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ABSTRACT

Neural activity in the brain is known to encode low-dimensional, time-evolving,
behaviour-related variables. A long-standing goal of neural data analysis has been
to identify these variables and their mapping to neural activity. A productive and
canonical approach has been to simply visualise neural “tuning curves” as a func-
tion of behaviour. In reality, significant discrepancies between behaviour and the
true latent variables—such as an agent thinking of position Y whilst located at
position X—distort and blur the tuning curves, decreasing their interpretability.
To address this, latent variable models propose to learn the latent variable from
data; these are typically expensive, hard to tune, or scale poorly, complicating
their adoption. Here we propose SIMPL (Scalable Iterative Maximization of
Population-coded Latents), an EM-style algorithm which iteratively optimises la-
tent variables and tuning curves. SIMPL is fast, scalable and exploits behaviour
as an initial condition to further improve convergence and identifiability. It can
accurately recover latent variables in spatial and non-spatial tasks. When applied
to a large hippocampal dataset SIMPL converges on smaller, more numerous, and
more uniformly sized place fields than those based on behaviour, suggesting the
brain may encode space with greater resolution than previously thought.

1 INTRODUCTION

Large neural populations in the brain are known to encode low-dimensional, time-evolving latent
variables which are, oftentimes, closely related to behaviour (Afshar et al.,2011;Harvey et al., 2012}
Mante et al., 2013} (Carnevale et al.l 2015). Coupled with the advent of modern neural recording
techniques (Jun et al.| 2017} |Wilt et al.l 2009) focus has shifted from single-cell studies to the joint
analysis of hundreds of neurons across long time windows, where the goal is to extract latents using
a variety of statistical (Yu et al., |2008a; /Cunningham & Yu, 2014} Kobak et al., 2016;Zhao & Parkl
2017; [Williams et al.||[2020) and computational (Van der Maaten & Hintonl, 2008} [Pandarinath et al.,
2018; Mackevicius et al., [2019) methods.

This paradigm shift is particularly pertinent in mammalian spatial memory and motor systems where
celebrated discoveries have identified cells whose neural activity depends on behavioural variables
such as position (O’Keefe & Dostrovsky, [1971; [Hafting et al., 2005), heading direction (Taube
et al.|[1990), speed (McNaughton et al., 1983), distance to environmental boundaries/objects (Lever
et al |2009; Hgydal et al.| 2019) and limb movement direction(Georgopoulos et al.,[1986) through
complex and non-linear tuning curves. Characterising neural activity in terms of behaviour remains
a cornerstone practice in these fields however the implicit assumption supporting it — that the latent
variable encoded by neural activity is and only is the behavioural variable — is increasingly being
called into question (Sanders et al.,|2015; [Whittington et al., [2020; |George et al., 2024b)).
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Figure 1: Schematic of SIMPL. (a) A latent variable model (LVM) for spiking data (f;(x), x(t)) is optimised
by iterating a two-step procedure closely related to the expectation-maximisation: First, tuning curves are fitted
to an initial estimate of the latent trajectory (an “M-step”). The latent is then redecoded from these tuning cuves
(an “E-step”). (b) SIMPL fits tuning curves using kernel density estimation (KDE) with a Gaussian kernel (top)
and decodes the latent variables by Kalman-smoothing maximum likelihood estimates. (¢) Measured behaviour
is used to initialise the algorithm as it is often closely related to the true generative LVM (d).

The brain is not a passive observer of the world. The same neurons which encode an animal’s current
position/behavioural state are also used to plan a future routes (Spiers & Maguire}[2006), predict up-
coming states (Muller & Kubie} [1989; Mehta et al.}[1997; [Stachenfeld et al., 2017) or recall/“replay”
past positions (Squire et al.,[2010; Carr et al., 2011, necesarily causing the encoded latent variables
to deviate from behaviour. Nor is the brain a perfect observer; uncertainty due to limited, noisy or
ambiguous sensory data can lead to similar discrepancies. Measurement inaccuracies can contribute
further. These hypotheses are supported by analyses which show that it is rarely, if ever, possible to
perfectly decode “behaviour” from neural data (Glaser et al.}[2020) and the observation that neurons
show high variability under identical behavioural conditions (Fenton & Muller, [1998}; [Low et al.}
. All combined, these facts hint at a richer and more complex internal neural code. When this
is not accounted for tuning curves will be blurred, distorted or mischaracterised relative to their true
form. For example, consider an animal situated at position X ‘imagining’ or ‘anticipating’ a remote
position, Y, for which a place cell is tuned. This might trigger the cell to fire leading to the mistaken
conclusion that the cell has a place field at location X.

Nonetheless, the fact that behaviour is often a close-but-imperfect proxy for the true latent motivates
searching for techniques which exploit this link. Most existing methods for latent discovery don’t ex-
ploit behaviour (Gao et all,[2016}; [Gondur et al.} 2023) at the cost of complexity and interpretability.
Others don’t model temporal dynamics(Zhou & Wei, 2020} [Schneider et al.} 2023}, [Lawrence),[2003),
don’t scale to large datasets (Wang et al., 2005; Nam), [2015; Wu et al.,[2017), can’t model complex
non-linear tuning curves (Pandarinath et al., 2018} [Hurwitz et al., [2021}; [Duncker et al] 2019} [Lin-|
derman et al., 2016; (Gondur et al., 2023), or aren’t designed for spiking datasets(Lawrence,
Krishnan et al, 2015). Moreover, many of these methods are conceptually complex, lack usable
code implementations, or necessitate GPUs limiting their accessibility.

Contributions Here we introduce SIMPL (Scalable Iterative Maximisation of Population-coded
Latents), a straightforward yet effective enhancement to the current paradigm. Our approach fits
tuning curves to observed behaviour and refines these by iterating a two-step process. First the la-
tent trajectory is decoded from the current tuning curves then, the tuning curves are refitted based
on this decoded latent trajectory. SIMPL imposes minimal constraints on the tuning curve struc-
ture, scales well to large datasets without relying on neural networks which can be expensive to



train. Theoretical analysis establises formal connections to expectation-maximisation (EM, |Demp-
ster et al.[1977) for a flexible class of generative models. By exploiting behaviour as an initialisation,
SIMPL converges fast and alleviates local minima and identifiability (Hyvéarinen & Pajunen, |1999;
Locatello et al.l 2019) issues. This allows it to reliably return refined tuning curves and latent vari-
ables which remain close to, but improve upon, their behavioural analogues readily admitting direct
comparison. All in all, SIMPL is able to identify temporally smooth latents and complex tuning
curves related to behaviour, while remaining computationally cheap and natively supporting spiking
data — a distinguishing set of features in the field of latent variable models for neural data analysis.

We first validate SIMPL on a dataset of synthetically generated 2D grid cells. Next, we apply
SIMPL to rodent electrophysiological hippocampal data (Tanni et al., [2022) and show it modi-
fies the latent space in an incremental but significant way: optimised tuning curves are better at
explaining held-out neural data and contain sharper, more numerous place fields allowing for a rein-
terpretation of previous experimental results. Finally, we apply SIMPL to somatosensory dataset
for a monkey performing a centre-out reaching task (Chowdhury et al.l [2020). SIMPL, with a 4D
latent space, provides a good account of the data with the latent variables initialised to (and remain-
ing correlated with) the monkeys hand-position and hand-velocity. With only two hyperparameters,
SIMPL can be run quickly on large neural datasets E] without requiring a GPU. It outperforms pop-
ular alternative techniques based on neural networks (Schneider et al. [2023; Zhao & Park| [2017)
or Gaussian processes(Lawrence, 2003; [Wang et al., 2005)) and is over 15 x faster. This makes it a
practical alternative to existing tools particularly of interest to navigational or motor-control commu-
nities where abundant data is explained well by measurable behaviours (position, hand dynamics).
We provide an open-source JAX-optimised (Bradbury et al., 2018) implementation of our cod

2 METHOD

Here we give a high-level description of the SIMPL algorithm. Comprehensive details and a theo-
retical analysis linking SIMPL to expectation-maximisation, are provided in the Appendix.

