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Abstract

In real-world recommendation problems, espe-
cially those with a formidably large item space,
users have to gradually learn to estimate the utility
of any fresh recommendations from their experi-
ence about previously consumed items. This in
turn affects their interaction dynamics with the
system and can invalidate previous algorithms
built on the omniscient user assumption. In this
paper, we formalize a model to capture such
“learning users” and design an efficient system-
side learning solution, coined Noise-Robust Ac-
tive Ellipsoid Search (RAES), to confront the chal-
lenges brought by the non-stationary feedback
from such a learning user. Interestingly, we prove
that the regret of RAES deteriorates gracefully
as the convergence rate of user learning becomes
worse, until reaching linear regret when the user’s
learning fails to converge. Experiments on syn-
thetic datasets demonstrate the strength of RAES
for such a contemporaneous system-user learning
problem. Our study provides a novel perspective
on modeling the feedback loop in recommenda-
tion problems.

1. Introduction
A recommender system (hereinafter referred to as system)
is designed to predict users’ preferences over items so as
to maximize the utility of the recommended items (Sarwar
et al., 2001; Koren et al., 2009). Driven by this principle,
there has been a tremendous amount of research efforts and
industry practices on developing various recommendation
algorithms that predict item utility for each user based on
the observed user-item interactions, including collaborative
filtering (Sarwar et al., 2001; Konstan et al., 1997; Linden
et al., 2003), latent factor models (Koren et al., 2009; Rendle,
2010; Rendle & Schmidt-Thieme, 2010), neural recommen-
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dation models (He et al., 2017; Ebesu et al., 2018; Liang
et al., 2018), and sequential recommendation models (Kang
& McAuley, 2018; Tang & Wang, 2018; Wu et al., 2020).

Nevertheless, this paradigm is built on an overly simplified
user model: users are omniscient about the (millions of)
items and thus allow the system to directly query their pref-
erences. This assumption ceases to be true in real-world
recommendation applications where the size of the item
space could be formidably large. As a result, instead of
being a static “classifier” (Das et al., 2007; Li et al., 2010;
Linden et al., 2003), an ordinary user typically is also learn-
ing the item utility from her interactions with the system.
For instance, a user might be new to a category of items;
thus, her responses to such items can only be accurate af-
ter consuming the recommended items, possibly even after
multiple times.

This “inaccuracy” in users’ feedback cannot be simply mod-
eled as random noise, since it naturally depend on the in-
teraction history and thus could be biased by her previous
choices. More specifically, any small bias (e.g., towards a
particular item category) in the system’s past recommenda-
tions will bias the user’s learning, which consequently leads
to biased user feedback, which then further bias the sys-
tem’s subsequent recommendations. This forms a vicious
circle – even if an optimal item is recommended to the user,
she might not take it due to her currently inaccurate utility
estimation; but failing to consume the optimal item will
stop the user from exploring that direction, and thus leading
to repeated future rejections of the same optimal recom-
mendations. This is similar to the explore-exploit dilemma
in bandit problems, but is much worse because in bandit
problems the noise of user feedback is independent from the
interaction history, whereas here the bias will accumulate.
Our problem setting also differs from reinforcement learn-
ing where the reward function is fixed by the environment
and independent from the agent’s actions.

To address the limitation caused by the previous omniscient
user assumption, we propose to model a user as an au-
tonomous agent who is learning to evaluate the utility of
system’s recommendations from her interaction history. We
formulate the system-user interaction in a dueling bandit
setup (Yue et al., 2012), such that the user does not need to
explicitly disclose their estimated utility of a chosen item.
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This more challenging feedback assumption is motivated by
the observation that an ordinary user will most often take
action that fulfills her information needs with the least effort,
and thus does not bother providing details, e.g., numerical
ratings (Tétard & Collan, 2009). Specifically, we assume
at each time step, the system proposes two items for the
user and can only observe the user’s choice between the
two items, i.e., comparative feedback. The system aims at
minimizing the cumulative regret from the interaction with
the user in a given period T .

A very important distinction from the contextual dueling
bandit problem (Dudı́k et al., 2015) is that we assume the
user does not know the best choice ahead of time and will
respond to current recommendations based on learned pa-
rameters from her past experience. Our model of such a
learning user is quite general, without any need of restricting
to specific learning algorithms or to any user decision rules.
Our only assumption about the user learning is that the user
learns to evaluate new items’ utility based on her consumed
items, and her estimation uncertainty on an item is pro-
portional to the projection of this item onto the consumed
item space. Natural examples include a user equipped with
LinUCB (Li et al., 2010) or simply using the least square
estimator (LSE) over history. Our user behavior assump-
tion also considers potentially large estimation error and
accounts for different decision making pattern under uncer-
tainty (i.e., being optimistic, pessimistic, or purely myopic),
which we will elaborate in later sections.

Our contributions are twofold. First, we propose a more
realistic (though challenging) problem setting for interactive
recommendation. Second, we design a learning algorithm
for the system, named Noise-robust Active Ellipsoid Search
(RAES), to make efficient learning possible when dealing
with a learning user. We prove RAES enjoys a regret upper
bound of Õ(d2T

1
2 +γ), which deteriorates gracefully in γ,

i.e., the convergence rate of user’s learning. In addition, we
present a lower bound to confirm the tightness of our regret
bound and present empirical studies comparing RAES with
relevant baselines.

2. Related Work.
The first related direction is the dueling bandit problem.
First proposed by Yue & Joachims (2009), dueling bandit
models an online learning problem where the feedback at
each step is restricted to a noisy comparison between a pair
of arms. In follow-up works, Ailon et al. (2014) developed
solutions by proposing a black-box reduction from dueling
bandit to classic multi-armed bandit (MAB), Dudı́k et al.
(2015) studied the adversarial and contextual extensions of
dueling bandit and generalized the solution concept. Our
feedback assumption is fundamentally different from that in
dueling bandit as the user’s feedback evolves as she learns

from the realized rewards. This coupled environment results
in the failure of almost all existing dueling bandit algorithms,
including those mentioned above, as we will demonstrate in
our empirical study.

The ellipsoid method serves as a key building block in our
algorithm design. First proposed by Grötschel et al. (1981);
Karmarkar (1984), the ellipsoid method is used to prove
linear programs are solvable in polynomial time. Such an
elegant idea has found applications in preference elicita-
tion (Boutilier et al., 2006), recommender systems design
(Viappiani & Boutilier, 2009; Gollapudi et al., 2021), and
feature-based dynamic pricing (Cohen et al., 2020; Lobel
et al., 2018). The main challenge in applying the ellipsoid
method to our problem is that due to the user’s inaccurate
feedback, the system cannot control the intersection of the
cutting hyperplane and thus needs to determine when to
shrink the uncertainty set adaptively.

3. The Problem of Contemporaneous
System-User Learning

As mentioned in the introduction, our setup inherits from
the celebrated contextual dueling bandit problem but con-
siders intrinsically different user behaviors, i.e., a learning
and thus dynamically evolving user. Let A be the set of
candidate items (henceforth, the arms) that the system can
recommend at each round t ∈ [T ]. We are interested in sce-
narios where A is formidably large and diverse. Our results
hold for arbitraryA, continuous or discrete, so long as it has
a non-trivial interior and is sufficiently “dense” (see formal
definitions later). The user’s expected utility of consuming
any arm a ∈ A is governed by a hidden preference parame-
ter θ∗ ∈ Rd and, specifically, is realized by the linear reward
function θ>∗ a. At each round t, the system recommends a
pair of arms (a0,t,a1,t) and the user chooses one of them,
i.e., the comparative feedback as in dueling bandits. We as-
sume that the user does not know θ∗ either and relies on her
current estimation θt to make a choice between (a0,t,a1,t).
Since any non-zero scaling on θ∗ does not affect the user’s
feedback, we assume ‖θ∗‖2 = 1 without loss of generality.

The key conceptual contribution of our problem setup is
a formal non-stationary user model that captures a wide
range of user-system interactions yet still permits tractable
analysis of online learning with non-trivial regret guarantees.
We defer a formal description of this user model to Section
3.1, and only summarize the interaction protocol at each
round t ∈ [T ] as follows:

1. The system recommends (a0,t,a1,t) ∈ A2 to the user.
2. The user uses θt, i.e., her estimation of θ∗ at time t, to

choose an arm from (a0,t,a1,t), denoted as at.
3. The user observes reward rt and updates θt+1 based

on her observed historyHt = {(as, rs)}ts=1.
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4. The system observes the user’s choice at and updates
its recommendation policy.

The learning objective for the system is to minimize the
regret defined as

RT =

T∑
t=1

θ>∗ (2a∗ − a0,t − a1,t), (1)

where a∗ = arg maxa∈A θ
>
∗ a.

Next we introduce the remaining core components of the
user behavior model by specifying: 1). her method for
estimating θt; and 2). her strategy for selecting an arm
based on θt. We refer to them as the estimation rule and the
decision rule respectively.

3.1. Modeling a Learning User

We consider a general model of a learning user as follows.

1. (Estimation Rule) The user collects the past observa-
tions Ht−1 and calculate θt = F (Ht−1) using any
learning algorithm F , such that

‖θ∗ − θt‖Vt ≤ c1tγ1g(δ) (2)

holds with probability 1 − δ, where Vt = V0 +∑t−1
s=1 asa

>
s , γ1 ∈ (0, 1

2 ) and c1 are constants such
that c1 is independent of t. V0 is assumed to be any
Positive Semi-definite (PSD) matrix that summarizes
the user’s prior knowledge regarding the item space.
One can interpret V0 as

∑n
i=1 a−ia

>
−i, where a−i is

the user’s consumed item before engaging with the
system. The spectrum of V0 thus reflects the estima-
tion accuracy regarding different directions of the item
space. For example, if V0 has some small eigenvalues,
the user’s response can be inaccurate in the correspond-
ing eigen-directions. Our algorithm does not depend
on the exact knowledge about V0, but only on a lower
bound estimation of its smallest eigenvalue.

2. (Decision Rule) When facing recommendations
(a0,t,a1,t), the user makes the decision based on the
following index which combines her estimated utility
and an explorative bonus term

r̂i = θ>t ai,t + β
(i)
t ‖ai,t‖V −1

t
, i = {0, 1}, (3)

where {β(0)
t }t∈[T ] and {β(1)

t }t∈[T ] are two arbitrary

sequences satisfying β(i)
t ∈ [−c2tγ2 , c2tγ2 ] for some

constant c2 and γ2. Then, the user returns her choice
at with the largest index r̂ (breaking ties arbitrarily).

In essence, the estimation rule captures a crucial property of
a learning user – the utility estimation for an item becomes

more accurate only when the user has experienced more
similar items before. This is reflected in the data-weighted
matrix norm in (2). In other words, the user’s response will
not be reliable if the recommended item is barely related
to her previously experienced items. A similar assump-
tion is made to capture the user’s explorative behaviors for
previously unseen items, as described by (3). This is funda-
mentally different from classical recommendation settings,
where the uncertainty in user feedback is modeled by homo-
geneous noise of the same scale throughout the course of
user-system interactions.

