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Abstract

Unlike natural language processing and computer vision, the development of Foun-
dation Models (FMs) for time series forecasting is blocked due to data scarcity.
While recent efforts are focused on building such FMs by unlocking the potential of
language models (LMs) for time series analysis, dedicated parameters for various
downstream forecasting tasks need training, which hinders the common knowledge
sharing across domains. Moreover, data owners may hesitate to share the access to
local data due to privacy concerns and copyright protection, which makes it impos-
sible to simply construct a FM on cross-domain training instances. To address these
issues, we propose TIME-FFM, a Federated Foundation Model for TIME series
forecasting by leveraging pretrained LMs. Specifically, we begin by transforming
time series into the modality of text tokens. To bootstrap LMs for time series
reasoning, we propose a prompt adaption module to determine domain-customized
prompts dynamically instead of artificially. Given the data heterogeneity across
domains, we design a personalized federated training strategy by learning global
encoders and local prediction heads. Our comprehensive experiments indicate
that TIME-FFM outperforms state-of-the-arts and promises effective few-shot
and zero-shot forecaster. The code is available at https://github.com/CityMind-
Lab/NeurIPS24-Time-FFM/tree/main.

1 Introduction

Time series forecasting plays an important role in many real-world application domains [1], such as
energy consumption prediction, weather forecasting, and disease transmission. Recently, a multitude
of deep learning models have been designed for time series forecasting based on Convolutional Neural
Networks [2, 3, 4], Recurrent Neural Networks [5, 6], and Transformers [7, 8, 9, 10]. Inspired by
the prominent performance gained by Foundation Models (FMs) in the realms of Natural Language
Processing (NLP) [11, 12, 13, 14] and Computer Vision (CV) [15, 16], great research interests have
been triggered to build pretrained FMs for time series community [17, 18, 19, 20, 21]. Nonetheless,
due to significant time series data scarcity, these FMs are of poor capability to cultivate general
representations, failing to promise remarkable fine-tuning or zero-shot performance for diverse
downstream forecasting tasks [22, 23]. As a result, a collection of methods have been proposed to
borrow the pretrained language FMs to time series community by cross-modality adaption [24, 22, 23],
thus unlocking the tapped potential of language models (LMs) for time series modeling.
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Figure 1: (a) Specific prediction models are trained for diverse domains. (b) A unified model is
trained for cross-domain time series. (c) The current in-modality adaption in FL setting fine-tunes
LM for NLP tasks, with all the trained parameters are exchanged between clients and the server. (d)
Our proposal investigates how to construct a FM by unlocking the potential of LM for cross-domain
time series forecasting in FL paradigm.

While these endeavors provide FMs for time series forecasting, the incorporated cross-modality
adaption modules and unfrozen components of pretrained LMs need training from scratch for specific
domains, thus restricting the mining of underlying temporal commonality in cross-domain time series
data. As is shown in Figure 1(a), disease and economics datasets are employed for training the FM
respectively to obtain domain-optimal model parameters, hardly generalizing to other domains. [25]
proposes to train a unified model (named UniTime) on the mixture of cross-domain time series data
(Figure 1(b)), which ensures the cultivation of general-purpose representations, thus promising the
zero-shot performance on unseen domains. Despite its effectiveness, they adopt the centralized
training mode, where the historical records of time series across diverse domains are uploaded to a
central server for optimizing the unified model. Due to copyright protection and privacy concerns,
data owners may hesitate to share the access to these domain-specific raw records.

Federated Learning (FL) [26, 27] provides the mainstream solution for the aforementioned problem,
where data owners train prediction models locally and exchange the intermediate model parameters
or gradients with the central server, without the disclosure of raw data records. Moreover, in UniTime,
a retractable prediction head is introduced to accommodate the heterogeneous output needs whereas
FL paradigm makes it possible to construct domain-customized heads. However, current efforts are
merely focused on how to fine-tune LMs in federated setting for NLP tasks (i.e., in-modality adaption
of LMs for target tasks in Figure 1(c)) [28, 29, 30, 31], rather than cross-modality adaption of LMs
for time series forecasting. The realization of this federated FM is non-trivial technically, given the
ubiquitous heterogeneity in cross-domain time series data. (1) Heterogeneous inputs: Cross-domain
time series data input into the FM are heterogeneous in terms of dimensions and historical readings,
posing evident difficulty to modality alignment. (2) Rigid instructions as prompts: Prompts are
adopted to bootstrap LMs for time series reasoning hinging on rigid domain-specific instructions
[25, 22], rather than the understanding of LMs, exhibiting poor robustness for unseen domains. (3)
Conflicts between generalization and personalization: The ideal FM needs to learn the common
temporal representations across domains and simultaneously enable the personalized prediction for
domain-specific inputs.

To address the challenges, we propose TIME-FFM, a Federated Foundation Model for TIME series
forecasting by repurposing LMs (Figure 1(d)). First, we perform modality alignment by transforming
time series data into text tokens to empower the pretrained LM for time series reasoning. Second,
we design a prompt adaption module to dynamically determine domain-specific prompts, which can
bootstrap the LM for cross-domain time series analysis from the perspective of LM itself, rather
than from human cognition by employing hand-crafted instructions as prompts. To tackle the data
heterogeneity across domains, we introduce a personalized federated training strategy by learning a
global encoder and personalized prediction heads, given the shared representations across domains.
Our main contributions are summarized as follows.

• We present the first attempt to build a federated FM for time series forecasting by exploiting the
sequence reasoning potential of LMs, avoiding the disclosure of local data.

• We propose TIME-FFM, which firstly aligns the modality from time series data to natural language
and adaptively determines prompts to guide the LM for time series reasoning. Moreover, we intro-
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duce a personalized FL strategy to strike a balance between sharing common temporal knowledge
and ensuring customized prediction results.

• The extensive evaluation results demonstrate that TIME-FFM leads to state-of-the-art performance
in mainstream forecasting tasks, especially in few-shot or zero-shot forecasting settings.

2 Related Work

FMs for Time Series Forecasting. Recent studies have demonstrated the effectiveness of fine-tuning
pretrained FMs for various downstream tasks, such as BERT [11], GPT [12], GPT2 [13], and LLaMA
[14] in NLP and DEiT [15] and BEiT [16] in CV. Inspired by the success, some efforts have been
focused on developing FMs for time series community, such as [17, 18, 21, 32]. However, due to data
deficiencies, these pretrained models cannot guarantee the learning of general-purpose representations
for time series analysis and hence fail to apply to a multitude of downstream tasks. Another line
of researches attempt to leverage pretrained FMs in NLP or CV for time series analysis by cross-
modality adaption strategies [33, 34, 35, 24, 23, 22], such as fine-tuning and model reprogramming,
which hinges on the powerful generalization capability of Transformers for sequence tokens. [23]
freezes the self-attention modules and feedforward layers of GPT2, and only fine-tunes the positional
embedding and normalization layers. The proposed GPT4TS outperforms the relevant models in
most time series tasks. On the contrary, [22] freezes the LM as a whole and transforms the modality
of time series to natural language by patch reprogramming. These methods enable unified model
structure rather than unified parameters for diverse downstream tasks, which makes the proposed
FMs learn impaired temporal commonality. [25] proposes to train a unified prediction model for
cross-domain time series forecasting, which enables to learn the intrinsic temporal patterns. However,
the centralized training mode brings privacy concerns for cross-domain data owners and FL paradigm
may provide a promising solution.

Federated Fine-tuning of LMs. Given the exceptional performance of LMs and the emerging privacy
preserving resolutions, incorporating LMs with FL is becoming a popular research trend. There have
been some implementation frameworks [36, 29, 37, 38, 39, 40] to support fine-tuning LMs in FL
setting. Moreover, considering the immense communication cost, some communication-efficient
federated fine-tuning methods have been proposed, such as [38, 41, 30, 28]. A few researches aim
to investigate the effects of data heterogeneity on fine-tuning performance, and then propose the
personalized federated instruction tuning methods, e.g., [42, 29, 31]. Nonetheless, these methods
concentrate on fine-tuning or fully-tuning pretrained LMs in FL paradigm for NLP tasks, but fail to
cover the cross-modality adaption of LMs for time series forecasting.