Algorithm 1 SIMPL: An algorithm for optimizing tuning curves and latents from behaviour

1. s € NVxT > Spike count matrix
2: x(0 ¢ RPXT > Initial latent estimate e.g. measured position of animal
3: procedure SIMPL(s, x(?))

4 for e < Oto E do > Loop for E iterations
5: £(¢) < FitTuningCurves(x(¢), s) > The “M-step”
6: x(¢+1) < DecodeLatent(f(¢), s) > The “E-step”
7 end for

8 return x(Z+1) _£(F) > The optimised latent and tuning curves
9: end procedure

2.1 THE MODEL

SIMPL models spike trains of the form s = (Sti)iz]i:::]v, where s;; represents the number of

spikes emitted by neuron i between time (¢ — 1) - dt and ¢ - dt. We denote s; = (s41,...,SiN)
the vector of spike counts emitted by all neurons in the t-th time bin. SIMPL posits that such spike
trains s are modulated by a latent, continuously-valued, low-dimensional, time-evolving variable
X = (X¢)t=1,...T € RP through the following random process:

Xi1 | Xe ~  N(x¢,070) (Latent dynamics) (1)
sti | x¢ ~  Poisson(f;(x¢)) (Emission model) )
where o, = v - dt and xo ~ N(0,02I). This generative model enforces a tunable (through

the velocity hyperparameter v) amount of temporal smoothness in the trajectories. At each time
step the latent variable x; determines the instantaneous firing rate of all neurons via their intensity

'One-hour recordings of 200 neurons (10° spikes) takes 1 minute to run on a CPU laptop.
2Code and a demo can be found at: |https: //github.com/TomGeorgel234/SIMPL


https://github.com/TomGeorge1234/SIMPL

functions f; (hereon called tuning curves, collectively denoted f), which are unknown a priori, and
which SIMPL will estimate. Moreover, we make the common assumption that all neurons are
conditionally independent given x, i.e. p(s¢|x:) = [[X p(st;|x:). Finally, we assume the latent
variable x is Markovian, a common assumption in the neuroscience literature. This model has been
previously studied in the literature (Smith & Brown, |2003; Macke et al., [2011)), albeit using highly
restrictive tuning curve models, something which SIMPL avoids.

2.2 THE SIMPL ALGORITHM

Outline We now seek an estimate of the true, unknown latent trajectory x* and tuning curves f* that
led to an observed spike train, s. SIMPL does so by iterating a two-step procedure closely related to
the expectation-maximisation (EM) algorithm: first, tuning curves are fitted to an initial estimate of
the latent variable (the “M-step”), which are then used to decode the latent variable (the “E-step”).
This procedure is then repeated using the new latent trajectory, and so on until convergence.

The M-step In the M-step (or “fitting” step) of the e-th iteration SIMPL fits intensity functions to
the current latent trajectory estimate x(¢) using kernel density estimation (KDE):

O s k(X)) __ #spikes at x
- Z;‘F_l k(x, xge)) = # visits to x

9 : 3)

In practice, we use a Gaussian kernel with small bandwidth . Being a non-parametric KDE esti-
mator, such a tuning curve model is conceptually simple and free from the optimisation, misspeci-
fication or interpretability issues of most parametric models. It constitutes a notable departure from
alternatives which use a neural network (Zhou & Weil, 2020; [Schneider et al.,|2023)) to model tuning
curves and is particularly well suited to low-dimensional latent spaces.

The E-step In the E-step SIMPL seeks to infer (or “decode”) a new estimate of the latent from
the spikes and current tuning curves, x(¢t1) = E,(x/s,£) [x]. Directly performing this inference
from the spikes is difficult due to the non-linearity and non-Gaussianity of the emission model in
Eq . Instead, SIMPL first calculates the maximum likelihood estimate (MLE)of x, denoted X.
Then, by making a linear-Gaussian approximation to p(X¢|x:) ~ N (x;; X;), the variables (x,X)
form a Linear Gaussian State Space Model (LGSSM) fully characterised by 021 (the transition noise
covariance) and X; (the observation noise covariance). This enables efficient inference via Kalman
smoothing of the MLESs in order to approximate x(¢+1) = Epx|z) [X]-

%+ .= arg max log p(s|x, f(¢))
x 4
e+1) — “4)

x( p(x|g(et D) [X] ~ KalmanSmooth(X(+1): 621, ;)

Crucially, the linear-Gaussian approximation is not made on the spiking emissions p(s|x), which is
non-linear and non-Gaussian by design, but on p(X|x), a quantity which is provably asymptotically
Gaussian in the many-neurons regime (theoretical argument and an explicit formula for X, in[B.T].

Behavioural initialisation Spike trains often come alongside behavioural recordings x° thought
to relate closely to the true latent variable x* ~ x*. SIMPL leverages this by setting the initial
decoded latent trajectory, to measured behaviour x(*) < x®. We posit that behavioural initialisation
will place the first iterate of SIMPL within the vicinity of the true trajectory and tuning curves,
accelerating convergence and favouring the true latent and tuning curves (x*, f*) over alternative
isomorphic pairs (¢(x*), f* o ¢~1) whose latent space is warped by an invertible map ¢ but which
would explain the data equally well. This amounts to an inductive bias favouring tuning curves close
to those calculated from behaviour. Through ablation studies we confirm these beneficial effects.

All in all, SIMPL is interpretable and closely matches common practice in neuroscience (e.g. KDE
curve fitting, MLE-based decoding); moreover, it can be formally related to a generalised version
of the EM-algorithm, for which theoretical guarantees may be obtained. We leave to the appendix
detailed theoretical arguments justifying the validity of SIMPL as well as its connection to EM.



3 RESULTS

3.1 CONTINUOUS SYNTHETIC DATA: 2D GRID CELLS

First we tested SIMPL on a realistic navigational task by generating a large artificial dataset of
spikes from a population of N = 225 2D grid cells — a type of neuron commonly found in the
medial entorhinal cortex (Hafting et al.,[2005) — in a 1 m square environment. All grid cells had a
maximum firing rate of 10 Hz and were arranged into three discrete modules, 75 cells per module,
of increasing grid scale from 0.3-0.8 m (Fig. [Zt). A latent trajectory, x*, was then generated by
simulating an agent moving around the environment for 1 hour under a smooth continuous random
motion model. Data was sampled at a rate of 10 Hz giving a total of 7' = 36,000 time bins (~
800,000 spikes). All data was generated using the Rat InABox package (George et al., [2024a)).
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Figure 2: Results on a synthetic 2D grid cell dataset. (a) Estimated latent trajectories (epochs 0, 1 and 10
shown). Initial conditions are generated from the true latent (black) by the addition of smooth continuous
Gaussian noise. (b) Tuning curve estimates for 5 exemplar grid cells. (c¢) Ground truth tuning curves. (d)
Performance metrics: Left: log-likelihood of the training and test spikes (averaged per time step, dotted line
shows ceiling performance on a model initialised with the true latent). Middle-left: Euclidean distance between
the true and estimated latent trajectories (averaged per time step). Middle-right: Epoch-to-epoch change in the
tuning curves showing they stabilise over iteration. Right: Cell spatial information. Violin plots, where shown,
give distributions across all neurons. (e) A sweep over the number of cells and the duration of the trajectory.

The initial trajectory, x(?), was generated by adding smooth Gaussian noise to the latent such that, on
average, the true latent and initial condition differed by 20 cm (Fig. [Z, top panel). This discrepancy
models the agent’s internal position uncertainty and/or a measurement error. It sufficed to obscure
almost all structure from the initial tuning curves f(*)(x) (Fig. l top). To assess performance
we track to the log-likelihood of training and test spikes (see Appendix [C.4] for how we partition
the dataset). We also calculate the error between the true and latent trajectory the epoch-to-epoch
change in the tuning curves and the negative entropy (hereon called “spatial info”) of the normalized
tuning curves as a measure of how spatially informative they are (Fig. [2d).

