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ABSTRACT

Designing expressive Graph Neural Networks (GNNs) is a fundamental topic in
the graph learning community. So far, GNN expressiveness has been primarily
assessed via the Weisfeiler-Lehman (WL) hierarchy. However, such an expressiv-
ity measure has notable limitations: it is inherently coarse, qualitative, and may
not well reflect practical requirements (e.g., the ability to encode substructures).
In this paper, we introduce a novel framework for quantitatively studying the ex-
pressiveness of GNN architectures, addressing all the above limitations. Specif-
ically, we identify a fundamental expressivity measure termed homomorphism
expressivity, which quantifies the ability of GNN models to count graphs under
homomorphism. Homomorphism expressivity offers a complete and practical as-
sessment tool: the completeness enables direct expressivity comparisons between
GNN models, while the practicality allows for understanding concrete GNN abili-
ties such as subgraph counting. By examining four classes of prominent GNNs as
case studies, we derive simple, unified, and elegant descriptions of their homomor-
phism expressivity for both invariant and equivariant settings. Our results provide
novel insights into a series of previous work, unify the landscape of different sub-
areas in the community, and settle several open questions. Empirically, extensive
experiments on both synthetic and real-world tasks verify our theory, showing that
the practical performance of GNN models aligns well with the proposed metric.

1 INTRODUCTION

Owing to the ubiquity of graph-structured data in numerous applications, Graph Neural Networks
(GNNs) have achieved enormous success in the field of machine learning over the past few years.
However, one of the most prominent drawbacks of popular GNNs lies in the limited expressive
power. In particular, Morris et al. (2019); Xu et al. (2019) showed that Message Passing GNNs
(MPNNs) are intrinsically bounded by the 1-dimensional Weisfeiler-Lehman test (1-WL) in distin-
guishing non-isomorphic graphs (Weisfeiler & Lehman, 1968). Since then, the Weisfeiler-Lehman
hierarchy has become a yardstick to measure the expressiveness and guide designing more powerful
GNN architectures (see Appendix A.1 for an overview of representative approaches in this area).

However, as more and more architectures have been proposed, the limitations of the WL hierarchy
are becoming increasingly evident. First, the WL hierarchy is arguably too coarse to evaluate the
expressive power of practical GNN models (Morris et al., 2022; Puny et al., 2023). On one hand,
architectures inspired by higher-order WL tests (Maron et al., 2019b;a; Morris et al., 2019) often
suffer from substantial computation/memory costs. On the other hand, most practical and efficient
GNNs are only proved to be strictly more expressive than 1-WL by leveraging toy example graphs
(e.g., Zhang & Li, 2021; Bevilacqua et al., 2022; Wijesinghe & Wang, 2022a). Such a qualitative
characterization may provide little insight into the models’ true expressiveness. Besides, the ex-
pressive power brought from the WL hierarchy often does not align well with the one required in
practice (Veličković, 2022). Hence, how to study the expressiveness of GNN models in a quantita-
tive, systematic, and practical way remains a central research direction for the GNN community.
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To address the above limitations, this paper takes a different approach by studying GNN expressivity
from the following practical angle: What structural information can a GNN model encode? Since
the ability to detect/count graph substructures is crucial in various real-world applications (Chen
et al., 2020; Huang et al., 2023; Tahmasebi et al., 2023), many expressive GNNs have been proposed
based on preprocessing substructure information (Bouritsas et al., 2022; Barceló et al., 2021; Bodnar
et al., 2021b;a). However, instead of augmenting GNNs by manually preprocessed (task-specific)
substructures, it is nowadays more desirable to design generic, domain-agnostic GNNs that can end-
to-end learn different structural information suitable for diverse applications. This naturally gives
rise to the fundamental question of characterizing the complete set of substructures prevalent GNN
models can encode. Unfortunately, this problem is widely recognized as challenging even when
examining simple structures like cycles (Fürer, 2017; Arvind et al., 2020; Huang et al., 2023).

Our contributions. Motivated by GNNs’ ability to encode substructures, this paper presents a
novel framework for quantitatively analyzing the expressive power of GNN models. Our approach
is rooted in a critical discovery: given a GNN model M , the model’s output representation for any
graph G can be fully determined by the structural information of G over some pattern family FM ,
where FM corresponds to precisely all (and only) those substructures that can be “encoded” by
model M . In this way, the set FM can be naturally viewed as an expressivity description of M :
after identifying FM for each model M , the expressivity of different models can then be qualita-
tively/quantitatively compared by simply looking at their set inclusion relation and set difference.

