ±5.8 74.4 ±1.4 62.6 ±1.6 79.7 ±0.4 55.8 ±0.2 84.3 ±0.3 80.4 ±0.3
Weight for fC 0.981 0.960 0.986 0.987 0.999 0.942 0.001 0.006

model selection weight ranges from 0 to 1. When the weight is close to 1, the label-wise aggregation
model is selected. When the weight for fC is close to 0, the GNN fG for homophilic graph is selected.

Performance on Heterophilic Graphs. We conduct experiments on 10 dataset splits on each
heterophilic graph. From the results on heterophilic graphs, we can have following observations:
• MLP outperforms GCN and other GNNs for homophilic graphs by a large margin on Texas and

Wisconsin; while GCN can achieve relatively good performance on dense heterophilic graphs
such as Chameleon. This empirical result is consistent with our analysis in Theorem 1 that the
heterophily will especially degrade the performance of GCN on graphs with low degrees.

• Though GCN and other GNNs designed for homophilic graphs can give relatively good performance
on dense heterophilic graphs, our LW-GCN bring significant improvement by adopting label-wise
aggregation. In addition, LW-GCN outperforms baselines on heterophilic graphs with low node
degrees. This proves the superiority of label-wise aggregation in preserving heterophilic context.

• The model selection weight for fC is close to 1 for heterophilic graphs, which verifies that the
proposed LW-GCN can correctly select the label-wise aggregation GNN fC for heterophilic graphs.

• Compared with SimP-GCN which also aims to preserve node features, our LW-GCN performs
significantly better on heterophilic graphs. This is because SimP-GCN only focuses on the similarity
of central node attributes. In contrast, our label-wise aggregation can preserve both the central node
features and the heterophilic local context for node classification. LW-GCN also outperforms the
other GNNs that adopt message-passing mechanism designed for heterophilic graphs by a large
margin. This further demonstrates the effectiveness of label-wise aggregation.

Performance on Homophilic Graphs. The average results and standard deviations of 5 runs on
homophilic graphs, i.e., Cora, Citeseer, and Pubmed, are also reported in Table 1 and Appendix F.
From the results, we can observe that existing GNNs for heterophilic graphs generally perform worse
than state-of-the-art GNNs on homophilic graphs such as GCNII. In contrast, LW-GCN achieves
comparable results with the the best model on homophilic graphs. This is because LW-GCN combines
the GNN using label-wise message passing and a state-of-the-art GNN for homophilic graph. And it
can automatically select the right model for the given homophilic graph.

5.3 Ablation Study

To answer RQ2, we conduct ablation studies to understand the contributions of each component to
LW-GCN. To investigate how the quality of pseudo labels can affect LW-GCN, we train a variant LW-
GCN\P by replacing the MLP-based label predictor with a GCN model. To show the importance of
the automatic model selection, we train a variant LW-GCN\G which removes the GNN for homophilic
graphs and only uses label-wise aggregation GNN. Finally, we replace the GCNII backbone of fG
to GCN, denoted as LW-GCNGCN , to show LW-GCN is flexible to adopt various GNNs for fG.
Experiments are conducted on both homophilic and heterophilic graphs. The results are shown in
Table 2. We can observe that:
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Table 2: Ablation Study

Dataset MLP GCN GCNII LW-GCN\P LW-GCN\G LW-GCNGCN LW-GCN

Cora 58.7 ±0.5 81.6 ±0.7 84.2 ±0.5 84.2 ±0.3 75.3 ±0.4 81.9 ±0.2 84.3 ±0.3
Citeseer 60.3 ±0.4 71.3 ±0.3 72.0 ±0.8 72.3 ±0.5 65.1 ±0.5 71.6 ±0.3 72.3 ±0.4
Pubmed 72.7 ±0.4 78.4 ±1.1 80.2 ±0.2 77.6 ±0.7 72.4 ±0.6 79.2 ±0.8 80.3 ±0.3

Texas 78.1 ±6.0 57.6 ±5.9 68.6 ±9.8 82.4 ±5.2 85.9 ±5.6 85.4 ±6.3 86.2 ±5.8
Chameleon 48.0 ±1.5 63.5 ±2.5 63.5 ±2.5 74.7 ±1.4 74.2 ±1.8 74.3 ±2.3 74.4 ±1.2
Squirrel 32.3 ±1.8 46.7 ±1.5 49.4 ±1.7 62.3 ±2.3 62.3 ±1.3 61.9 ±1.4 62.6 ±1.6

• On homophilic graphs, LW-GCN\P shows comparable results with LW-GCN, because GCNII
will be selected given a homophilic graph. On the heterophilic graph Texas, the performance of
LW-GCN\P is significantly worse than LW-GCN. This is because GNNs can produce poor pseudo
labels on heterophilic graph, which degrades the label-wise message passing.