SIMPL was then run for 10 epochs (total compute time 39.8 CPU-secs on a consumer grade laptop).
The true latent trajectory and receptive fields were recovered almost perfectly and the log-likelihood
of both train and test spikes rapidly approached the ceiling performance with negligible overfitting.
As expected, SIMPL performs better on larger datasets, Fig. 2k, however performance remains good
even with substantially smaller datasets (e.g. 50 cells for a duration of 5 minutes). We also swept
across the velocity and kernel bandwidth hyperparameters (v, o) and found SIMPL was surprisingly
robust to changes in these hyperparameters within reasonable limits (see[D.2)).

Finally, despite having an implicit prior for temporally-smooth latent dynamics, further synthetic
analysis revealed SIMPL is still able recover discontinuous latent trajectories (for example those



containing jumpy-like “replay” events, see Appendix [D.3) or even discrete latents in a non-
dynamical task akin to a discrete two-alternative forced choice task (2AFC, see Appendix [D.I).

3.2 HIPPOCAMPAL PLACE CELL DATA

Having confirmed the efficacy of SIMPL on synthetic data, we next tested it on real dataset of
hippocampal neurons recorded from a rat as it foraged in a large environment (Tanni et al., [2022).
This dataset consists of N = 226 neurons recorded over 2 hours, binned at 5 Hz giving T' = 36, 000
data samples and ~ 700,000 spikes. Many of these cells are place cells (O’Keefe & Dostrovsky,
1971) which, in large environments, are known to have multiple place fields (Park et al.,[2011]).
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Figure 3: Results on a hippocampal place cell dataset collected by Tanni et al.|[(2022). (a) Exemplar tuning
curves before and after optimization. Automatically identified place field boundaries shown in white. (b)
Log-likelihood of test and train spikes. Control model shown in grey. (c) Statistics analysis of place fields.
Violin plots show the distributions over all place fields / cells. (d) The final latent trajectory estimated from
SIMPL (green) overlaid on top of the measured position of the animal (used as initial conditions, yellow). (e)
Behavioural discrepancy map: the average discrepancy between the latent and behaviour as a function of the
optimised latent x(19 . Overlaid is a snippet of the behavioural vs optimised true latent trajectory. (f) Place
field area as a function of the distance to the nearest wall.

We initialised with the animal’s position, as measured by an LED located between its ears, and
optimised for 10 epochs. The log-likelihood of test and train spikes both increased, converging after
4 epochs (Fig. 3p) in a compute time of ~40 CPU-secs. We then analysed the shapes and statistics of
the tuning curves: After optimisation, tuning curves were visibly sharper, Fig. Bp; previously diffuse
place fields contracted (e.g. the third exemplar tuning curve) or split into multiple, smaller fields
(second exemplar). Occasionally, new place fields appeared (fourth exemplar) or multiple place
fields merged into a single larger field (fifth exemplar). Statistically, tuning curves had significantly
more individual place fields (+19%, mean 1.14—1.41 per cell, p = 0.0035 Mann Whitney U tests),
substantially higher maximum firing rates (+45%, median 4.2—6.1 Hz, p = 9.8 x 10~7) and were
more spatially informative (p = 0.038). Individual place fields became smaller (-25%, median
0.59—0.44 m?) and rounder (+8%, median 0.63—0.68, p = 0.0037).

To ensure these observed changes weren’t merely an artefact of the optimisation procedure we
generated a control dataset by resampling spikes from the behaviour-fitted tuning curves, S¢on ~
p( -|x(°), f (0)). Control spikes thus had very similar temporal statistics and identical tuning curves
to those in the hippocampal dataset but, critically, were generated from a known ground truth model
exactly equal to their initialization. Thus, any changes in the control tuning curves post-SIMPL
must be artefactual. Indeed, no significant changes were observed besides a slight increase in field
area (Fig. [3pc, grey) providing strong evidence the significant changes observed in the real data (e.g.
the decrease in field area) were genuine, reflecting the true nature of hippocampal tuning curves.

The optimized latent trajectory x(**) remained highly correlated with behaviour (R? = 0.86, Fig.
) occasionally diverging for short periods as it “jumped” to and from a new location, as if the



animal was mentally teleporting itself (an example is visualized in Fig. [Bk). We calculated the
difference between the optimised latent and the behaviour at each time point, A; = ||x§0) — x§10> II2,
and visualized this as a heat map overlaid onto the latent space (Fig. [Bk). We found that the latent
discrepancy was minimal near the edges of the environment and peaked near the centre, perhaps

because sensory input is scarce in the centre of the environment due to fewer visual and tactile cues.
Tanni et al.| (2022) observed that the size of a place field size increases with its distance to a

wall.
suggests one possible hypothesis:

Our observation—that the latent discrepancy is highest in the centre of the environment—
behavioural place fields merely appear larger in the centre

of the environment because they are blurred by the correspondingly larger latent discrepancy.
If true, this trend should weaken after optimisation, once the “true” latent has been found.

To test this we plotted field size
against distance-to-wall (Fig. [3f); op-
timized fields, like behavioural fields,
were small very near to the walls and
grew with distance (replicating the
result of [Tanni et al.| (2022)), but this
correspondence stopped after ~ 0.5
m beyond which the optimized place
fields size grew more weakly with
distance-to-wall. This supports our
hypothesis, suggesting a substantial
fraction of the correlation between
size and distance isn’t a fundamental
feature of the neural tuning curves but
an artefactual distortion in the tuning
curves, something which can be cor-
rected for using SIMPL.

3.3 SOMATOSENSORY
CORTEX DATA
DURING A HAND-REACHING TASK

To test SIMPL beyond naviga-
tional/hippocampal datasets we ran
it on a macaque somatosensory cor-
tex dataset (Chowdhury et al.| (2020).
During this recording a monkey made
a series of reaches to a target in one
of 8 directions, ] On half of the tri-
als the reach was “active” whereby
the monkey moved the manipulan-
dum towards the target by itself. On
the other half, the reach was “pas-
sive”, whereby the monkey’s hand
was bumped in the direction of one of
the targets by a force applied to the
manipulandum, forcing the monkey
to correct and return the cursor to the
centre. We binned the data (N = 65
neurons, 37 mins, ~108 spikes) at 20
Hz and ran SIMPL models on its en-
tirety (i.e. active and passive reaches,
as well as the inter-trial intervals) for
10 epochs.
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Figure 4: SIMPL applied to somatosensory cortex data. (a)
A macaque performs centre-out reaches; N = 65 somatosen-
sory neurons are recorded. (b) Log-likelihood curves for the three
SIMPL models in panels c—e. (¢) SIMPL trained with a 2D latent
initialised from hand position. Top-left: raw behaviour, averaged
across trials aligned to movement onset; top-right: after SIMPL.
Middle: 40 s of behaviour (yellow) and latent (green). Bottom:
exemplar tuning curves before and after SIMPL. (d) As in c, but
initialised with hand velocity. (e) As in c, but with a 4D latent ini-
tialised to hand-position (dims 1 and 2) and velocity (dims 3 and
4). Inset: 2D visualisation of a 4D latent embedding from CEBRA

trained on hand position, adapted from [Schneider et al.[(2023).

First SIMPL was run with a 2D latent initialised to the monkeys measured x- and y-hand position
(Fig. @k). Afterwards, the latent trajectory—here averaged across trials with the same direction,
aligned to movement onset—had diverged from, but remained correlated with, initial hand-position



(correlation = 0.59). Despite an improvement in likelihood over the behavioural initialisation, latent
trajectories for distinct directions substantially overlapped with one another, indicating an insuffi-
cient dimensionality to capture the full complexity of the data. A similar result was obtained when
initialising to hand-velocity (Fig. fid).

We then trained SIMPL with a 4D latent space. Two of the dimensions were initialised with hand
position and the other two with hand velocity. This model performed better than either 2D model,
converging to a higher likelihood. The latent dimensions initialised to hand-position remained highly
correlated with hand-position (corr. = (0.74) after optimisation as did the velocity dimensions (corr.
= 0.57). The latent trajectory was also more structured, with distinct and less overlapping motifs
for each trial type. We visualised two-dimensional slices of the four-dimensional tuning curves
for each neuron and found that they had well-defined receptive fields, similar to place fields in
the hippocampus, which were visibly sharper after optimisation. These results suggest that the
somatosensory cortex neurons encode a complex and high-dimensional latent, closely correlated to
hand position and velocity, which can be partially recovered by SIMPL.

