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ABSTRACT

Federated learning (FL) is a machine learning paradigm that allows multiple
clients to collaboratively train a shared model without exposing their private data.
Data heterogeneity is a fundamental challenge in FL, which can result in poor
convergence and performance degradation. Client drift has been recognized as
one of the factors contributing to this issue resulting from the multiple local up-
dates in FEDAVG . However, in cross-device FL, a different form of drift arises
due to the partial client participation, but it has not been studied well. This drift,
we referred as period drift, occurs as participating clients at each communication
round may exhibit distinct data distribution that deviates from that of all clients. It
could be more harmful than client drift since the optimization objective shifts with
every round. In this paper, we investigate the interaction between period drift and
client drift, finding that period drift can have a particularly detrimental effect on
cross-device FL as the degree of data heterogeneity increases. To tackle these is-
sues, we propose a predict-observe framework and present an instantiated method,
FEDEVE , where these two types of drift can compensate each other to mitigate
their overall impact. We provide theoretical evidence that our approach can re-
duce the variance of model updates. Extensive experiments demonstrate that our
method outperforms alternatives on non-iid data in cross-device settings.

1 INTRODUCTION

Federated learning is a decentralized machine learning approach that enables multiple clients to
collaboratively train a shared model without exposing their private data (McMahan et al., 2017). In
this paradigm, each client independently trains a local model using its own data and subsequently
sends the model updates to a central server. The server then periodically aggregates these updates to
improve the global model until it reaches convergence. There are two primary settings in FL: cross-
silo and cross-device (Kairouz et al., 2021). Cross-silo FL typically involves large organizations
(small number of clients), where most clients actively participate in every round of training (Chen
and Chao, 2021; Lin et al., 2020). In contrast, cross-device FL focuses on scenarios like smartphones
(huge number of clients, e.g., millions), where only a limited number of clients participate in each
round (Li et al., 2020b; Reddi et al., 2020), due to communication bandwidth, client availability, and
other issues. This paper primarily focuses on the cross-device setting with partial client participation
since we discover and then solve its unique challenge —“period drift”.
Distinguished from traditional distributed optimization, the statistical heterogeneity of data has been
acknowledged as a fundamental challenge in FL (Li et al., 2020a; Chen and Chao, 2021; Lin et al.,
2020). This data heterogeneity refers to the violation of the independent and identically distributed
(non-iid) data assumption across clients, which can result in poor convergence and performance
degradation when using FEDAVG . Client drift is recognized as one of the factors contributing to
this issue and attracts numerous efforts to address it (Karimireddy et al., 2021; Li et al., 2020b; Reddi
et al., 2020). This phenomenon is characterized by clients who, after multiple local updates, progress
too far towards minimizing their local objective, consequently diverging from the shared direction.
However, in cross-device FL, a different form of drift exists and could be more detrimental to the
training process than client drift, which has not been extensively studied. This drift occurs periodi-
cally as different clients participate in each communication round, and these participating clients as
a group may exhibit distinct data distribution that deviates from the overall distribution of all clients.
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Figure 1: The generation of period drift and client drift.

This deviation could potentially lead
to slow and unstable convergence, as
the optimization objective shifts with
every round. For simplicity, we refer
to this phenomenon as period drift.
Despite both period drift and client
drift being rooted in data heterogene-
ity, they stem from different causes
(as illustrated in Figure 1). Client
drift results from multiple local up-
dates and the non-iid, while period drift arises due to partial client participation and the non-iid.
The combined effect of period drift and client drift further complicates the process of reaching sta-
ble and efficient convergence and makes it more challenging in cross-device FL.

In this paper, we first investigate the impact of period drift and client drift, finding that period drift
can have a particularly detrimental effect on cross-device FL as the degree of data heterogeneity
increases (as demonstrated in detail in Section 4.2). While the impacts of period drift and client
drift are additive, we fortunately uncover a cooperative mechanism therby these two types of drift
can compensate each other to mitigate their overall impact. To achieve this, we propose a predict-
observe framework, where we consider at each round 1) the server optimization (e.g., momentum)
as a prediction of a update step of FL; 2) the clients’ optimization (e.g., local SGD) as an observa-
tion of this update step. Note that the vanilla FEDAVG is a special case in which the server does not
make any predictions and solely relies on the observation provided by clients. In this framework,
period drift and client drift are viewed as the noise respectively associated with prediction and ob-
servation. We thereby incorporate a Bayesian filter to integrate prediction (with period drift) and
observation (with client drift) to achieve a better estimation of update step and reduce uncertainties.
Based on the predict-observe framework, we present an instantiated method, referred as FEDEVE ,
which combines the prediction and observation through linear interpolation. The coefficient of this
linear combination indicate the relative confidence between prediction and observation, which is de-
termined by the variance of the period drift and client drift, thus produces a more precise estimation
of updates. FEDEVE does not increase the client storage or extra communication costs, and does not
introduce additional hyperparameter tunning, making it ideal for cross-device FL.

Contributions We summarize the primary contributions of this paper as follows:
• We analyze the impact of period drift and client drift for cross-device FL, and observe that period

drift has a particularly detrimental effect as the degree of data heterogeneity increases.
• We propose a predict-observe framework for cross-device FL that incorporates a Bayesian filter

to integrate server optimization and clients’ optimization so that period drift and client drift can
compensate for each other.

• As an instantiation of the proposed framework, we present FEDEVE to combine prediction and
observation through linear interpolation based on the variance of the period drift and client drift.

• We provide theoretical evidence within our framework that FEDEVE can reduce the variance of
model updates. Extensive experiments demonstrate that our method outperforms alternatives on
non-iid data in cross-device settings. 1

2 RELATED WORKS

There are many works that have attempted to address the non-iid problem in federated learning.
FEDAVG , first presented by McMahan et al. (2017), has been demonstrated to have issues with
convergence when working with non-iid data. Zhao et al. (2018) depict the non-iid trap as weight
divergence, and it can be reduced by sharing a small set of data. However, in traditional federal
setting, data sharing violates the principle of data privacy. Karimireddy et al. (2021) highlight the
phenomenon of “client drift” that occurs when data is heterogeneous (non-iid), and uses control
variates to address this problem. However, using Scaffold in cross-device FL may not be effective,
as it requires clients to maintain the control variates, which may become outdated and negatively
impact performance. Li et al. (2020b) propose FedProx that utilizes a proximal term to deal with
heterogeneity.

1For a smoother reading experience, please feel free to check out our reading guide in Appendix A.
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In addition to these works, some research has noticed the presence of period drift, but have not
specifically addressed it in their analysis. For example, Cho et al. (2022); Fraboni et al. (2023) in-
vestigate the problem of biased client sampling and proposes an sampling strategy that selects clients
with large loss. However, active client sampling can potentially alter the overall data distribution by
having unrandom clients participation, which can raise concerns about fairness. Similarly, Yao et al.
(2019) propose a meta-learning based method for unbiased aggregation, but it requires training the
global model on a proxy dataset, which may not be feasible in certain scenarios where such a dataset
is not available. Zhu et al. (2022) observe that the data on clients have periodically shifting distribu-
tions that changed with the time of day, and model it using a mixture of distributions that gradually
shifted between daytime and nighttime modes. Guo et al. (2021) study the impact of time-evolving
heterogeneous data in real-world scenarios, and solve it in a framework of continual learning. Al-
though these two papers define similar terms, they focus on the case of client data changing over
time. However, in this paper, we find that even if the distribution of client data remains unchanged,
period drift can seriously affect the convergence of FL.

3 METHODOLOY

In this section, we discuss the problem of some methods (e.g., FEDAVG ) in cross-device FL, and
then propose our predict-observe framework and a method FEDEVE to deal with it.

3.1 TYPICAL FEDERATED LEARNING SETUP

Federated learning, as described by McMahan et al. (2017), involves utilizing multiple clients and
a central server to optimize the overall learning objective. The goal is to minimize the following
objective function:

min
w

f(w) =

N∑
k=1

pkFk(w) = Ek[Fk(w)], (1)

where N is the number of clients, pk ≥ 0, and
∑

k pk=1. In general, the global objective is the ex-
pectation of the local objective over different data distributionsDk, i.e., Fk(w) = Exk∼Dk

fk(w;xk),
with nk samples on each client k and weighted by pk. We set pk=nk

n , where n=
∑

k nk is the total
number of data points. In deep learning setting, Fk(w) is often non-convex. A common approach
to solve the objective (1) in federated settings is FEDAVG (McMahan et al., 2017). For example, in
cross-device FL, a small subset St (|St| ≪ N ) of the total clients are selected at each round (ideally
randomly, but possibly biased in practice), and then the server broadcasts its global model to the
selected client. In parallel, each of the selected clients runs SGD on their own loss function Fk (·)
for E number of epochs, and sends the resulting model to the server. The server then updates its
global model as the average of these local models and repeats this process until convergence.
One problem of FL is the non-iid data across clients, which can bring about “client drift” in the up-
dates of each client, resulting in slow and unstable convergence (Karimireddy et al., 2021). Despite
efforts to address the problem of client drift (Karimireddy et al., 2021; Li et al., 2020b; Reddi et al.,
2020), there is a lack of research on the issue of period drift, i.e. the data distribution of selected
clients at each round may differ from the overall data distribution of all clients. Period drift along
with client drift can greatly impact the convergence of the learning process in FL, thus we propose
a predict-observe framework to deal with them.