• LW-GCN\G performs much better than MLP. This shows label-wise graph convolution can capture
structure information. However, LW-GCN\G performs worse than GCNII and LW-GCN on
homophilic graphs, which indicates the necessity of combining GNN for homophilic graphs.

• LW-GCNGCN achieves comparable results with GCN on homophilic graphs. On heterophilic
graphs, LW-GCNGCN performs similarly with LW-GCN. This shows the flexibility of LW-GCN in
adopting traditional GNN models designed for homophilic graphs.

5.4 Analysis of Node Representations

(a) GCN (b) LW-GCN

Figure 4: Representation similarity dis-
tributions on Texas Graphs.

To answer RQ3, we compare the representation similarity
of intra-class and inter-class node pairs in Fig. 4. For both
GCN and LW-GCN, representations in the last layer are
used for analysis. we can observe that the representations
of GCN are very similar for both intra-class pairs and
inter-class pairs. This verifies that simply averaging the
neighbors will lead to less discrimative representations .
With label-wise aggregation, the similarity scores of intra-
class pairs are significantly higher than inter-class node
pairs. This demonstrates that the representations learned
by label-wise aggregation can well preserve the nodes’ features and their contextual information.

6 Conclusion and Future Work
In this paper, we analyze the impacts of the heterophily levels to GCN model and demonstrate its
limitations. We develop a novel label-wise graph convolution to preserve the heterophilic neighbors’
information. An automatic model selection module is applied to ensure the performance of the
proposed framework on graphs with any homophily ratio. Theoretical and empirical analysis
demonstrates the effectiveness of the label-wise aggregation. There are several interesting directions
need further investigation. First, since better pseudo labels will benefit the label-wise message passing,
it is promising to incorporate the predictions of LW-GCN in label-wise message passing. Second, in
some applications such as link prediction, labels are not available. Therefore, we will investigate how
to generate useful pseudo labels for label-wise aggregation for applications without labels.
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Algorithm 1 Training Algorithm of LW-GCN

Input: G = (V, E , X), YL, p, αC , αG, αϕ and T
Output: fP , fC , fG, ϕ1 and ϕ2

1: Train fP by optimizing Eq.(5) w.r.t θP
2: Obtain pseudo labels ŶP with fP
3: repeat
4: Get combined predictions of fC and fG on Vval

5: Calculate the upper level loss Lval

6: Update ϕ1 and ϕ2 according to Eq.(11)
7: for t = 1 to T do
8: Obtain the lower level loss Ltrain

9: Update θC and θG by Eq.(10)
10: end for
11: until convergence

Table 3: The statistics of datasets.

Dataset Nodes Edges Classes Hom. Ratio

Wisconsin 251 515 5 0.20
Texas 183 309 5 0.11
Cornell 183 280 5 0.30
Chameleon 2,277 36,101 5 0.24
Squirrel 5,201 217,073 5 0.22
Crocodile 11,631 360,040 5 0.25
arxiv-year 169,343 1,166,243 5 0.22

Cora 2,708 5,429 6 0.81
Citeseer 3,327 4,732 7 0.74
Pubmed 19,717 44,338 3 0.8

A Training Algorithm of LW-GCN
The training algorithm of LW-GCN is shown in Algorithm 1. In line 1 and 2, we firstly train the fP
to obtain the required pseudo labels for label-wise message passing. From line 4 to 6, we get the
combined predictions from fC and fG and update the model selection weights with Eq.(11). From line
7 to 10, we update the model parameters θC and θG by minimizing Ltrain with Eq.(10). The updating
of model selection weights and model parameters are conducted iteratively until convenience.