Influence of behavioural initializations on performance Latent variable models trained with
EM can experience two issues that usually complicate the scientific interpretability of their results.
The first concerns the quality of the solution; does the algorithm converge on a good model of the
data which predicts the spikes well? The second issue concerns identifiability; even if the recovered
latent trajectory and tuning curves (f (), x(e)) are of high quality, they may differ from the true ones
(f*,x*) by some invertible “warp” ¢ in a way that does not affect the overall goodness-of-fit of
the model. These warps could include innocuous rotations and symmteries or, more concerningly
if the exact structure of the tuning curve is a quantity of interest, stretches or fragmentations. Here
we show that behavioural initialisation drastically minimises the severity of both of these issues for
SIMPL.

(a) ground truth (b) initialised: noisy ground truth (fig. 3) (c) randomly

exemplar
tuning .

curve

warp reference
maps
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Figure 5: Latent manifold analysis: (Top) Examplar tuning curve in (a) the ground truth latent space, (b) the
latent space discovered by behaviourally-initialised-SIMPL after 0, 1 and 10 epochs and (c) the latent space
discovered by SIMPL initialised with a random latent trajectory. Inset scatter plots show the true and predicted
firing rates of all neurons across all times as well as their correlation values (“accurate” models have higher
correlations). (Bottom) The warp mappings from each latent space to the “closest” location in ground truth as
measured by the distance between the tuning curves population vectors.

To do so, we first assess the absolute goodness-of-fit of SIMPL by computing for all neurons
the correlation between the estimated instantaneous firing rates f“ (x{*') (a quantity invariant to
warping) and the true firing rates f7(x}). Our analysis shows that SIMPL converges to a highly
accurate model (r=0.98) under behavioural initialization, but to a less accurate, though still quite
accurate, model (r = 0.87) when initialised with a random trajectory uncorrelated to the true
latent. Next, we estimate, quantify and visualize the warp map ¢ between SIMPL’s estimates
(£(©), x(©)) and the ground truth (f*,x*). We obtain this estimate by finding, for every location
in the warped space, which position in the true latent space the tuning curves are most similar
(¢(x) = arg miny, ||f*(y) — £(9)(x)||2). We then quantify the “warpness” of this mapping as the av-
erage distance between x and ¢(x) across the environment, normalized by its characteristic length
scale (1 m). This warp-distance should be 0 for totally un-warped models and O(1) for heavily



warps. We find that in addition to perfectly fitting the data, the solution found by SIMPL under
behavioural initialization is minimally warped (warp dist = 0.050). In contrast, the good (but im-
perfect) solution found by SIMPL under random initialization is very heavily warped (warp dist. =
0.498) in a fragmented manner. These results are shown in Fig. [5and strongly motivate the use of
behavioural initializations in latent variable models as an effective means to encourage convergence
towards latent spaces which are both accurate and un-warped with respect to the ground truth.

(a) compute time (b) latent error (d) Ground
u
SIMPL} 40 secs 4.2cm truth

Benchmarking SIMPL against exist-

ing techniques We compared SIMPL 8535‘,@
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and GPDM(Wang et al.,, 2005) (which M \/\, . [ N/
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like SIMPL, none of these methods make 1
restrictive linear assumptions about the W
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Figure 6: Comparison to pi-VAE, CEBRA, GPLVM and
GPDM on the synthetic grid cell dataset. (a) Total compute
After training we aligned the discovered time. (b) Final error in the latent. (¢) Alignment of the dis-
latents to behaviour and visualised them on covered latent to the ground truth. (d) Exemplar tuning curves
top of the ground truth (Fig. @)_ All mod- constructed using KDE on the latent (i.e. an “M-step”).

els successfully uncovered a latent trajectory closer to the ground truth than behaviour (Fig. [6p).
SIMPL performed better than the other models, achieving a final error of 4.2 cm, half that of pi-
VAE (8.4 cm). We posit that pi-VAE, CEBRA and GPLVM may suffer from the lack of an ex-
plicit dynamical systems component in their generative models while GPDM may suffer from the
data-subsampling we were required to do to cap the training time to less than two-hours. SIMPL
converged in 40 seconds, over 15 times quicker than the next fastest (pi-VAE, 10.4 minutes, Fig.
[6k). Except for GPDM, which required a GPU, all techniques were run and timed on a CPU. Only
SIMPL was able to recover sharp and accurate grid fields close to the ground truth.

4 RELATED WORK

Probabilistic inference in neural data modulated by latent variables has been a major topic of study
for decades — see, e.g. [Tipping & Bishop| (1999)); [Yu et al.| (2006} 2008b;al); [Macke et al.|(2011);
Mangion et al.| (2011)); [Park et al.| (2015)); |Gao et al.| (2016); Hernandez et al.| (2018); [Dong et al.
(2020); Zhou & Weil (2020); (Gondur et al.| (2023) — however not all methods were designed for the
kind of data considered in this work. Many methods contain model complex latent space dynamics
but combine these with simplistic tuning curves which restrict firing rates to (exponential-)linear
functions of the latent (Smith & Brown, 2003} |Yu et al.l [2008a; Macke et al., 2011; Duncker et al.,
2019; [Linderman et al., [2016; [Pandarinath et al.l [2018; [Zoltowski et al., 2020; [Sani et al., 2021§
Hurwitz et al., 2021} |Kim et al.} 2021} |Gondur et al., [2023) so cannot interpretably account for the
representations (place cells, grid cells) considered here. Other methods do not/cannot use behaviour
to aid latent discovery (Gao et al.| 2016; Nam), 2015} Hernandez et al., |2018; |Gondur et al.| [2023)
instead taking a fully “unsupervised” approach (meaning they can be applied to spike data without
an obvious behavioural correlate) at the expense of complexity and identifiability.

Algorithms that both don’t restrict to simplistic linear tuning curves and exploit behaviour form a
small set of relevant alternatives to SIMPL. Behaviour-informed latent discovery tools have become



popular in recent years due to the explosion of large neural datasets taken from behaving animals
and the observation that behaviour can explain substantial variance in the neural dynamics.

Gaussian process latent variable models (GPLVMs), [Lawrence| (2003); Wang et al.| (2005) form
a family of methods that learn smooth, non-linear tuning curves by placing GP priors on them
and performing approximate marginal log-likelihood optimisation on the latent variable. Popular
implementations leave the initial condition of this optimisation user-defined and therefore compat-
ible with the behaviour-informed initialisation used here. However, most such models were intro-
duced outside of the neuroscience literature thus use Gaussian (instead of Poisson) emission models
(Lawrence, 2003} |Wang et al., 2005} Jensen et al., [2020), or do not make smoothness assumptions
on the latent trajectory (Jensen et al) [2020; Lawrencel 2003). P-GPLVM, which employs Pois-
son emissions and a GP prior on the latent trajectory, is an exception, but its cubic scaling with
time points makes it impractical for hour-long datasets. In contrast, available GPLVM implementa-
tions(Bingham et al.| 2018)) use inducing point approximations to achieve linear time complexity.

CEBRA (Schneider et al.l [2023) learns a deterministic neural network mapping from spikes to la-
tents using behaviour- or time-guided contrastive learning. Unlike most methods, CEBRA does not
natively learn a generative model nor tuning curves, which are of primary interest in our setting. CE-
BRA also treats each data point independently instead of modelling whole-trajectories preventing it
from taking advantage of the temporal smoothness inherent in many underlying latent codes.

pi-VAE (Zhou & Wei, [2020) uses a variational autoencoder (Kingma & Welling, 2014) to infer
the latent trajectories and learn tuning curves using neural network function approximators. pi-
VAE places a learnable prior, conditioned on behaviour, to the latent variable in order to obtain a
model with provable identifiability properties. However, pi-VAE suffers from the same limitation as
CEBRA in that it treats each data point as an i.i.d observation instead of a part of a whole trajectory.