Next we describe a learning user example, which is also
the running example of our (more general) user behavior
model. As the true underlying utility function is linear,
i.e., rt = θ>∗ at + ηt, where ηt is sub-Gaussian noise, linear
regression is a natural choice for a learning user’s estimation
rule and its estimation confidence bound satisfies ‖θ∗ −
θt‖Vt ≤ O

(√
d log t

δ

)
with probability 1 − δ (Lattimore

& Szepesvári, 2020). In this case, γ1 can be any positive

number and g(δ) =
√

log 1
δ . But our user model covers

more general estimation methods than linear regression. For
example, to capture the scenario where an ordinary user
does not necessarily have the capacity to precisely execute
such a sophisticate estimation method, we allow the user’s
estimation to have much larger error at the order of O(tγ1)
as in (2), where the parameter γ1 controls the convergence
rate of user learning.

The decision rule accounts for a user’s potential exploration
behavior when facing uncertainty, which has been observed
and supported in many studies in cognitive science (Co-
hen et al., 2007; Daw et al., 2006) and behavior science
(Gershman, 2018; Wilson et al., 2014). One natural op-
tion is to follow the “optimism in the face of uncertainty”
(OFUL) principle (Abbasi-Yadkori et al., 2011). Specif-
ically, if θt is the least square estimator, a learning user
employing the celebrated LinUCB can be realized by set-
ting β(0)

t = β
(1)
t = O(

√
log t) in (3). But our decision rule

in (3) is, again, much more general. To capture cases where
users use a much looser confidence bound estimation or
even less rational arm choices, we allow β

(i)
t to deviate in

a much larger range with O(tγ2) (compared to O(
√

log t)

in LinUCB). Additionally, we allow {β(i)
t }t∈[T ] to be arbi-

trary and even consist of negative values. This enables us
to model highly non-stationary user behaviors, e.g., being
optimistic, pessimistic, purely myopic (when β1

t = β0
t = 0),

or an arbitrary mixture of any of them.

Parameters {γ1, γ2} depict the user learning’s convergence
rate and user’s exploration strength, respectively. Notably,
we are only interested in the regime (γ1, γ2) ∈ [0, 1

2 ) ×
[0, 1

2 ), because trace(Vt) is in the order of O(t) by the defi-
nition of Vt. Therefore, we must have ‖θ∗−θt‖Vt = O(

√
t)
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whenever θ∗ is within a constant `2 distance to the user’s
estimated parameter θt. As a result, if γ1 ≥ 1/2, it must
be that the estimated θt is at least a constant distance away
from the true θ∗, and so is the estimated reward r̂i from
the expected true reward. This makes it impossible for the
system to do no-regret learning. Similarly, ‖ai,t‖V −1

t
will

be Θ(
√
t) for some ai,t and a γ2 ≥ 1/2 will also make the

estimated r̂i arbitrarily bad. As we will demonstrate in later
analysis, the estimation error of r̂ turns out to be governed
by max{γ1, γ2}. Hence, for the ease of references, in the
following analysis we conveniently refer to the above user
behaviors as (c, γ)-rationality, formally defined as:
Definition 3.1. [(c, γ)−rationality] Any user characterized
by Estimation Rule (2) and Decision Rule (3) is said to be
(c, γ)−rational if γ ≥ max{γ1, γ2}, c ≥ max{c1, c2}.

As a concrete example, a user is (c, γ)-rational for an arbi-
trarily small γ if she runs LinUCB 1. This is because under
LinUCB we have ‖θ∗−θt‖Vt = O(

√
log t) and {β(0)

t , β
(1)
t }

are also both in the order O(
√

log t). Therefore, γ here can
be an arbitrarily small positive number since log t

tγ → 0 as
t→∞ for any γ > 0.

4. No-Regret System Learning from a
Learning User

In this section, we develop an efficient learning algorithm
for the system to learn from any (c, γ)-rational user. The
regret of our algorithm has an order of Õ(cd2T

1
2 +γ). Re-

call that, a user using the LinUCB algorithm corresponds to
an arbitrarily small γ. In this case, system learning essen-
tially recovers the optimal O(

√
T ) regret in bandit learning,

despite that the system (1) only has limited comparative
feedback about the user’s utility estimation; and (2) faces
non-stationary and non-stochastic user behaviors. More in-
terestingly, our algorithm’s regret deteriorates gracefully as
γ ∈ [0, 1

2 ) increases, i.e., as the user’s learning converges
at a slower rate or being more explorative as captured by γ.
The key conceptual message from our theoretical findings is
that it is possible for a system to learn from a learning user,
and the convergence rate of the system’s learning deterio-
rates linearly in the convergence rate of the user’s learning.

The only caveat for our analysis is the O(d2) dependence
in the regret upper bound, which is worse than the regret’s
linear dependence on d for standard no-regret learning prob-
lems. We believe this worse dependence is fundamentally
due to the fact that the system has to learn from the users’
binary feedback with diminishing yet non-stochastic noise.
This more challenging setup invalidates classic linear con-
textual bandit algorithms that rely on rewards with stochastic

1This is also the reason for our terminology “rationality”.
That is, there exists (essentially) 0-rational learning users, so a
γ-rational user for some γ > 0 must not be perfectly rational.

Figure 1. The unit ball (dashed line) is centered at the origin. Lt
crosses the origin, cuts Et through its center xt and yields Et+1.
In a high dimensional space, we have additional degree of freedom
to pick Lt that shrinks Et along all possible directions.

noise. We thus develop an entirely different solution, which
is a novel use of the celebrated ellipsoid method originally
developed for solving linear programs (necessary technical
details of the ellipsoid method are provided in Appendix
A for curious readers) (Grötschel et al., 1993; 1981). Our
idea is to maintain a sequence of confidence ellipsoid {Et}
for θ∗ and reduce the volume of Et via a carefully chosen
cutting hyperplane. The user’s binary comparative feedback
then tells which side of the hyperplane contains the true
parameter, which prepares the subsequent cuts.

4.1. Warm-up: Fast Learning from a Perfect User

A (significantly) simplified setup. To illustrate the main
idea of our solution, we start with a stylized situation, where
we make the following simplifications: 1). the user knows
θ∗ precisely and makes decisions by directly comparing
θ>∗ a0,t and θ>∗ a1,t; 2). the action set is simply the unit ball
A = {a : ‖a‖2 ≤ 1}.

Technical Highlight I: Novel Use of the Ellipsoid Method.
Algorithm 1 describes our solution under this simplified
problem setting. We should note Algorithm 1 differs from
the classic ellipsoid method in two aspects. First, our al-
gorithm has the freedom to actively choose the hyperplane
Lt by picking {a0,t,a1,t} (thus named “Active Ellipsoid
Search”), while the classic ellipsoid method is always pas-
sively fed with an arbitrary separating hyperplane. Second,
Lt has to cross the origin by construction. Therefore, to
accelerate the shrinkage of the volume of Et (i.e., Vol(Et)),
we prefer a cutting direction gt = a0,t − a1,t such that Lt
goes through the center xt, i.e., g>t xt = 0, and Vol(Et) is
halved after each iteration, as illustrated in Figure 1.

Though given more freedom, we also face a strictly harder
problem. Specifically, when solving LPs, it suffices to reach
an ellipsoid Et with a small volume where the LP objective
is guaranteed to be approximately optimal. However, our
goal here is to identify the direction of θ∗ with small error,
and thus a small Vol(Et) is necessary but not sufficient. For
instance, a zero-volume ellipsoid in Rd can still enclose a
d−1 dimensional subspace and thus contains a very diverse
set of directions that are far from θ∗.
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Algorithm 1 Active Ellipsoid Search on Unit Sphere
1: Input: Dimension d > 0, number of iterations T > 0.
2: Initialization: x0 = 0, P0 = Id.
3: while 0 ≤ t ≤ T do
4: Compute eigen-decomposition

Pt =

d∑
i=1

σ
(t)
i u

(t)
i u

(t)>
i , σ

(t)
1 ≥ · · · ≥ σ

(t)
d ;

5: Compute any unit vector gt ∈ span{u(t)
1 ,u

(t)
2 } that

is orthogonal to xt;
6: Pick (a0,t,a1,t) = (−gt, gt); and observe the user’s

choice ai,t, i ∈ {0, 1}.
7: Set g̃t = (2i− 1)gt/‖gt‖Pt ;
8: Update

xt+1 = xt −
1

d+ 1
Ptg̃t;

Pt+1 =
d2

d2 − 1

(
Pt −

2

d+ 1
Ptg̃tg̃

>
t Pt

)
.

9: end while
10: Output: The estimation of θ∗ :θ̂T = u

(T )
1 .

To achieve this strictly harder objective, we need Lt to cut
Et along the direction in which Et has the largest width, i.e.,
the most uncertain direction. This requires gt to be aligned
with the eigenvector corresponding to the largest eigenvalue
of Pt, which is in general not compatible with g>t xt = 0.
Here then comes the crux of our approach – we relax the
second condition by picking gt from a two-dimensional
space spanned by the eigenvectors corresponding to the
top-2 largest eigenvalues of Pt. Under this choice of gt,
Et is guaranteed to converge to a skinny-shaped ellipsoid
with its longest axis converging to the direction of θ∗ at an
exponential rate. The detail is presented in Algorithm 1, and
the convergence analysis of Algorithm 1 is formalized in
the following theorem.

Theorem 4.1. At each time step t in Algorithm 1, let the
eigenvalues of Pt be σ(t)

1 ≥ · · · ≥ σ
(t)
d . For any d > 1, T >

0, we have

1. for any 2 ≤ i ≤ d,

σ
(T )
i ≤ exp

(4

d
− T

d2

)
, (4)

2. the `2 estimation error for θ∗ is given by∥∥∥θ∗ − θ̂T∥∥∥
2
≤ 2
√
d− 1 exp

(2

d
− T

2d2

)
. (5)

We postpone the proof of Theorem 4.1 to Appendix B. This
theorem indicates that the `2 estimation error for θ∗ con-
verges to zero at the rate of O

(
d

1
2 exp (− T

2d2 )
)
. In other

words, to guarantee ‖θ∗ − θ̂T ‖2 < ε, at most O(d2 log d
ε )

iterations are needed.

4.2. Robust Learning from a Learning User

The previous section illustrates our system learning prin-
ciple, but under a greatly simplified setting with a perfect
user. In this section, we extend the solution to account for
a learning user who does not know θ∗ and keeps refining
her estimation θt. Here, the user’s feedback still provides
a linear inequality regarding θ∗ and thus similarly serves
as a cutting hyperplane. But since the user acts based on
the index r̂i = θ>t ai,t + β

(i)
t ‖ai,t‖V −1

t
, the cutting hyper-

plane now has the form Lt = {z : z>(a0,t − a1,t) =

β
(1)
t ‖a1,t‖V −1

t
− β(0)

t ‖a0,t‖V −1
t
}. Importantly, the inter-

cept term now depends on {β(0)
t , β

(1)
t } which are arbitrary

within the uncertainty region [−ctγ , ctγ ].