3 Methodology

3.1 Problem Definition

Given N domains, let xi,t = {x1
i,t, · · · , x

ci
i,t} ∈ Rci denote the observation of domain i at the

time step t, where ci represents the number of dimensions (channels). In the context of time series
forecasting, we denote Xi = {xi,1, · · · ,xi,Li

} ∈ RLi×ci as the input of the prediction model fi(·),
where Li represents the domain-variant lookback window. The ground truths can be denoted as
Yi = {xi,Li+1, · · · ,xi,Li+Fi

} ∈ RFi×ci , where Fi represents the future prediction window. Let
Di = {(Xi;Yi)} denote the local data set of i and Di = |Di| the data size. Given the set of
personalized model parameters {wi}, the objective of federated FM for cross-domain time series
forecasting can be formulated as

min
{w1,···,wN}

L =
1

N

N∑
i=1

1

Di

∑
(Xi;Yi)∈Di

∥ Yi − fi(wi;Xi) ∥22 . (1)

3.2 Model Structure

The model architecture is elaborated in Figure 2. Our model encompasses three components: (1)
modality alignment and prompt adaption, (2) LM backbone, and (3) prediction head. The modules of
modality alignment and prompt adaption are designed for cross-modality alignment and adaptive
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Figure 2: Overall architecture of TIME-FFM. Each round begins with ➀ downloading global
parameters of modality alignment and prompt adaption modules. We ➁ conduct modality alignment
to generate patch tokens and ➂ adaptively determine prompt tokens. ➃ The two tokens are input
into the LM backbone and ➄ the outputs are projected to generate the prediction results. After local
optimization, ➅ the updated parameters of modality alignment and prompt adaption modules are
uploaded to the server for aggregation.

prompt determination. We employ the backbone of GPT2 [13] with freezing all parameters. The
prediction head enables domain-specific prediction results.

Modality Alignment. Here we transform time series into the modality of text tokens. To
accommodate domain-variant channels ci, we adopt the channel-independent strategy [43] to
split multivariate time series Xi into ci univariate series and individually process each. Let
Xj

i = {xj
i,1, · · ·x

j
i,Li
} ∈ R1×Li denote the j-th univariate series from Xi. Then we normalize each

series Xj
i to mitigate the effect of distribution diversity [44]. Since each data point of Xj

i does not
have explicit semantic knowledge like words in sentences, we adopt the patching technique [43] to
segment Xj

i into subseries (termed patches), each of which can aggregate the local information and
better retain the temporal knowledge. Specifically, let P denote the patch length and Si denote the
stride length of domain i. Hence, the number of patches can be defined as Bi =

⌈
Li−P
Si

⌉
+ 1. We

denote Xj
i,S ∈ RBi×P as the generated patches from Xj

i . We subsequently employ a linear layer
to project the patches into tokens X̂j

i,S ∈ RBi×D, where D is the input dimension size of the LM
backbone. X̂j

i,S together with prompt tokens (in the next part) will be input into the LM backbone.

Prompt Adaption. In the time series forecasting FMs based on LMs, domain instructions are
designed as prompts to complement the patch tokens and inform the LM backbone of domain-specific
knowledge [22, 25]. These manually-designed prompts depend completely on experts’ knowledge
and may vary from each other due to different understandings. Furthermore, according to the results,
more detailed instructions can always yield better prediction performance [22], which may make us
naturally draw a conclusion that the ultimate performance hinges on the length of prompts. However,
longer prompt tokens will present substantial challenge on the computation burden. Different from
images [45] or acoustic data [33], which can be “translated” into natural language seamlessly, the
manually-crafted prompts are error-prone to describe the characteristics of the raw time series. To
this end, a better way is to design prompts from LM’s understandings of the patch tokens rather
than human cognition of raw time series data. Here, we propose to adaptively determine prompts
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based on patch tokens from the source corpus of pretrained LM (which includes V pretrained word
embeddings, denoted as E ∈ RV×D). Similar to [22], we project E to a smaller collection of text
prototypes, denoted as E′ ∈ RV ′×D by a linear layer, with V ′ ≪ V , to avoid the potential large
parameter space. We adopt a modified multi-head attention layer to obtain the correlation between
E′ and X̂j

i,S , and subsequently select M mostly related text prototypes as prompts. Concretely,
for each head h ∈ {1, · · · , H}, we have the query matrix Qj

i,h = E′WQ
h and the key matrix

Kj
i,h = X̂j

i,SW
K
h , where WQ

h ,WK
h ∈ RD×d and d =

⌊
D
H

⌋
. Since we do not aim to return

a weighted value matrix according to the given query but merely evaluate the correlation of text
prototypes and patch tokens, we omit the value matrix here. The attention score matrix is denoted as
Oj

i,h ∈ RV ′×Bi and can be calculated as

Oj
i,h = SOFTMAX(

Qj
i,hK

j⊤
i,h√

d
). (2)

We obtain Ôj
i,h ∈ RV ′×1 by calculating the summation of Oj

i,h per row. Each value in Ôj
i,h represents

the correlation degree of the corresponding text prototype in E′ to all patch tokens X̂j
i,S . We select

M prototypes from Qj
i,h with top attention scores to form the potential prompts Zj

i,h ∈ RM×d, i.e.,

Zj
i,h = Qj

i,h

[
TOPM(Ôj

i,h)
]
. We can obtain Zj

i ∈ RM×D by aggregating Zj
i,h from all H heads.

Finally, we employ a linear layer to project Zj
i to the prompt tokens Ẑj

i ∈ RM×D.

Prediction Head. We input the concat of Ẑj
i and X̂j

i,S into the LM backbone and obtain the
representations Rj

i ∈ R(M+Bi)×D, which will be flattened and projected to the final results Ŷ j
i ∈

R1×Fi by a linear layer.

Personalized Strategy. Time series across different domains could be substantially heterogeneous.
Consequently, a generalized global model in FL may fail to capture the disparate temporal patterns
and ultimately compromises the prediction performance. Inspired by [46], which indicates that
diverse data may share common feature representations, we propose to learn a global encoder (i.e.,
modality alignment, prompt adaption and LM backbone) and domain-customized prediction heads.
The underlying motivation is to strike a balance between generalization and personalization: (1)
increasing the generalization of modality alignment and prompt adaption by access to cross-domain
temporal patterns; (2) ensuring prediction results specific for certain domains by personalized heads.
Since we keep the LM backbone intact, in each federating round, only the parameters of modality
alignment and prompt adaption are communicated. The server performs aggregation by averaging
strategy. The training strategy differs from Federated Averaging framework, where the parameters of
encoder and decoder are both aggregated at the central server after local optimization.

3.3 Training Process

We denote wg
t as the global parameters of modality alignment and prompt adaption at the t-th

federated round and wp
i,t as prediction head parameters of i at the t-th round. We clarify that (Xi,Yi)

here is reused to represent a training batch. X̂i,S , Ẑi,Ri, and Ŷi denote the patch tokens, prompt
tokens, representations and prediction results of such batch respectively. The training procedure
of TIME-FFM is elaborated in Algorithm 1. (1) In the t-th federated round, the server distributes
the global parameters wg

t (Line 8 and 9). (2) Each domain loads the global parameters and local
head parameters to perform prediction following modality alignment, prompt adaption as well
as representation obtaining from LM backbone (Line 12-15) and uploads wg

t,i to the server after
optimization. (3) Finally, the server aggregates local updated parameters by averaging mechanism to
obtain the fresh global parameters wg

t+1 for the (t+ 1)-th round (Line 6).

4 Experiments

We comprehensively compare the proposed TIME-FFM with state-of-the-art models in FL or cen-
tralized settings, especially those by fine-tuning LM for time series forecasting. The numerical
results demonstrate the effectiveness of TIME-FFM in time series forecasting. We employ GPT2
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Algorithm 1: Training process of TIME-FFM.

Input: Global round number T , local epoch
number E, initial global encoder parameters
wg

0 , initial personalized head parameters
{wp

i,0}, local batch number bi.
Output: Optimized global encoder parameters
wg

T , optimized parameters of personalized
heads {wp

i,T }.
1 SERVEREXECUTE:
2 for t = 0, 1, · · · , T − 1 do
3 for i = 1, 2, · · · , N in parallel do
4 wg

t,i ←LocalExecute (i, wg
t )

5 wg
t+1 = 1

N

∑
i∈[1,N ] w

g
t,i

6 // for local training

7 Function LocalExecute(i, wg
t ):

8 wg
t,i ← wg

t

9 for e = 1, 2, · · · , E do
10 for (Xi,Yi) in bi batches do
11 X̂i,S , Ẑi ← g(wg

t,i;Xi,E)

12 Ri ← LM(concat(X̂i,S ||Ẑi))

13 Ŷi ← p(wp
i,t;Rn)

14 loss← ||Yi − Ŷi||22
15 Update wg

t,i and wp
i,t via gradient

descent.