B Additional Details of Experimental Settings
B.1 Implementation Details of LW-GCN

For experiments on each heterophilic graph, we report the results on the 10 public dataset splits.
For homophily graphs, we run each experiment 5 times on the provided public dataset split. The
hidden dimension of fP is fixed as 64 for all graphs. For the fC on Texas and Wisconsin, a linear
layer is firstly applied to transform the features followed by the label-wise graph convolutional layer.
As for the other graphs, the label-wise graph convolutional layer is directly applied to the node
features. The hidden layer dimension and weight decay rate are tuned based on the validation set
by grid search. Specifically, we vary the hidden dimension and weight decay in {32, 64, 128, 256}
and {0.05, 0.005, 0.0005, 0.00005}, respectively . As for the fG which deploys GCNII [8] as the
backbone, the hyperparameter settings are the same as the cited paper. During the training phase, the
learning rate is set as 0.01 for all the parameters and model selection weights. The inner iteration step
T is set as 1. Our machine uses an Intel i7-9700k CPU with 64GB RAM. A Nvidia 2080Ti GPU is
used to run all the experiments.

B.2 Implementation Details of Compared Methods

We adopt a two-layer MLP model on the datasets as baslines to show the effects of the graph structure
and local context of the graphs. The hidden dimension is set the same as our LW-GCN. Apart
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from MLP, we compare LW-GCN with the following representative and state-of-the-art GNNs that
originally designed for graphs with homophily:
• GCN [25]: This is a popular spectral-based Graph Convolutional Network, which aggregates the

neighbor information and the centered node by averaging their representations. We apply the
official code in https://github.com/tkipf/pygcn.

• MixHop [1]: It adopts a graph convolutional layer with powers of the adjacency matrix. The
official code in https://github.com/samihaija/mixhop is implemented for comparsion.

• SuperGAT [23]: This is a GAT model augmented by the self-supervision. In SuperGAT, apart
from the classification loss on provided labels, a self-supervised learning task is deployed to further
guide the learning of attention for better information propagation based on GAT [38]. The official
code from the authors in https://github.com/dongkwan-kim/SuperGAT is used.

• GCNII [8]: Based on GCN, residual connection and identity mapping are applied in GCNII to
have a deep GNN for better performance. The experiments are run with the official implementation
in https://github.com/chennnM/GCNII.

We also compare LW-GCN with the following baseline GNN models for heterophilic graphs:
• FAGCN [2]: FAGCN adaptively aggregates low-frequency and high-frequency signals from

neighbors to improve the performance on heterophilic graphs. The implementation from authors in
https://github.com/bdy9527/FAGCN is applied in our experiments.

• SimP-GCN [21]: A feature similarity preserving aggregation is applied to facilitate the repre-
sentation learning on graphs with homophily and heterophily. We utilize the official code in
https://github.com/ChandlerBang/SimP-GCN.

• H2GCN [50]: H2GCN investigates the limitations of GCN on graphs with heterophily. And it
accordingly adopts three key designs for node classification on heterophilic graphs. We conduct
experiments with the official code from authors in https://github.com/GemsLab/H2GCN.

• GPR-GNN [9]: This method introduces a new Generalized PageRank (GPR) GNN to adaptively
learn the GPR weights that combine the aggregated representations in different orders. The
learned GPR weights can be either positive or negative, which allows the GPR-GNN handle
both heterophilic and homophilic graphs. We adopt the official code from authors in https:
//github.com/jianhao2016/GPRGNN.

• BM-GCN [20]: This is one of the most recent methods designed for graphs with heterophily,
which achieves state-of-the-art results on heterophilic graphs. A block-modeling is adopted to
GCN to aggregate information from homophilic and heterophilic neighbors discrimatively. More
specifically, the link between two nodes will be re-weighted based on the soft labels of two nodes
and the block-similarity matrix. The training and evaluation process is based on the official code in
https://github.com/hedongxiao-tju/BM-GCN.

• ASGC [5]: This method replaces the fixed feature propagation step of SGC [40] with an adaptive
propagation, which can be effective for both homophilic graphs and heterophilic graphs. We use
the official code released in https://openreview.net/forum?id=jRrpiqxtrWm.

• LINKX [30]: This methods separately embed the adjacency matrix and node features with
multilayer perceptrions and simple transformations. We use the official code from authors in
https://github.com/CUAI/Non-Homophily-Large-Scale.

• GloGNN++ [29]: This method will learn a coefficient matrix to capture the correlations between
nodes to aggregate information from global nodes in the graph. The values of the coefficient matrix
can be signed and are derived from the optimization. In our experiments, we use the official code
in https://github.com/recklessronan/glognn.