3.2 THE IMPACT OF DRIFT

In contrast to conventional distributed optimization, federated learning possesses distinct character-
istics, such as client sampling, multiple local epochs, and non-iid data distribution. These attributes
may lead to a drift in the updates of global model, resulting in suboptimal performance. This drift
can be thought of as a noise term that is added to the true optimization states during the optimization
process. Thus, we can make the assumption as:

Assumption 3.1. The aggregated model parameters on the server wserver, can be represented as
the sum of the optimal parameters w∗ and a drift (noise) that follows a normal distribution wdrift ∼
N (0, σ2

drift):
wserver = w∗ + wdrift ← noise, (2)

where w∗ represents the optimal parameters obtained through the use of stochastic gradient de-
scent (SGD), wdrift represents the noise term caused by factors such as client sampling, multiple
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local epochs, and non-iid data distribution that we assume a normal distribution, and wserver repre-
sents the aggregated model parameters also follows a normal distribution wserver ∼ N (w∗, σ2

drift),
with the expectation of the aggregate model parameters being equal to the optimal parameters, i.e.
E[wserver] = w∗. Note that the assumption of Gaussian-like noise is natural, and its justification
can be found in Appendix A.2.
In order to investigate the effect of the deviation on performance in FL, we utilize a regression
optimization objective as in previous studies, such as (Zhang et al., 2019) and (Wu et al., 2018):

L̂(w) = 1

2
(w + wdrift)

TA(w + wdrift),

where wdrift ∼ N (0, σ2) is the drift caused by the characteristics of FL. Therefore, the generaliza-
tion error can be formulated as:

L
(
wt) = E

[
L̂
(
wt)] =

1

2
E

[∑
i

ai

(
wt2

i + σ2
i

)]

=
1

2

∑
i

ai

(
E
[
wt

i

]2
+ V

[
wt

i

]
+ σ2

i

)
.

In the context of FL, the generalization error can also be decomposed into three components: bias,
variance, and noise. The noise component in this context is further influenced by factors such
as client sampling, multiple local epochs, and non-iid data distribution, leading to a much larger
overall generalization error compared to traditional stochastic gradient descent. Thus, our goal is
to reduce the variance of drift σ2 in order to improve both the convergence and performance of the
model. By reducing the variance of drift, we can ensure that the updates made to the model are more
consistent and accurate, leading to better overall performance. The subsequent section of this study
aims to investigate the influence of drift on both the server and client side with respect to this noise
component in federated learning.

3.3 THE PREDICT-OBSERVE FRAMEWORK

Initially, we establish the concept of period drift, represented by Qt, and client drift, represented by
Rt at the t-th communication round. We first make an assumption of independence concerning the
two types of drift, which states that the two drifts are independent of one another. This assumption
allows us to more accurately analyze the impact of each drift on the model’s performance and devise
methods to mitigate their effects.
Assumption 3.2. The initialization model parameters are independent of all period drifts Qt

and client drifts Rt at each communication round, that is w0 ⊥ Q0, Q1, · · · , Qt and w0 ⊥
R0, R1, · · · , Rt.
The justification and limitation of this assumption can be found in Appendix A.3. Since the clients
participating in each round in cross-device FL is only a small fraction of all clients, period drift can
be attributed to the discrepancy that the objective of selected clients at each round does not align
with the overall objective. Thus, an effective prediction of updates can potentially help reduce the
period drift. As formulated in Equation (2), we express the prediction of updates on the server as:

ŵt+1 = g(wt) +Qt, Qt ∼ N (0, σ2
Qt

), (3)

where ŵt+1 is the prediction model of (t + 1)-th round as the output of predcit function g(·) with
the current model wt as input. It is noteworthy that the period drift at the t-th round is repre-
sented by Qt, and just like the drift in assumption 3.1, it is assumed to follow a normal distribution
N (0, σ2

Qt
), characterized by a mean of zero and a variance of σ2

Qt
. Client drift can be attributed to

the phenomenon that the averaged optima of objectives does not align with the optima of averaged
objectives. Thus, we consider the updates provided by these clients is a kind of observation of global
updates. As formulated in Equation (2), we express it as:

w̃t+1 = h(ŵt+1) +Rt, Rt ∼ N (0, σ2
Rt
), (4)

where w̃t+1 is the model of (t+ 1)-th round as the output of observe function h(·) with the predict
model wt as input. Also, the client drift at the t-th round is represented by Rt, and just like the
drift in assumption 3.1, it is assumed to follow a normal distribution N (0, σ2

Rt
), characterized by a

mean of zero and a variance of σ2
Rt

. It is clear that standard FEDAVG is a special case since there
is no prediction for server optimization, and it solely relies on the observations provided by clients.
Furthermore, the period drift, Qt, and the client drift, Rt, are represented as noise terms that are
incorporated into the prediction and observation functions. According to assumption (3.2), these
drifts are independent of the current model states, and the lemma of independence noise is posited:
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Lemma 3.3. (Independence of Noise). the noise present in the prediction and observation at each
communication round is independent of the current model state, specifically, wt ⊥ Qt and wt ⊥ Rt.

The complete proof of the independence of noise can be found in appendix A.4. The equations
presented in equations 3 and 4 depict the prediction and observation of updates, respectively, tak-
ing into account both period drift and client drift. In order to reconcile the discrepancy between
the prediction (including period drift) and observation (including client drift), a Bayesian filter is
introduced to allow for compensation between the two sources of drift. The prior probability of
wt+1 is represented by P (ŵt+1), and by combining the observation P (w̃t+1) and the likelihood
P (w̃t+1 | ŵt+1), the posterior probability P (wt+1 | w̃t+1) of wt+1 can be calculated as the new
model at the (t+ 1)-th round, as shown in Equation (5).

P ( wt+1 ) := P ( ŵt+1 | w̃t+1 ) =
P ( w̃t+1 | ŵt+1 )P ( ŵt+1 )

P ( w̃t+1 )
. (5)

By utilizing the Bayesian filter in our predict-observe framework, an update mechanism is imple-
mented that first performs prediction and then observes the predicted model state, as described in
the following procedure:

f+
wt

(w)
predict
=⇒ f−

ŵt+1
(w) =

∫ +∞

−∞
fQt [w − f(v)]f+

wt
(v)dv

observe
=⇒ f+

wt+1
(w) = ηt · fRt [wt+1 − h(w)] · f−

ŵt+1
(w),

(6)

where f+
wt
(w) is the posterior probability of wt, f−

ŵt+1
(w) is the prior probability of wt+1, fQt

is the
PDF of period drift, f+

wt+1
(w) is the posterior probability of wt+1, fRt

is the PDF of client drift, and

ηt =
{∫ +∞

−∞ fRt
[w̃t+1 − h(ŵt+1)] f

−
ŵt+1

(w)dw
}−1

. By combining prediction and observation, the
fused model can be estimated by taking the expectation of the posterior probability as follow:

ŵt+1 = E
[
f+
wt+1

(w)
]
=

∫ +∞

−∞
wf+

wt+1
(w)dw. (7)

Theorem 3.4. Given assumption 3.1 and lemma 3.3, the composite model will exhibit a diminished
degree of variance in comparison to the individual variances of both period drift and client drift,
and the mean will be a linear combination that is weighted by the variances:

µfused =
µ1σ

2
Rt

+ µ2σ̂
2
t+1

σ2
Rt

,

σ2
fused =

σ̂2
t+1σ

2
Rt

σ̂2
t+1 + σ2

Rt

,

(8)

where µ1, µ2, µfused is the mean of prediction, observation and fused model, and σ̂2
t+1, σ

2
Rt
, σ2

fused

is the variance of prediction, client drift and fused model.

Server 
Predict

Client 
Observe

Fused
Model

w̃t+1
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(a) Bayesian filter (b) FEDEVE

Figure 2: Illustrations of the framework and FEDEVE .

The complete proof of the bayesian
filter can be found in appendix A.5.
The application of Bayesian filtering
allows for the interaction of period
drift and client drift to generate a new
model, which is characterized by a re-
duced level of variance as compared
to the individual variances of period
drift and client drift, as depicted in
Figure 2(a). However, the computa-
tion of the new model is challenging
due to the presence of infinite inte-
grals in Equation (7) and ηt, as it is a general framework for any prediction and observation function.
In the following section, we will propose a specialized method to facilitate the convergence of FL.
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3.4 THE FEDEVE METHOD

The predict-observe framework has been proposed as a strategy for mitigating the challenges of pe-
riod drift and client drift. However, it also raises some questions regarding the effective method of
prediction and the variance associated with both period and client drift. In this section, we demon-
strate that the utilization of momentum as a server optimization (Hsu et al., 2019; Reddi et al., 2020),
can serve as an effective prediction method. Furthermore, we present a method for estimating the
variance of period drift and client drift. In the context of the predict-observe framework, we have
adapted it to a specific setting where Nesterov momentum is employed as the prediction function
g(·), and the observation function h(·) is the average of the models from the clients the same as FE-
DAVG . We have reformulated FEDAVG in an incremental form as the starting point of our approach.

wt+1 =
∑
k∈St

pkw
k
t = wt −

∑
k∈St

pk
(
wt − wk

t

)
= wt −

∑
k∈St

pk∆wk
t = wt −∆wt.