The properties of large scale neural datasets suggest five desiderata on the algorithms used to analyse
them. These are (1) the absence of restrictive tuning curve assumptions, (2) modelling smooth latent
dynamics, (3) the presence of a spiking component (e.g. Poisson emissions), (4) the ability to
exploit behaviour (including as an initial condition) and (5) scalability to large datasets. None of the
methods described in our literature review satisfy all five desiderata. In Appendix |[E| we provide a
table comparing all methods discussed in this section and more with respect to these desiderata.

5 DISCUSSION

We introduced SIMPL, a tool for optimizing tuning curves and latent trajectories using a technique
which refines estimates obtained from behaviour. It hinges on two well-established sub-routines —
tuning curve fitting and decoding — which are widely used by both experimentalists and theorists
for analysing neural data. By presenting SIMPL as an iterative application of these techniques, we
aim to make latent variable modelling more accessible to the neuroscience community.

SIMPL could be seen as an instance of a broader class of latent optimization algorithms. In principle
any curve fitting procedure and any decoder (which uses those tuning curves) could be coupled into
a candidate algorithm for optimizing latents from neural data. Our specific design choices, while
attractive due to their conceptual and computational simplicity, will come with limitations. For
example, we predict KDE won’t scale well to very high dimensional latent spaces (Gyorfi et al.,
2006) where parametric models, e.g. a neural networks, are known to perform better (Bach, |2017)),
potentially at the cost of compute time.

Our synthetic analysis focused on settings where behaviour and the true latent differed only in an
unbiased manner. It would be interesting to determine if SIMPL’s performance extends to more
complex perturbations. Fast, non-local and asymmetric perturbations are common in the brain; for
instance “replay”’(Carr et al.| 2011)) where the latent jumps to another location in the environment.
Likewise, during theta sequences(Maurer et al., 2006), the encoded latent moves away from the
agent. This forward-biased discrepancy could theoretically induce a backward-biased skew in be-
havioural place fields, even if the true tuning curves remain unskewed. If this is the case, proper
latent dynamical analysis—uvia tools like SIMPL—could help reinterpret the predictive nature of
place field tuning curves (Stachenfeld et al., 2017} [Fang et al.,|2023;Bono et al.| 2023} |George et al.,
2023), similar to how it reduced the asymmetry in place field sizes further from walls (Fig. 3f).
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Supplementary Material for “SIMPL: Scalable and hassle-free
optimisation of neural representations from behaviour”

A BACKGROUND

A.1 EXPECTATION MAXIMIZATION

Expectation Maximization (EM, |Dempster et al.[|1977) is a widely used paradigm to perform statis-
tical estimation in latent variable models. The goal of EM is to maximise the Free Energy, a lower
bound on the log-likelihood log p(s; f) of the data, given by (following the notations of Section:

F(f,q) = Egxllog p(x,s; )] — Eqx) [log ¢(x)] < logp(s; f),

where ¢ is some probability distribution on the latent variable x. Importantly F is maximised,
and the lower bound becomes “tight”, at ¢* = p(x|s;f), i.e. the posterior distribution of the
latent variable given the s and f. Moreover, for a fixed ¢, the only f-dependent term in F is
Eqx)[log p(x,s;f)]. To maximise F(f,q) — and thus also increase the log-likelihood — EM

produces a sequence (f (e))ezo of parameters f(¢) by invoking, at each step (or “epoch”) e, two well
known subroutines:

+ E-step: Define ¢(¢) := p(x|s; f(¢~1); compute F — E e [logp(x,s;f)]
+ M-step: Compute f(¢) := arg maxy F(f, ¢(®)) = arg maxp E @ [logp(x,s;f)]

with the property that log p(s; £(¢)) > log p(s; f(¢=1)) for all e, grounding the use of EM to max-
imise the likelihood of the data. In our context it is important to note that, due to a Gaussianity
assumption, calculating the expectation in the E-step requires estimating the mean (and variance) of
the posterior p(x|s; f (6’1)) which can be treated as a point estimate of the latent trajectory, i.e. a
“decoding” of the latent from the spikes. Thus, in the context of neural data, EM offers a frame-
work to both estimate intensity functions via maximum likelihood, and also to decode the variable
encoded by the neurons.

Impossibility of Exact EM for Gaussian-Modulated Poisson Processes The E-step of the EM
algorithm requires computing a function defined as an expectation w.r.t p(x|s; £(=1)). In the case
of Hidden Markov Models, such expectations are intractable to compute in closed form, unless
the latent variable x is discrete (i.e. numerical estimation), or both the transition and the emission
probabilities are Gaussian (with mean and variance depending linearly on x, (Rauch et al.| [1965)). In
our particular case, exact inference in the model described in Section is impossible because the
emission probabilities are Poisson with mean given by a non-linear function of x via each neurons
tuning curve.

In order to perform statistical inference for our spike train model — and avoid resorting to numerical
estimation which is computationally expensive — SIMPL makes a set of approximations which we
detail below. At a high level the goal is to convert the non-linear, non-Gaussian spiking observations,
into a variable which is linear and Gaussian with resepct to the latent, thus EM can be performed
exactly using a Kalman smoother.

A.2 LINEAR GAUSSIAN STATE SPACE MODELS AND KALMAN SMOOTHING

Linear Gaussian State Space Models (LGSSM) are dynamical systems of the form:

Zi41 = Fize + €, € ~N(04,Q4)
x¢ = Hyzy + 0, 0y ~ N (O, Ry).

where z € R?, x € R™, F},,Q; € R¥™4 H, ¢ RP*? and R, € R™*™. LGSSMs can be
used as latent variable models given some observed data x, where z is treated as a latent vari-
able. While these models are limited in their expressiveness, their benefits are that inference (here,
the “E-steps”) can be done very efficiently: not only is the posterior p(z1,...,zr|X1,...,XT)
a Gaussian distribution (of dimension 7'd), but all of its marginals and pairwise marginals

&)
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p(z¢|x1, ..., X7),p(Zt, Zt41|X1, - - -, X7) (crucially, the only distributions needed for learning the
parameters of LGSSM via EM ) can be computed jointly in O(T') time using an efficient technique
known as Kalman Smoothing (Kalman| |1960; |[Rauch et al.,|{1965)).

Such a scaling contrasts with naive numerical binning-based alternatives for inference in continuous,
non-Gaussian State Space Models, which require maintaining an estimate of each bin — a vector of
size n (no. bins) where n grows exponentially with the dimension of the latent space, as used in e.g.
Denovellis et al.|[2021} Instead, for LGSSMs, the Gaussianity means only the mean and covariance
of the marginal posterior distributions — of size d and d? respectively — need to be stored. This
is not memory intensive and, perhaps more importantly, the Kalman Filter proceeds to compute
them in a combined O(T') time. In our experiments, we found the cost of the Kalman Filter to be
negligible relative to the KDE evaluations which are the main computational bottleneck of SIMPL.

Note from here onwards we will return to using x to denote the latent variable in the LGSSM, and
X or s for observations.

B SIMPL AS AN APPROXIMATE EM ALGORITHM

B.1 MLE-BACKED APPROXIMATE E-STEP

Instead of ¢(®) = p(x|s;f¢1)), SIMPL computes an approximation to ¢(¢) ~ g¢) =
p(x|X; £(¢=1)) where X is the Maximum Likelihood Estimate (MLE) of x given the observations s
and the current tuning curves f(¢~1) defined as:

T N
% = argmaxlog p(s|x; £¢™V) = arg maxz Z log p(se|xe ; £671)
t=1 i=1
N
= X; = argmaleogp(stﬂxt ; f(e_l)).
b=t

As defined, computing the MLE returns a point estimate of the true trajectory that led to the observed
spike train s, however we seek a posterior. In particular, MLE does not use the prior knowledge
encoded by p(x).

To find the approximate posterior we note that, as a function of s, X is itself a random variable. In
the many neurons limit, and under certain regularity assumptions, the distribution of this random
variable converges to a Gaussian, a fact known as asymptotic normality. In other words; though s
(conditioned on x) is a non-Gaussian random variable, X (a deterministic function of s) is approxi-
mately Gaussian in the many neurons limit and thus satisfied the conditions of the LGSSM.