The model architecture and hyperparameters of the baselines are set according to the experimental
settings provided by the authors for reproduction. For datasets that are not given reproduction details,
the hyperparameters of baselines will be tuned based on the performance on validation set to make a
fair comparison.

C Proof of Theorem 1
Proof 1 In this proof, we focus on nodes in class i and class j, where i ̸= j. Since dimensions of the
node feature are independent to each other, without loss of generality, we consider one dimension of
the feature and aggregated representation for node v, which is denoted as xv and zv. For node v in
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class i, the aggregated representation zv in GCN layer is rewritten as:

zv =
∑

u∈N (v)

1

|N (v)|
xu. (12)

With assumptions in Sec. 3.2, the expectation of aggregated representations of nodes in class i can be
written as:

E(zv|yv = i) = h · µii +
1− h

C − 1

C∑
k=1,k ̸=i

µik, (13)

Similarly, we can get the expectation of aggregated nodes representations in class j, i.e., E(zv|yv = j).
Then, the difference between E(zv|yv = i) and E(zv|yv = j) is

∆i,j = |E(zv|yv = i)− E(zv|yv = j)|

= |h · (µii − µjj) +
1− h

C − 1
(µij − µji) +

1− h

C − 1

C∑
k=1,k ̸=i,j

(µik − µjk)|

= |hC − 1

C − 1
(µii − µjj) +

1− h

C − 1
(

C∑
k=1

(µik − µjk))|

(14)

We firstly consider the situation of h ≥ 1
C . When h ≥ 1

C , we can infer the upper bound of ∆i,j as:

∆i,j ≤
hC − 1

C − 1
|µii − µjj |+

1− h

C − 1

C∑
k=1

|µik − µjk|

=
hC

C − 1
(|µii − µjj | −

1

C

C∑
k=1

|µik − µjk|) +
1

C − 1
(

C∑
k=1

|µik − µjk| − |µii − µjj |),

(15)

And the lower bound of ∆i,j is:

∆i,j ≥
hC − 1

C − 1
|µii − µjj | −

1− h

C − 1

C∑
k=1

|µik − µjk|

=
hC

C − 1
(|µii − µjj |+

1

C

C∑
k=1

|µik − µjk|)−
1

C − 1
(

C∑
k=1

|µik − µjk|+ |µii − µjj |),

(16)

Thus, when |µii − µjj | > |µik − µjk|,∀k ∈ {1, ...C} and h ≥ 1
C , both the upper bound and lower

bound of ∆i,j will decrease with the decrease of h.

Next, we will show that lower h under the condition of h ≥ 1
C will lead to higher variance of

aggregated nodes. According to Eq.(12), the variance of {zv : yv = i} can be written as:

V ar(zv|yv = i) = V ar(
∑

u∈N (v)

1

|N (v)|
xu|yv = i)

According to the assumption 1, the neighbor features are conditional independent to each other given
the label of the center node. And for each neighbor node u ∈ N (v), we have P (yu = yv|yv) =
h, P (yu = y|yv) = 1−h

C−1 ,∀y ̸= yv . Therefore, for neighbor node u ∈ N (v) of node v whose label is
i, its features follow a mixed distribution:

P (xu|yv = i)

=

C∑
k=1

P (yu = k|yv = i)P (xu|yu = k)

=h ·N(µii, σii) +
1− h

C − 1

∑
k=1,k ̸=i

N(µik, σik)

(17)
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Using the variance of mixture distribution, the variance of node v in class i can be derived as

V ar(zv|yv = i) =
1

d
V ar(xu|yv = i)

=
1

d
(E[V ar(xu|yu, yv = i)] + V ar[E(xu|yu, yv = i)])

=
1

d

(
hσ2

ii +
1− h

C − 1

C∑
k=1,k ̸=i

σ2
ik + hµ2

ii +
1− h

C − 1

C∑
k=1,k ̸=i

µ2
ik − (hµii +

1− h

C − 1

C∑
k=1,k ̸=i

µik)
2
)
(18)

Let µ̄i =
1
C

∑C
k=1 µik and σ2

i = 1
C

∑C
k=1(µik−µ̄i)

2. Then Eq.(18) can be rewritten as the following
equation:

V ar(zv|yv = i)

=
1

d
(
hC − 1

C − 1
σ2
ii +

C − hC

C − 1
(
1

C

C∑
k=1

σ2
ik + σ2

i )