The crux here is to define an appropriate notion of “encodability” so that FM can admit a simple
description. We identify that a good candidate is the homomorphism expressivity: i.e., FM consists
of all substructures that can be counted by model M under homomorphism (see Section 2 for a
formal definition). Homomorphism is a foundational concept in graph theory (Lovász, 2012) and
is linked to many important topics such as graph coloring, graph matching, and subgraph counting.
With this concept, we are able to give complete, unified, and surprisingly elegant descriptions of the
pattern family FM for a wide range of mainstream GNN architectures listed below:

• MPNN (e.g., Gilmer et al., 2017; Hamilton et al., 2017; Kipf & Welling, 2017; Xu et al., 2019);
• Subgraph GNN (You et al., 2021; Zhang & Li, 2021; Bevilacqua et al., 2022; Qian et al., 2022);
• Local GNN (Morris et al., 2020; 2022; Zhang et al., 2023a; Frasca et al., 2022);
• Folklore-type GNN (Maron et al., 2019a; Zhang et al., 2023a; Feng et al., 2023).

Technically, the descriptions are based on a novel application and extension of the concept of nested
ear decomposition (NED) in graph theory (Eppstein, 1992). We prove that: (i) (necessity) each
model M above can count (under homomorphism) a specific family of patterns FM , characterized
by a specific type of NED; (ii) (sufficiency) any pattern F /∈ FM cannot be counted under homomor-
phism by model M ; (iii) (completeness) for any graph, information collected from the homomor-
phism count in pattern family FM determines its representation computed by model M . Therefore,
homomorphism expressivity is well-defined and is a complete expressivity measure for GNN models.

Our theory can be generalized in various aspects. One significant extension is the node-level and
edge-level expressivity for equivariant GNNs (Azizian & Lelarge, 2021; Geerts & Reutter, 2022),
which can be naturally tackled by a fine-grained analysis of NED. As another non-trivial generaliza-
tion, we study higher-order GNN variants for several of the above architectures and derive results
by defining higher-order NED. Both aspects demonstrate the flexibility of our proposed framework,
suggesting it as a general recipe for analyzing future architectures.

Implications. Homomorphism expressivity serves as a powerful toolbox for bridging different sub-
areas in the GNN community, providing fresh understandings of a series of known results that were
previously proved in complex ways, and answering a set of unresolved open problems. First, our
results can readily establish a complete expressiveness hierarchy among all the aforementioned ar-
chitectures and their higher-order extensions. This recovers and extends a number of results in
Morris et al. (2020); Qian et al. (2022); Zhang et al. (2023a); Frasca et al. (2022) and answers their
open problems (Section 4.1). In fact, our results go far beyond revealing the expressivity gap be-
tween models: we essentially answer how large the gap is and establish a systematic approach to
constructing counterexample graphs. Second, based on the relation between homomorphism and
subgraph count, we are able to characterize the subgraph counting power of GNN models for all
patterns at graph, node, and edge levels, significantly advancing an open direction initiated in Fürer
(2017); Arvind et al. (2020) (Section 4.2). As a special case, our results extend recent findings in
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Huang et al. (2023) about the cycle counting power of GNN models, highlighting that Local 2-GNN
can already subgraph-count all cycles/paths within 7 nodes (even at edge-level). Third, our results
provide a new toolbox for studying the polynomial expressivity proposed recently in Puny et al.
(2023), extending it to various practical architectures and answering an open question (Section 4.3).
Empirically, an extensive set of experiments verifies our theory, showing that the homomorphism
expressivity of different models matches well with their practical performance in diverse tasks.

2 PRELIMINARY

Notations. We use { } and {{ }} to denote sets and multisets, respectively. Given a (multi)set S,
its cardinality is denoted as |S|. In this paper, we consider finite, undirected, vertex-labeled graphs
with no self-loops or repeated edges. Let G = (VG, EG, ℓG) be a graph with vertex set VG, edge
set EG, and label function ℓG, where each edge in EG is a set {u, v} ⊂ VG of cardinality two, and
ℓG(u) is the label of vertex u. The rooted graph Gu is a graph obtained from G by marking the
special vertex u ∈ VG; we can similarly consider marking two special vertices u, v ∈ VG (denote
by Guv). The neighbors of vertex u is denoted as NG(u) := {v ∈ VG : {u, v} ∈ EG}. A graph
F = (VF , EF , ℓF ) is a subgraph of G if VF ⊂ VG, EF ⊂ EG, and ℓF (u) = ℓG(u) for all u ∈ VF .
A simple path P in G is an edge set of the form {{w0, w1}, · · · , {wk−1, wk}} ⊂ EG where wi ̸= wj

for all i ̸= j. Here, w0 and wk are called endpoints of P and other vertices are called internal points.