We restate a formal statement of this asymptotic normality result in the case of independent, but
non-identically distributed observations [| originally established in Bradley & Gart| (1962)), and re-
formulated using the notations of the model at hand. For simplicity, we will consider the case where
only P distinct intensity functions fi, . . ., fp exist, although versions of this result exist without this
assumption.

Theorem B.1 (Asymptotic Normality of the MLE ). Let x; € R Lets = (sy4,...,5nt) be
independent random variables with probability densities p(sy;|X}; f(;)), where t(i) € {1,..., P} is
the index of the intensity function fy ;) that generated the spike train sy;. Forp € 1,..., P, denote
ny, the number of times the intensity function f, appeared in the sequence fy;). Assume that the
MLE X; exists and it is unique. Then, under mild regularity conditions, we have:

VN (R = x{) = N(0,Z(x}) ")

P
where Z(x7) = Y pipEp(s,;¢,)Hess(log p(s¢|x;; £,)) is the Fisher Information matrix of the model
p=1

d S .
at x;, — means convergence in distribution, and we defined |1, ‘= limy_, n—J\}"

3The i.i.d case was established in|Fisher (1925)
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The asymptotic Gaussianity of the MLE in the many neurons limit suggests performing approximate
inference in a surrogate Hidden Markov Model, with the same transition probabilities p(x:11|x;) as
the original ones, but where the observations s are replaced by X. Leveraging Theorem[B.1} SIMPL
approximates the emission probabilities p(X;|x;) by the Gaussian distribution N'(x¢, 3;), where
3, = (NIZ(%;)) "' = (NZ(x;)) !, the Fisher information of the spikes.

Temporarily ignoring the x;-dependence of the covariance matrices 3; and treating them as deter-
ministic (discussed below), the variables (x;, X;) then form the following latent variable system with
hidden variables x; and observed variables X; given by:
2
Xep1 | X0~ N(xe,001),
Xt | xp o~ N(Xta )

This model is precisely an instance of Linear Gaussian State Space Models defined in Equation [3]
and the four matrices set to:

(6)

F,=1 (constant)

H, =1 (constant)

Q: = 031 (constant)
R=3 (time-varying).

This correspondence allows SIMPL to compute an approximation of the marginal posterior dis-
tributions p(x;|s) ~ p(x:|X) using Kalman Smoothing (Kalman| [1960; Rauch et al., [1965). This
posterior is then used as the approximation ¢ to ¢(*) in SIMPL’s E-step. Importantly, the MLE
estimates X; can be obtained in parallel for all ¢; the only sequential procedure remaining being the
Kalman Smoothing step.

B.2 SPIKE SMOOTHING AS AN APPROXIMATE M-STEP

In the M-step, one maximises Ez ) [logp(x,s;f)] w.r.t to the intensity functions (tuning curves)
f = (f1,---,fn). This step is often done by specifying a parametric model for each f, and then
optimizing the parameters. However parametric models come with disadvantages, for example if
the true function cannot be accurately represented by the parameteric model, the final procedure
will suffer from a bias that does not vanish in the large sample limit. While one could use a neural
network (whose bias can be made arbitrarily small by increasing the number of neurons), neural
networks can be hard to interpret and expensive to train.

Instead, SIMPL uses a non-parametric approach that is both training-free and interpretable. To
do so, SIMPL samples from its approximate posterior X ~ §\¢), and computes a non-parametric
estimate (Hodara et al.,|2018)) of the intensity functions f; given by:

T -
_ St k(x,x

FlO ) o= Tt 2RO %) )
Zt:1 k(xa Xt)

Here, k : R? x RY — R is some kernel function (we use Gaussian).

Here we propose an explanation of the above formula as the generalization of an M-step, i.e. why is
sampling from the posterior (“decoding the trajectory”) and fitting tuning curves using KDE equiv-
alent to a parameteric maximisation of the free energy?

For a fixed g®), Egte) (x)p(s) 108 p(s,x;f) equals (up to a constant) the negative KL divergence

between the “data” distribution [{ g{*) (x|s)p(s) and the model p(s,x; f). Thus, an M-step can be
understood as minimizing this KL divergence approximately, by replacing the expectation over p(s)
by an empirical average over the true data s, an approximation which is asymptotically consistent in
the large number of time-steps limit under suitable ergodicity conditions (Billingsley, [1961).

SIMPL relaxes this approximation further, replacing the expectation over () (x|s) by a one-sample
estimate of it through X. Moreover, it does not use the KL as a loss function, but instead performs
model fitting in a non-parametric manner. Under this procedure, the existing guarantees regard-
ing the EM algorithm do not hold — on the other hand, SIMPL’s M-step precisely matches spike
smoothing, a fast and standard practice in neuroscience.

*We denote ¢” (z) by ¢"(z|s) to highlight the dependence between x and s.
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C IMPLEMENTATION DETAILS

Below we provide some implementation details that were important to maximise the computational
efficiency of the method.

C.1 MAXIMIZING SIMPL’S COMPUTATIONAL EFFICIENCY
C.1.1 COMPUTATIONAL BOTTLENECKS IN SIMPL

A single evaluation of the log-likelihood log p(s;|x:) requires evaluating the KDE-based rate map
estimates given in Equation [7| This takes O(T) time since it involves a sum across all timesteps.
Moreover, this calculation will be repeated itself T-times for each step of the Kalman smoother in
order to (1) compute the MLEs X; (which naively require gradient ascent on log p(s¢|x)) and (2)
evaluate the MLE variance ; == (NZ(X;))"! = (NH_,(log p(s|X;))(X;)) L. Allin all, an exact
implementation of SIMPL’s E-step would have quadratic O(T?) time complexity, which would be
prohibitively slow for long datasets. Moreover, the second-order differentiation needed to compute
Z(X;) is also computationally expensive (formally, in introduces a large constant factor in front of
the O(T?) term).

In the next sections, we describe additional approximations which allow SIMPL to estimate the
MLE and its variance in O(T') time and without differentiating the rate maps.

C.1.2 LINEAR-TIME MLE ESTIMATION

Naive gradient-based solution The naive way to calculate the MLE X; is to evaluate all N tun-
ing curves (recall each evaluation costs O(T')) for some location x, use these to establish the log-
likelihood log p(s;|x), calculate the gradient of this log-likelihood w.r.t. x, and then take, for ex-
ample, k gradient descent steps to find the MLE. This process is repeated for each timestep ¢ in the
Kalman smoother, leading to a quadratic time complexity of O(kNT?).

SIMPL’s approach To compute the MLE in linear time SIMPL bypasses the need to recalculate
the tuning curves at each time step by, instead, binning them onto a discretised grid of points once
at the start of each iteration.

Formally SIMPL computes n evaluations the tuning curves f := (f1,...,f,) == (f(g1),....£(gn))
on a grid of n points G = (g1,...,8,). This has time complexity O(NnT). We use a uniform
rectangular grid of points (the smallest rectangle containing the full observed behavioural variable)
of spacing dz. For example, ina 1 m x 1 m environment with dz = 0.02 m, this would yield a grid
of 50x50 points (n = 2500).

Then, given f, SIMPL then discretizes the log-likelihood functions log (st |x) over that same grid:

N —fi
- e 7f
Lin = log p(se|g:) = Y logp(si;le:) Zlog
N ) ®)
=- Z fij + si;log fi; — log sy;!
j=1
where we noted ﬁj = [f (gi)];. Finally, given such evaluations, SIMPL sets its approximation of

the MLE to be
X; = arg max log p(s;|g) = arg max lit
geg

This way of calculating the MLE has linear time complexity yleldlng an improvement for n < k7.