(9)

This formulation facilitates the accumulation of ∆wt as the momentum on the server, which serves
as a prediction of updates, as the empirical value of the hyperparameter β = 0.9 suggests that the
direction of historical updates is likely to be maintained. By introducing the Nesterov momentum
and specialize g(wt) = wt − ηgMt in Equation (3) as the prediction function. Additionally, we
specialize h(ŵt+1) = ŵt+1−ηg∆w̃t in Equation (4) as the observation function. Thus, the predict-
observe equation can be rewritten as follow:

ŵt+1 = wt − ηgMt +Qt, (10)
w̃t+1 = ŵt+1 − ηg∆w̃t +Rt, (11)

where Mt is the momentum (the accumulation of ∆wt) at t-th round, ∆w̃t is the average of model
update in Equation (9) from clients at the states of ŵt+1, and ηg is the global learning rate. By
assuming a normal distribution for Qt and Rt based on the equations (3), (4), and (5), the problem
of infinite integral in Equation (7) and ηt can be solved in a closed-form, as detailed in reference
A.5.2. Additionally, due to the normal distribution, the form of distribution like equations 6, 7 is not
necessary, and only the mean and variance are used to depict the model update process. Since these
equations are linear in nature, the Bayesian filter can be specialized as the Kalman Filter (KF). The
process of model update can thus be summarized as the use of KF, as represented by the following
formulation:

ŵt+1 = wt − ηgMt, (12a)

σ̂2
t+1 = σ2

t + σ2
Qt

, (12b)

K =
σ̂2
t+1

σ̂2
t+1 + σ2

Rt

, (12c)

Mt+1 = Mt +K(∆w̃t −Mt), (12d)
wt+1 = wt − ηgMt+1, (12e)

σ2
t+1 = (1−K)σ̂2

t+1. (12f)

The six steps of model update for each communication round in our method are outlined in Equations
(12a)-(12f). Equation (12a) predicts the model states wt using the momentum Mt. Equation (12b)
estimates the variance of the prediction model by summing the variance of wt and the period drift
Qt. To provide a clear representation, the variance of the prediction model is represented by σ−

and the variance of the fused model is represented by σ+. The core of our method is presented in
Equation (12c), where the Kalman gain K is calculated based on the ratio of the variance of the
prediction σ̂2

t+1 and the observation (client drift) Rt.
The value of K determines the relative weight of the prediction and observation when they are
combined. Equation (12d) fuses the prediction and observation in a linear fashion, weighted by
the Kalman gain K calculated in (12c). The fourth line updates the global model with the fused
Mt+1 calculated in (12d). Equation (12e) estimates the variance of the fused model wt+1 using K
in (12d) and σ̂2

t+1 in (12b), which will be used in the next communication round. It is worth noting
that all these calculations are performed on the server, thus our method retains the same level of
communication cost as FEDAVG while also being compatible with cross-device FL settings.
While Equations (12a)-(12f) provide an efficient and accurate method for model updates, the vari-
ance of the period drift σ2

Qt
in Equation (12b) and the client drift σ2

Rt
in Equation (12c) remains
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unresolved. To address this issue, we propose an effective method for estimating the variance of the
period drift and client drift.The period drift, which is a measure of the deviation from the consis-
tency of the optimization objective at each communication round, can be quantified by analyzing the
discrepancy between the prediction and the observation. Specifically, this can be done by computing
the variance between the momentum Mt and the average of the model updates ∆w̃t. Similarly, the
client drift, which represents the inconsistency of the updates made by different clients, can be es-
timated by computing the variance between the average of the model updates ∆w̃t and the updates
made by each individual client ∆w̃k

t . We formulate the estimation of the variance of period drift and
client drift as follows:

σ2
Qt

:=

∑d
i=1(M

i
t −∆w̃i

t)
2

|St|d
,

σ2
Rt

:=

∑
k∈St

∑d
i=1(∆w̃k,i

t −∆w̃i
t)

2

|St|2d
,

(13)

where the index of model parameters is represented by the uppercase i and the dimension of the
model is represented by d. With the estimation of the variance of period drift and client drift, the
overall process of model update can be described in Algorithm 1.
The fundamental principle of FEDEVE is to calculate the Kalman gain K which is used to determine
the relative weight of the prediction and observation when they are combined. The value of K is cal-
culated based on the ratio of the variance of the prediction σ2

Qt
and the variance of the observation

σ2
Rt

. This coefficient is used to adjust the update direction of the model. A small K means that
the observation is close to the prediction, hence the update direction will also be close to the pre-
diction. A large K means that the observation deviates significantly from the prediction, hence the
update direction will deviate from the prediction and be closer to the observation. This allows the
algorithm to adapt to different scenarios in which the observations may deviate more or less from
the predictions.

4 EXPERIMENTS

4.1 SETUP

Datasets and models. We evaluate FEDEVE on three computer vision (CV) and recommender
system (RS) datasets under realistic cross-device FL settings. For CV dataset, we use FEMNIST2

Caldas et al. (2018), consisting of 671,585 training examples and 77,483 test samples of 62 different
classes including 10 digits, 26 lowercase and 26 uppercase images with 28x28 pixels, handwritten
by 3400 users. We also use CIFAR-10/100 3 Caldas et al. (2018), consisting of 50,000 training
examples and 10,000 test samples of 10/100 different classes with 32x32 pixels. For FEMNIST
dataset, we use the lightweight model LeNet5 LeCun et al. (1998) and for CIFAR-10/100 dataset,
we use ResNet-18 (replacing batch norm with group norm (Hsieh et al., 2020; Reddi et al., 2020)).
For RS dataset, we use MovieLens 1M 4Harper and Konstan (2015), including 1,000,209 ratings
by unidentifiable 6,040 users on 3,706 movies. It is a click-through rate (CTR) task, and we use
the popular DIN Zhou et al. (2018) model. For performance evaluation, we follow a widely used
leave-one-out protocol Muhammad et al. (2020). For each user, we hold out their latest interaction
as testset and use the remaining data as trainset, and binarize the user feedback where all ratings
are converted to 1, and negative instances are sampled 4:1 for training and 99:1 for test times the
number of positive ones.

Federated learning settings. It is important to note that the datasets FEMNIST and MovieLens
1M have a ”natural” non-iid distribution, which means that the data is split by “user id”. For exam-
ple, in FEMNIST, images are handwritten by different users, and in MovieLens 1M, movies are rated
by different users. Furthermore, we use the Dirichlet distribution, to simulate the label distribution
skew setting for FEMNIST, as described in Hsu et al. (2019). This distribution allows us to control
the degree of heterogeneity by adjusting the hyperparameter α (the smaller, the more non-iid). This
allows us to test the robustness of the algorithm under different levels of heterogeneity, which is a
common scenario in real-world FL settings. For the FL training, we set a total of T = 1500 com-
munication rounds for the CV task and sample 10 clients per round with SGD optimizer. For the

2https://github.com/TalwalkarLab/leaf/tree/master/data/femnist
3https://www.cs.toronto.edu/ kriz/cifar.html
4https://grouplens.org/datasets/movielens/

7



Under review as a conference paper at ICLR 2024

RS task, we set a total of T = 1000 communication rounds and sample 20 clients per round with
Adam optimizer Kingma and Ba (2014). In all datasets, each client trains for E = 1 epoch at the
local update with a learning rate of ηl = 0.01. In our proposed FEDEVE , we set the global learning
rate ηg = 1 for all experiments.

Baselines. To evaluate the performance of FEDEVE , we compare it with several state-of-the-art
FL methods: 1) The vanilla FL method FEDAVG McMahan et al. (2017), which is a widely used
method for FL; 2) A client-side FL method FEDPROX Li et al. (2020b), which improves the
model aggregation by adding a proximal term to the local update; 3) A server-side FL method
FEDAVGM Hsu et al. (2019), which adapts the momentum in FL optimization; 4) A server-side FL
method FEDOPT Reddi et al. (2020), which introduces adaptive optimization methods in FL. See
more experimental details in the Appendix B.

4.2 ANALYSIS
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Figure 3: Visualization of period drift and its impact on performance. (a) Visualization of period drift.
The color of the scatter points represents different classes, and the size denotes the number of samples of a
given class on a particular client. When data is more non-iid (smaller α), the heterogeneity of sampled data
distributions becomes more pronounced both within a given communication round (client drift) and between
different communication rounds (period drift). (b) Visualization of its impact on performance. It is revealed
in cross-device FL when data is rather non-iid, period drift has a greater effect than client drift. Appendix B.2
for setting details.