Technical Highlight II: Ellipsoid Search with Noise.
Due to the aforementioned noise in the users’ binary feed-
back, we thus face an interesting challenge – how to per-
form the ellipsoid search under (non-stochastic) noisy feed-
back? Somewhat surprisingly, this basic question was not
addressed in literature about ellipsoid method. We tackle
this challenge by refining the ellipsoid method to tolerate
carefully chosen scales of noise and decreasing the toler-
ance as the ellipsoid shrinks. In order to elicit more accurate
feedback, our algorithm must ensure the diversity of the
recommended items to prepare the user for improved pre-
cision of her responses in all directions. To this end, we
improve Algorithm 1 by adaptively preparing the user until
a desirable level of accuracy of her estimated θt is reached
and then cut the ellipsoid. To our knowledge, this noise-
robust version of ellipsoid method is novel by itself and
may be of independent interest. We coin this new algorithm
“Noise-robust Active Ellipsoid Search”, or RAES in short.

Regularity assumptions on the action set. Before intro-
ducing the RAES algorithm, we first pose several natural
and technical assumptions regarding the action set A ⊂ Rd.
Specifically, Bdp(0, r) denotes the d-dimensional `p ball cen-
tered at the origin with radius r. Without loss of generality,
we assume 0 ∈ A ⊂ Bd2(0, D1) since one can always shift
all actions by the same amount and then re-scale the actions
without changing the users’ responses.

The first assumption is a familiar one, as also used in previ-
ous works such as (Rusmevichientong & Tsitsiklis, 2010).

Assumption 4.2 (L-Smooth Best Arm Response Condition,
L-SRC). Let x∗A = arg maxx′∈A x

>x′,∀x ∈ A. There
exists a constant L > 0 such that for any pair of non-zero
unit vectors x,y ∈ Rd, we have

‖x∗A − y∗A‖2 ≤ L · ‖x− y‖2.
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A compact set A satisfies L-SRC if and only if A can be
represented as the intersection of closed balls of radius L.
Intuitively, the L-SRC condition requires the boundary of
A to have a curvature that is bounded below by a positive
constant. For instance, the unit ball satisfies 1-SRC, and an
ellipsoid of the form {u ∈ Rd : u>P−1u ≤ 1}, where P
is a PSD matrix, satisfies the λmax(P )√

λmin(P )
-SRC.

Assumption 4.3 (ε-Dense Condition, ε-DC). A is an ε-
cover of a continuous set Ā, i.e., Ā ⊂ ∪x∈ABd2(x, ε). In
addition, there exists constants D1 > D0 > 0 such that
Bd2(0, D0) ⊆ A, Ā ⊆ Bd2(0, D1).

This assumption suggests the action set A is sufficiently
dense. A continuous A is 0-DC. However, ε-DC relaxes
the continuity requirement on A by allowing A to take the
form of an ε-net of a continuous set Ā. For convenience
of references, we associate any element ā ∈ Ā with an
element a ∈ A such that ‖a − ā‖2 ≤ ε. For our analysis,
this relation does not need to be exclusive or reversible.

As indicated in the initialization of Algorithm 2, RAES does
not rely on the exact values of (c, γ, V0), which could be
difficult to attain in reality. Instead, any reasonable upper
bounds for c and γ, and a lower bound of λmin(V0) suffice.
Similar to Algorithm 1, RAES also maintains a sequence of
confidence ellipsoids {Et}. A hyper-parameter T0 separates
the time horizon T into two phases. At time step t, the
system first proposes the most promising cutting direction
gt. However, different from Algorithm 1 which always cuts
Et immediately, RAES needs to compute the cutting depth
αt (defined in (6)) and determine whether the user’s feed-
back is precise enough for the system to yield an improved
estimation. Intuitively, αt measures the normalized signed
distance between the center of Et and the cutting hyper-
plane Lt: αt ∈ (− 1

d , 0) corresponds to a shallow-cut where
Lt removes less than half of the volume of the ellipsoid;
αt ∈ (0, 1) corresponds to a deep-cut where more than half
of the volume is reduced; and αt = 0 happens only when
Lt cuts Et through the center. Since we need to deal with
the uncertainty in the user’s response, we may only expect
shallow-cuts. Depending on αt and T0, the system makes a
decision among the following three options, which we refer
to as cut, exploration, and exploitation:

1. (Cut) If t ≤ T0 and αt ≥ − 1
kd , cut Et and update

(xt, Pt).

2. (Exploration) If t ≤ T0 and αt < − 1
kd , make recom-

mendations to ensure the user is exposed to the least
explored directions in Vt.

3. (Exploitation) If t > T0, recommend the empirically
best arm to the user.

The purpose of an exploration step is to prepare the user

such that a smaller α can be expected in the future. By the
definition of αt, the only way to decrease it is by increasing
λmin(Vt), which can be achieved by presenting the least
exposed direction to the user 2. Finally, when the system
believes the user’s estimation error of θ∗ is acceptable to
induce a small regret, it stops preparing the user and rec-
ommends the empirically best arm when no further cut is
available. The algorithm can be understood as a phase of
exploration of length T0 followed by a phase of exploitation,
with a sequence of cut steps scattered within. The sublinear
regret can be guaranteed by carefully choosing T0.

Before analyzing RAES, we provide an intuitive explana-
tion for it. First of all, the cutting direction gt is the same as
the choice in Algorithm 1, which ensures the separation hy-
perplane can intersect Et along the most uncertain direction.
Next, we translate the user’s comparative feedback regard-
ing θt into an inequality regarding θ∗ with high probability,
i.e., θ>∗ gt ≤ (or ≥)b, by pinning down the intersection term
b. This can be realized by leveraging the property of the
user’s estimation and decision rules, resulting in the explicit
form of αt. To simplify the technical analysis, with a slight
abuse of notation, we use the subscript t in {(xt, Pt)}Nt=1 to
describe the confidence ellipsoids after the t-th cut in RAES,
and N is the total number of cuts in horizon T . Lemma
4.4 characterizes the effect from each cut, exploration, and
exploitation step:
Lemma 4.4. If we choose

αt = (6)

−
ctγ

(
‖a0,t‖V−1

t
+ ‖a1,t‖V−1

t
+ g(δ)‖a0,t − a1,t‖V−1

t

)
+ 2ε0

‖gt‖Pt

in Algorithm 2, we have

1. After each cut, Vol(Et+1) ≤ exp
(
− (k−1)2

2k2d

)
Vol(Et).

2. If at least d exploration steps are taken starting from
any time step t0 to t0 + n, we have λmin(Vn+t0) ≥
λmin(Vt0) + 4D0

25 − 3ε0.

3. At any exploitation step t, the instantaneous regret is
upper bounded by 2L‖θ∗ − u(t)

1 ‖22.

Using Lemma 4.4, we can derive the convergence rate of
σ

(t)
i and the regret upper bound of RAES in the following

Theorem 4.5, whose proof can be found in Appendix C.

Theorem 4.5. For any d > 1, n > 0, let σ(n)
i be the i-th

largest eigenvalue of Pn after the n-th cut, we have

2A straightforward way for increasing λmin(Vt) is to feed the
user with the eigenvector corresponding to λmin(Vt). However,
to avoid forcing a user to choose between two identical items (if
they are not optimal), we let the system recommend two different
items.
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1. For any 2 ≤ i ≤ d,

σ
(n)
i ≤ exp

(4

d
− (k − 1)2n

k2d2

)
. (7)

2. When T0 = O
(
cL

1
2D

1
2
1 D
− 3

2
0 g(δ)d2T

1
2 +γ

)
and ε0 <

O
(
cD1D

− 1
2

0 d−
1
2T−

1
4 + γ

2

)
, the regret of RAES is up-

per bounded by O
(
cL

1
2D

3
2
1 D
− 3

2
0 g( δ

T0
)d2T

1
2 +γ

)
with

probability 1− δ.

Theorem 4.5 suggests when A is continuous or sufficiently
dense, RAES achieves a regret upper bound Õ(cd2T

1
2 +γ)

when g( δ
T0

) grows logarithmically in T0. Recall that γ ∈
[0, 1

2 ) denotes the rationality of the user: when γ is large,
the system obtains less accurate responses from the user and
thus suffers from a worse regret guarantee. When γ = 0,
e.g., the user executes LinUCB, we get an upper bound of
the order Õ(

√
T ), which nearly matches the lower bound,

as we will show in the following section.

4.3. A Regret Lower Bound

We conclude this technical section by showing a regret lower
bound for the system’s learning. This lower bound applies
for any γ > 0, and it nearly matches the above upper bound
w.r.t. time horizon T when γ is close to zero. This result
leaves an intriguing open question about how tight our Al-
gorithm 2 is for general γ, i.e., for every γ ∈ (0, 1/2), what
is the best possible regret for the system? We remark that
resolving this open question appears to require significantly
different machinaries as used in current lower bound proofs
for bandit algorithms since these arguments are primarily
based on information theory and thus intrinsically rely on as-
sumption of random noises (Lattimore & Szepesvári, 2020;
Rusmevichientong & Tsitsiklis, 2010), whereas the user’s
feedback noise in our model is arbitrary (though also di-
minishing with more rounds). We thus leave this as an
interesting future direction to explore.

Theorem 4.6. For any γ > 0, there exists a function
T0(d) > 0 such that for any d ≥ 1, T > T0(d), and
any algorithm G that has merely access to the comparison
feedback given by a rational user defined in Definition 3.1,
there exists θ∗ ∈ ∂Bd1 such that the expected regret RT
defined in (1) obtained by G satisfies

R
(s)
T (G, θ∗) ≥

exp(−2)

4
(d− 1)

√
T . (8)

Theorem 4.6 may appear not surprising since, intuitively, the
system’s learning task appears no easier than the standard
stochastic linear bandit problems for which the lower bound
is already O(

√
T ) (Rusmevichientong & Tsitsiklis, 2010).

However, it turns out that delivering a rigorous proof is

more subtle than this intuition, and for that we have to
overcome two technical challenges: 1). adapting the current
minimax lower bound proof for stochastic linear bandits to
the setup where the norm of θ∗ is bounded away from zero;
2). constructing a black-box reduction from the system’s
regret to the user’s regret. Due to the space limit, we defer
the proof details to Appendix D.

5. Experiment
In this section, we study the empirical performance of RAES
to validate our theoretical analysis by running simulations
on synthetic datasets in comparison with several baselines.

5.1. Experiment Setup and Baselines

There is no direct baseline for comparison since the learning
environment we studied is new. Given the linear reward
and the binary comparative feedback assumptions, we take
several contextual dueling bandit algorithms for comparison,
including Dueling Bandit Gradient Descent (DBGD) (Yue &
Joachims, 2009), Doubler (Ailon et al., 2014), and Sparring
(Ailon et al., 2014; Sui et al., 2017). The configuration
of baseline algorithms and the details of the simulation
environment can be found in Appendix E.