16 wp
i,t+1 ← wp

i,t

17 return wg
t,i

backbone of the first 6 layers as the default LM backbone and freeze all parameters. To guarantee a
fair comparison, we adhere to the experimental configurations in [25].

Baselines. Our baselines cover a board collection of relevant methods, which can be categorised into
3 types: TY1 (federated fine-tuning methods): FedIT [31], FedAdapterH [47, 41], and FedAdapterP
[48, 41]; TY2 (across-dataset centralized methods): UniTime [25], GPT4TS [23], and PatchTST
[43]; 2 TY3 (dataset-specific centralized methods): TimesNet [4], DLinear [49], FEDformer [50],
Autoformer [10], and Informer [9]. We directly cite the results from [25] if applicable.

Setups. We evaluate on 8 benchmark datasets from various domains: ETTh1, ETTh2, ETTm1,
ETTm2, Electricity, Weather, Exchange, and ILI, which have been widely adopted for evaluating time
series forecasting performance. Each dataset corresponds to a FL participant. Detailed introduction
of implementation and datasets can be found in Appendix A. We use Mean Square Error (MSE) and
Mean Absolute Error (MAE) as the evaluation metrics.

4.1 Main Results

Main forecasting results are presented in Table 1. TIME-FFM consistently outperforms the other
FL methods (in TY1) on all datasets, except ETTh2. Specifically, TIME-FFM can improve the
performance gains over all datasets by 39.01% in terms of MSE, compared with the second best-
performed FL method. Furthermore, the averaged prediction results of TIME-FFM are even superior
to those of the centralized models. When compared with UniTime, the recently-proposed centralized
unified model for cross-domain time series forecasting, TIME-FFM can provide more performance
gains, which underscores the effectiveness of the proposed cross-modality adaption modules and
personalized approach.

4.2 Few-Shot Forecasting

Given the remarkable few-shot learning performance of LMs, we evaluate whether TIME-FFM
can retain such capability for time series forecasting. In this section, we compare the prediction
performance across TY1 and TY2 in few-shot settings with 10% and 5% time steps adopted as
training samples, which is in line with the setups in [23, 22].

Main results of 10% and 5% few-shot forecasting are presented in Table 2 and 3 respectively. TIME-
FFM outperforms the other FL methods and even achieves comparable performance in contrast to
the centralized methods, which further underscores that TIME-FFM inherits the few-shot capability
of LMs and promises proficient FM for time series forecasting. Specifically, TIME-FFM outperforms
the centralized methods in the realm of 5% few-shot learning, with 20% reduction in averaged MSE
w.r.t UniTime. Interestingly, for all methods except UniTime, results in 10% few-shot learning
are worse than those in 5% few-shot learning. We deduce that the pretrained LM is fully-tuned in

2Here we modify the original GPT4TS and PatchTST as per [25].
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Table 1: Forecasting performance comparisons. All results are averaged over four prediction windows,
i.e., Fi ∈ {24, 36, 48, 60} for ILI and { 96, 192, 336, 720} for others. Yellow : the best in TY1;
Blue : the second best in TY1. Underline: the best over all types; Bold: the second best over all

types. Full results are presented in Table 13.

Type TY1 TY2 TY3

Method TIME-FFM FedIT FedAdapterH FedAdapterP UniTime GPT4TS PatchTST TimesNet DLinear FEDformer Autoformer Informer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.442 0.434 0.481 0.461 0.488 0.467 0.503 0.479 0.442 0.448 0.502 0.461 0.472 0.451 0.458 0.450 0.456 0.452 0.440 0.460 0.496 0.487 1.040 0.795

ETTh2 0.382 0.406 0.374 0.396 0.373 0.398 0.380 0.403 0.378 0.403 0.386 0.406 0.398 0.416 0.414 0.427 0.559 0.515 0.437 0.449 0.450 0.459 4.431 1.729

ETTm1 0.399 0.402 0.644 0.517 0.643 0.511 0.640 0.516 0.385 0.399 0.551 0.483 0.971 0.629 0.383 0.406 0.403 0.407 0.448 0.452 0.588 0.517 0.961 0.734

ETTm2 0.286 0.332 0.297 0.341 0.295 0.340 0.298 0.342 0.293 0.334 0.321 0.356 0.340 0.373 0.291 0.322 0.350 0.401 0.305 0.349 0.327 0.371 1.410 0.810

Electricity 0.216 0.299 0.390 0.478 0.408 0.489 0.334 0.420 0.216 0.305 0.251 0.338 0.221 0.311 0.193 0.295 0.212 0.300 0.214 0.327 0.227 0.338 0.311 0.397

Weather 0.270 0.288 0.282 0.310 0.282 0.308 0.287 0.309 0.253 0.276 0.293 0.309 0.304 0.323 0.259 0.287 0.265 0.317 0.309 0.360 0.338 0.382 0.634 0.548

Exchange 0.338 0.391 0.389 0.423 0.382 0.419 0.380 0.417 0.364 0.404 0.421 0.446 0.411 0.444 0.416 0.443 0.354 0.414 0.519 0.500 0.613 0.539 1.550 0.998

ILI 2.107 0.924 4.423 1.448 5.247 1.621 5.251 1.600 2.137 0.929 3.678 1.372 4.210 1.480 2.139 0.931 2.616 1.090 2.847 1.144 3.006 1.161 5.137 1.544

Average 0.555 0.434 0.910 0.547 1.015 0.569 1.009 0.561 0.559 0.437 0.800 0.521 0.916 0.553 0.569 0.445 0.652 0.487 0.690 0.505 0.756 0.532 1.934 0.944

1st Count 8 1 1 0 3 0 0 4 0 1 0 0

UniTime and fewer training samples fail to support optimizing masses of parameters. While in the
other methods, the pretrained LMs are frozen or fine-tuned, which can retain the original reasoning
capability of LMs even with fewer training instances.

Table 2: 10% few-shot forecasting results. All results are averaged across four prediction windows,
i.e., Fi ∈ {96, 192, 336, 720}. Yellow : the best in TY1; Blue : the second best in TY1. Underline:
the best over both types; Bold: the second best over both types. Full results are presented in Table 14.

Type TY1 TY2

Method TIME-FFM FedLoRA FedAdapterH FedAdapterP UniTime GPT4TS PatchTST

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.593 0.500 0.637 0.506 0.672 0.539 0.697 0.543 0.589 0.494 0.638 0.501 1.071 0.662
ETTm2 0.294 0.335 0.297 0.340 0.298 0.341 0.298 0.343 0.299 0.338 0.295 0.336 0.348 0.378

Electricity 0.266 0.344 0.275 0.363 0.421 0.489 0.408 0.486 0.254 0.342 0.251 0.334 0.362 0.429
Weather 0.288 0.314 0.296 0.320 0.284 0.311 0.287 0.315 0.272 0.299 0.300 0.322 0.297 0.316

Exchange 0.230 0.336 0.238 0.339 0.227 0.334 0.230 0.335 0.220 0.331 0.242 0.344 0.220 0.330

Average 0.334 0.366 0.349 0.374 0.380 0.403 0.384 0.404 0.327 0.361 0.345 0.367 0.459 0.423

1st Count 2 0 0 0 7 2 2

Table 3: 5% few-shot forecasting results. All results are averaged across four prediction windows, i.e.,
Fi ∈ {96, 192, 336, 720}. Yellow : the best in TY1; Blue : the second best in TY1. Underline:
the best over both types; Bold: the second best over both types. Full results are presented in Table 16.

Type TY1 TY2

Method TIME-FFM FedLoRA FedAdapterH FedAdapterP UniTime GPT4TS PatchTST

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.567 0.491 0.606 0.494 0.650 0.526 0.636 0.519 0.713 0.558 0.631 0.522 0.591 0.497
ETTm2 0.293 0.333 0.298 0.339 0.298 0.339 0.296 0.338 0.313 0.350 0.298 0.339 0.299 0.339

Electricity 0.324 0.403 0.339 0.420 0.333 0.411 0.333 0.409 0.298 0.387 0.273 0.355 0.309 0.391
Weather 0.292 0.317 0.303 0.325 0.292 0.317 0.300 0.322 0.288 0.313 0.288 0.314 0.301 0.324

Exchange 0.167 0.289 0.171 0.291 0.166 0.288 0.166 0.287 0.442 0.493 0.168 0.290 0.171 0.293

Average 0.329 0.367 0.344 0.374 0.348 0.376 0.346 0.375 0.411 0.420 0.332 0.364 0.334 0.369

1st Count 5 0 1 2 2 4 0
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4.3 Zero-Shot Forecasting

Given that language FMs are effective zero-shot forecasters, we evaluate the zero-shot learning
capability of TIME-FFM, which is essential for a FM. We adhere to the zero-shot learning settings
in [25], where we first train TIME-FFM on ETTh1, ETTm1, and ETTm2, and then evaluate the
zero-shot testing performance on ETTh2, Electricity, and Weather.