Homomorphism, isomorphism, and subgraph count. Given two graphs F and G, a ho-
momorphism from F to G is a mapping f : VF → VG that preserves edges and labels, i.e.,
ℓF (u) = ℓG(f(u)) for all u ∈ VF , and {f(u), f(v)} ∈ EG for all {u, v} ∈ EF . When the mapping
f exists, we say F is homomorphic to G. We denote by Hom(F,G) the set of all homomorphisms
from F to G and define hom(F,G) = |Hom(F,G)|, which counts the number of homomorphisms
for pattern F in graph G. If f is further surjective on both vertices and edges, we call G a
homomorphic image of F . Denote by Spasm(F ) the set of all homomorphic images of F , called
the spasm of F . For rooted graphs, homomorphism should additionally preserve vertex marking:
i.e., if f is a homomorphism from Fuv to Gxy , then f(u) = x and f(v) = y.

A mapping f : VF → VG is called an isomorphism if f is a bijection and both f and its inverse f−1

are homomorphisms. We denote by Sub(F,G) the set of all subgraphs of G isomorphic to F and
define sub(F,G) = |Sub(F,G)|, which counts the number of patterns F occurred in graph G as a
subgraph. We note that a similar definition holds for rooted graphs (e.g., sub(Fuv, Gxy)).

Graph neural networks. GNNs can be generally described as graph functions that are invariant
under isomorphism. To achieve such invariance, most popular GNN models follow a color refine-
ment (CR) paradigm: they maintain a feature representation (color) for each vertex or vertex tuples
and iteratively refine these features through equivariant aggregation layers. Finally, there is a global
pooling layer to merge all features and obtain the graph representation. Below, we separately define
the corresponding CR algorithms for four mainstream classes of GNNs studied in this paper.

• MPNN. Given a graph G, MPNN maintains a color χMP
G (u) for each vertex u ∈ VG. Initially,

the color only depends on the vertex label, i.e., χMP,(0)
G (u) = ℓG(u). Then, in each iteration,

the color is refined by the following update formula (where hash is a perfect hash function):

χ
MP,(t+1)
G (u) = hash

(
χ
MP,(t)
G (u), {{χMP,(t)

G (v) : v ∈ NG(u)}}
)
. (1)

After a sufficient number of iterations, the colors become stable. We denote by χMP
G (u) the

stable color of u, which is also the node feature of u computed by the MPNN. The graph
representation is defined as the multiset of node colors, i.e., χMP

G (G) = {{χMP
G (u) : u ∈ VG}}.

• Subgraph GNN. It treats a graph G as a set of subgraphs {{Gu : u ∈ VG}}, each obtained
from G by marking a special vertex u ∈ VG. Subgraph GNN maintains a color χSub

G (u, v) for
each vertex v in graph Gu. Initially, χSub,(0)

G (u, v) = (ℓG(v), I[u = v]), where the latter term
distinguishes the special mark. It then runs MPNNs independently on each graph Gu:

χ
Sub,(t+1)
G (u, v) = hash

(
χ
Sub,(t)
G (u, v), {{χSub,(t)

G (u,w) : w ∈ NG(v)}}
)
. (2)

Denote the stable color of (u, v) as χSub
G (u, v). The node feature of u computed by Subgraph

GNN is defined by merging all colors in Gu, i.e., χSub
G (u) := hash

(
{{χSub

G (u, v) : v ∈ VG}}
)
.

Finally, the graph representation is defined as χSub
G (G) = {{χSub

G (u) : u ∈ VG}}.
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• Local GNN. Inspired by the k-WL test (Grohe, 2017), Local k-GNN is defined by replacing
all global aggregations in k-WL by sparse ones that only aggregate local neighbors, yielding
a much more efficient CR algorithm. As an example, the iteration of Local 2-GNN has the
following form and enjoys the same computational complexity as a Subgraph GNN.

χ
L,(t+1)
G (u, v)=hash

(
χ
L,(t)
G (u, v), {{χL,(t)

G (w, v) :w∈NG(u)}}, {{χL,(t)
G (u,w) :w∈NG(v)}}

)
.

(3)
Initially, χL,(0)

G (u, v) = (ℓG(u), ℓG(v), I[u = v], I[{u, v} ∈ EG]), which is called the isomor-
phism type of vertex pair (u, v)). We similarly denote the stable color as χL

G(u, v) and define
the node feature χL

G(u) and graph representation χL
G(G) as in the Subgraph GNN.