Visualizing the period drift and its impact. Figure 3 (a) visualizes the data distributions of these
sampled clients. Client drift arises due to the shift in label distribution among sampled clients within
a single round, while period drift results from the shift in the data distribution of participating clients
across different rounds. The scatter points’ size and distribution grow more diverse both within and
across communication rounds as the value of α decreases (indicating increasing non-iid). The impli-
cations of these drifts on the global model’s convergence are presented in Figure 3 (b). Utilizing the
vanilla FEDAVG algorithm for illustration, we experimented with four settings: 1) FEDAVG with iid
data; 2) FEDAVG experiencing only period drift; 3) FEDAVG subject to only client drift; and 4) FE-
DAVG impacted by both drifts (See appendix B.2 for detailed settings). As heterogeneity intensifies,
the effects of both drifts become evident. Specifically, in a highly non-iid environment (α = 0.01),
FEDAVG affected only by client drift yields results akin to the iid setting. In contrast, FEDAVG in-
fluenced solely by period drift significantly disrupts the stability and convergence of the FL process.
The combination of both drifts results in the poorest performance, underlining that in cross-device
FL, period drift poses a more considerable challenge to model convergence than client drift.

The peroformance of FEDEVE . We evaluate our algorithm on real-world datasets and compare
it with the relevant state-of-the-art methods in Tables 1 and 2. We conducted simulations on three
datasets: FEMNIST, CIFAR-100, and MovieLens. The FEMNIST and Movielens datasets have a
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Table 1: Results on FEMNIST and CIFAR-100. The best method is highlighted in bold fonts.
Dataset FEMNIST CIFAR-100

Methods/NonIID natural α = 1 α = 0.1 α = 0.01 α = 1 α = 0.1 α = 0.01

FEDAVG 82.37 ± 0.18 83.60 ± 0.11 82.02 ± 0.23 73.23 ± 1.36 47.04 ± 0.21 43.93 ± 0.36 30.11 ± 0.53
FEDAVGM 82.53 ± 0.43 83.67 ± 0.10 82.30 ± 0.49 74.96 ± 2.34 48.22 ± 0.19 44.74 ± 0.40 31.59 ± 0.98
FEDPROX 82.34 ± 0.17 83.58 ± 0.11 82.04 ± 0.27 74.16 ± 1.19 46.86 ± 0.38 43.74 ± 0.27 30.10 ± 0.55
SCAFFOLD 81.66 ± 0.28 83.06 ± 0.14 79.82 ± 0.42 5.13 ± 0.00 47.26 ± 1.49 36.36 ± 4.98 1.00 ± 0.00
FEDOPT 5.13 ± 0.00 81.86 ± 0.38 78.13 ± 0.39 5.13 ± 0.00 47.26 ± 1.49 45.43 ± 1.18 32.17 ± 1.38
FEDEVE 82.68 ± 0.19 83.81 ± 0.09 82.69 ± 0.31 75.99 ± 1.61 48.38 ± 0.24 45.68 ± 0.16 32.68 ± 0.62

Table 2: Results on MovieLens-1M.The best method is highlighted in bold fonts.
AUC HR@5 HR@10 NGCG@5 NGCG@10

FEDAVG 0.7633 ± 0.0065 0.2774 ± 0.0100 0.4294 ± 0.0120 0.1835 ± 0.0058 0.2324 ± 0.0064
FEDAVGM 0.7555 ± 0.0128 0.2705 ± 0.0384 0.4290 ± 0.0196 0.1771 ± 0.0319 0.2280 ± 0.0257
FEDPROX 0.7819 ± 0.0033 0.2700 ± 0.0129 0.4279 ± 0.0083 0.1803 ± 0.0078 0.2310 ± 0.0065
FEDOPT 0.7751 ± 0.0085 0.2868 ± 0.0055 0.4392 ± 0.0101 0.1886 ± 0.0044 0.2377 ± 0.0040
FEDEVE 0.7967 ± 0.0016 0.2916 ± 0.0077 0.4460 ± 0.0088 0.1924 ± 0.0039 0.2407 ± 0.0037

naturally-arising client partitioning setting in real-world FL scenarios, making them highly represen-
tative. For FEMNIST and CIFAR-100 datasets, each of the datasets includes three non-iid settings,
established through the Dirichlet distribution partition method (Hsu et al., 2019). Generally, the
results show that our proposed algorithm, FEDEVE , consistently outperforms the baselines, and
the performance gains are more dominant in more non-iid settings (α = 0.01). We also conduct
experiments with different local epochs (E), please refer to the appendix B.3 for the setting details.
Also, our FEDEVE has more leading advantages in RS experiments, indicating its large potential in
real-world industrial applications. Our method can better utilize the server-side adaptation through
the Bayesian filter’s predict-observer framework. Besides, it is important to note that our method
does not introduce other hyperparameters while these baselines have multiple hyperparameters to
tune, which means that our FEDEVE is more flexible and advantageous in real-world practices.
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Figure 4: Boxplots for Kalman Factors

Analysis of Kalman Gain in FEDEVE . We
conducted an in-depth analysis of the Kalman
Gain K of FedEve under various experimental
settings, incorporating four levels of data het-
erogeneity and various local epochs, as shown
in Figure 4. We observed that as data hetero-
geneity increases (i.e., as the value of α de-
creases), the Kalman Gain K progressively en-
larges. With the rise of data heterogeneity, the
period drift starts to play a more dominant role.
In this context, the primary role of Kalman
Gain K is to adjust the weights between global and local updates, as depicted by Equation (12b) and
(12c). Further, according to Equation (12d), the model update tends to trust local updates more, sta-
bilizing the optimization process. For varied counts of local updates, the relative change in Kalman
Gain K is marginal. This is primarily because, in cross-device FL, the client drift is not a pivotal or
dominant factor, which aligns with our prior analysis in Figure 3.

5 CONCLUSION

In this work, we explored the impact of client drift and period drift on the performance of cross-
device FL, discovering that period drift can be particularly harmful as data heterogeneity increases.
To solve this challenge, we introduced a novel predict-observe framework and a method, FEDEVE ,
that views these drifts as noise associated with prediction and observation. By integrating these two
sources in a principled way, we provided a better estimation of model update steps, reducing variance
and improving the stability and convergence speed of FL. Our theoretical and empirical evaluations
demonstrated that FEDEVE significantly outperforms alternative methods, shedding light on future
directions for improving efficiency in FL.
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In this paper, we discuss the issue of why Federated Learning (FL) sometimes performs poorly,
discussed in Section 1. We discuss the specific issues of ”Client Drift” and ”Period Drift”, which
are two of the many potential reasons for this bad performance. The problem of Client Drift is
introduced in Section 1, with the assumptions made in this respect laid out in assumption 3.1. This
section will explore how multiple local updates contribute to this drift and the overall performance
degradation of FL. Subsequently, we shift our focus to Period Drift, which also contributes to FL’s
challenges. This issue is further examined in Section 1 and is guided by the assumptions set forth
in assumption 3.1. In particular, we study the impact of partial client participation on this type of
drift. These drifts can be considered as noises into the system, we explore the detrimental effects of
this noise on FL in Section 3.2. The supplementary assumptions and related analysis of noise are
available in Appendix A.4. To tackle these challenges, we propose a Bayesian filtering approach
called ’FEDEVE ’ in Section 3. This novel method, described in more detail in Appendix A.5,
utilizes a fusion of prediction and observation to mitigate the drifts. Finally, in Section 4, we present
experimental results demonstrating the effectiveness of our proposed method in enhancing FL’s
performance, and thereby outperforming other existing solutions. Details about the experiment
and the obtained results can be found in this section. In summary, this paper delves deep into the
problems plaguing FL and proposes a viable solution to improve its performance. We hope this
provides a useful roadmap for the reader.
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A.1 THE ANALOGY BETWEEN Drift IN FL AND THE Noise OF CENTRALIZED SGD

Federated learning possesses unique characteristics compared to traditional centralized optimization,
such as client sampling, multiple local epochs, and non-iid data distribution. In this context, drifts
in federated learning can be viewed as noises to the training dynamics. More specifically, period
drift, originating from non-iid data and partial participation (only a subset of clients participate
in each round), can be likened to the implementation of a mini-batch technique in the full-batch
gradient descent of centralized training (Ziyin et al., 2021). Here, the distinction is that in centralized
optimization issues, each batch is iid, and each batch’s data distribution closely mirrors the overall
distribution, albeit with a noise component. This noise becomes remarkably pronounced in federated
learning, given that client data is non-iid. Client drift, arising from non-iid data and multiple local
updates (where each client runs local SGD with multiple steps), is a well-structured noise (Lin et al.,
2018). Due to the combined impact of client drift and period drift, the situation can be perceived as
adding a noise term to the original model (or gradient). The research outlined in this paper based on
the analogy between the drifts in federated learning and the noises in centralized SGD.