Since ETTh2 hails from the same domain of ETTh1, we directly reuse the local parameters (including
both encoder and head) of ETTh1 for inferring ETTh2. For the other two target datasets from different
domains of the source datasets, we successively reuse local parameters of the three source datasets to
perform zero-shot testing. The results presented in Table 15 show that local parameters of ETTh1
excel on both target datasets. Hence, we adopt the model parameters of ETTh1 for zero-shot testing
on Electricity and Weather. For other methods in TY1, we train an optimized global model on ETTh1,
ETTm1, and ETTm2, and then adopt the obtained global model to conduct zero-shot testing on
ETTh2, Electricity, and Weather. The comparison in zero-shot forecasting is presented in Table 4.
TIME-FFM consistently ensures significant performance gains on all three datasets, with prediction
MSE decreasing by 13.9% w.r.t the second best. It is remarkable that the centralized unified model
UniTime exhibits inferior zero-shot testing performance compared to TIME-FFM. We attribute the
performance gains of TIME-FFM to the valid knowledge transferability across domains.

Table 4: Zero-shot forecasting results. All results are averaged across four prediction windows, i.e.,
Fi ∈ {96, 192, 336, 720}. Yellow : the best in TY1; Blue : the second best in TY1. Underline:
the best over both types; Bold: the second best over both types. Full results are presented in Table 17.

Type TY1 TY2

Method TIME-FFM FedIT FedAdapterH FedAdapterP UniTime GPT4TS PatchTST

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2 0.373 0.399 0.387 0.407 0.388 0.408 0.387 0.407 0.388 0.409 0.397 0.418 0.421 0.429

Electricity 0.265 0.343 0.398 0.470 0.401 0.474 0.409 0.482 0.436 0.500 0.462 0.526 0.534 0.565

Weather 0.291 0.318 0.295 0.319 0.302 0.324 0.302 0.324 0.301 0.320 0.322 0.339 0.327 0.339

Average 0.310 0.353 0.360 0.399 0.364 0.402 0.366 0.404 0.375 0.410 0.394 0.428 0.427 0.444

Table 5: Ablation studies of TIME-FFM on ETTh1 and ILI datasets with Fi ∈ {336, 720} and
Fi ∈ {48, 60} respectively. Bold: the best.

Foreccasting Task ETTh1-336 ETTh1-720 ILI-48 ILI-60

Metric MSE MAE MSE MAE MSE MAE MSE MAE

A.1 TIME-FFM 0.480 0.449 0.462 0.456 1.953 0.894 1.976 0.916
A.2 w/o Prompt Adaption 0.495 0.450 0.496 0.471 2.222 0.947 2.118 0.952

A.3 w/ Instructions 0.487 0.457 0.465 0.465 2.109 0.953 2.170 0.977
A.4 w/o Personalized Head 0.537 0.471 0.526 0.480 4.953 1.591 4.068 1.450

A.5 w/o All 0.562 0.498 0.523 0.495 8.153 2.037 6.509 1.804
A.6 TIME-FFM-D 0.499 0.450 0.503 0.472 2.453 1.022 2.427 1.026

4.4 Model Analysis

Model Ablation. We conduct ablation studies on five variants of TIME-FFM and the corresponding
results are presented in Table 5 (A.1-A.6). Thereinto, TIME-FFM-D represents the distirbuted version
of TIME-FFM, which ablates the aggregation process. The results demonstrate that ablating either
components will compromise the forecasting performance. We have the following key observations:
(1) The prompt tokens can bootstrap the LM for target domains. The absence of prompt adaption
(A.2) will affect the forecasting performance. When employing instructions in [25] as prompts,
A.3 is inferior to TIME-FFM, which underscores the efficacy of prompt adaption. (2) The ablation
of personalized heads (A.4) will hurt the performance most. In A.4, a global prediction head is
learned for all domains, hardly ensuring the personalization for cross-domain heterogeneous data.
(3) In A.6, the common temporal knowledge fails to be shared among domains, which makes
poorer generalization of cross-modality adaption modules, thus yielding inferior performance. This
underscores the significance of building a unified model for cross-domain traffic series forecasting.
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Table 6: Ablation studies of LM on ETTh1 and Weather datasets with Fi ∈ {96, 192} and Fi ∈
{336, 720} respectively. Bold: the best.

Forecasting Task ETTh1-96 ETTh1-192 Weather-336 Weather-720

Metric MSE MAE MSE MAE MSE MAE MSE MAE

B.1 Freeze (Default) 0.422 0.412 0.473 0.439 0.295 0.308 0.367 0.354
B.2 FPT 0.396 0.409 0.450 0.441 0.290 0.305 0.363 0.352
B.3 Full 0.394 0.403 0.448 0.431 0.287 0.305 0.360 0.351

C.1 GPT2 (6) (Default) 0.422 0.412 0.473 0.439 0.295 0.308 0.367 0.354
C.2 GPT2 (12) 0.406 0.409 0.456 0.436 0.294 0.307 0.367 0.353

Table 7: Efficiency analysis of TIME-FFM on ETTh1 dataset.

Method Training Param. (M) Total Param. (M) Training Param. PCT. (%) Training Time (s/iter) Comm. Param. (M)
FedLoRa 8.543 90.456 9.445 0.048 8.543

FedAdapterH 47.998 90.945 52.777 0.062 47.998
FedAdapterP 47.550 90.498 52.543 0.046 47.550
TIME-FFM 8.138 90.050 9.037 0.088 6.811
GPT (12) 8.138 132.578 6.138 0.156 6.811

Language Model Variants. We investigate the variants of LM, in terms of optimization modes
(B.1-B.3) and backbone layers (C.1 and C.2). Here we train all variants on seven datasets except
Electricity, due to GPU memory limitation. In B.3, the backbones of LM are full-tuned. While in
B.2, we only tune the positional embeddings and layer normalization components of the backbone
[23]. Table 6 shows that B.3 performs best, followed by B.2 and B.1. We argue that the performance
remains comparable when we freeze all backbone parameters. This demonstrates that LMs are
capable in processing time series tokens by effectively modality alignment. In C.1 and C.2, 6 and 12
backbone layers are adopted. The results shows that more backbone layers ensure better performance,
which indicates the scaling laws of LMs retain in TIME-FFM for time series forecasting [51, 22].
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Figure 3: A showcase of prompt adaption.

Model Efficiency. Table 7 demonstrates
that TIME-FFM can reduce the training pa-
rameter quantity and communication over-
head with insignificant increase in training
time. Moreover, the number of training pa-
rameters and communication parameters
keeps intact, regardless of backbone layers.

Case Study. We provide a case study on
prompt adaption in Figure 3. (a) shows the
attention scores between 6 patch tokens and
100 text prototypes for 8 heads on ETTh1
dataset. For each head, only a small set
of text prototypes (columns) have remark-
able scores, which indicates that each patch
token is only related to limited pretrained
word embeddings and dynamically prompt
adaption is promising. (b)-(d) show top
M prototypes of 8 heads on ETTh1, Elec-
tricity, and ILI respectively. Darker colors
correspond to text prototypes with higher
attention scores. From these three subplots,
we have the following key observations: (1) different datasets correspond to variant text prototypes;
(2) the distribution of text prototypes on different datasets has commonality, i.e., gathering in shadow
areas. These observations indicate the global prompt adaption module has great generalization for
diverse datasets and simultaneously ensures personalization across various domains.

5 Conclusion and Discussion

In this paper, we propose the first federated foundation model for time series forecasting, with
adaptively generating domain-specific prompts and tackling time series heterogeneity for general-

9



purpose learning and personalized prediction. Specifically, given the differentiation of dimensionality
and horizon, we introduce the modality alignment module encompassing the channel-independent
and patching techniques, which may follow the track of GPT4TS and Time-LLM. For bootstrapping
the pre-trained GPT2 backbone for cross-domain time series reasoning, we propose to adaptively
construct prompts from how to understand patch tokens, rather than from rigid domain instructions.
Due to cross-domain time series heterogeneity, we devise a personalized federated strategy, with
global encoder and personalized prediction heads.