• Folklore-type GNN. The Folklore GNN (FGNN) is inspired by the standard k-FWL test (Cai
et al., 1992). As an example, the iteration formula of 2-FGNN is written as follows:

χ
F,(t+1)
G (u, v) = hash

(
χ
F,(t)
G (u, v), {{(χF,(t)

G (w, v), χ
F,(t)
G (u,w)) : w ∈ VG}}

)
. (4)

One can similarly consider the more efficient Local 2-FGNN by only aggregating local neigh-
bors, which has the same computational complexity as Local 2-GNN and Subgraph GNN:

χ
LF,(t+1)
G (u, v)=hash

(
χ
LF,(t)
G (u, v), {{(χLF,(t)

G (w, v), χ
LF,(t)
G (u,w)) :w∈NG(u)∪NG(v)}}

)
.

(5)The stable color, node feature, and graph representation can be similarly defined.

Finally, we note that the latter three types of GNNs can be naturally generalized into higher-order
variants. We give a general definition of all these architectures in Appendix E.1. For the base case
of k = 1, Subgraph (k−1)-GNN, Local k-GNN, and Local k-FGNN all reduce to the MPNN.

3 HOMOMORPHISM EXPRESSIVITY OF GRAPH NEURAL NETWORKS

3.1 HOMOMORPHISM EXPRESSIVITY

Given a GNN model M and a substructure F , we say M can count graph F under homomorphism if,
for any graph G, the graph representation χM

G (G) determines the homomorphism count hom(F,G).
In other words, χM

G (G) = χM
H (H) implies hom(F,G) = hom(F,H) for any graphs G,H . The

central question studied in this paper is, what substructures F can a GNN model M count under
homomorphism? This gives rise to the notion of homomorphism expressivity defined below:
Definition 3.1. The homomorphism expressivity of a GNN model M , denoted by FM , is a family
of (labeled) graphs satisfying the following conditions1:

a) For any two graphs G,H , χM
G (G) = χM

H (H) iff hom(F,G) = hom(F,H) for all F ∈ FM ;
b) FM is maximal, i.e., for any graph F /∈ FM , there exists a pair of graphs G,H such that

χM
G (G) = χM

H (H) and hom(F,G) ̸= hom(F,H).
Example 3.2. As a simple example, consider a maximally expressive GNN M that can solve the
graph isomorphism problem, i.e., it computes the same representation for two graphs iff they are
isomorphic. Then, FM contains all graphs. This is a classic result proved in Lovász (1967).

The significance of homomorphism expressivity can be justified in the following aspects. First, it is
a complete expressivity measure. Based on item (a), the homomorphism count within FM essen-
tially captures all information embedded in the graph representation computed by model M . This
contrasts with previously studied metrics such as the ability to compute biconnectivity properties
(Zhang et al., 2023b) or count cycles (Huang et al., 2023), which only reflects restricted aspects of
expressivity. Second, homomorphism expressivity is a quantitative measure and is much finer than
qualitative expressivity results obtained from the graph isomorphism test. Specifically, by item (a), a
GNN model M1 is more expressive than another model M2 in distinguishing non-isomorphic graphs
iff FM2 ⊂ FM1 . Furthermore, by item (b), M1 is strictly more expressive than M2 iff FM2 ⊊ FM1 ,
and the expressivity gap can be quantitatively understood via the set difference FM1\FM2 .

Consequently, by deriving which graphs are encompassed in the graph family FM , homomorphism
expressivity provides a novel way to analyze and compare the expressivity of GNN models. In the
next subsection, we will give exact characterizations of FM for all models M defined in Section 2.

1While homomorphism expressivity exists for all common GNNs such as the ones in Section 2, we note
that it may not be well-defined for certain pathological GNNs. See Appendix F.1 for a deep discussion on it.
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(a) Illustration of NED (b) Examples of endpoint-shared/strong/almost-strong/general NED

Figure 1: Illustration of NED and its variants. The number j next to each edge indicates that the edge
belongs to the ear Pj . Different colors represent different ears. See Figure 9 for more examples.

3.2 MAIN RESULTS

To derive our main results, we leverage a concept in graph theory known as nested ear decomposition
(NED), which is originally introduced in Eppstein (1992). Here, we adapt the definition as follows:
Definition 3.3. Given a graph G, a NED P is a partition of the edge set EG into a sequence of
simple paths P1, · · · , Pm (called ears), which satisfies the following conditions:

• Any two ears Pi and Pj with indices 1 ≤ i < j ≤ c do not intersect, where c is the number of
connected components of G.