5.2. Experiment Results

Robustness of RAES against a learning user: We first
demonstrate the performance of RAES under (T, T0, d) =
(10000, 1500, 5) against a (1, γ)-rational user with different
γ and V0 in Figure 2. Additional results for richer parameter
settings are reported in Appendix E. The x-axis denotes
time step t and y-axis denotes the accumulated regret up to
the time step t. The left panel illustrates the performance
of RAES when γ = 0.1 and V0 ∈ {V0(i) : 0 ≤ i ≤ 5},
where V0(i) is the diagonal matrix with i diagonal entries
being 1 while other 5 − i entries being 100. Unsurpris-
ingly, RAES achieves the best performance when the user
has the most informative prior V0(0). When V0 has small
eigenvalues, RAES needs more exploration steps in the
first T0 rounds, but the resulting added regret is not sig-
nificant. The right panel shows the result when V0 = Id
and γ ∈ {0, 0.1, 0.2, 0.3} which confirms our theoretical
analysis that the regret of RAES grows in order O(T

1
2 +γ).

Comparison with baseline algorithms: The comparison
between RAES and the three baselines against learning
users are shown in Figure 3, where the x-axis denotes dif-
ferent time horizons T , and the y-axis denotes the cor-
responding accumulated regret. {γ, T0} are set to 0 and
0.25 × d2

√
T . Additional results under different choices

of γ can be found in Appendix E. The left panel shows
the result with V0 = 100Id, i.e., each algorithm is facing
a well-prepared user, while the right panel is plotted with
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Figure 2. The regret of RAES against a learning user with different
V0 and γ over time. Left: Fix γ = 0.1, plot for different choices
of V0; Right: Fix V0 = Id, plot for different choices of γ.
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Figure 3. The accumulated regret of RAES and three baseline
algorithms. Different colors specify different algorithms. Each star
represents the accumulated regret (y-axis) of the algorithm given
time horizon T (x-axis) with γ = 0. Left: V0 = 100Id; right:
V0 = diag(100, 10, 5, 2, 1).

V0 = diag(100, 20, 5, 2, 1). The result demonstrates that
RAES enjoys the best performance and is robust against
different types of learning users. Since Doubler and Spar-
ring employ a black-box linear bandit algorithm as their
subroutine, the violation of the stochastic reward assump-
tion breaks down the linear bandit algorithm and thus the
failure of the algorithms themselves. For DBGD, the left
panel suggests that it can still enjoy a sub-linear regret un-
der milder users’ rationality assumptions. However, when
the user’s prior V0 is ill-posed (i.e., λmin(V0) is small), the
performance of DBGD deteriorates seriously. In particular,
under an ill-posed V0, the user’s feedback can be misleading
along certain directions, and the design of DBGD does not
provide any mechanism to increase the accuracy of user
feedback along these directions. The degradation of DBGD
becomes even more evident when γ is larger, as shown by
the stark contrast in Figure 4 in Appendix E.

6. Conclusion
Motivated by the observation that users’ feedback can be
coupled with their interaction history with a recommender
system, we propose a new problem setting where the sys-
tem learns from non-stationary feedback of a learning user.
Extending the dueling bandit framework, we formulate the
problem of “learning from a learner” and establish an effi-
cient learning algorithm based on the ellipsoid method with
a near-optimal regret guarantee. Besides the new algorithm,
our user learning model also provides a new perspective to
studying the feedback loop in recommender systems. The
negative empirical results of baseline algorithms demon-

strate how inaccuracy of user feedback is formed and ampli-
fied on the system’s side in its subsequent recommendations,
if failing to consider the progression of user learning. A
key insight of our proposed solution is that a healthy rec-
ommender system needs to expose a diversified spectrum
of items to its users and thus “foster” them to respond with
informed feedback. This leads to the win-win outcome for
both users and the system in exploring the item space.

Algorithm 2 Noise-robust Active Ellipsoid Search (RAES)
1: Input: Action set A ⊂ Rd with constants

(D1, D0, L, ε0), time horizon T0 and T , cutting thresh-
old k > 1, and probability threshold δ > 0

2: Initialization: A user who is (c, γ)−rational, λ0 > 0
be any lower bound estimation of the minimum eigen-
value of V0, set V0 = λ0Id, x0 = 0, P0 = Id.

3: while 0 ≤ t ≤ T do
4: Compute eigen-decomposition

Pt =
∑d
i=1 σ

(t)
i u

(t)
i u

(t)>
i , σ

(t)
1 ≥ · · · ≥ σ

(t)
d .

5: Compute a unit vector gt ∈ span{u(t)
1 ,u

(t)
2 } that is

orthogonal to xt;
6: Pick any pair (ā0,t, ā1,t) such that ā1,t−ā0,t = mgt,

m ≥ 2D0, and compute αt according to (6);
7: if t ≤ T0 and αt ≥ − 1

kd then
8: Recommend (a0,t,a1,t), observe the user’s choice

at = ai,t, i ∈ {0, 1};
9: Set g̃t = (2i− 1)gt/‖gt‖Pt ;

10: Update

xt+1 = xt −
1 + dαt
d+ 1

Ptg̃t; (9)

Pt+1 =
d2(1− α2

t )

d2 − 1

(
Pt −

2(1 + dαt)Ptg̃tg̃
>
t Pt

(d+ 1)(1 + αt)

)
;

(10)

11: else if t ≤ T0 then
12: Compute v1 and vd, the two eigenvectors associ-

ated with the largest and smallest eigenvalues of
Vt, and pick (ā0,t, ā1,t) = D0( 4

5v1 ± 3
5vd);

13: Recommend (a0,t,a1,t), observe user’s choice at;
14: (xt+1, Pt+1) = (xt, Pt);
15: else
16: Compute at = arg maxa∈A u

(t)>
1 a;

17: Recommend (at,at);
18: (xt+1, Pt+1) = (xt, Pt);
19: end if
20: Update Vt+1 = Vt + ata

>
t .

21: end while
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Appendix to “Learning from a Learning User for Optimal Recommendations”

A. Preliminaries on Ellipsoid Method
A d × d matrix A is symmetric when A = A>, and any symmetric matrix A admits an eigenvalue decomposition
A = UΣU>, where U is a orthogonal matrix and Σ = diag(σ1, · · · , σd) is a diagonal matrix with diagonal elements
σ1 ≥ · · · ≥ σd. We refer to σi(A) as the i-th largest eigenvalue of A. A symmetric matrix A is called positive definite (PD)
if all its eigenvalues are strictly positive.

{g>(z − x) ≤ b} ∩ E ′(x′, P ′)

An ellipsoid is a subset of Rd defined as

E(x, P ) = {z|(z − x)>P−1(z − x) ≤ 1},

where x ∈ Rd specifies its center and the PD matrix P specifies its geometric shape. Each of the d radii of E(x, P )
corresponds to the square root of an eigenvalue of P and the volume of the ellipsoid is given by

Vol(E(x, P )) = Vd
√

detP = Vd

√√√√ d∏
i=1

σd,

where Vd is a constant that represents the volume of the unit ball in Rd. If a hyperplane g>(z−x) = b with normal direction
g and intersection b cuts the ellipsoid E(x, P ) to two pieces, the smallest ellipsoid containing the area {g>(z − x) ≤
b} ∩ E(x, P ) can be captured by E ′(x′, P ′), where the new center x′ and the shape matrix P ′ can be computed via the
following closed form formula:

x′ = x− 1 + dα

d+ 1
P g̃, (11)

P ′ =
d2(1− α2)

d2 − 1

(
P − 2(1 + dα)

(d+ 1)(1 + α)
P g̃g̃>P

)
, (12)

α = − b√
g>Pg

, (13)

g̃ =
1√
g>Pg

g, (14)

where α represents the cutting-depth which we will elaborate on later. To narrow down the feasible region of the target
parameters, it is desirable to let Vol(E ′) as small as possible. At least, we need to ensure that Vol(E ′) < Vol(E). Basic
algebraic calculation shows that

Vol(E ′)
Vol(E)

=

√
detP ′

detP
=
(d2(1− α2)

d2 − 1

) d
2
(

1− 2(1 + dα)

(d+ 1)(1 + α)

) 1
2

(15)

=
(

1 +
1 + dα

d− 1

) d−1
2
(

1− 1 + dα

d+ 1

) d+1
2

=
(d(1 + α)

d− 1

) d−1
2
(d(1− α)

d+ 1

) d+1
2

, (16)

where Eq (15) is from Eq (12) and the fact that det(P − βvv>) = (1− β‖v‖2P ) det(P ). Eq (16) indicates that Vol(E ′) <
Vol(E) if and only if α ∈ (− 1

d , 1). The quantity α serves as an indicator of the “depth” of the cut: α ∈ (− 1
d , 0) corresponds

to a shallow-cut where the proposed cutting hyperplane removes less than half of the volume of the ellipsoid; α ∈ (0, 1)
corresponds to a deep-cut where more than half of the volume is removed. And α = 0 happens only when b = 0, meaning
the cutting hyperplane goes through the center x and exactly half of the volume is removed. In our problem setting, since
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we need to deal with the uncertainty in the user’s response, we may only expect shallow-cuts. In addition, from Eq (16) we
can show that for any − 1

d < α < 1,
Vol(E ′)
Vol(E)

≤ exp
(
− (1 + dα)2

2d

)
. (17)

B. Omitted Proofs in Section 4.1
To prove Theorem 4.1, we need the following technical lemmas. Lemma B.1 states that the product of the largest two
eigenvalues of Pt must shrink w.r.t. a constant factor after each cut. Since det(Pt) approaches zero at an exponential rate
(from Eq (17)), Pt can only have one potentially large eigenvalue while all other eigenvalues must approach zero. Lemma
B.2 implies that at any time step t, the “gap” between Pt’s second-largest eigenvalue and the smallest eigenvalue can be
upper bounded by a constant. Given that the determinant of Pt converges to 0 at an exponential rate, all the eigenvalues of
Pt except the largest one must also converge to 0 exponentially fast.

Lemma B.1. In Algorithm 1, let the eigenvalues of Pt be σ1 ≥ · · · ≥ σd and the eigenvalues of Pt+1 be {σ′1, · · · , σ′d}.
Then we have

1. for any 3 ≤ i ≤ d, we have equalities

σ′i =
d2

d2 − 1
σi.

2. for σ′1, σ
′
2, we have σ′1σ

′
2

σ1σ2
= d4

(d+1)3(d−1) < 1 and the following bound

max{σ′1, σ′2} ∈ [
d2

(d+ 1)2
σ1,

d2

d2 − 1
σ1], (18)

min{σ′1, σ′2} ∈ [
d2

(d+ 1)2
σ2,

d2

d2 − 1
σ2]. (19)

Proof. Claim 1. Suppose Pt = UΣU>, where Σ = diag(σ1, · · · , σd) and U = [u1, · · · ,ud]. From the update rule of
Pt+1, for any 3 ≤ i ≤ d we have

Pt+1ui =
d2

d2 − 1

(
Pt −

2

d+ 1
Ptg̃tg̃

>
t Pt

)
ui

=
d2

d2 − 1
σiui −

d2

d2 − 1
· 2σi
d+ 1

Ptg̃t(g̃
>
t ui)

=
d2

d2 − 1
σiui, (20)

where Eq (20) holds because g̃t ∈ span{u1,u2}. Therefore, { d2

d2−1σi}
d
i=3 are d− 2 eigenvalues of Pt+1.