Rationale of TIME-FFM. Compared with the modality of text, time series is more domain-specific
and copyright-sensitive, i.e., private knowledge may be inferred from historical time series readings,
especially in finance and healthcare domain. Hence, it is of great significance to take data privacy
into account when constructing time series foundation models. Moreover, a multitude of public data
cannot even be adopted for pre-training foundation models due to data license restriction, such as
Kaggle public datasets. Hence, our work uniquely bridges the gap between foundation models and
federated learning, which not only enhances the privacy and applicability of foundation models in
sensitive domains but also opens up new avenues for leveraging rich, yet previously inaccessible,
time series data for advanced predictive analytics, addressing a crucial need in this field.

Limitations and Future Works. We recognize some limitations of our work: the training time is
increased compared with the TY1 and the performance in some case is suboptimal. In the future
work, we will explore more effective and efficient modality alignment strategies. Moreover, further
researches will investigate the correspondence between patch embeddings and word embeddings to
explore whether time series data can be seamlessly “translated” into natural language.
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A Experimental Details

Implementation. The Adam optimizer with the initial learning rate of 10−4 is adopted in the training
process. The lookback window Li is set to 36 for the ILI dataset, and 96 for the others. The future
prediction window Fi is set to {24, 36, 48, 60} for the ILI dataset, and {96, 192, 336, 720} for other
ones. We adopt the pretrained GPT2-backbone of the first 6 layers as the LM encoder. The local
epoch E is set to 1 for all domains. The global round number T is set to 100. V ′, M , P and H are
set to 100, 12, 16, and 8 respectively for all domains. Si is set to 4 for the ILI dataset, and 16 for
other ones. In each round, we calculate the averaged values of validation loss. The round with lowest
validation value serves as the optimal round, and then the corresponding model is used for test. All
models are implemented on PyTorch with all experiments conducted on NVIDIA A100-80G GPUs.

Table 8: Detailed descriptions of datasets. The dataset size is organized in (training, validation, test).

Dataset ci Dataset Size Batch Size OverSampling Times Frequency Application Domain

ETTh1 7 (8545, 2881, 2881) 32 - 1 hour Electrical Asset Monitoring
ETTh2 7 (8545, 2881, 2881) 32 - 1 hour Electrical Asset Monitoring
ETTm1 7 (34465, 11521, 11521) 64 - 15 minutes Electrical Asset Monitoring
ETTm2 7 (34465, 11521, 11521) 64 - 15 minutes Electrical Asset Monitoring

Electricity 321 (18317, 2633, 5261) 24 - 1 hour Energy Consumption
Weather 21 (36792, 5271, 10540) 64 - 10 minutes Weather Forecasting

Exchange 8 (5120, 665, 1422) 24 - 1 day International Trade
ILI 7 (617, 74, 170) 16 12 1 week Illness Monitoring

Training Configurations. The experimental evaluations are conducted on 8 real-world benchmark
datasets which include 5 domains. We present the detailed description of these datasets in Table 8. For
fair comparison, we perform batch division and oversampling as per [25]. In each federated round,
we do not train local models with all training samples, considering large quantity of training samples.
Instead, we proportionately calculate the number of batches for each domain in the following steps.
(1) We calculate the summation of training batches over all datsets before oversampling. (2) We
count training times of each domain after oversampling, i.e., 13 for ILI and 1 for the others, and then
we perform normalization to obtain a batch ratio for each domain, i.e., 0.65 for ILI and 0.05 for the
others. (3) we can obtain the number of training batches for each domain (denoted as bi) by multiply
the summation (in (1)) and ratios (in (2)) respectively. Actually, for ILI the value is higher than the
number of training batches, while the opposite is true for the others. In each round, each local model
is trained with training batches sequentially until bi is reached.

We evaluate the effectiveness of oversampling strategy in TIME-FFM and present the results in Table
9. “w/o OverSampling” represents each local model is trained with all local batches in each FL
round. We attribute the performance gains in TIME-FFM to it that the introduction of oversampling
strategy can balance the contribution to the global knowledge. For ILI, despite data sparsity, its
local knowledge can be augmented in the global encoder. We observe that such local knowledge can
enhance forecasting for not only ILI itself but also the other domains.

Table 9: Effectiveness evaluation of oversampling. All results are averaged over four prediction
windows, i.e., Fi ∈ {24, 36, 48, 60} for ILI and { 96, 192, 336, 720} for others. Bold: Better.

Datasets ETTh1 ETTh2 ETTm1 ETTm2 Electricity Weather Exchange ILI

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

TIME-FFM 0.442 0.434 0.382 0.406 0.399 0.402 0.286 0.332 0.216 0.299 0.270 0.288 0.338 0.391 2.107 0.924

w/o OverSampling 0.456 0.445 0.396 0.414 0.405 0.410 0.300 0.341 0.212 0.295 0.272 0.289 0.345 0.393 2.364 0.989

B Hyperparameter Sensitivity

In this section, we conduct hyperparameter investigation of 3 important hyperparameters, i.e., the
number of text prototypes V ′, the number of prompt tokens M , and the number of self-attention heads
H . Figure 4 shows prediction performance on ILI dataset with the variation of the 3 hyperparameters
respectively. We have the key observations as follows: (1) When the value of V ′ is lower, word
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Figure 4: Hyperparameter sensitivity studies on ILI dataset.

embeddings are projected into less text prototypes. Each prototype will contain both relevant and
irrelevant knowledge, which will affect the accuracy of prompt adaption. When text prototypes are
more, a stable number of prompt tokens will not cover all relevant knowledge. Hence lower or higher
values of V ′ will yield subpar performance. (2) Fewer prompt tokens may not fully cover the useful
knowledge. Hence, the best performance is achieved when M is equal to 12. (3) Increasing the
number of attention heads cannot always promise better performance because more heads may break
the semantic integrity of text prototypes and patch embeddings.

C Additional Results

We compare forecasting performance with PatchTST-FL and DLinear-FL, the federated version of
PatchTST and DLinear. As is presented in Table 10, TIME-FFM consistently outperforms the two
novel federated methods on all datasets.

Table 10: Performance comparison with PatchTST-FL and DLinear-FL. Bold: the best.

Method TIME-FFM PatchTST-FL DLinear-FL

Metric MSE MAE MSE MAE MSE MAE

ETTh1 0.442 0.434 0.534 0.496 0.565 0.545
ETTh2 0.382 0.406 0.399 0.415 1.040 0.738
ETTm1 0.399 0.402 0.752 0.573 0.783 0.627
ETTm2 0.286 0.332 0.318 0.357 0.987 0.730

Electricity 0.216 0.299 0.457 0.523 0.363 0.452
Weather 0.270 0.288 0.288 0.317 0.339 0.402

Exchange 0.338 0.391 0.404 0.440 0.830 0.723

Average 0.333 0.364 0.450 0.446 0.701 0.602

We further compare the forecasting performance with three baselines, i.e., iTransformer [52], N-
BEATS [53], and Crossformer [54]. These three baselines can be categorized into TY3. The
numerical results are presented in Table 11. We have the key observation that TIME-FFM, though
trained in federated paradigm, can outperform these three centralized methods.

Table 11: Performance comparison with iTransformer, N-BEATS, and Crossformer. Bold: the best.

Method TIME-FFM iTransformer N-BEATS Crossformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTm2 0.286 0.332 0.288 0.332 0.294 0.345 0.757 0.610
Weather 0.270 0.288 0.258 0.278 0.263 0.282 0.259 0.315

Exchange 0.338 0.391 0.360 0.403 0.481 0.455 0.940 0.707

Average 0.298 0.337 0.302 0.338 0.346 0.361 0.652 0.544
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Some researches delve into training a foundation model from scratch based on the collected time
series datasets [55, 32, 56]. We compare our proposed federated foundation model with Moirai [32]
and MOMENT [56] in Table 12. Notably, TIME-FFM achieves comparable performance with the
two foundation models which are pre-trained firstly on large-scale time series archive.

Table 12: Performance comparison with MOIRAI and Moment. Bold: the best.

Method TIME-FFM Moirai MOMENT

Metric MSE MAE MSE MAE MSE MAE

ETTh1 0.442 0.434 0.400 0.424 0.418 0.436
ETTh2 0.382 0.406 0.341 0.379 0.352 0.395
ETTm1 0.399 0.402 0.448 0.409 0.344 0.379
ETTm2 0.286 0.332 0.300 0.341 0.259 0.318

Electricity 0.216 0.299 0.233 0.320 0.165 0.260
Weather 0.270 0.288 0.242 0.267 0.228 0.270

D Full Results

Full results of forecasting performance comparison on 8 time series benchmarks are presented in
Table 13. TIME-FFM exhibits SOTA performance in 32 out of 42 instances, which demonstrates the
effectiveness of the cross-modality adaption module, i.e., modality alignment and prompt adaption,
as well as the personalized prediction heads.