+
hC − 1

C − 1
µ2
ii +

C − hC

C − 1
µ̄2
i − (hµii +

1− h

C − 1

C∑
k=1,k ̸=i

µik)
2)

(19)

As h ≥ 1
C , we can set p = hC−1

C−1 , 0 ≤ p ≤ 1 and C−hC
C−1 = 1− p. For the last three terms of Eq.(19),

we have:
hC − 1

C − 1
µ2
ii +

C − hC

C − 1
µ̄2
i − (hµii +

1− h

C − 1

C∑
k=1,k ̸=i

µik)
2

= pµ2
ii + (1− p)µ̄2

i − (pµii + (1− p)µ̄i)
2

= p(1− p)(µii − µ̄i)
2 ≥ 0

(20)

Combining Eq.(19) and Eq.(20), we are able to get the lower bound of the variance as:
V ar(zv|yv = i)

≥ hC − 1

d(C − 1)
σ2
ii +

C − hC

d(C − 1)
(
1

C

C∑
k=1

σ2
ik + σ2

i )

=
hC

d(C − 1)
(σ2

ii − σ2
i −

1

C

C∑
k=1

σ2
ik) +

1

d(C − 1)
(Cσ2

i +

C∑
k=1

σ2
ik − σ2

ii)

(21)

When σi > σii, we know that with the decrease of h, the lower bound of V ar(zv|yv = i) will
increase. Similarly, V ar(zv|yv = j) will also increase with a lower h. Combining with |E(zv|yv =
i) − E(zv|yv = j)| will decrease with the decrease of h, we can conclude that when h ≥ 1

C , the
graph with lower h will lead to less discrimative aggregate representations.

We then prove when h < 1
C , the decreasing of h will increase the discriminability of the aggregated

representations by averaging. Specifically, with Eq.(14), we can infer that when h < 1
C the upper

bound of ∆i,j will be:

∆i,j ≤
1− hC

C − 1
|µii − µjj |+

1− h

C − 1

C∑
k=1

|µik − µjk|

=
−hC

C − 1
(|µii − µjj |+

1

C

C∑
k=1

|µik − µjk|) +
1

C − 1
(

C∑
k=1

|µik − µjk|+ |µii − µjj |),

(22)

And the lower bound of ∆i,j is:

∆i,j ≥
1− hC

C − 1
|µii − µjj | −

1− h

C − 1

C∑
k=1

|µik − µjk|

=
−hC

C − 1
(|µii − µjj | −

1

C

C∑
k=1

|µik − µjk|)−
1

C − 1
(

C∑
k=1

|µik − µjk| − |µii − µjj |),

(23)
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Thus, when h < 1
C and |µii − µjj | > |µik − µjk|,∀k ∈ {1, ...C}, both the upper bound and lower

bound of ∆i,j will increase with the decrease of h.

For the variance of aggregated representations when h < 1
C , we can infer its folowing upper bound

with Eq.(19):

V ar(zv|yv = i)

≤ hC − 1

d(C − 1)
σ2
ii +

C − hC

d(C − 1)
(
1

C

C∑
k=1

σ2
ik + σ2

i )

=
hC

d(C − 1)
(σ2

ii − σ2
i −

1

C

C∑
k=1

σ2
ik) +

1

d(C − 1)
(Cσ2

i +

C∑
k=1

σ2
ik − σ2

ii)

(24)

According to the assumption that σi > σii, we know that with the decrease of h under the condition
of h < 1

C the upper bound of the V ar(zv|yv = i) will decrease. We can have the same conlcusion
for V ar(zv|yv = j). Combining the trend that when h < 1

C |E(zv|yv = i) − E(zv|yv = j)| will
increase with the decrease of h, we can conclude that when h < 1

C , the graph with lower h will have
more discriminative aggregate representations.

When h = 1
C , we can get

∆i,j =
1

C
|

C∑
k=1

(µik − µjk)|, (25)

V ar(zv|yv = i) ≥ 1

d
(
1

C

C∑
k=1

σ2
ik + σ2

i )|, (26)

If σi >
√
d|µik − µik|,∀k ∈ {1, . . . , C}, we can get V ar(zv|yv = i) > ∆2

i,j . So when h = 1
C

and σi >
√
d|µik − µik|,∀k ∈ {1, . . . , C} , the representations after the averaging process will be

non-discrimative.