Claim 2. By the choice of gt, the cutting hyper plane always goes through xt (i.e., α = 0). Therefore, by Eq (17) we obtain∏d
i=1 σ

′
i∏d

i=1 σi
= d2

(d+1)2 ·
(

d2

d2−1

)d−1

. Consider Eq (20), we conclude that the remaining two eigenvalues of Pt+1 satisfy

σ′1σ
′
2

σ1σ2
=

d2

(d+ 1)2
· d2

d2 − 1
=

d4

(d+ 1)3(d− 1)
< 1. (21)

Next we derive the bound for σ′1, σ
′
2. Let gt = pu1 + qu2, and

Ptg̃t =
pσ1√

p2σ1 + q2σ2

u1 +
qσ2√

p2σ1 + q2σ2

u2 , v1u1 + v2u2.

It is easy to see that d
2−1
d2 σ′1,

d2−1
d2 σ′2 are the two eigenvalues of the following 2× 2 matrix

A =

[
σ1 0
0 σ2

]
− 2

d+ 1

[
v1

v2

]
·
[
v1 v2

]
. (22)
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Without loss of generality, we assume σ′1 ≥ σ′2. Applying Weyl’s inequality in matrix theory (Fan, 1949; Bunch et al., 1978)
to matrix A yields

σ1 ≥
d2 − 1

d2
σ′1 ≥ σ2 ≥

d2 − 1

d2
σ′2. (23)

On the other hand, from Eq (21) we also have

σ′1
σ1

=
d4

(d+ 1)3(d− 1)

σ2

σ′2
≥ d4

(d+ 1)3(d− 1)
· d

2 − 1

d2
=

d2

(d+ 1)2
, (24)

σ′2
σ2

=
d4

(d+ 1)3(d− 1)

σ1

σ′1
≥ d4

(d+ 1)3(d− 1)
· d

2 − 1

d2
=

d2

(d+ 1)2
. (25)

From Eq (23), (24), (25), we obtain Eq (18), (19) and therefore complete the proof.

Lemma B.2. At each time step t in Algorithm 1, let the eigenvalue of Pt be σ(t)
1 ≥ · · · ≥ σ

(t)
d . Further let Dt = σ

(t)
2 /σ

(t)
d ,

we claim

1. for any t ≥ 0, Dt+1 ≤ d+1
d−1 ·Dt;

2. if Dt >
d+1
d−1 , Dt+1 ≤ Dt.

3. for any n ≥ 0,

max
0≤t≤n

Dt ≤
(d+ 1

d− 1

)2

. (26)

Proof. From Lemma B.1, we know that the eigenvalues of Pt+1 is {σ′1, σ′2, d2

d2−1σ
(t)
3 , · · · , d2

d2−1σ
(t)
d }, where σ′1 ≥ σ′2 and

d2

(d+ 1)2
σ

(t)
2 ≤ σ′2 ≤

d2

d2 − 1
σ

(t)
2 (27)

Claim 1. Because σ′1 ≥ σ′2, σ(t)
3 ≥ · · · ≥ σ

(t)
d , and note that σ(t+1)

2 and σ(t+1)
d are the second-largest element and

the smallest element of {σ′1, σ′2, d2

d2−1σ
(t)
3 , · · · , d2

d2−1σ
(t)
d }, the value of (σ

(t+1)
2 , σ

(t+1)
d ) must satisfy one of the following

situation:

1. if (σ
(t+1)
2 , σ

(t+1)
d ) = (σ′2,

d2

d2−1σ
(t)
d ), from Eq (27) we have

Dt+1

Dt
=
d2 − 1

d2
· σ
′
2

σ2
≤ 1. (28)

2. if (σ
(t+1)
2 , σ

(t+1)
d ) = ( d2

d2−1σ
(t)
i , d2

d2−1σ
(t)
d ) for some 3 ≤ i ≤ d− 1, we have

Dt+1

Dt
=
σ

(t)
i /σ

(t)
d

σ
(t)
2 /σ

(t)
d

≤ 1. (29)

3. if (σ
(t+1)
2 , σ

(t+1)
d ) = ( d2

d2−1σ
(t)
i , σ′2) for some 3 ≤ i ≤ d− 1, from Eq (27) we have

Dt+1

Dt
=

d2

d2 − 1
· σ

(t)
i

σ′2
·
σ

(t)
d

σ
(t)
2

≤ d2

d2 − 1
· σ

(t)
2

σ′2
≤ d2

d2 − 1
· (d+ 1)2

d2
=
d+ 1

d− 1
. (30)

By Eq (28), (29), (30), the first claim holds.

Claim 2. It suffices to show that the situation (3) cannot happen when Dt >
d+1
d−1 . In fact, when Dt >

d+1
d−1 , from Eq (27)

we have

σ′2 ≥
d2

(d+ 1)2
σ

(t)
2 =

d2

(d+ 1)2
σ

(t)
d Dt >

d2

(d+ 1)2
· d+ 1

d− 1
· σ(t)

d =
d2

d2 − 1
σ

(t)
d ,
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meaning σ′2 cannot be the smallest eigenvalue of Pt+1. As a result, the second claim holds by Eq (28), (29).

Claim 3. We prove Eq (26) by contradiction. Let n0 be the smallest index in set arg max0≤t≤nDt. If n0 = 0, we have

max0≤t≤nDt = D0 = 1 <
(
d+1
d−1

)2

. Now consider the case n0 ≥ 1 and suppose Dn0 >
(
d+1
d−1

)2

. By Claim 1, we have

Dn0−1 ≥ d−1
d+1Dn0

> d+1
d−1 . Apply Claim 2 to Dn0−1, we obtain Dn0

≤ Dn0−1, which contradicts the definition of n0.
Hence, Claim 3 holds.

Now we are ready to present the proof of the convergence theorem for Algorithm 1:

Theorem B.3. At each time step t in Algorithm 1, let the eigenvalues of Pt be σ(t)
1 ≥ · · · ≥ σ

(t)
d . For any d > 1, T > 0, we

have

1. for any 2 ≤ i ≤ d,

σ
(T )
i ≤ exp

(4

d
− T

d2

)
. (31)

2. the `2 estimation error for θ∗ is given by∥∥∥θ∗ − θ̂T∥∥∥
2
≤ 2
√
d− 1 exp (

2

d
− T

2d2
), (32)

Proof. Since the depth of the cut α = 0 through out the execution of Algorithm 1, from Eq (17) we have

d∏
i=1

σ
(T )
i =

detPn
detP0

≤ exp
(
− T

d

)
. (33)

From Lemma B.2, we have σ(T )
i ≥ σ(T )

d ≥
(
d−1
d+1

)2 · σ(n)
2 ,∀3 ≤ i ≤ d. Therefore,

exp
(
− T

d

)
≥

d∏
i=1

σ
(T )
i

≥ σ(T )
2 · σ(T )

2 ·
[(d− 1

d+ 1

)2 · σ(T )
2

]d−2

= [σ
(T )
2 ]d ·

(
1− 2

d+ 1

)2d−4

≥ exp (−4) · [σ(T )
2 ]d.

Rearranging terms yields σ(T )
2 ≤ exp

(
4
d −

T
d2

)
, and thus σ(T )

i ≤ exp
(

4
d −

T
d2

)
,∀2 ≤ i ≤ d.

Let 〈x,y〉 = arccos ( x·y
‖x‖·‖y‖ ) denote the included angle between vector x and y, now we are prepared to upper bound the

directional estimation error sin〈θ̂T , θ∗〉. First of all, note that θ∗,0 ∈ ET for any n ≥ 0, meaning there exists {(pi, qi)}di=1

such that

θ∗ = xT +

d∑
i=1

piu
(T )
i ,

d∑
i=1

p2
i

σ
(T )
i

≤ 1. (34)

0 = xT +

d∑
i=1

qiu
(T )
i ,

d∑
i=1

q2
i

σ
(T )
i

≤ 1. (35)

As a result, θ∗ =
∑d
i=1(pi − qi)u(T )

i , and pi, qi ≤
√
σ

(T )
i , 2 ≤ i ≤ d. Therefore,
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sin〈θ∗, θ̂T 〉 =

√
1− cos2〈θ∗, θ̂T 〉 =

√
1− (θ>∗ u1)2

‖θ∗‖22
=

1

‖θ∗‖2
·

√√√√ d∑
i=2

(pi − qi)2

≤ 2

‖θ∗‖2
·

√√√√ d∑
i=2

σ
(T )
i ,

Now we know that the directional inference error for θ∗ converges to zero at rate O
(
d

1
2 exp (− T

2d2 )
)
. When the system

knows ‖θ∗‖2 = 1, the `2 estimation error for θ∗ can be obtained from∥∥∥θ∗ − ‖θ∗‖2 · θ̂T

‖θ̂T ‖2

∥∥∥
2
≤ 2‖θ̂T ‖2 sin(〈θ∗, θ̂T 〉/2)

≤ 2

√√√√ d∑
i=2

σ
(T )
i (36)

where the last inequality holds because sinx ≤ x, ∀x > 0. In particular, plugin Eq (4) into the R.H.S. of Eq (36), we obtain
Eq (5).

C. Omitted Proofs in Section 4.2
The following Lemma C.1 and C.2 are used in the proof of Theorem 4.5. Lemma C.1 and C.2 are generalizations of Lemma
B.1 and B.2 under arbitrary cutting depth αt.

Lemma C.1. In Algorithm 2, suppose a valid cut is executed at step t with depth − 1
kd ≤ αt ≤ 0. Let the eigenvalues of Pt

be σ1 ≥ · · · ≥ σd and the eigenvalues of Pt+1 be {σ′1, · · · , σ′d}. Then we have

1. for any 3 ≤ i ≤ d, we have equalities

σ′i =
d2(1− α2

t )

d2 − 1
σi.

2. for σ′1, σ
′
2, we have σ′1σ

′
2

σ1σ2
= d4(1−αt)3(1+αt)

(d+1)3(d−1) < 1 and the following bound

max{σ′1, σ′2} ∈ [
d2(1− αt)2

(d+ 1)2
σ1,

d2(1− α2
t )

d2 − 1
σ1], (37)

min{σ′1, σ′2} ∈ [
d2(1− αt)2

(d+ 1)2
σ2,

d2(1− α2
t )

d2 − 1
σ2]. (38)

Proof. Claim 1. Suppose Pt = UΣU>, where Σ = diag(σ1, · · · , σd) and U = [u1, · · · ,ud]. From the update rule of
Pt+1, for any 3 ≤ i ≤ d we have

Pt+1ui =
d2(1− α2

t )

d2 − 1

(
Pt −

2(1 + dαt)

(d+ 1)(1 + αt)
Ptg̃tg̃

>
t Pt

)
ui

=
d2(1− α2

t )

d2 − 1
σiui −

d2(1− α2
t )

d2 − 1
· 2(1 + dαt)σi

(d+ 1)(1 + αt)
Ptg̃t(g̃

>
t ui)

=
d2(1− α2

t )

d2 − 1
σiui, (39)

where Eq (39) holds because g̃t ∈ span{u1,u2}. Therefore, {d
2(1−α2

t )
d2−1 σi}di=3 constitute d− 2 eigenvalues of Pt+1.
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Claim 2. From Eq (17) we have
∏d
i=1 σ

′
i∏d

i=1 σi
= d2(1−αt)2

(d+1)2 ·
(
d2(1−α2

t )
d2−1

)d−1

. Consider Eq (39), we conclude that the remaining
two eigenvalues of Pt+1 satisfy

σ′1σ
′
2

σ1σ2
=
d2(1− αt)2

(d+ 1)2
· d

2(1− α2
t )

d2 − 1
=
d4(1− αt)3(1 + αt)

(d+ 1)3(d− 1)
< 1. (40)

Next we derive the bound for σ′1, σ
′
2. Let gt = pu1 + qu2, and

Ptg̃t =
pσ1√

p2σ1 + q2σ2

u1 +
qσ2√

p2σ1 + q2σ2

u2 , v1u1 + v2u2.