Our complete results of performance comparison in 10% and 5% few-shot settings are presented in
Table 14 and 16 respectively. In both settings, TIME-FFM outperforms the other FL methods in TY1.
In the setting of 10% few-shot forecasting, TIME-FFM achieves comparable performance against
methods in TY2. In the setting of 5% few-shot learning, TIME-FFM attains SOTA performance on
20 out of 48 instances across five time series benchmarks. The results underscore that TIME-FFM
promises effective few-shot forecaster.

E Error Bars

We conduct the experiments of TY1 for three times and report the mean values and standard deviations
in Table 18. The results demonstrate the superiority of our proposed TIME-FFM, which agrees with
Table 1.

F Border Impacts

In this paper, we propose to build a foundation model for time series forecasting hinging on the
impressive capability of pretrained language models for sequence tokens reasoning. The promising
advantages are two folds: (1) Data owners do not need to share the access to the private data samples
which mitigates the privacy concerns and cater for data protection regulations (say GDPR). (2) The
problem of “data island” can be tackled, which makes it possible to generate satisfactory performance
in spite of data scarcity. To the best of our knowledge, our research do not have obvious negative
social impacts.
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Table 13: Full results of forecasting performance comparisons. Yellow : the best in TY1; Blue :
the second best in TY1. Underline: the best over all types; Bold: the second best over all types.

Type TY1 TY2 TY3

Method TIME-FFM FedIT FedAdapterH FedAdapterP UniTime GPT4TS PatchTST TimesNet DLinear FEDformer Autoformer Informer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.385 0.400 0.446 0.436 0.455 0.441 0.447 0.441 0.397 0.418 0.449 0.424 0.409 0.403 0.384 0.402 0.386 0.400 0.376 0.419 0.449 0.459 0.865 0.713
192 0.439 0.430 0.480 0.454 0.486 0.459 0.481 0.461 0.434 0.439 0.503 0.453 0.467 0.444 0.436 0.429 0.437 0.432 0.420 0.448 0.500 0.482 1.008 0.792
336 0.480 0.449 0.508 0.471 0.514 0.476 0.528 0.489 0.468 0.457 0.540 0.477 0.509 0.472 0.491 0.469 0.481 0.459 0.459 0.465 0.521 0.496 1.107 0.809
720 0.462 0.456 0.488 0.484 0.496 0.491 0.554 0.524 0.469 0.477 0.515 0.489 0.503 0.485 0.521 0.500 0.519 0.516 0.506 0.507 0.514 0.512 1.181 0.865

AVG 0.442 0.434 0.481 0.461 0.488 0.467 0.503 0.479 0.442 0.448 0.502 0.461 0.472 0.451 0.458 0.450 0.456 0.452 0.440 0.460 0.496 0.487 1.040 0.795

E
T

T
h2

96 0.301 0.351 0.286 0.336 0.289 0.340 0.298 0.346 0.296 0.345 0.303 0.349 0.314 0.361 0.340 0.374 0.333 0.387 0.358 0.397 0.346 0.388 3.755 1.525
192 0.378 0.397 0.373 0.387 0.375 0.390 0.379 0.394 0.374 0.394 0.391 0.399 0.407 0.411 0.402 0.414 0.477 0.476 0.429 0.439 0.456 0.452 5.602 1.931
336 0.422 0.431 0.419 0.423 0.413 0.424 0.418 0.427 0.415 0.427 0.422 0.428 0.437 0.443 0.452 0.452 0.594 0.541 0.496 0.487 0.482 0.486 4.721 1.835
720 0.427 0.444 0.418 0.436 0.416 0.438 0.426 0.443 0.425 0.444 0.429 0.449 0.434 0.448 0.462 0.468 0.831 0.657 0.463 0.474 0.515 0.511 3.647 1.625

AVG 0.382 0.406 0.374 0.396 0.373 0.398 0.380 0.403 0.378 0.403 0.386 0.406 0.398 0.416 0.414 0.427 0.559 0.515 0.437 0.449 0.450 0.459 4.431 1.729

E
T

T
m

1

96 0.336 0.369 0.609 0.495 0.610 0.489 0.618 0.498 0.322 0.363 0.509 0.463 0.927 0.604 0.338 0.375 0.345 0.372 0.379 0.419 0.505 0.475 0.672 0.571
192 0.378 0.389 0.639 0.512 0.641 0.507 0.639 0.508 0.366 0.387 0.537 0.476 0.964 0.620 0.374 0.387 0.380 0.389 0.426 0.441 0.553 0.496 0.795 0.669
336 0.411 0.410 0.653 0.521 0.648 0.515 0.637 0.515 0.398 0.407 0.564 0.488 1.041 0.656 0.410 0.411 0.413 0.413 0.445 0.459 0.621 0.537 1.212 0.871
720 0.469 0.441 0.674 0.538 0.670 0.532 0.667 0.541 0.454 0.440 0.592 0.504 0.950 0.636 0.410 0.450 0.474 0.453 0.543 0.490 0.671 0.561 1.166 0.823

AVG 0.399 0.402 0.644 0.517 0.643 0.511 0.640 0.516 0.385 0.399 0.551 0.483 0.971 0.629 0.383 0.406 0.403 0.407 0.448 0.452 0.588 0.517 0.961 0.734

E
T

T
m

2

96 0.181 0.267 0.197 0.282 0.194 0.280 0.197 0.283 0.183 0.266 0.229 0.304 0.240 0.318 0.187 0.267 0.193 0.292 0.203 0.287 0.255 0.339 0.365 0.453
192 0.247 0.308 0.260 0.320 0.258 0.318 0.261 0.321 0.251 0.310 0.287 0.338 0.301 0.352 0.249 0.309 0.284 0.362 0.269 0.328 0.281 0.340 0.533 0.563
336 0.309 0.347 0.318 0.355 0.316 0.353 0.319 0.356 0.319 0.351 0.337 0.367 0.367 0.391 0.321 0.309 0.369 0.427 0.325 0.366 0.339 0.372 1.363 0.887
720 0.406 0.404 0.415 0.408 0.414 0.407 0.416 0.409 0.420 0.410 0.430 0.416 0.451 0.432 0.408 0.403 0.554 0.522 0.421 0.415 0.433 0.432 3.379 1.338

AVG 0.286 0.332 0.297 0.341 0.295 0.340 0.298 0.342 0.293 0.334 0.321 0.356 0.340 0.373 0.291 0.322 0.350 0.401 0.305 0.349 0.327 0.371 1.410 0.810

E
le

ct
ri

ci
ty

96 0.198 0.282 0.375 0.469 0.391 0.478 0.310 0.406 0.196 0.287 0.232 0.321 0.198 0.290 0.168 0.272 0.197 0.282 0.193 0.308 0.201 0.317 0.274 0.368
192 0.199 0.285 0.371 0.467 0.388 0.477 0.307 0.404 0.199 0.291 0.234 0.325 0.202 0.293 0.184 0.289 0.196 0.285 0.201 0.315 0.222 0.334 0.296 0.386
336 0.212 0.298 0.389 0.478 0.408 0.489 0.333 0.421 0.214 0.305 0.249 0.338 0.223 0.318 0.198 0.300 0.209 0.301 0.214 0.329 0.231 0.338 0.300 0.394
720 0.253 0.330 0.424 0.497 0.447 0.511 0.384 0.450 0.254 0.335 0.289 0.366 0.259 0.341 0.220 0.320 0.245 0.333 0.246 0.355 0.254 0.361 0.373 0.439

AVG 0.216 0.299 0.390 0.478 0.408 0.489 0.334 0.420 0.216 0.305 0.251 0.338 0.221 0.311 0.193 0.295 0.212 0.300 0.214 0.327 0.227 0.338 0.311 0.397

W
ea

th
er

96 0.191 0.230 0.198 0.250 0.196 0.245 0.202 0.248 0.171 0.214 0.212 0.251 0.213 0.260 0.172 0.220 0.196 0.255 0.217 0.296 0.266 0.336 0.300 0.384
192 0.236 0.267 0.250 0.290 0.248 0.286 0.254 0.288 0.217 0.254 0.261 0.288 0.269 0.300 0.219 0.261 0.237 0.296 0.276 0.336 0.307 0.367 0.598 0.544
336 0.289 0.303 0.303 0.326 0.304 0.326 0.306 0.325 0.274 0.293 0.313 0.324 0.330 0.341 0.280 0.306 0.283 0.335 0.339 0.380 0.359 0.395 0.578 0.523
720 0.362 0.350 0.378 0.374 0.382 0.377 0.385 0.377 0.351 0.343 0.386 0.372 0.404 0.389 0.365 0.359 0.345 0.381 0.403 0.428 0.419 0.428 1.059 0.741