C.1.3 LINEAR-TIME DERIVATIVE-FREE MLE VARIANCE ESTIMATION

A similar strategy could be employed to also compute Z(X;) := —H,(log p(s¢|X¢))(X:), which
appears in ;. Here H, is the Hessian operator defined as H,(f)(z) = V2f(x). To do
so, one could compute the Hessian of the rate maps and their logarithm on that grid, from
which any H, (log p(s|X:))(X:) at the grid-point-based MLE obtained above can be evaluated as
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H, (logp(st|gi))(gi) = — Z;\Ll H,(f;)(g:) + stjHy(log f;)(g:). This would be linear in time
however, we found that differentiating f could be very slow.

Instead SIMPL takes an entirely different approach and produces an estimation of 3; by instead
estimating the variance of the posterior distribution p(x¢|s:) < p(x¢)p(st|x:) = p(s¢,x¢). The
posterior variance and the MLE variance are expected to closely match, as discussed in our theoret-
ical justification above. Moreover, as this posterior is available analytically up to the normalizing
constant p(s;), its variance can be approximately computed by binning p(x;|s;) onto the same grid
G introduced above, yielding the following fast estimator for 3;.

~ L L T
%, ~ Covp(xafsy) ~ 2 bie® —p)@ —p)”

Zi ﬁit

_ Zz g:Dit

= ZiiPit ©)
Zi Dit

where p;; = exp(iit) = p(s¢|g;). Intuitively, this is equivalent to fitting a multivariate Gaussian to

the binned likelihood map. The covariance matrix of this Gaussian is then used as an approximation

of the MLE variance. We provide a theoretical argument justifying the validity of this formula below.

Theoretical Justification Equation[J]is justified by the Bernstein Von Mises theorem, which states
that the difference (in total variation) between the posterior distribution and the distribution of the
MLE vanishes in the many neurons limit. We restate this theorem using the notations of our paper,
assuming a unique rate map, and without stating some of the required regularity assumptions for
simplicity. We refer the reader to (Van der Vaart, 2000, Theorem 10.1, p.141-144) for the full
version.

Theorem C.1 (Bernstein-von Mises). Let x; € R% Lets; = (sy4,...,sn¢) be i.i.d random vari-
ables with probability density p(si|x};f). Assume that the MLE X, exists and it is unique. Then,
under mild regularity conditions, for any prior p on x;, we have:

Ip(else) — N e (NZ0) ey 15 0

p(s . - .
where % denotes convergence in probability, and || - || v denotes the Total Variation norm on
bounded measures.

From this theorem, we thus have that the (random) posterior distribution behaves (in total varia-
tion) as a Gaussian whose covariance matrix is precisely the asymptotic variance of the MLE. Note
however that convergence in total variation does not a priori imply convergence of variances. Fur-
ther work could examine under which assumptions such a convergence of variances may hold. In
practice, we found that this approximation yielded a satisfying trade-off between performance and
accuracy.

C.2 ITERATIVE LINEAR REALIGNMENT OF THE TRAJECTORIES

To improve the identifiability properties and the numerical stability of SIMPL, we also transform
the decoded latent trajectory at each iteration using a linear mapping which maximally aligns it
with behaviour defined as xge) — nge) + ¢ where M, c = argmin ) _, ||x§0) — (nge) + ¢l
This approach ensures the scale, orientation and centre of the optimised latent trajectory are tied
to behaviour, preventing accumulation of linear shifts/rotations across iterations and allowing us
to interpret the latent relative to, and in the same units as, behaviour. We suspect that performing
this alignment on all iterates after the optimisation would yield similar results. Because the trans-
formed latent necessarily has similar scale to the behaviour — which was used to set the size of the
discretised environment — we can reuse the same discrete grid for the latent avoiding the need to
rediscretize the environment at each iteration.

C.3 HYPERPARAMETERS SETTINGS
SIMPL has two model hyperparameters:

* v: the diffusion rate for Kalman smoothing, which sets a prior over expected velocity of

the latent variable. Units are in ms™?.
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* ¢: the bandwidth of the kernel used in the M-step to smooth spikes. Units are in m.
Additionally there are some implementation-specific parameters:

* dx: the bin size for the variance estimation of the MLE. Units are in m.
* dt: the time step of the discretization of the latent variable. Units are in s.
e E: the number of iterations of the EM algorithm.

Finally, in all simulations we used a test fraction of 10% and held out ‘speckled’ data segments of
length 1 second to evaluate the performance of the model. We provide in Table [I]the value of these
hyperparameters for the Artificial Grid Cell Dataset and the Real Hippocampal Dataset.

Table 1: Hyperparameters settings

Dataset 0 [ o [ @ [ @ [5]

Artificial Grid Cell Dataset (Fig. |2 04ms~! | 0.02m | 0.02m | 0.1s | 10
Real Hippocampal Dataset (Fig. |3 1.0ms™' | 0.Im | 0.04m | 02s | 10
Motor task dataset (2D) | (Fig. ¥c&d) 1.0 0.1 0.02 0.05s | 10
Motor task dataset (4D) (Fig. 4¢) 1.5 0.09 0.1 0.05s | 10

C.4 TEST-TRAIN PARTITIONING

To assess performance we partition the spike data matrix, s, into testing and training sets, Siest, Strain-
Inference is performed solely on the training set and we then track the log-likelihood of data in both

sets (Fig. , left), e.g. £(©) = |Siest|roa 2 (i ySt logp(sti|x§€), fi(e)). This partitioning requires
careful consideration: entire time intervals cannot be withheld for testing without impairing the
model’s ability to infer the latent over this period. Likewise, entire neurons cannot be withheld
without impairing the model’s capacity to estimate their tuning curves. Instead, we adopt a speckled
train-test mask previously used in latent variable modelling set-ups (Williams et al.| [2020) which
withholds for testing extended chunks of time bins arranged in an irregular “speckled” pattern across

the data matrix (totalling 10% of the data).

C.5 BENCHMARKING DETAILS

In section 3.3 we benchmarked SIMPL against four comparable methods on the synthetic grid cell
datasets. For all techniques, tuning curves were visualised in the same way they were for SIMPL,
by extrating the latent trajectories after optimisation and using KDE to construct the rate maps, i.e.
a single “M-step”.

D ADDITIONAL RESULTS

D.1 ToOY MODEL OF A DISCRETE LATENT VARIABLE TASK

Before testing SIMPL on a large temporally continuous dataset we constructed a smaller dataset
akin to a discrete two-alternative forced choice task (2AFC) (Fig. [7) — a widely studied decision—
making paradigm (Platt & Glimcher,|1999; Bogacz et al.,2006; Znamenskiy & Zador, |2013};|Lieder
et all [2019). The true latent states x; € {0, 1} are binary and have no temporal structure (here
subscript ¢ indexes trials not time), analagous to a series of random “left” or “right” choices (Fig.
[7b). This latent state is stochastically encoded by a population of neurons with random tuning curves
giving the Bernoulli emission probabilities under each latent state:

* _ flONu(Oal) XZOv
fi (X) n {fﬂ NZ/{(O,l) X = 1,
x; ~ Bernoulli(0.5) and sy;|x; ~ Bernoulli( f7(x;})).
Data is then sampled for 7" = 50 trials and N = 15 neurons as shown in Fig. [/| Initial conditions,

xgo), are generated from the true latent by randomly resampling a fraction of trials p = 0.5 (Fig.
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[7b). This partial resample represents an initial discrepancy between the behavioural measurement
and the true internal state of the agent.

We perform inference on this dataset using a reduced version of the model (SIMPL-R). In the M-step,
tuning curves were fitted by calculating the average activity of a neuron across each latent condition
g fl9x) = > sud(x$9 x)/ > 5(x\”), x), conceptually similar to KDE). For the E-step, each
latent was the decoded according to the maximum likelihood estimate under the observed spikes and
tuning curve estimates from the previous epoch: xgeﬂ) = arg maxy y . log p(sslx, fi(e)) (there is
no time dependence between latents, thus no Kalman smoothing). This process was repeated for 5
epochs and, with high reliability, converged on the true latents after approximately two (Fig. [7c & d,
distributions show repeat for 1000 randomly seeded datasets, dotted lines show ceiling performance
on a model perfectly initialised with noiseless x(°) = x*). We repeated this experiment for various
values of p: latent recovery was almost perfect when p was small (i.e. when the initial conditions
were close to the true latent), dropping off as p approached 1. At p = 1 when the conditions were
completely random, the model was biased to recover a latent space that is either perfectly correlated
or perfectly anti-correlated (“left” <+ “right”) with the true latent (Fig. [7k, right), an isomorphic
solution.