D Proof of Theorem 2
Proof 2 In this proof, we also consider a center node v in class i. And we focus on one dimension
of the node feature and aggregated representation. Specifically, for each dimension, the label-wise
aggregation can be written as:

av,k =
∑

u∈Nk(v)

1

|Nk(v)|
xu, (27)

where av,k denotes the aggregated feature of neighbors in class k. Since u ∈ Nk(v), we know node
u’s features xu follows distribution as xu ∼ N(µik, σik). The mean of av,k in Eq.(27) is given as:

E(av,k|yv = i) = µik. (28)

Then the absolute difference between E(av,k|yv = i) and E(av,k|yv = j) will be:

∆k
i,j = |E(av,k|yv = i)− E(av,k|yv = j)| = |µik − µjk|. (29)

Given the assumption that the features are conditionally independent given the label of center node,
the variance of av,k can be written as:

V ar(av,k|yv = i) =

{ 1
dhσ

2
ik if k = i ;

C−1
d(1−h)σ

2
ik else, (30)

In label-wise aggregation, we generally concatenate the {av,k : k ∈ {1, . . . C}} for further classifi-
cation. Therefore, the lower bound of discriminability can be given by the representation of the class
that are most discriminative, which can be formally written as:

k∗ = argmax
k

(∆k
i,j)

2

V ar(av,k|yv = i)
(31)
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When h ≥ 1
C , we can get:

(∆k∗

i,j)
2

V ar(av,k∗ |yv = i)
≥ dh|µii − µji|2

σ2
ii

≥ d|µii − µji|2

Cσ2
ii

(32)

As for h ≤ 1
C , let k ̸= i we can infer that:

(∆k∗

i,j)
2

V ar(av,k∗ |yv = i)
≥ d(1− h)|µik − µjk|2

(C − 1)σ2
ik

≥ d|µik − µjk|2

Cσ2
ik

(33)

Therefore, if the condition that |µik − µjk| >
√

C
d σik,∀k ∈ {1, . . . , C} is met, we can infer from

Eq.(32) and Eq.(33) that
(∆k∗

i,j)
2

V ar(av,k∗ |yv=i) > 1 regardless the value of the homophily ratio h. This
shows that label-wise aggregation can preserve the context and ensure the high discriminability
regardless the homophily ratio.

E Additional Details and Experiments on Generated Graphs

Algorithm 2 Algorithm of Generating Graphs

Input: G = (V, E ,X), YL, target homophily ratio h, and target node degree d
Output: G′ = (V, E ′,X)

1: Split the edges E into heterophilic edges En and homophilic edges Es.
2: if |Es| ≥ hd|V| then
3: Sample hd|V| edges from Es to get E ′

s
4: else
5: Obtain hd|V| − |Es| homophilic edges by randomly link nodes in the same class
6: Combine Es with added homophilic edges to obtain E ′

s
7: end if
8: Randomly sample d(1− h)|V| edges from En as E ′

n
9: Get E ′ with E ′ = E ′

n ∪ E ′
s

E.1 Process of Graph Generation

To verify the conclusion in Theroem 1, we generate graphs with different homophily ratios and
average degrees on the large-scale crocodile graph. Specifically, the average node degree of the target
generated graphs is varied by {5, 10, 20}. For each node degree, we will sample the heterophilic
edges, i.e., edges linking nodes in different classes, and homophilic edges, i.e., edges linking nodes
in the same class from the original crocodile graph in different ratios to obtain realistic graphs with
different heterophily levels. The homophily ratios of the generated graphs range from 0 to 0.9 with
a step of 0.1. Since crocodile itself is a heterophilic graph that do not contain many homophilic
edges, there could be no enough homophilic edges to obtain a graph with high homophily and node
degrees. In this situation, we will randomly link nodes in the same class to get the required number of
homophilic edges for graph generation. For the train/validation/test splits of generated graphs, they
are the same as the original crocodile graph. The algorithm of the graph generation process can be
found in Algorithm 2.