It is easy to see that d2−1
d2(1−α2

t )
σ′1,

d2−1
d2(1−α2

t )
σ′2 are the two eigenvalues of the following 2× 2 matrix

A =

[
σ1 0
0 σ2

]
− 2(1 + dαt)

(d+ 1)(1 + αt)

[
v1

v2

]
·
[
v1 v2

]
. (41)

Without loss of generality, we assume σ′1 ≥ σ′2. Applying Weyl’s inequality in matrix theory (Fan, 1949; Bunch et al., 1978)
to matrix A yields

σ1 ≥
d2 − 1

d2(1− α2
t )
σ′1 ≥ σ2 ≥

d2 − 1

d2(1− α2
t )
σ′2. (42)

On the other hand, from Eq (40) we also have

σ′1
σ1

=
d4(1− αt)3(1 + αt)

(d+ 1)3(d− 1)

σ2

σ′2
≥ d4(1− αt)3(1 + αt)

(d+ 1)3(d− 1)
· d2 − 1

d2(1− α2
t )

=
d2(1− αt)2

(d+ 1)2
, (43)

σ′2
σ2

=
d4(1− αt)3(1 + αt)

(d+ 1)3(d− 1)

σ1

σ′1
≥ d4(1− αt)3(1 + αt)

(d+ 1)3(d− 1)
· d2 − 1

d2(1− α2
t )

=
d2(1− αt)2

(d+ 1)2
. (44)

From Eq (42), (43), (44), we obtain Eq (18), (19) and therefore complete the proof.

Lemma C.1 characterizes the convergence of Pt: the product of the largest two eigenvalues shrinks by a constant factor
after each step. Since det(Pt) approaches zero at an exponential rate (from Eq (17)), Pt can only have one potentially large
eigenvalue while all other eigenvalues must approach zero. We formalize the claim in the following Lemma C.2.

Lemma C.2. Suppose a valid cut is executed at step t with depth − 1
kd ≤ αt ≤ 0 in Algorithm 2. Let the eigenvalue of Pt

be σ(t)
1 ≥ · · · ≥ σ

(t)
d . Further let Dt = σ

(t)
2 /σ

(t)
d , we claim

1. for any t ≥ 0, Dt+1 ≤ (d+1)(1+αt)
(d−1)(1−αt) ·Dt;

2. if Dt >
(d+1)(1+αt)
(d−1)(1−αt) , Dt+1 ≤ Dt.

3. for any n ≥ 0,

max
0≤t≤n

Dt ≤
(d+ 1

d− 1

)2

. (45)

Proof. From Lemma C.1, we know that the eigenvalues of Pt+1 is {σ′1, σ′2,
d2(1−α2

t )
d2−1 σ

(t)
3 , · · · , d

2(1−α2
t )

d2−1 σ
(t)
d }, where

σ′1 ≥ σ′2 and
d2(1− αt)2

(d+ 1)2
σ

(t)
2 ≤ σ′2 ≤

d2(1− α2
t )

d2 − 1
σ

(t)
2 (46)

Claim 1. Because σ′1 ≥ σ′2, σ(t)
3 ≥ · · · ≥ σ

(t)
d , and note that σ(t+1)

2 and σ(t+1)
d are the second-largest element and

the smallest element of {σ′1, σ′2,
d2(1−α2

t )
d2−1 σ

(t)
3 , · · · , d

2(1−α2
t )

d2−1 σ
(t)
d }, the value of (σ

(t+1)
2 , σ

(t+1)
d ) must satisfy one of the

following situation:
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1. if (σ
(t+1)
2 , σ

(t+1)
d ) = (σ′2,

d2(1−α2
t )

d2−1 σ
(t)
d ), from Eq (46) we have

Dt+1

Dt
=

d2 − 1

d2(1− α2
t )
· σ
′
2

σ
(t)
2

≤ 1. (47)

2. if (σ
(t+1)
2 , σ

(t+1)
d ) = (

d2(1−α2
t )

d2−1 σ
(t)
i ,

d2(1−α2
t )

d2−1 σ
(t)
d ) for some 3 ≤ i ≤ d− 1, we have

Dt+1

Dt
=
σ

(t)
i /σ

(t)
d

σ
(t)
2 /σ

(t)
d

≤ 1. (48)

3. if (σ
(t+1)
2 , σ

(t+1)
d ) = (

d2(1−α2
t )

d2−1 σ
(t)
i , σ′2) for some 3 ≤ i ≤ d− 1, from Eq (46) we have

Dt+1

Dt
=
d2(1− α2

t )

d2 − 1
· σ

(t)
i

σ′2
·
σ

(t)
d

σ
(t)
2

≤ d2(1− α2
t )

d2 − 1
· σ

(t)
2

σ′2
≤ d2(1− α2

t )

d2 − 1
· (d+ 1)2

d2(1− αt)2
=

(d+ 1)(1 + αt)

(d− 1)(1− αt)
. (49)

By Eq (47), (48), (49), the first claim holds.

Claim 2. It suffices to show that the situation (3) cannot happen when Dt >
d+1
d−1 . In fact, when Dt >

d+1
d−1 , from Eq (46)

we have

σ′2 ≥
d2(1− αt)2

(d+ 1)2
σ

(t)
2 =

d2(1− αt)2

(d+ 1)2
σ

(t)
d Dt >

d2(1− αt)2

(d+ 1)2
· (d+ 1)(1 + αt)

(d− 1)(1− αt)
· σ(t)

d =
d2(1− α2

t )

d2 − 1
σ

(t)
d ,

meaning σ′2 cannot be the smallest eigenvalue of Pt+1. As a result, the second claim holds by Eq (47), (48).

Claim 3. We prove Eq (45) by contradiction. Let n0 be the smallest index in set arg max0≤t≤nDt. If n0 = 0, we have

max0≤t≤nDt = D0 = 1 <
(
d+1
d−1

)2

. Now consider the case n0 ≥ 1 and suppose Dn0 >
(
d+1
d−1

)2

. By Claim 1 and the fact

that − 1
2d ≤ αn0−1 ≤ 0, we have Dn0−1 ≥

(d−1)(1−αn0−1)

(d+1)(1+αn0−1)Dn0
>

(d+1)(1+αn0−1)

(d−1)(1−αn0−1) . Apply Claim 2 to Dn0−1, we obtain
Dn0

≤ Dn0−1, which contradicts the definition of n0. Hence, Claim 3 holds.

Lemma C.3. With the choice of αt given in Eq (6), we conclude that

1. After each cut step, Vol(Et+1) ≤ exp
(
− (k−1)2

2k2d

)
Vol(Et).

2. If at least d exploration steps are taken during t0 ≤ t < t0 + n, we have λmin(Vn+t0) ≥ λmin(Vt0) + 4D0

25 − 3ε0.

3. At any exploitation step t, the instantaneous regret is upper bounded by 2L‖θ∗ − u(t)
1 ‖22.

Proof. First Claim: We first justify our choice of αt. With out loss of generality, assume a1,t is preferred over a0,t, then
according to the user’s decision rule (3) we have

θ>t (a0,t − a1,t) ≤ |βt| · (‖a0,t‖V −1
t

+ ‖a1,t‖V −1
t

) ≤ c2tγ2 · (‖a0,t‖V −1
t

+ ‖a1,t‖V −1
t

). (50)

Next we translate Eq (50) into the estimation with respect to θ∗. According to the Estimation rule (2), with probability 1− δ,

(θ∗ − θt)>(a0,t − a1,t) ≤ ‖θ∗ − θt‖Vt · ‖a0,t − a1,t‖V −1
t

≤ c1g(δ)tγ1‖a0,t − a1,t‖V −1
t
,

and therefore according to the (c, γ)−rational assumption, we obtain

(a0,1 − a1,t)
>(θ∗ − x) ≤ 0



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Learning from a Learning User for Optimal Recommendations

θ>∗ (a0,t − a1,t) ≤ θ>t (a0,t − a1,t) + (θ∗ − θt)>(a0,t − a1,t)

≤ c2tγ2 · (‖a0,t‖V −1
t

+ ‖a1,t‖V −1
t

) + c1g(δ)tγ1‖a0,t − a1,t‖V −1
t

≤ ctγ
(
‖a0,t‖V −1

t
+ ‖a1,t‖V −1

t
+ g(δ) · ‖a0,t − a1,t‖V −1

t

)
. (51)

According to ε0-DC and the definition of gt, we have

‖gt − (a0,t − a1,t)‖2 ≤ ‖a0,t − ā0,t‖2 + ‖a1,t − ā1,t‖2 ≤ 2ε0. (52)

Using Eq (52), we may relax Eq (51) by replacing a0,t − a1,t with gt = ā0,t − ā1,t, accounting for the error introduced by
the inaccuracy of the exploration direction as below:

g>t (θ∗ − xt) = g>t θ∗

=(a0,t − a1,t)
>θ∗ + (gt − (a0,t − a1,t))

>θ∗

≤ctγ
(
‖a0,t‖V −1

t
+ ‖a1,t‖V −1

t
+ g(δ) · ‖a0,t − a1,t‖V −1

t

)
+ ‖gt − a0,t + a1,t‖2 · ‖θ∗‖2

≤ctγ
(
‖a0,t‖V −1

t
+ ‖a1,t‖V −1

t
+ g(δ) · ‖a0,t − a1,t‖V −1

t

)
+ 2ε0, (53)

where Eq (53) holds because we assume ‖θ∗‖2 = 1. Hence, by equation (13), the cutting depth

αt = −
ctγ
(
‖a0,t‖V −1

t
+ ‖a1,t‖V −1

t
+ g(δ) · ‖a0,t − a1,t‖V −1

t

)
+ 2ε0

‖gt‖Pt
. (54)

Therefore, we may leverage Eq (54) to evaluate the cutting depth αt and perform a cut whenever αt ≥ − 1
kd > −

1
d is

satisfied. From Eq (17), we therefore conclude Vol(Et+1) ≤ exp
(
− (k−1)2

2k2d

)
Vol(Et).