(a) @data, s ~ p(-Ix*, *) (c) correlation log-likelihood final corr. (d) tuning curves
15 ) [P e ~290 Tqreeeess e £5) f*
[2] -
c -
O |pmll an"glg b g™ | -
’5 -
(0]
c 2
OI - I-1 r 1 -460 r 1 -1 r 1 e
0 trials 50 0 epoch,e 5 0 epoch,e 5 0 ¢} 13
z
(b) O true latent x* “measured behaviour” x© +>@ x© “optimised” latent
ﬂ_at] O O _..0 000 (o) ®_..0 000 T U
RIO0 O000 O ®) O 00 0000 © © ® O RLRL
r - 1T - 1 O 1
0 trials 50 0 trials 50 P(spike)

Figure 7: A two-alternative forced choice task (2AFC) toy-model. (a) Data generation: Spikes are sampled
from a simple generative model. For each of T=50 independent trials a random binary latent — analogous to a
“left” or “right” choice — is encoded by a population of N=15 neurons with randomly initialised tuning curves.
(b) Model performance: Starting from a noisy estimate (yellow) of the true latent (black) where a fraction
p = 0.5 of trials are resampled, SIMPL-R recovers the true latent variables (green) with high accuracy. (c)
Left: Correlation between x(® and x*. Middle: Log-likelihood, log p(s|x(®, £()). Right: Final correlation
between x® and x* as a function of initialization noise p. Violin plots show distributions over 1000 randomly
seeded datasets, dotted lines show ceiling performance of a perfectly initialised model ) =x*) (d) Tuning
curves.

D.2 HYPERPARAMETER SWEEP

We swept over the two hyperparameters v (the velocity prior) and o (the KDE bandwidth) to assess
how sensitive SIMPL is to these hyperparameters, as shown in Figure [§] For this we used the
same synthetic grid cell dataset used in Fig. 2] Notably, SIMPL’s performance (measured in terms
of the final error, see panel b) is relatively stable across a wide range of hyperparameters; kernel
bandwidths between 0.1 cm and 5 cm and velocity priors between 0.2 m/s and 1 m/s all yield similar
performance. When the tuning curves are confirmed that kernel bandwidth has a significant effect
on their appearance. Broader kernels give smoother tuning curves eventually blurring the individual
grid fields together whilst narrower kernels give sharper tuning curves eventual leading to overfitting
where individual spikes are resolved.

D.3 NON-CONTINUOUS HIPPOCAMPAL REPLAY DATASET

Since SIMPL places an explicit prior on latent trajectories which are smooth and continuous we
tested whether it could be used to model a dataset where the latent variable is non-continuous. For
this we simulated a synthetic “replay” dataset from N = 225 small Gaussian place cells. In this
dataset the latent variable and behaviour perfectly match except for regular, brief periods of “replay”
where the latent variable jumps to a new location. Using the same hyperparameters as in the main
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Figure 8: Performance of SIMPL on the synthetic grid cell dataset as a function of the hyperparameters v
(speed prior) and o (kernel bandwidth). (a) Tuning curves. (b) Final error between the latent and ground truth
(colour) and total compute time (size).

text we found that SIMPL was able to recover the latent variable, capturing (or “decoding”) the
replay events with high accuracy (Fig. [0), despite its smoothness prior.
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Figure 9: A synthetic hippocampal “replay” dataset. (a) One minute of trajectory, x-coordinate in solid line,
y-coordinate in dashed. The behaviour (light-green, top panel) is smooth, actually matching the latent most
of the time except when the latent takes regular, brief discontinuous jumps reminiscent of hippocampal replay
events. After optimisation SIMPL is able to recover the latent (dark-green, bottom panel) and capture the
replay events with high accuracy. (b) Spike raster plots; spikes plotted against the behaviour, optimised latent
and ground truth latent.

D.4 AUTOMATIC PLACE FIELD DETECTION

In Fig. [3] it was shown that the tuning curves of place cells in the hippocampus undergo statistically
significant changes when optimised using SIMPL. For this analysis, individual place fields were
automatically identified from the binned rate maps as isolated regions of elevated activity within a
cells tuning curve. This was done by thresholding the activity of each neuron at 1 Hz and identifying
contiguous regions of activity with a peak firing rate above 2 Hz and a total area less than half that
of the full environment, similar to approaches taken in previous work (Tanni et al.| [2022).

E SUMMARY TABLE OF RELATED METHODS

Here we summarize some of the most relevant LVM and dimensionality reduction techniques in the
context of our five key desiderata as described in the related work section. These are:

1. Complex tuning curves: Does the model learn/infer non-linear tuning curves as opposed to
linear/exponential-linear/etc. tuning curves.
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. Smooth latent dynamics: Does the model impose smooth temporal dynamics on the latent
space (e.g. by assuming a linear dynamical system, Gaussian process or using an RNN), as
opposed to treating each time point independently.

. Spike-friendly: Was the method designed for spiking data. For probabilistic models, this
refers to whether the generative noise model is Poisson as opposed to, say, Gaussian.

. Exploit behaviour: Does/can the model use behaviour (as an observation, contrastive loss-
target, initialisation, or otherwise) to guide latent discovery.

. Scalable: Can the model scale to datasets of long duration. Specifically, in available open-
source implementations of the method does training/inference have near-linear time com-
plexity. Note this does not mean that compute time is necessarily fast in an absolute sense,
just that scaling is linear.
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Model Complex Smooth Spike- Exploit be- | Scalable

tuning latent dy- | friendly haviour

curves namics
SIMPL (Our method) Yes Yes Yes Yes® Yes
GPLVM (iLawrencel 2003I) Yes N/S No Yes® Yes*

P-GPLVM (Wu et al., 2017 Yes Yes Yes Yes® No

M-GPLVM (Jensen et al. Yes No No No Yes*
2020)
PfLDS (Gao et al.l 2016) Yes Yes Yes No Yes

VIND (]Hernandez et al.|, Yes Yes Yes No Yes
2018)
pi-VAE (Zhou & Weil 2020) Yes No Yes Yes Yes

CEBRA (Schneider et al.l N/A No Yes Yes Yes
2023))

MIND(Low et al.l 2018) Yes No No No Yes
LFADS (Pandarinath et al.l No Yes Yes Yes Yes

2018)
TNDM (iHurwitz et al.HZOZlI) No Yes Yes Yes Yes
GP-SDEs (Duncker et al.l No Yes N/S N/S Yes
2019)

rSLDS No Yes No Yes® Yes
gpSLDS 1, F No Yes No Yes® Yes
GPDM (Wang et al 5 Yes Yes No Yes® No
MM-GPVAE (Gondur et al.l No Yes Yes No Yes

PSID (Sani et al., 2021 No Yes No Yes Yes

GPFA (Yu et al., 2008a) No Yes No No Yes*

P-GPFA (Naml 2015) No Yes Yes No No
SSMDM (Zoltowski et al., | No Yes Yes Yes Yes
2020)

PLNDE (Kim et al., [2021) No Yes Yes Yes Yes
GLDS (Kalman, 1960 No Yes No No Yes
DKF Yes Yes No No Yes
PLDS (IMacke et al.HZOl 1I) No Yes Yes No Yes
UMAP (Mclnnes et al.l |2018|) N/A No No No No
TSNE (Van der Maaten &| N/A No No No No
|Hint0n|,| 008)

pPCA dPearson |1901L No No No No Yes
|p1ng & Bishop} 1999

dPCA (IKobak et al.H2016|) No No No Yes Yes

Table 3: A table of comparable models and their properties. N/A means the criterion is not applicable to the
model. N/S means the criterion is not specified or may be dependent on implementation specifics. Techniques
in bold are compared to on our benchmark dataset in Fig. [§]

#: Scalable if using an implementation making induction point approximations.

$: Algorithm could be initialised at behaviour.
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