A.2 THE JUSTIFICATION OF GAUSSIAN-LIKE NOISE ASSUMPTION 3.1

Assumption A.1 (3.1). The aggregated model parameters on the server wserver, can be represented
as the sum of the optimal parameters w∗ and a drift (noise) that follows a normal distribution
wdrift ∼ N (0, σ2

drift):

wserver = w∗ + wdrift ← noise, (14)

where w∗ represents the optimal parameters obtained through the use of stochastic gradient de-
scent (SGD), wdrift represents the noise term caused by factors such as client sampling, multiple
local epochs, and non-iid data distribution that we assume a normal distribution, and wserver repre-
sents the aggregated model parameters also follows a normal distribution wserver ∼ N (w∗, σ2

drift),
with the expectation of the aggregate model parameters being equal to the optimal parameters, i.e.
E[wserver] = w∗.
In this paper, we conceptualize the aggregated model parameters on the server as the summation of
optimal parameters and a certain drift (or noise), represented as: wserver = w∗ + wdrift. We also
assume that wdrift is subject to a normal (Gaussian-like) distribution, and justify this assumption
by demonstrating its prevalence, and explaining it in FL.
From a historical standpoint, modeling noise in dynamic systems as a Gaussian-like distribution
is a widely accepted practice. This dates back to (Kramers, 1940), and many studies analyzing
Stochastic Gradient Descent (SGD) optimization have emphasized the Gaussian nature of noise on
gradients or parameters (Mandt et al., 2017; Zhu et al., 2019; Simsekli et al., 2019; Ziyin et al., 2021).
This assumption of Gaussianity for SGD noise is justified by Wu et al. (2020), which guarantees the
SGD noise’s convergence to a specific infinite divisible distribution. This falls under the Gaussian
class provided the noise’s second moment is finite (as per Lindeberg’s condition). While it has been
proposed that the noise in SGD might be better represented by SαS noise (Simsekli et al., 2019),
this idea has been challenged and redirected back to the earlier proposed Gaussian noise model (Xie
et al., 2021; Battash and Lindenbaum, 2023).
We further elucidate the occurrence of Gaussian noise in the context of FL. The Lindeberg-Feller
Central Limit Theorem (CLT) (Lindeberg, 1922) plays a key role in explaining the prevalence of
the normal distribution. It posits that the sum (or average) of random variables gravitates towards a
normal distribution (no need to assume iid of these random variables themselves), irrespective of the
individual distributions of these variables. In FL, the emergence of noise can be attributed to partial
participation (referred to as period drift) and multiple local updates (referred to as client drift). The
drifted model that we observe, wserver, is typically the result of the combination of these factors,
making the normal distribution an apt model for characterizing the noise.

The impact of noise on generalization In order to investigate the effect of the deviation on per-
formance in FL, we utilize a regression optimization objective as in previous studies, such as (Zhang
et al., 2019) and (Wu et al., 2018):

L̂(w) = 1

2
(w + wdrift)

TA(w + wdrift),

13



Under review as a conference paper at ICLR 2024

where wdrift ∼ N (0, σ2) is the drift caused by the characteristics of FL. Therefore, the generaliza-
tion error can be formulated as:
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where A is the matrix of quadratic form of the MSE loss function, and ai is the elements of A. As
results, the generalization error can also be decomposed into three components: bias, variance, and
noise. The noise component in FL context is further influenced by factors such as client sampling,
multiple local epochs, and non-iid data distribution, leading to a much larger overall generalization
error compared to centralized SGD. This formulation reveals the reason of why FL usually performs
worse than centralized training. Thus, our goal is to reduce the variance of drift σ2 in order to
improve both the convergence and performance of the model.

A.3 THE JUSTIFICATION OF INDEPENDENCE ASSUMPTION 3.2 OF CLIENT DRIFT AND
PERIOD DRIFT

Assumption A.2 (3.2). The initialization model parameters are independent of all period drifts
Qt and client drifts Rt at each communication round, that is w0 ⊥ Q0, Q1, · · · , Qt and w0 ⊥
R0, R1, · · · , Rt.

This assumption can be justified from various perspectives, demonstrating its reasonableness:
• Independence of the initial model parameters from other noise variables: This assumption

suggests that there is no direct relationship between the initial model parameters (w0) and period
drifts or client drifts. This is a reasonable assumption since initial model parameters are typically
determined prior to training and hence are not influenced by any noise processes.

• Independence of client drifts between each communication round: According to this assump-
tion, client drifts (R0, R1, · · · , Rt) in different communication rounds are independent of each
other. The client drift is influenced by data heterogeneity and multiple local updates. A higher
degree of data heterogeneity and an increased number of local updates can result in greater client
drift. Each client has its own fixed client drift(Guo et al., 2021), and the client drift in each
communication round doesn’t impact other rounds, the assumption of client drift independence is
reasonable.

• Independence of period drifts between each communication round: This assumption contends
that the period drifts (Q0, Q1, · · · , Qt) across different communication rounds are independent.
Period drift is influenced by data heterogeneity and client sampling. Though period drift may
be caused by biased client sampling due to factors like time and geographic locations, leading to
a dependence between period drifts in different communication rounds, this paper considers the
case where random client sampling occurs in each communication round. Here, one round of
client sampling doesn’t affect others, thus rendering the independence of period drift reasonable.

• Independence between period drifts and client drifts at each communication round: This
assumption argues that the client drifts (R0, R1, · · · , Rt) and the period drifts (Q0, Q1, · · · , Qt) at
each communication round are independent. While both client drift and period drift are influenced
by data heterogeneity, they are conditionally independent given the heterogeneous data. We offer
a causal graph to depict their relationships:

multiply local updates −→ client drift←− data heterogeneity −→ period drift←− client
sampling

This graph indicates that data heterogeneity is a common cause of client drift and period drift,
and varying levels of data heterogeneity result in different magnitudes of client drift and period
drift. However, given that the heterogeneous data is constant across clients (i.e., given D), we can
express P(client drift, period drift—D) = P(client drift—D) * P(period drift—D). Indeed, condi-
tioning on a given heterogeneous data set is a fundamental assumption in Federated Learning.

A.4 THE INDEPENDENCE OF NOISE

Lemma A.3 (3.3). (Independence of Noise). the noise present in the prediction and observation at
each communication round is independent of the current state of the model, specifically, wt ⊥ Qt

and wt ⊥ Rt.
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To prove this, we will first need to understand the relationship between the variables wt+1, Qt, and
Rt. In the given context, wt+1 represents the state of the model at a particular communication round
(say, round t + 1). It is affected by the values of the period drift (Qt) and client drift (Rt) at the
previous round. This is represented by the state transfer function wt+1 = Tt(wt, Qt, Rt). However,
this relationship does not imply that wt+1 is dependent on Qt or Rt. To see why, let’s look at how
wt is formed. Using the state transfer function, we can express wt as:

wt = Tt−1(wt−1, Qt−1, Rt−1),

wt−1 = Tt−2(wt−2, Qt−2, Rt−2),

...
w2 = T1(w1, Q1, R1),

w1 = T0(w0, Q0, R0),

(15)

From this chain of equations, it is evident that wt is not only a function of the current round’s
period drift Qt and client drift Rt, but also of their past values and the past values of wt itself. In a
more generalized form, we can write this as: wt = T (w0, Q0, Q1, · · · , Qt−1, R0, R1, · · · , Rt−1).
Assumption 3.2 states that the period drift and client drift are independent of each other at each
communication round and also independent of the initial model parameters. That is, w0 ⊥ Q0 ⊥
Q1 ⊥ · · ·Qt ⊥ R0 ⊥ R1 ⊥ · · ·Rt. This assumption implies that the previous states of wt (wt−1,
wt−2, and so on) do not have any influence on the current values of Qt and Rt. In other words, the
noise present at each round is independent of the model’s current state. Thus, wt is independent of
Qt and Rt, denoted as wt ⊥ Qt ⊥ Rt. Therefore, it can be concluded that the noise present in the
prediction and observation at each communication round is indeed independent of the current state
of the model, thereby confirming the independence of noise. This statement about the independence
of noise is significant because it confirms that the noise encountered during each communication
round does not affect the model’s state. This means that the model is robust and not affected by
random perturbations, which is a desirable property in any machine learning model.