AVG 0.270 0.288 0.282 0.310 0.282 0.308 0.287 0.309 0.253 0.276 0.293 0.309 0.304 0.323 0.259 0.287 0.265 0.317 0.309 0.360 0.338 0.382 0.634 0.548

E
xc

ha
ng

e

96 0.081 0.201 0.102 0.225 0.100 0.221 0.098 0.218 0.086 0.209 0.142 0.261 0.137 0.260 0.107 0.234 0.088 0.218 0.148 0.278 0.197 0.323 0.847 0.752
192 0.168 0.293 0.198 0.317 0.193 0.312 0.196 0.314 0.174 0.299 0.224 0.339 0.222 0.341 0.226 0.344 0.176 0.315 0.271 0.380 0.300 0.369 1.204 0.895
336 0.299 0.396 0.350 0.430 0.345 0.426 0.345 0.425 0.319 0.408 0.377 0.448 0.372 0.447 0.367 0.448 0.313 0.427 0.460 0.500 0.509 0.524 1.672 1.036
720 0.805 0.674 0.905 0.721 0.889 0.715 0.883 0.712 0.875 0.701 0.939 0.736 0.912 0.727 0.964 0.746 0.839 0.695 1.195 0.841 1.447 0.941 2.478 1.310

AVG 0.338 0.391 0.389 0.423 0.382 0.419 0.380 0.417 0.364 0.404 0.421 0.446 0.411 0.444 0.416 0.443 0.354 0.414 0.519 0.500 0.613 0.539 1.550 0.998

IL
I

24 2.259 0.950 4.544 1.448 5.157 1.555 4.980 1.492 2.460 0.954 3.322 1.278 4.289 1.485 2.317 0.934 2.398 1.040 3.228 1.260 3.483 1.287 5.764 1.677
36 2.239 0.936 4.619 1.493 5.620 1.692 5.593 1.658 1.998 0.912 3.696 1.374 4.360 1.510 1.972 0.920 2.646 1.088 2.679 1.080 3.103 1.148 4.755 1.467
48 1.953 0.894 4.509 1.467 5.413 1.669 5.487 1.662 1.979 0.912 3.765 1.402 4.209 1.481 2.238 0.940 2.614 1.086 2.622 1.078 2.669 1.085 4.763 1.469
60 1.976 0.916 4.020 1.382 4.797 1.569 4.943 1.586 2.109 0.938 3.928 1.432 3.981 1.444 2.027 0.928 2.804 1.146 2.857 1.157 2.770 1.125 5.264 1.564

AVG 2.107 0.924 4.423 1.448 5.247 1.621 5.251 1.600 2.137 0.929 3.678 1.372 4.210 1.480 2.139 0.931 2.616 1.090 2.847 1.144 3.006 1.161 5.137 1.544

Average 0.555 0.434 0.910 0.547 1.015 0.569 1.009 0.561 0.559 0.437 0.800 0.521 0.916 0.553 0.569 0.445 0.652 0.487 0.690 0.505 0.756 0.532 1.934 0.944

1st Count 32 7 3 0 19 0 0 17 3 4 0 0
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Table 14: 10% few-shot forecasting results. Yellow : the best in TY1; Blue : the second best in
TY1. Underline: the best over both types; Bold: the second best over both types. ‘-’ means 10%
time series is not sufficient to constitute a training set.

Type TY1 TY2

Method TIME-FFM FedLoRA FedAdapterH FedAdapterP UniTime GPT4TS PatchTST

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1

96 0.571 0.481 0.638 0.496 0.651 0.518 0.708 0.535 0.582 0.485 0.621 0.486 1.136 0.672
192 0.578 0.490 0.626 0.500 0.662 0.530 0.696 0.539 0.564 0.479 0.637 0.499 1.118 0.672
336 0.592 0.504 0.628 0.506 0.666 0.540 0.686 0.543 0.578 0.489 0.648 0.508 0.987 0.637
720 0.629 0.526 0.655 0.522 0.708 0.568 0.699 0.557 0.631 0.523 0.646 0.513 1.044 0.666

AVG 0.593 0.500 0.637 0.506 0.672 0.539 0.697 0.543 0.589 0.494 0.638 0.501 1.071 0.662

ETTm2

96 0.195 0.277 0.198 0.282 0.200 0.284 0.201 0.287 0.192 0.274 0.197 0.278 0.255 0.329
192 0.256 0.313 0.258 0.318 0.260 0.319 0.260 0.321 0.256 0.313 0.258 0.315 0.312 0.360
336 0.314 0.348 0.316 0.352 0.318 0.354 0.317 0.355 0.320 0.352 0.316 0.350 0.359 0.384
720 0.412 0.403 0.415 0.407 0.415 0.407 0.413 0.407 0.429 0.413 0.410 0.402 0.465 0.440

AVG 0.294 0.335 0.297 0.340 0.298 0.341 0.298 0.343 0.299 0.338 0.295 0.336 0.348 0.378

Electricity

96 0.249 0.329 0.253 0.341 0.404 0.478 0.391 0.474 0.236 0.327 0.231 0.316 0.344 0.416
192 0.247 0.330 0.253 0.345 0.390 0.470 0.379 0.468 0.236 0.328 0.233 0.320 0.343 0.418
336 0.267 0.346 0.275 0.365 0.420 0.490 0.410 0.489 0.250 0.341 0.249 0.334 0.361 0.429
720 0.300 0.368 0.319 0.400 0.469 0.518 0.452 0.513 0.295 0.371 0.292 0.365 0.399 0.453

AVG 0.266 0.344 0.275 0.363 0.421 0.489 0.408 0.486 0.254 0.342 0.251 0.334 0.362 0.429

Weather

96 0.207 0.258 0.210 0.258 0.201 0.252 0.203 0.255 0.191 0.242 0.215 0.262 0.215 0.259
192 0.259 0.297 0.265 0.301 0.254 0.293 0.255 0.295 0.240 0.278 0.270 0.304 0.265 0.297
336 0.306 0.327 0.314 0.334 0.302 0.324 0.306 0.329 0.293 0.315 0.319 0.336 0.318 0.332
720 0.381 0.374 0.397 0.387 0.378 0.373 0.386 0.380 0.365 0.360 0.398 0.386 0.388 0.375

AVG 0.288 0.314 0.296 0.320 0.284 0.311 0.287 0.315 0.272 0.299 0.300 0.322 0.297 0.316

Exchange

96 0.116 0.241 0.117 0.238 0.114 0.238 0.115 0.237 0.118 0.241 0.120 0.243 0.115 0.242
192 0.212 0.331 0.218 0.333 0.209 0.329 0.211 0.329 0.208 0.328 0.221 0.337 0.197 0.321
336 0.362 0.438 0.378 0.447 0.358 0.435 0.364 0.439 0.335 0.424 0.384 0.451 0.347 0.428
720 - - - - - - - - - - - - - -

AVG 0.230 0.336 0.238 0.339 0.227 0.334 0.230 0.335 0.220 0.331 0.242 0.344 0.220 0.330

Average 0.334 0.366 0.349 0.374 0.380 0.403 0.384 0.404 0.327 0.361 0.345 0.367 0.459 0.423

1st Count 9 1 1 1 25 12 4

Table 15: Zero-shot forecasting results of Exectricity and Weather with selecting different local
parameters. Lower values correspond to better performance. Bold: the best.

Type ETTh1→ Electricity ETTm1→Electricity ETTm2→Electricity ETTh1→Weather ETTm1→Weather ETTm2→Weather

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.235 0.316 0.614 0.599 0.616 0.613 0.204 0.256 0.235 0.270 0.222 0.267

192 0.243 0.327 0.558 0.571 0.649 0.631 0.257 0.297 0.289 0.312 0.274 0.308

336 0.266 0.346 0.579 0.583 0.687 0.651 0.312 0.334 0.329 0.336 0.333 0.347

720 0.315 0.382 0.593 0.591 0.736 0.675 0.393 0.386 0.402 0.381 0.410 0.398

AVG 0.265 0.343 0.586 0.586 0.672 0.643 0.291 0.318 0.314 0.325 0.310 0.330
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Table 16: 5% few-shot forecasting results. Yellow : the best in TY1; Blue : the second best in TY1.
Underline: the best over both types; Bold: the second best over both types. ‘-’ means 5% time series
is not sufficient to constitute a training set.