E.2 More Experiments on Generated Graphs

To verify our theoretical analysis that label-wise aggregation can lead to distinguishable representa-
tions regardless the heterophily levels under mild conditions, we also compare LW-GCN with GCN
and GAT on the generated graphs with different homophily ratios and average node degrees. The
label-wise aggregation is conducted with the pseudo labels and provided ground-truth labels as it is
described in Sec.4.2.2. Since we only focus on the label-wise graph convolution in the experiments,
the model selection module is removed here. The other settings are the same as description in
Appendix B.1. The average results of 10 splits are shown in Fig. 5. From this figure, we can observe
that the performance of LW-GCN is much better than the GCN and GAT when the heterophily level is
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Figure 5: Comparisons between GCN, GAT and our LW-GCN on generated graphs. Note that model
selection module is not adopted in LW-GCN in these experiments.

high. For example, when h ≈ 0.2, both GCN and GAT can hardly outperforms MLP. By contrast, the
accuracy of LW-GCN outperform GCN and GAT by around 10%. This demonstrates the effectiveness
of adopting label-wise aggregation in graph convolution. In addition, we can find that only adopting
the model with label-wise graph convolution will give slightly worse performance than GCN/GAT
when the homophily ratio is very high. This implies the necessity of deploying a model selection
module.

F Additional Experimental Results
The additional experimental results on Cornell and Citeseer datasets are presented in Table 4 and
Table 5. The observations are similar to that of Table 1.

Table 4: Additional comparisons with GNNs originally designed for graph with homophily.

Dataset MLP GCN MixHop SuperGAT GCNII LW-GCN

Cornell 79.2 ±5.7 57.3 ±5.8 79.5 ±6.3 57.3 ±4.3 80.3 ±5.3 83.2 ±5.5
Citeseer 60.3 ±0.4 71.3 ±0.3 68.7 ±0.3 72.2 ±0.8 72.0 ±0.8 72.3 ±0.4

Table 5: Additional comparisons with GNNs designed for graph with heterophily.
Dataset FAGCN SimP-GCN H2GCN GPRGNN BM-GCN ASGC LINKX GloGNN+ LW-GCN

Cornell 78.3 ±4.5 81.4 ±7.4 79.7 ±5.0 77.6 ±5.0 74.6 ±5.0 79.2 ±5.2 77.8 ±5.8 85.9 ±4.4 83.2 ±5.5
Citeseer 71.7 ±0.6 71.8 ±0.8 71.0 ±0.5 71.1 ±0.9 68.9 ±1.0 70.2 ±0.2 51.6 ±1.7 66.7 ±1.9 72.3 ±0.4

G Impacts of Label-Wise Aggregation Layers
In this section, we explore the sensitivity of LW-GCN on the depth of fC , i.e., the number of layers
of label-wise message passing. Since LW-GCN will not select fC for homophilic graphs. We only
conduct the sensitivity analysis on heterophilic graphs. We vary the depth of fC as {2, 3, . . . , 6}. The
other experimental settings are the same as that described in Sec. B.1. The results on Chameleon
and Squirrel are shown in Fig. 6. From the figure, we find that our LW-GCN is insensitive to the
number of layers, while the performance of GCN will drop with the increase of depth. This is because
aggregation of LW-GCN is performed label-wisely to capture the context information. Embeddings
of nodes in different classes will not be smoothed to similar values even after many iterations.
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Figure 6: Classification accuracy with different model depth.
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H Limitations of Our Work
In this paper, we conduct thoroughly theoretical and empirical analysis to show the impacts of
heterophily levels to GCN. And we demonstrate the GCN model can be largely affected by heterophily
and give poor prediction results. To alleviate the issue brought by heterophily, we develop a novel
label-wise graph convolutional network to preserve the heterophilic context to facilitate the node
classification. However, there are some limitations of our work. First, node labels are required
for LW-GCN to obtain pseudo labels for label-wise graph convolution. However, in some tasks
such as link prediction, labels are not available. Therefore, we will investigate how to obtain useful
pseudo labels for applications that do not provide node labels. Second, in our theoretical analysis,
we make several assumptions for simplification. Concretely, we conduct analysis on the d-regular
graph. Following [50, 31], we also make an assumption on the label distribution of neighbor nodes.
In our analysis, the node features are simplified to normal distribution and dimensions of features
are independent to each other. These assumptions may not hold for some real-world graphs. For
example, node degrees of the real network can be unbalanced which will contradict the assumption
of d-regularity. The label distributions and feature distributions of neighbor nodes can be much more
complex. Therefore, we will investigate the theoretical analysis on more flexible assumptions in the
future. Third, recent studies [31, 35] show that the edge homophily ratio used in this paper could
have significant drawbacks especially when the distribution of classes is unbalanced. To address these
drawbacks, new measures such as adjusted homophily and label informativeness are proposed [35].
We leave the extension of our analysis on these new homophily measures as the future work.
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