A.5 MODEL UPDATE WITH BAYESIAN FILTER

A.5.1 BAYESIAN FILTER

This section begins by describing the main idea behind the approach: the combination of prediction
and observation models using a Bayesian filter, which is a statistical tool for estimating an unknown
probability density function (PDF) based on observations. The prediction process is explained using
the concept of cumulative distribution functions (CDFs), which are functions giving the probability
that a random variable is less than or equal to a certain value. The prediction process is characterized
by the distribution:

F
−
ŵt+1

(w) = P
(
ŵt+1 ≤ w

)
=

w∑
u=−∞

P
(
ŵt+1 = u

)

=
w∑

u=−∞

+∞∑
v=−∞

P
(
ŵt+1 = u | wt = v

)
P (wt = v)

=
w∑

u=−∞

+∞∑
v=−∞

P
[
ŵt+1 − f (wt) = u − f(v) | wt = v

]
P (wt = v)

=
w∑

u=−∞

+∞∑
v=−∞

P [Qt = u − f(v) | wt = v]P (wt = v) ⇒ Prediction Equation

=

w∑
u=−∞

+∞∑
v=−∞

P [Qt = u − f(v)]P (wt = v) ⇒ Lemma (3.3)

=
w∑

u=−∞

 lim
ϵ→0

+∞∑
v=−∞

fQt
[u − f(v)] · ϵ · f+

wt
(v) · ϵ


=

w∑
u=−∞

{
lim
ϵ→0

∫ +∞

−∞
fQt

[u − f(v)]f
+
wt

(v)dv · ϵ
}

=

∫ w

−∞

∫ +∞

−∞
fQt

[u − f(v)]f
+
wt

(v)dv du

=

∫ w

−∞

∫ +∞

−∞
fQt

[w − f(v)]f
+
wt

(v)dv dw

(16)
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The first three steps apply the definition of the cumulative distribution function (CDF), which is the
sum of probabilities up to a certain point. In the fourth step, the change of variables is used to switch
from u to v. The fifth and sixth steps apply Lemma 3.3, which states that the drift is independent of
the weights wt. The last three steps show how to convert the sum to an integral, which is a common
method in probability theory for dealing with continuous random variables. Finally, the PDF of the
prediction is obtained by taking the derivative of the CDF, which can be expressed as:

f−
ŵt+1

(w) =
dF−

ŵt+1
(w)

dw
=

∫ +∞

−∞
fQt [w − f(v)]f+

wt
(v)dv (17)

The observation process is also characterized by a PDF. Similar steps are used to manipulate and
simplify the expression for the PDF of the observed value wt+1, given the predicted value ŵt+1.
Specifically:

fw̃t+1|ŵt+1
(wt+1 | w) = lim

ϵ→0

Fw̃t+1|ŵt+1
(wt+1 + ϵ | w)− Fw̃t+1|ŵt+1

(wt+1 | w)
ϵ

= lim
ϵ→0

P (wt+1 ≤ w̃t+1 ≤ wt+1 + ϵ | ŵt+1 = w)

ϵ

= lim
ϵ→0

P [wt+1 − h(w) ≤ w̃t+1 − h (ŵt+1) ≤ wt+1 − h(w) + ϵ | ŵt+1 = w]

ϵ

= lim
ϵ→0

P [wt+1 − h(w) ≤ Rt ≤ wt+1 − h(w) + ϵ | ŵt+1 = w]

ϵ

= lim
ϵ→0

P [wt+1 − h(w) ≤ Rt ≤ wt+1 − h(w) + ϵ]

ϵ
⇒ Lemma (3.3)

= lim
ϵ→0

FRt
[wt+1 − h(w) + ϵ]− FRt

[wt+1 − h(w)]

ϵ
= fRt

[wt+1 − h(w)] .

(18)

The first two steps apply the definition of the probability density function (PDF), which is the deriva-
tive of the cumulative distribution function (CDF). The third and fourth steps use a change of vari-
ables to express the PDF in terms of the difference between the observed and predicted values. The
fifth step applies the independence Lemma (3.3) to simplify the conditional probability. The sixth
step calculates the limit to arrive at the PDF of the observation process. As a consequence of com-
bining the prediction and observation distributions, a fused model can be obtained, which can be
described by its own probability density function (PDF) as:
f+
wt+1

(w) = ηt ·fw̃t+1|ŵt+1
(w̃t+1 | ŵt+1) ·f−

ŵt+1
(w) = ηt ·fRt [w̃t+1 − h(ŵt+1)] ·f−

ŵt+1
(w), (19)

where

ηt =

[∫ +∞

−∞
fw̃t+1|ŵt+1

(
w̃t+1 | ŵt+1

)
f
−
ŵt+1

(w)dw

]−1

=

{∫ +∞

−∞
fRt

[
w̃t+1 − h(ŵt+1)

]
f
−
ŵt+1

(w)dw

}−1

. (20)

The PDF of the fused model is obtained by multiplying the PDFs of the prediction and observation
processes, normalized by a factor ηt. The process of updating the fused model, also known as the
Bayesian filter, can be summarized in the following steps:

f+
wt
(w)

predict
=⇒ f−

ŵt+1
(w) =

∫ +∞

−∞
fQt

[w − f(v)]f+
wt
(v)dv

observe
=⇒ f+

wt+1
(w) = ηt · fRt

[wt+1 − h(w)] · f−
ŵt+1

(w),

(21)

where ηt =
{∫ +∞

−∞ fRt
[w̃t+1 − h(ŵt+1)] f

−
ŵt+1

(w)dw
}−1

. The fused model combines the predic-
tion and observation distributions, and it describes the sequential steps of the Bayesian filter: starting
with the PDF at time t, a prediction is made for the PDF at time t+1, and then this prediction is up-
dated based on the observation to obtain the PDF at time t+1. The final estimation of the parameter
can be obtained as a result of these update steps and can be represented as:

ŵt+1 = E
[
f+
wk+1

(w)
]
=

∫ +∞

−∞
wf+

wk+1
(w)dw, (22)

which is done by calculating the expected value of the PDF at time t + 1. This is performed by
multiplying the parameter w by its probability density and integrating over all possible values of w.
The integral provides a single, average value for w weighted by its probability density, which serves
as the final estimate of the parameter.
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A.5.2 FEDEVE
In this section, we delve into the derivation of the FEDEVE algorithm using the Bayesian filter. The
model update process within the FEDEVE algorithm is outlined as follows: Firstly, we calculate the
predictive value of the model’s parameters (ŵt+1) at the next time step using the current parameters
(wt) and the step-size scaled momentum (ηgMt):

ŵt+1 = wt − ηgMt, (23)
The inverse of the variance at time t + 1 (σ̂2

t+1) is determined as the sum of the predicted variance
at time t (σt) and the squared variance associated with the process noise (σ2

Qt
):

σ̂2
t+1 = σt + σ2

Qt
, (24)

The Kalman Gain (K) is computed as the ratio of the inverse of the variance at time t+1 to the sum
of the inverse of the variance at time t+ 1 and the variance of the observation noise (σ2

Rt
):

K =
σ̂2
t+1

σ̂2
t+1 + σ2

Rt

, (25)

The momentum for the next time step (Mt+1) is obtained by adjusting the current momentum (Mt)
based on the difference between the observed value (∆w̃t) and the current momentum:

Mt+1 = Mt +K(∆w̃t −Mt), (26)
The parameters (wt+1) for the next time step are calculated by subtracting the step-size scaled up-
dated momentum from the current parameters:

wt+1 = wt − ηgMt+1, (27)
Finally, the predicted variance for the next time step (σ2

t ) is computed by scaling the inverse of the
variance at time t+ 1 by (1−K):

σ2
t+1 = (1−K)σ̂2

t+1. (28)
A key assumption for this derivation is that the two random variables, A and B, follow a normal
distribution. Specifically, A is assumed to be distributed as N

(
µA, σ

2
A

)
, and B is assumed to be

distributed as N
(
µB , σ

2
B

)
. Given these assumptions, it can be mathematically proven that the sum

and the product of A and B also follow a normal distribution. In particular, we have:
A+B ∼ N

(
µA + µB , σ

2
A + σ2

B

)
, (29)

A×B ∼ N
(
µAσ

2
B + µBσ

2
A

σ2
A + σ2

B

,
σ2
Aσ

2
B

σ2
A + σ2

B

)
, (30)

In the context of the predict-observe framework and the Bayesian filter, we make a few key assump-
tions: firstly, wt is distributed as N

(
wt, σ

2
t

)
; secondly, Qt is distributed as N

(
0, σ2

Qt

)
; and finally,

the momentum Mt is considered a non-random variable. Specializing the prediction function as a
linear function, as shown in Equation (10), leads us to the following result:

ŵt+1 ∼ N
(
wt − ηgMt, σ

2
t + σ2

Qt

)
, (31)

This is essentially equivalent to the equations (12a) and (12b) in the model update process. More-
over, we set σ−2

t+1 = σ2
t + σ2

Qt
. The distribution of wt+1 is considered as the posterior, which is

calculated by applying the Bayesian formula and combining the product of the likelihood and the
prior. Here, the likelihood corresponds to the observation, and the prior corresponds to the predic-
tion. The observed w̃t+1 is distributed as follows:

w̃t+1 ∼ N
(
ŵt+1 − ηg∆w̃t, σ

2
Rt

)
. (32)

To calculate the product of the prior and the likelihood, we evaluate the proportionality coefficient

K =
σ̂2
t+1

σ̂2
t+1+σ2

Rt

. We can then assert that wt+1 also adheres to a normal distribution:

w̃t+1 ∼ N
(
wt − ηg((1−K)Mt +K∆w̃t), (1−K)σ̂2

t+1

)
, (33)

This result serves as a stepping stone for the subsequent round of computation. Consequently, the
variance of wt+1 is minimized as:

σ2
fused =

σ̂2
t+1σ

2
Rt

σ̂2
t+1 + σ2

Rt

. (34)

In summary, the above proof demonstrates how the Bayesian filter can be used to derive the model
update process of the FEDEVE algorithm. The predict-observe framework and the feature of normal
distribution are key elements in this derivation.
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A.6 PSEUDO-CODE

The pseudo-code of FEDEVE is depicted in Algorithm 1.