Second Claim: To prove the second claim, we need the following auxiliary lemma:

Lemma C.4. A is a d× d PSD matrix with eigendecomposition A = Udiag(σ1, · · · , σd)UT , where σ1 ≤ · · · ≤ σd and
U = [u1, · · · ,ud]. For any v ∈ Rd, let the eigenvalues of A+ vvT be σ′1 ≤ · · · ≤ σ′d. Then we have

1. σ1 ≤ σ′1 ≤ σ2 ≤ σ′2 ≤ · · · ≤ σd ≤ σ′d ≤ σd + vTv.

2. if v = pu1 + qud + ε for some p2 + q2 = 1, ‖ε‖2 = ε < 1, {σi}di=1 and {σ′i}di=1 have at least d− 2 common values.
Furthermore, conditioned on σd > σ1 + p2 − q2, at least one of the following claims is true:
a) σ′1 ≥ σ1 + p2 − |pq| − 3ε.
b) σ′1 = σ2, and σ′i ≥ σ1 + p2 − |pq| − 3ε for some 2 ≤ i ≤ d.

Proof. The first claim is a direct corollary of Weyl’s inequality in matrix theory (Fan, 1949; Bunch et al., 1978). Now we
prove the second claim for the special case ε = 0. From Secular Equations, we know that σ′1 is the smallest root of the
following equation

f(λ) =

d∏
i=1

(σi − λ) + p2
d∏
j 6=1

(σj − λ) + q2
d∏
j 6=d

(σj − λ)

=
[
(σ1 − λ)(σd − λ) + p2(σd − λ) + q2(σ1 − λ)

] d∏
j 6=1,d

(σj − λ)

=
[
λ2 − (1 + σ1 + σd)λ+ q2σ1 + p2σd + σ1σd

] d∏
j 6=1,d

(σj − λ).
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Therefore, σ′1 is the smaller one between σ2 and the smallest root of the quadratic equation λ2 − (1 + σ1 + σd) + q2σ1 +
p2σd + σ1σd = 0, i.e.,

σ′1 = min{σ2,
1 + σ1 + σd −

√
(1 + σ1 + σd)2 − 4(q2σ1 + p2σd + σ1σd)

2
}. (55)

Note that when σd > σ1 + p2 − q2, we have

1 + σ1 + σd −
√

(1 + σ1 + σd)2 − 4(q2σ1 + p2σd + σ1σd)

2

=
1 + σ1 + σd −

√
(p2 − q2 + σ1 − σd)2 + 4p2q2

2

≥1

2
(1 + σ1 + σd − |p2 − q2 + σ1 − σd| − 2|pq|) (56)

=σ1 + p2 − |pq|, (57)

where Eq (56) holds because
√
a2 + b2 ≤ |a|+ |b|. From Eq (55) and Eq (57) we conclude the proof.

Next it remains to show that with a small perturbation ε on v, the change of the smallest eigenvalue will only deviate at most
3ε. From Weyl’s eigenvalue perturbation inequality, for any Hermitian matrices M,∆, we have |λk(M + ∆)− λk(M)| ≤
‖∆‖2, where λk(·) denotes the k−th largest eigenvalue of a given matrix. Using this tool, we can upper bound the difference
between the smallest eigenvalues of matrix A+ vv> and A+ (v + ε)(v + ε)> as below:

λ1(A+ (v + ε)(v + ε)>)− λ1(A+ vv>)

≤‖εv> + vε> + εε>‖2 ≤ ‖εv> + vε>‖2 + ‖εε>‖2
≤2ε+ ε2 < 3ε, (58)

where Eq (58) holds because for any ‖x‖2 = 1, x>(εv> + vε>)x ≤ 2‖ε‖2 and x>(εε>)x ≤ ‖ε‖22.

Now we are ready to prove the second claim. Without loss of generality, we consider the case D0 = 1. Suppose Algorithm 2
had executed d exploration steps from t = t0 to t = t0 + n. By the first claim of Lemma C.4, we know {σ(τ)

1 }tτ=1 is always
non-decreasing. Therefore, it suffices to prove that after d consecutive exploration steps, σ(t0+d)

1 ≥ σ(t0)
1 + p2 − |pq| − 3ε0.

From the second claim in Lemma C.4:

1. if situation a) happens at least once during the d exploration steps, we already obtain σ(t0+d)
1 ≥ σ(t0)

1 +p2−|pq|−3ε0.

2. if we always observe situation b), consider the set Ct = {i : σ
(t0+t)
i < σ

(t0)
1 + p2 − |pq| − 3ε0}. From Lemma C.4,

we can prove |Ct+1| ≤ |Ct| − 1. Since σ(t0)
d > σ

(t0)
1 + p2 − |pq| − 3ε0, we have |C1| ≤ d− 1. Therefore, there must

exists 1 ≤ k ≤ d such that |Ck| = 0, meaning σ(t0+d)
1 ≥ σ(k)

1 ≥ σ(t0)
1 + p2 − |pq| − 3ε0.

By taking (p, q) = (4
5 ,

3
5 ), we obtain the desirable result.

Thrid Claim: Given ‖θ∗‖2 = 1, denote θ̂ = u
(t)
1 and ‖θ∗ − θ̂‖2 = ε. Let x∗ = arg maxx∈A x

T θ∗ and
x̂ = arg maxx∈A x

T θ̂. We have

θT∗ (x∗ − x̂) = (θ∗ − θ̂)Tx∗ + (x∗ − x̂)T θ̂ + (θ̂ − θ∗)T x̂

≤ (θ∗ − θ̂)Tx∗ + (θ̂ − θ∗)T x̂ by definition of x̂

= (θ̂ − θ∗)T (x̂− x∗)

≤ ‖θ̂ − θ∗‖2 · ‖x̂− x∗‖2 by Cauchy-Schwarz

≤ L · ‖θ̂ − θ∗‖22. by L-SRC
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As a result, the instantaneous regret is upper bounded by 2L‖u(t)
1 − θ∗‖22.

Now we are ready to analyze the regret of Algorithm 2:

Theorem C.5. For any d > 1, n > 0, let σ(n)
i be the i-th largest eigenvalue of Pn after the n-th cut, we have

1. For any 2 ≤ i ≤ d,

σ
(n)
i ≤ exp

(4

d
− (k − 1)2n

k2d2

)
. (59)

2. When T0 = O
(
cL

1
2D

1
2
1 D
− 3

2
0 g(δ)d2T

1
2 +γ

)
and ε0 < O

(
cD1D

− 1
2

0 d−
1
2T−

1
4 + γ

2

)
, the regret of RAES is upper bounded

by O
(
cL

1
2D

3
2
1 D
− 3

2
0 g( δ

T0
)d2T

1
2 +γ

)
with probability 1− δ.

Proof. Since the depth of the cut αt ≥ − 1
kd through out the execution of Algorithm 2, from Lemma 4.4 and Eq (17) we

have
d∏
i=1

σ
(n)
i =

n−1∏
i=0

detPi+1

detPi
≤
n−1∏
i=0

Vol(Ei+1)

Vol(Ei)
= exp

(
− (k − 1)2n

k2d

)
. (60)

From Lemma C.2, we have σ(n)
i ≥ σ(n)

d ≥
(
d−1
d+1

)2 · σ(n)
2 ,∀3 ≤ i ≤ d. Therefore,

exp
(
− (k − 1)2n

k2d

)
≥

d∏
i=1

σ
(n)
i

≥ σ(n)
2 · σ(n)

2 ·
[(d− 1

d+ 1

)2 · σ(n)
2

]d−2

= [σ
(n)
2 ]d ·

(
1− 2

d+ 1

)2d−4

≥ exp (−4) · [σ(n)
2 ]d.

Rearranging terms yields σ(n)
2 ≤ exp

(
4
d −

(k−1)2n
k2d2

)
, and thus σ(n)

i ≤ exp
(

4
d −

(k−1)2n
k2d2

)
,∀2 ≤ i ≤ d.

Next we show the second claim. Suppose the total number of cut during the first T0/2 step is N0.

1. if N0 ≥ d2k2

(k−1)2 log T0 + 4dk2

(k−1)2 , from Eq (59) we have σ(N0)
i ≤ 1

T0
.

2. if N0 <
d2k2

(k−1)2 log T0 + 4dk2

(k−1)2 , for sufficiently large T , there are at least T0/2 − N ≥ T0/2 − d2k2

(k−1)2 log T0 −
4dk2

(k−1)2 >
T0

3 exploration steps during the first T0/2 iterations. From the second claim of Lemma 4.4, λmin(VT0) ≥
βT0

d , where β = 1
3 ( 4D0

25 − 3ε0) is a positive constant. Using the definition of matrix norm, we have for any t,

‖a0,t‖V −1
t
, ‖a1,t‖V −1

t
≤ D1

√
λmax(V −1

t ), ‖a0,t − a1,t‖V −1
t
≤ 2D1

√
λmax(V −1

t ), and ‖gt‖Pt ≥ D0(σ
(t)
2 )−

1
2 .

Therefore, we have

αt ≥ −2
[
ctγD1D

−1
0

(
1 + g(δ)

)
·
√
λmax(V −1

t ) + ε0D
−1
0

]
· (σ(t)

2 )−
1
2 .

According to Algorithm 2, as long as we have−2
[
ctγD1D

−1
0

(
1+g(δ)

)
·
√
λmax(V −1

t )+ε0D
−1
0

]
· (σ(t)

2 )−
1
2 ≥ − 1

kd ,

a cut will happen at step t and we can shrink
√
σ

(t)
2 with probability 1− δ. In other words, after the last time Algorithm

2 choose to cut during the first T0 round, we have√
σ

(t)
2 ≤

2D1ckd
1.5tγ(1 + g(δ))

D0

√
βT0

+
2kdε0
D0

<
3D1ckd

1.5T γ0 (1 + g(δ))

D0

√
βT0

, (61)
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where the last inequality holds because ε0 < cD1

2
√
β
d−

1
2T−

1
4 + γ

2 . On the other hand, the total number of cuts n such that

Eq (61) is satisfied is upper bounded by O(log T0) since σ(t)
2 shrinks exponentially w.r.t. the cut number t. Therefore,

when T is reasonably large, we can guarantee n < T0/2 and conclude that Eq (61) holds for all t > T0.

According to Eq (36) and the third claim in Lemma 4.4, when algorithm 2 enters the exploitation phase when t > T0, with
probability 1− T0δ, the instantaneous regret is upper bounded by

θ>∗ [(a∗ − a0,t) + (a∗ − a1,t)] ≤ 8(d− 1) · L ·
(3D1ckd

1.5T γ0 (1 + g(δ))

D0

√
βT0

)2

(62)

≤ 72D2
1Lc

2k2d4(1 + g(δ))2

βD2
0T

1−2γ
0

(63)

For each cut or exploration step in the first T0 rounds, the incurred instantaneous regret is at most T0D1. For each following
exploitation step, the regret is upper bounded by 72D2

1Lc
2k2d4(1+g(δ))2

D2
0βT

1−2γ
0

. Hence, we can upper bound the accumulated regret
by

RT ≤ D1T0 +
72D2

1Lc
2k2d4(1 + g(δ))2

D2
0βT0

· T 1+2γ

≤ 12D1

D0

√
2LD1

β
ck(1 + g(δ)) · d2T

1
2 +γ , (64)

where the optimal regret is achieved when T0 = 6ck
D0

√
6LD1

4D0
25 −3ε0

(
1 + g(δ)

)
d2T

1
2 +γ , we have RT ≤ 12ckD1

D0

√
6LD1

4D0
25 −3ε0

(
1 +

g(δ)
)
d2T

1
2 +γ . By applying the union bound to the first T0 rounds, we thus conclude that with probability 1− δ,

RT ≤
60D1

D0

√
6LD1

4D0 − 75ε0
ck
(
1 + g(

δ

T0
)
)
· d2T

1
2 +γ .