Type TY1 TY2

Method TIME-FFM FedLoRA FedAdapterH FedAdapterP UniTime GPT4TS PatchTST

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1

96 0.515 0.459 0.557 0.462 0.585 0.492 0.585 0.489 0.576 0.498 0.591 0.499 0.559 0.477
192 0.550 0.478 0.605 0.490 0.628 0.513 0.620 0.508 0.617 0.520 0.617 0.511 0.588 0.493
336 0.563 0.491 0.607 0.496 0.637 0.522 0.622 0.514 0.633 0.533 0.620 0.517 0.587 0.497
720 0.641 0.536 0.655 0.529 0.750 0.579 0.715 0.566 1.028 0.680 0.694 0.561 0.631 0.522

AVG 0.567 0.491 0.606 0.494 0.650 0.526 0.636 0.519 0.713 0.558 0.631 0.522 0.591 0.497

ETTm2

96 0.192 0.272 0.196 0.278 0.196 0.278 0.194 0.277 0.198 0.279 0.198 0.282 0.200 0.282
192 0.254 0.311 0.260 0.318 0.259 0.317 0.258 0.316 0.266 0.323 0.259 0.317 0.260 0.318
336 0.312 0.346 0.318 0.352 0.318 0.352 0.316 0.351 0.337 0.366 0.316 0.351 0.318 0.352
720 0.415 0.403 0.419 0.408 0.420 0.410 0.418 0.408 0.453 0.430 0.417 0.407 0.419 0.407

AVG 0.293 0.333 0.298 0.339 0.298 0.339 0.296 0.338 0.313 0.350 0.298 0.339 0.299 0.339

Electricity

96 0.312 0.394 0.326 0.407 0.318 0.398 0.320 0.397 0.281 0.371 0.256 0.339 0.295 0.379
192 0.305 0.391 0.327 0.414 0.312 0.398 0.313 0.396 0.283 0.377 0.254 0.341 0.293 0.382
336 0.321 0.401 0.340 0.422 0.338 0.417 0.335 0.412 0.294 0.385 0.271 0.354 0.308 0.392
720 0.358 0.427 0.365 0.436 0.364 0.433 0.365 0.430 0.335 0.413 0.313 0.385 0.341 0.413

AVG 0.324 0.403 0.339 0.420 0.333 0.411 0.333 0.409 0.298 0.387 0.273 0.355 0.309 0.391

Weather

96 0.214 0.265 0.222 0.269 0.212 0.262 0.219 0.267 0.209 0.260 0.207 0.259 0.221 0.271
192 0.264 0.302 0.275 0.310 0.263 0.301 0.270 0.305 0.258 0.297 0.258 0.297 0.271 0.308
336 0.310 0.329 0.321 0.338 0.311 0.330 0.319 0.335 0.306 0.325 0.308 0.328 0.318 0.336
720 0.381 0.374 0.394 0.385 0.383 0.376 0.393 0.382 0.380 0.371 0.380 0.373 0.391 0.382

AVG 0.292 0.317 0.303 0.325 0.292 0.317 0.300 0.322 0.288 0.313 0.288 0.314 0.301 0.324

Exchange

96 0.118 0.244 0.121 0.244 0.117 0.243 0.116 0.241 0.385 0.458 0.120 0.246 0.123 0.250
192 0.215 0.334 0.221 0.337 0.215 0.333 0.215 0.333 0.498 0.528 0.216 0.334 0.220 0.337
336 - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - -

AVG 0.167 0.289 0.171 0.291 0.166 0.288 0.166 0.287 0.442 0.493 0.168 0.290 0.171 0.293

Average 0.329 0.367 0.344 0.374 0.348 0.376 0.346 0.375 0.411 0.420 0.332 0.364 0.334 0.369

1st Count 20 0 3 6 8 17 2

Table 17: Zero-shot forecasting results. Lower values correspond to better performance. Yellow :
the best in TY1; Blue : the second best in TY1. Underline: the best over both types; Bold: the
second best over both types.

Type TY1 TY2

Method TIME-FFM FedIT FedAdapterH FedAdapterP UniTime GPT4TS PatchTST

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2

96 0.296 0.344 0.303 0.351 0.303 0.351 0.304 0.352 0.306 0.352 0.316 0.361 0.332 0.371
192 0.373 0.391 0.391 0.401 0.391 0.402 0.390 0.401 0.389 0.401 0.400 0.410 0.422 0.421
336 0.410 0.424 0.425 0.432 0.426 0.434 0.425 0.432 0.424 0.434 0.430 0.439 0.462 0.455
720 0.413 0.437 0.428 0.443 0.431 0.447 0.428 0.444 0.433 0.450 0.442 0.461 0.467 0.469

AVG 0.373 0.399 0.387 0.407 0.388 0.408 0.387 0.407 0.388 0.409 0.397 0.418 0.421 0.429

Electricity

96 0.235 0.316 0.392 0.464 0.383 0.460 0.395 0.470 0.409 0.481 0.448 0.520 0.529 0.562
192 0.243 0.327 0.376 0.455 0.376 0.458 0.384 0.466 0.410 0.484 0.443 0.517 0.507 0.550
336 0.266 0.346 0.397 0.471 0.404 0.477 0.412 0.484 0.439 0.504 0.462 0.526 0.536 0.566
720 0.315 0.382 0.428 0.490 0.441 0.499 0.446 0.506 0.487 0.531 0.494 0.542 0.563 0.581

AVG 0.265 0.343 0.398 0.470 0.401 0.474 0.409 0.482 0.436 0.500 0.462 0.526 0.534 0.565

Weather

96 0.204 0.256 0.212 0.261 0.220 0.266 0.218 0.265 0.210 0.262 0.223 0.271 0.235 0.277
192 0.257 0.297 0.266 0.302 0.272 0.306 0.271 0.306 0.264 0.303 0.287 0.319 0.293 0.320
336 0.312 0.334 0.314 0.334 0.319 0.337 0.320 0.338 0.326 0.334 0.347 0.357 0.351 0.356
720 0.393 0.386 0.389 0.381 0.397 0.387 0.398 0.388 0.402 0.382 0.432 0.409 0.427 0.404

AVG 0.291 0.318 0.295 0.319 0.302 0.324 0.302 0.324 0.301 0.320 0.322 0.339 0.327 0.339

Average 0.310 0.353 0.360 0.399 0.364 0.402 0.366 0.404 0.375 0.410 0.394 0.428 0.427 0.444
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Table 18: Mean values and standard deviations of TY1.

Method TIME-FFM FedLoRA FedAdapterH FedAdapterP

Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.446±0.006 0.434±0.001 0.483±0.002 0.462±0.001 0.478±0.020 0.467±0.013 0.496±0.008 0.482±0.004

ETTh2 0.383±0.001 0.407±0.001 0.375±0.001 0.397±0.002 0.375±0.002 0.399±0.001 0.377±0.003 0.401±0.002

ETTm1 0.398±0.001 0.402±0.001 0.667±0.020 0.523±0.006 0.641±0.041 0.516±0.013 0.673±0.029 0.529±0.012

ETTm2 0.286±0.001 0.331±0.000 0.298±0.001 0.343±0.001 0.298±0.003 0.343±0.003 0.299±0.001 0.344±0.002

Electricity 0.216±0.002 0.299±0.002 0.377±0.012 0.464±0.012 0.359±0.059 0.449±0.050 0.368±0.030 0.457±0.032

Weather 0.274±0.005 0.291±0.004 0.284±0.002 0.310±0.001 0.283±0.002 0.310±0.003 0.285±0.002 0.311±0.002

Exchange 0.349±0.017 0.396±0.008 0.389±0.002 0.423±0.001 0.384±0.002 0.421±0.002 0.380±0.001 0.418±0.001

ILI 2.250±0.146 0.969±0.048 4.712±0.250 1.510±0.054 4.557±0.621 1.516±0.093 4.658±0.518 1.517±0.072
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions and evaluation results in abstract and introduction are
elaborated in Section 3 and 4 respectively.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations and future work in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We do not include the theoretical analysis for our proposed model, just like
other relevant works.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We elaborate the our model architecture and how to perform training and
inference in Section 3 and provide the experimental details in Section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is available at https://github.com/CityMind-Lab/NeurIPS24-Time-
FFM/tree/main.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the experimental settings and benchmark data in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide the error bars in Appendix 18.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the implementation details in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conform with all terms of NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We analyze border impacts of our research in Appendix F.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not pose the risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In the Section of Methodology (3) and Experiments (4) we have provided the
proper citations for the adopted technologies and results.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have provided detailed information of the model and the available source
code at https://github.com/CityMind-Lab/NeurIPS24-Time-FFM/tree/main.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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