Algorithm 1 FEDEVE The selected clients are indexed by k; E is the number of local epochs, and
ηl is the local learning rate.
Server executes:

initialize w0

for each round t = 1, 2, . . . , T do
ŵt+1 ← wt − ηgMt as in Equation (12) in the main paper // predict
St ← randomly select |St| clients
for each client k ∈ St in parallel do

wk
t ← ClientUpdate(k, ŵt+1)

end for
∆w̃t =

∑
k∈St

pk
(
ŵt+1 − wk

t

)
// observe

Model update: executes Equations (13)-(17) in the main paper
end for

ClientUpdate(k,w): // run on client k
B ← (split local data into batches of size)
for each local epoch i from 1 to E do

for batch b ∈ B do
w ← w − ηlFk(w; b)

end for
end for
return w to server
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B EXPERIMENTAL DETAILS

Implementation. All the experiments are implemented using PyTorch, a popular machine learn-
ing library. We simulate the federated learning environment, including clients, and run all experi-
ments on a deep learning server equipped with an NVIDIA GTX 2080 ti GPU.

B.1 EVALUATION METRIC.

For the RS task, the model performance is evaluated using the following metrics: area under curve
(AUC), Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG). For the CV task, the
model performance is measured by the widely used Top-1 accuracy metric. In the experiments, for
the CTR (Click-Through Rate) task, the model performance is evaluated using the following metrics:
area under curve (AUC), Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG).

AUC =

∑
x0∈DT

∑
x1∈DF

1 [f (x1) < f (x0)]

|DT | |DF |
,

HitRate@K =
1

|U|
∑
u∈U

1 (Ru,gu ≤ K) ,

NDCG@K =
∑
u∈U

1

|U|
21(Ru,gu≤K) − 1

log2 (1 (Ru,gu ≤ K) + 1)
,

where U is the set of users, 1 is the indicator function, Ru,gu is the rank generated by the model
for the ground truth item gu, f is the model being evaluated, and DT and DF are the positive and
negative sample sets in the testing data, respectively. For the image classification task, the model
performance is measured by the widely used Top-1 accuracy metric.

B.2 DETAILED SETTINGS OF FIGURE 3 IN THE MAIN PAPER.

• Figure 3 (a). To provide a clearer illustration, we displayed the label distribution of the
10-digit classes, rather than the complete 62 classes in the original FEMNIST dataset, for
20 communication rounds.

• Figure 3 (b). 1) FEDAVG with iid data with no period or client drift: FEDAVG with iid
data, where training data is randomly partitioned among all clients, resulting in no period
or client drift; 2) FEDAVG with only period drift: non-iid data is initially partitioned, but
the training data of the sampled clients is randomly reshuffled and iid-distributed evenly
among clients in each round, resulting in period drift but no client drift; 3) FEDAVG with
only client drift: iid data is initially partitioned, but the training data of the sampled clients
in each round is re-partitioned in non-iid setting, resulting in client drift but no period drift;
4) FEDAVG with both period and client drift: FEDAVG with non-iid data, where data is
partitioned in non-iid setting, resulting in both period and client drift.

To make the results more convincing, we conducted more experiments on FEMNIST. Specifically,
we add experiments with various local epochs and data heterogeneity. Each experiment is repeated
5 times, and the results are shown as follow:

B.3 PERFORMACE OF FEDEVE ON FEMNIST WITH DIFFERENT LOCAL EPOCHS

Table 3: Results on FEMNIST with different α and E. The best method is highlighted in bold fonts.
Method Natural α = 1 α = 0.1 α = 0.01

E = 1 E = 3 E = 5 E = 1 E = 3 E = 5 E = 1 E = 3 E = 5 E = 1 E = 3 E = 5

FEDAVG 82.46 ± 0.18 81.95 ± 0.26 66.38 ± 30.63 83.64 ± 0.11 83.57 ± 0.12 83.38 ± 0.09 82.12 ± 0.23 81.91 ± 0.23 81.70 ± 0.26 74.51 ± 1.36 73.43 ± 1.73 72.67 ± 1.39
FEDAVGM 82.55 ± 0.43 81.99 ± 0.42 50.97 ± 37.43 83.67 ± 0.10 83.79 ± 0.11 83.65 ± 0.08 82.36 ± 0.49 82.23 ± 0.26 82.16 ± 0.34 75.18 ± 2.34 74.20 ± 2.81 73.79 ± 3.13
FEDPROX 82.43 ± 0.17 81.90 ± 0.27 51.07 ± 37.51 83.62 ± 0.11 83.52 ± 0.14 67.65 ± 31.26 82.17 ± 0.27 82.12 ± 0.19 81.94 ± 0.30 75.07 ± 1.19 74.38 ± 1.46 60.22 ± 27.56
SCAFFOLD 81.66 ± 0.28 81.08 ± 0.36 80.76 ± 0.30 83.18 ± 0.14 82.75 ± 0.16 82.46 ± 0.16 79.82 ± 0.42 79.00 ± 0.65 78.44 ± 0.70 5.13 ± 0.00 5.13 ± 0.00 5.13 ± 0.00
FEDOPT 5.13 ± 0.00 5.13 ± 0.00 5.13 ± 0.00 81.86 ± 0.38 35.90 ± 37.69 35.66 ± 37.39 78.13 ± 0.39 5.13 ± 0.00 5.13 ± 0.00 5.13 ± 0.00 5.13 ± 0.00 5.13 ± 0.00
FEDEVE 82.66 ± 0.19 82.20 ± 0.20 81.93 ± 0.16 83.81 ± 0.09 83.88 ± 0.08 83.72 ± 0.05 82.69 ± 0.31 82.66 ± 0.18 82.52 ± 0.19 75.99 ± 1.61 75.00 ± 2.24 74.56 ± 2.05

The table showcases the results on the FEMNIST dataset across various methods, specifically: FE-
DAVG , FEDAVGM , FEDPROX , SCAFFOLD , FEDOPT , and FEDEVE , with different settings of
parameters α and E. FEDEVE method stands out consistently as the superior approach across all
configurations. This consistent performance signifies that FEDEVE is a potent and reliable method
for the FEMNIST dataset across the tested configurations.
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Figure 5: Visualization of period drift with different α and E
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Figure 6: Accuracies with different α and E

The performance drop of SCAFFOLD in specific experiments may be attributed to two primary rea-
sons: Staleness of control variate: SCAFFOLD mandates that each client maintain a control variant.
However, given the large number of clients and the fact that only a limited subset is chosen for train-
ing during each communication round, most control variants remain outdated. As a result, they fail
to effectively correct the bias in local updates. This point was also reported in FedOpt (Reddi et al.,
2020). Excessiveness of correction: Upon detailed inspection of our experiments, we discerned that
the training of SCAFFOLD tends to fail when there exists a client with more substantial data than
others. This stems from the fact that the fixed batch size and training epoch will result in more
local updates in the clients with more data, but it will be corrected by the same control variant in
SCAFFOLD. Excessive corrections drive the model further from the optimal point, resulting in the
divergence of the model.
We reckon that the poor performances of FedOpt in some settings primarily result from period drift.
Period drift impedes FedOpt’s adaptivity across rounds. FedOpt tailors the learning rates of individ-
ual weights by accumulating past gradients’ squares. However, with the ever-shifting optimization
objectives in each communication round (period drift), these rate adjustments become misaligned
for subsequent updates, thereby skewing model training. It is validated in the experiments that Fe-
dOpt fails on FEMNIST with natural and heterogeneity, where period drift is more dominant (more
client number, more non-i.i.d. data).
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C GENERALIZATION BOUND

This Generalization bound is inspired by Sun et al. (2023).

C.1 THEOREMS

Theorem C.1 (On-average Algorithmic Stability). Suppose a federated learning algorithm A is
ϵ-on-averagely stable. Then,

ϵgen ≤ EA,S

[∣∣∣R(A(S))− R̂S(A(S))
∣∣∣] ≤ ϵ.

Theorem C.2 (Generalization Bound). Suppose Assumptions C.3-C.5 hold and ηl ≤ 1
LmK(t+1) .

Then,

ϵgen ≤ O
(

Lp

nLm

)[
TΣ+

(
Lm∆0Σ

2

nK

) 1
4

T
3
4 + (Lm∆0)

1
2 T

1
2

]
.