D. Omitted Proofs in Section 4.3
To derive our lower bound result, we need to leverage the minimax lower bound result for stochastic linear bandits (adapted
from Theorem 24.1 in (Lattimore & Szepesvári, 2020)). For convenience, we use θi:j to denote the slice of vector θ from
the i−th element to the j−th element.

Theorem D.1. There exists a function T0(d) > 0 such that for any d ≥ 1, T > T0(d), and any algorithm G that has merely
access to the comparison feedback given by a rational user defined in Definition 3.1, there exists θ ∈ ∂Bd1 such that the
expected regret RT given by Eq (1) obtained by G satisfies

R
(s)
T (G, θ) ≥ exp(−2)

4
(d− 1)

√
T . (65)

Proof. We prove our claim by contradiction using Theorem D.2. Essentially, we show that if the system has a powerful
algorithm to achieve an expected regret lower than the RHS of Eq. (8), then we can leverage this algorithm for the linear
bandit problem in Theorem D.2 with an expected regret even lower than the lower bound and thus draw the contradiction.

Suppose for any d > 0, there exists sufficiently large T and an algorithm G such that for any parameter θ∗ ∈ ∂Bd1, we have

E
[ T∑
t=1

θ>∗ (2a∗ − a0,t − a1,t)
]

= R
(s)
T (G, θ∗) <

exp(−2)

4
(d− 1)

√
T .
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As a result, the following inequalities must hold simultaneously:

E
[ T∑
t=1

θ>∗ (a∗ − a0,t)
]
<

exp(−2)

4
(d− 1)

√
T ,

E
[ T∑
t=1

θ>∗ (a∗ − a1,t)
]
<

exp(−2)

4
(d− 1)

√
T .

(66)

Now suppose a principal can observe the interaction between a user and a system equipped with algorithm G, then he can
construct two algorithms G0,G1 for linear bandit as follows:

Algorithm Gi :
Input: the time horizon T .
For t ∈ [T ]:

1. Call algorithm G to generate two candidates (a0,t, a1,t).
2. Present (a0,t, a1,t) to the user and and let her decide the winner a∗,t using decision rule 3.
3. Return the feedback a∗,t to algorithm G and update the internal state of G accordingly.

Output: the sequential decisions {ai,t}Tt=1.

From Eq. (66), we know that both G0 and G1 achieve an expected regret no greater than exp(−2)
4 (d− 1)

√
T , which draws a

contradiction to Theorem D.2.

To prove Theorem D.1, we need the following technical lemma:

Lemma D.2. Let d ≥ 2 and T ≥ d2, the action set A = [−1, 1]d be a hypercube in Rd, and

Θ =
{
θ ∈ Rd : ‖θ‖1 = 1, θ1:d−1 ∈ {−

1√
T
,

1√
T
}d−1

}
.

Let the expected regret for a linear bandit problem induced by any fixed algorithm G and parameter θ be

RT (G, θ) = T max
a∈A
〈a, θ〉 − E[

T∑
t=1

〈at, θ〉], (67)

where the expectation is taken with respect to the randomness generated by the standard Gaussian noise N (0, 1) in the
reward. Then there must exist a parameter vector θ ∈ Θ such that

RT (G, θ) ≥ exp(−2)

8
(d− 1)

√
T . (68)

Proof. Fix an algorithm G and a time horizon T . For any θ ∈ Θ, let Pθ be the probability measure on the probability space
induced by the T -round interconnection of policy G and the problem instance given by θ. Let D(·, ·) denote the relative
entropy, from the general form of divergence decomposition lemma (Lemma 15.1 in (Lattimore & Szepesvári, 2020)), we
have

D(Pθ,Pθ′) = Eθ
[ T∑
t=1

D(N (〈at, θ〉, 1),N (〈at, θ′〉, 1))
]

=
1

2

T∑
t=1

Eθ[〈at, θ − θ′〉2]. (69)



1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Learning from a Learning User for Optimal Recommendations

For any i ∈ [d− 1] and θ ∈ Θ, let at,i and θi be the i-th element of at and θ and define

pθi = Pθ
( T∑
t=1

I{sign(at,i) 6= sign(θi)} ≥
T

2

)
.

Let θ, θ′ be any pair of elements in Θ such that they only differ in the i−th element. Therefore, by the Bretagnolle-Huber
inequality (Theorem 14.2 in (Lattimore & Szepesvári, 2020)) and Eq. (69),

pθi + pθ′i ≥
1

2
exp

(
−D(Pθ,Pθ′)

)
=

1

2
exp

(
− 1

2

T∑
t=1

Eθ[〈at, θ − θ′〉2]
)

≥ 1

2
exp

(
− 1

2
· T
( 2√

T

)2)
=

1

2
exp(−2).

Fix i ∈ [d− 1], there are |Θ| = 2d−1 such pairs (θ, θ′). Take summation over i and all such pairs, we obtain

∑
θ∈Θ

1

|Θ|

d∑
i=1

pθi ≥
1

|Θ|

d−1∑
i=1

∑
θ∈Θ

pθi

=
1

|Θ|

d−1∑
i=1

1

2

∑
(θ,θ′)

(pθi + pθ′i)

≥ d− 1

4
exp(−2),

which implies that there exists a θ ∈ Θ such that
∑d
i=1 pθi ≥

d−1
4 exp(−2). By the definition of pθi , the regret of G for this

problem instance with parameter θ is at least

RT (A, θ) = Eθ
[ T∑
t=1

d∑
i=1

(sign(θi)− at,i)θi
]

≥
√

1

T

d∑
i=1

Eθ
[ T∑
t=1

I{sign(at,i) 6= sign(θi)}
]

≥
√
T

2

d∑
i=1

Pθ
( T∑
t=1

I{sign(ati) 6= sign(θi)} ≥
T

2

)
=

√
T

2

d∑
i=1

pθi ≥
exp(−2)

8
(d− 1)

√
T ,

where the first line follows since the optimal action satisfies a∗i = sign(θi) and for i ∈ [d], the first inequality follows from a
simple case-based analysis showing that (sign(θi) − ati)θi ≥ |θi|I{sign(ati) 6= sign(θi)}, the second inequality is from
Markov’s inequality, and the last inequality follows from the choice of θ.

E. Additional Experiments
E.1. Configuration of Baseline Algorithms

Dueling Bandit Gradient Descent (DBGD): DBGD (Yue & Joachims, 2009) maintains the currently best candidate at
and compares it with a neighboring point at + ηut along a random direction ut. An update is taken when the proposed
point wins the comparison. DBGD works for continuous convex action set and has a regret guarantee of O(T 3/4). Although
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its theoretical guarantee only holds under a strictly concave utility function, it can be reasonably adapted to our problem
setting empirically. DBGD’s hyper-parameters include the starting point w0, and two learning rates δ, γ that control the
step-lengths for proposing new points and update the current points, respectively. In the experiment, these hyper-parameters
are set to (w0, δ, γ) = (0, d−

1
2T−

1
4 , T−

1
2 ), as recommended in (Yue & Joachims, 2009).

Doubler: Doubler (Ailon et al., 2014) is the first approach that converts a dueling bandit problem into a conventional
multi-armed bandit (MAB) problem. Doubler proceeds in epochs of exponentially increasing size: in each epoch, the left
arm is sampled from a fixed distribution, and the right arm is chosen using an MAB algorithm to minimize regret against the
left arm. The feedback received by the MAB algorithm is the number of wins the right arm encounters when compared
against the left arm. Doubler is proved to have Õ(T 1/2) regret for continuous action set under the linear reward assumption.
The black-box MAB algorithm that is needed to initiate Doubler is set to the OFUL algorithm in (Abbasi-Yadkori et al.,
2011).

Sparring: Sparring (Ailon et al., 2014; Sui et al., 2017) is also a general reduction from dueling bandit to MAB. Like
Doubler, it also requires black-box calls to an MAB algorithm and achieves regret of the same order as the MAB algorithm.
Instead of comparing with a fixed distribution, Sparring initializes two MAB instances and lets them “spar” against each
other. As a heuristic improvement of Doubler, Sparring does not have a regret upper bound guarantee but is reported to enjoy
a better performance compared to Doubler (Ailon et al., 2014). The black-box MAB algorithm that is needed to initiate
Sparring is set to the OFUL algorithm in (Abbasi-Yadkori et al., 2011).

E.2. Simulation Environment and Metrics

In all experiments, we fix the action set A = Bd2(0, 1), i.e., D0 = D1 = 1, and δ = 0.1, k = 1.05. We consider a
(1, γ)-rational user with γ ∈ {0, 0.2} and prior knowledge matrix V0. The user’s decision sequence {β(0)

t } and {β(1)
t } are

independently drawn from [−tγ , tγ ]. The ground-truth parameter θ∗ is sampled from ∂Bd2(0, 1) and the reported results are
collected from the same problem instance and averaged over 10 independent runs.

E.3. Additional Results

Figure 4 shows the accumulated regret of RAES and other baselines when d = 5 against a (1, 0.2)−rational user with
different V0. Compared to Figure 3, we can see that RAES leads the performance compared to other baseline algorithms
with a larger margin when facing a less rational user equipped a larger γ.
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Figure 4. The accumulated regret of RAES and three baseline algorithms against a learning user with different γ, V0, and T . Different
colors specify different algorithms, and each star represents the accumulated regret (y-axis) of the algorithm given time horizon T (x-axis)
with γ = 0.2. Left: V0 = 100Id; right: V0 = diag(100, 10, 5, 2, 1).

Figure 5, 6 show the accumulated regret of RAES and other baselines when d = 10, 20 against a (1, 0)−rational user with
different V0. RAES enjoys the same advantage as demonstrated in Figure 3. Since we have shown that the accumulated
regret of RAES depends on d quadratically, a larger time horizon T is required to display its advantage for high-dimensional
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problems. However, as T becomes larger, the advantage of RAES also becomes more evident.
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Figure 5. The accumulated regret of RAES and three baseline algorithms against a learning user with different γ, V0, and T . Different
colors specify different algorithms, and each star represents the accumulated regret (y-axis) of the algorithm given time horizon T (x-axis)
with γ = 0.2. Left: V0 = 100Id; right: V0 is a diagonal matrix with half of its diagonal entries being 100 while the others being 1.
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Figure 6. The accumulated regret of RAES and three baseline algorithms against a learning user with different γ, V0, and T . Different
colors specify different algorithms, and each star represents the accumulated regret (y-axis) of the algorithm given time horizon T (x-axis)
with γ = 0.2. Left: V0 = 100Id; right: V0 is a diagonal matrix with half of its diagonal entries being 100 while the others being 1.