C.2 ASSUMPTIONS

Assumption C.3 (Lipschitz Continuity). The loss function l(·, z) is Lp-Lipschitz continous, that is,
|l(w; z)− l(w′; z)| ≤ Lp∥w−w′∥, and is Lm-smooth for any z, that is, ∥∇l(w; z)−∇l(w′; z)∥ ≤
Lm∥w − w′∥ for any z, w,w′.
Assumption C.4 (Bounded Variance). The function Fi have σl-bounded (local) variance i.e.,
E∥gi(w) − ∇Ri(w)∥ ≤ σl for all w ∈ Rd, j ∈ [d] and i ∈ [m]. Furthermore, we assume the
(global) variance is bounded, E∥Ri(w)−∇R(w)∥ ≤ σg for all x ∈ Rd and j ∈ [d].
Assumption C.5 (Bounded Gradients). The function fi(x, z) have G-bounded gradients i.e., for
any i ∈ [m], x ∈ Rd and z ∈ Z we have |[∇Ri(x, z)]j | ≤ G for all j ∈ [d].

C.3 LEMMAS

Lemma C.6 (Bounded Local Updates). Suppose Assumptions C.3-C.5 hold. For any step-size, we
can bound the local updates as

E∥wi,k − wt∥ ≤
(1 + ηlLm)k − 1

Lm
(E∥∇R(wt)∥+ σl + σg) .

where wi,k is the model parameters of client i at k-th local updates.
Lemma C.7 (Bounded Local Gradients). Given Assumptions C.3-C.5. For any step-size, we can
bound the local gradients as

E∥gi(wi,k)∥ ≤ (1 + ηlLm)k (E∥∇R(wt)∥+ σl + σg) ,

where gi(·) is the sampled gradient of client i.
Lemma C.8 (Bounded Global Model with Sample Perturbation). Given Assumptions C.3-C.5. For
any step-size, we can bound the local gradients as

E∥wT − w′
T ∥ ≤

T−1∑
t=0

2eηlK(t+1)Lm

nLm
(E∥∇R(wt)∥+ σl + σg) ,

where w′
T is the model parameters with sample perturbation at T -th communication rounds.

C.4 PROOFS

C.4.1 PROOF OF LEMMA C.6
Proof. Bounding Local Updates:

E ∥wi,k+1 − wt∥
= E∥wi,k − ηlgi(wi,k)− wt∥
≤ E∥wi,k − wt − ηl(gi(wi,k)− gi(wt))∥+ ηlE∥gi(wt)∥
≤ (1 + ηlLm)E∥wi,k − wt∥+ ηlE∥gi(wt)∥
≤ (1 + ηlLm)E∥wi,k − wt∥+ ηl(E∥gi(wt)−∇Ri(wt)∥+ E∥∇Ri(wt)−∇R(wt)∥+ E∥∇R(wt)∥)
≤ (1 + ηlLm)E∥wi,k − wt∥+ ηl(σl + σg + E∥∇R(wt)∥),

unrolling the above and noting wi,0 = wt yields

E∥wi,k − wt∥ ≤
(1 + ηlLm)k − 1

Lm
(E∥∇R(wt)∥+ σl + σg) .
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C.4.2 PROOF OF LEMMA C.7
Proof. Bounding Local Gradients:

E∥gi(wi,k)∥ = E∥gi(wi,k)−∇Ri(wi,k) +∇Ri(wi,k)−∇R(wt) +∇R(wt)∥
≤ E∥gi(wi,k)−∇Ri(wi,k)∥+ E∥∇Ri(wi,k)−∇R(wt)∥+ E∥∇R(wt)∥
≤ σl + LmE∥wi,k − wt∥+ E∥∇R(wt),

based on Lemma C.6, we obtain:
≤ σl + E∥∇R(wt)

+ ((1 + ηlLm)k − 1) (E∥∇R(wt)∥+ σl + σg)

≤ (1 + ηlLm)k (E∥∇R(wt)∥+ σl + σg) .

C.4.3 PROOF OF LEMMA C.8
Definition C.9 (Sample Perturbation). Given a global dataset S =

⋃m
l=1 Sl, where Sl is the

local dataset of the l-th client with Sl = {zl,1, . . . , zl,nl
},∀l ∈ [m], another global dataset

is said to be neighboring to S for client i, denoted by S(i), if S(i) :=
⋃

l ̸=i Sl ∪ S ′i, where
S ′i = {zi,1, . . . , zi,j−1, z

′
i,j , zi,j+1, . . . , zi,ni

} with z′i,j ∼ Pi, for some j ∈ [ni]. And we call
z′i,j the perturbed sample in S(i).
Definition C.10 (On-average Stability for Federated Learning). A federated learning algorithm A
is said to have ϵ-on-average stability if given any two neighboring datasets S and S(i), then

max
j∈[ni]

EA,S,z′
i,j
|l(A(S); z′i,j)− l(A(S(i)); z′i,j)| ≤ ϵ, ∀i ∈ [m],

where z′i,j is the perturbed sample in S(i).

Proof. Given time index t and for client j with j ̸= i, we have

E∥wj,k+1 − w′
j,k+1∥ = E∥wj,k − w′

j,k − ηl(gj(wj,k)− gj(w
′
j,k))∥

≤ (1 + ηlLm)E∥wj,k − w′
j,k∥.

And unrolling it gives

E∥wj,K − w′
j,K∥ ≤ eηlKLmE∥wt − w′

t∥, ∀j ̸= i,

since 1 + x < ex. For client i, there are two cases to consider. In the first case, SGD selects
non-perturbed samples in S and S(i), which happens with probability 1− 1/ni. Then, we have

∥wi,k+1 − w′
i,k+1∥ ≤ (1 + ηlLm)∥wi,k − w′

i,k∥.

In the second case, SGD encounters the perturbed sample at time step k, which happens with prob-
ability 1/ni. Then, we have

∥wi,k+1 − w′
i,k+1∥ = ∥wi,k − w′

i,k − ηl(gi(wi,k)− g′i(w
′
i,k))∥

≤ ∥wi,k − w′
i,k − ηl(gi(wi,k)− gi(w

′
i,k))∥+ ηl∥gi(w′

i,k)− g′i(w
′
i,k)∥

≤ (1 + ηlLm)∥wi,k − w′
i,k∥+ ηl∥gi(w′

i,k)− g′i(w
′
i,k)∥.

Combining these two cases for client i we have

E∥wi,k+1 − w′
i,k+1∥ ≤ (1 + ηlLm)E∥wi,k − w′

i,k∥+
ηl
ni

E∥gi(w′
i,k)− g′i(w

′
i,k)∥

≤ (1 + ηlLm)E∥wi,k − w′
i,k∥+

2ηl
ni

E∥gi(wi,k)∥,

based on Lemma C.7, we obtain:
≤ (1 + ηlLm)E∥wi,k − w′

i,k∥

+
2ηl
ni

eηlkLm (E∥∇R(wt)∥+ σl + σg) ,
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then unrolling it gives

E ∥wi,K − w′
i,K∥

≤ eηlKLmE∥wt − w′
t∥

+
2eηlKLm

niLm
(E∥∇R(wt)∥+ σl + σg) ∀j = i. (35)

Combines 35 and 35 we have

E∥wt+1 − w′
t+1∥ ≤

m∑
i=1

piE∥wi,K − w′
i,K∥

≤ eηlKLmE∥wt − w′
t∥+

2eηlKLm

nLm
(E∥∇R(wt)∥+ σl + σg)

where we also use pi = ni/n in the last step. Further, unrolling the above over t and noting
w0 = w′

0, we obtain

E∥wT − w′
T ∥ ≤

T−1∑
t=0

2eηlK(t+1)Lm

nLm
(E∥∇R(wt)∥+ σl + σg) .

C.4.4 PROOF OF THEOREM C.2
Proof. According to the fact that:(

T−1∑
t=0

E∥∇R(wt)∥

)2

≤ T

T−1∑
t=0

(
E∥∇R(wt)∥

)2 ≤ T

T−1∑
t=0

E∥∇R(wt)∥2,

where the second inequality follows Jensen’s inequality, and the convergence analysis of FedAvg
with momentum:

1

T

T−1∑
r=0

E∥∇R(wt)∥2 ≤ O

(√
Lm∆0Σ2

nKT
+

Lm∆0

T

)
,

where Σ = σl + σg , ∆0 := E[R(w0)−R(w∗)]. The generalization bound is:

ϵgen ≤ LpE∥wT − w′
T ∥

≤ Lp

T−1∑
t=0

2eηlK(t+1)Lm

nLm
(E∥∇R(wt)∥+ σl + σg) ,

when ηl <
1

K(t+1)Lm
, we obtain:

≤ O
(

Lp

nLm

)[
TΣ+

(
Lm∆0Σ

2

nK

) 1
4

T
3
4 + (Lm∆0)

1
2 T

1
2

]
,

where Σ = σl + σg , ∆0 := E[R(w0)−R(w∗)].
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