• For each ear Pj with index j > c, there is an ear Pi with index 1 ≤ i < j such that one or two
endpoints of Pj lie in ear Pi (we say Pj is nested on Pi). Moreover, except for the endpoints
lying in ear Pi, no other vertices in Pj are in any previous ear Pk for 1 ≤ k < j. If both
endpoints of Pj lie in Pi, the subpath in Pi that shares the endpoints of Pj is called the nested
interval of Pj in Pi, denoted as I(Pj) ⊂ Pi. If only one endpoint lies in Pi, define I(Pj) = ∅.

• For all ears Pj , Pk with c < j < k ≤ m, either I(Pj) ∩ I(Pk) = ∅ or I(Pj) ⊂ I(Pk).

Intuitively, Definition 3.3 states that the relation between different ears forms a forest, in that each
ear is nested on its parent. Moreover, the nested intervals either do not intersect or have inclusion
relations for different children of the same parent ear. We give illustrations of NED in Figure 1.

In this paper, we considerably extend the concept of NED to several variants defined below:

• Endpoint-shared NED: a NED is called endpoint-shared if all ears with non-empty nested
intervals share a common endpoint (see Figure 1(b,1)).

• Strong NED: a NED is called strong if for any two children Pj , Pk (j < k) nested on the
same parent ear, we have I(Pj) ⊂ I(Pk) (see Figure 1(b,2)).

• Almost-strong NED: a NED is called almost-strong if for any children Pj , Pk (j < k) nested
on the same parent ear and |I(Pj)| > 1 , we have I(Pj) ⊂ I(Pk) (see Figure 1(b,3)).

We are now ready to present our main results:
Theorem 3.4. For all GNN models M defined in Section 2, the graph family FM satisfying Defini-
tion 3.1 exists (and is unique). Moreover, each FM can be separately described below:

• MPNN: FMP = {F : F is a forest};
• Subgraph GNN: FSub = {F : F has an endpoint-shared NED};
• Local 2-GNN: FL = {F : F has a strong NED};
• Local 2-FGNN: FLF = {F : F has an almost-strong NED};
• 2-FGNN: FF = {F : F has a NED}.

Theorem 3.4 gives a unified description of the homomorphism expressivity for all popular GNN
models defined in Section 2. Despite the elegant conclusion, the proof process is actually involved
and represents a major technical contribution, so we present a proof sketch below. Our proof is
divided into three parts, presented in Appendices C.2 to C.4. First, we show the existence of FM

for each model M based on a beautiful theory developed in Dell et al. (2018). Using the technique
of unfolding tree, we prove that FM at least contains all graphs F that allow a specific type of tree
decomposition (Diestel, 2017), and the homomorphism information of these graphs determines the
representation of any graph G computed by M (i.e., Definition 3.1(a) holds). However, characteriz-
ing FM in terms of tree decomposition is sophisticated and not intuitive for most models M . In the
next step, we give an equivalent description of FM based on novel extensions of NED proposed in
Definition 3.3, which is simpler and more elegant. In the last step, we prove that FM does not con-
tain other graphs. This is achieved by building non-trivial relations between three distinct theoretical
tools: tree decomposition, pebble game (Cai et al., 1992), and Fürer graph (Fürer, 2001). Through a
fine-grained analysis of the Fürer graphs expanded by F /∈ FM (see Theorems C.47 and C.53), we
show they are precisely a pair of graphs satisfying Definition 3.1(b), thus concluding the proof.
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Discussions with Dvořák (2010); Dell et al. (2018). Our work significantly extends a beautiful
theory developed in Dvořák (2010); Dell et al. (2018), which showed that a pair of graphs G, H
are indistinguishable by 1-WL iff hom(F,G) = hom(F,H) for all trees F , and more generally,
they are indistinguishable by k-FWL iff hom(F,G) = hom(F,H) for all graphs F of bounded
treewidth k. In this paper, we successfully generalize these results to a broad range of practical
GNN models. Moreover, two distinct contributions are worth discussing. First, we highlight a key
insight that homomorphism can serve as a fundamental expressivity measure, which has far-reaching
consequences as will be elaborated in Section 4. To show that FM is a valid expressivity measure,
we prove an extra and non-trivial result that FM is maximal (Definition 3.1(b)). Without this crucial
property, FM1 ⊋ FM2 will not necessarily mean that model M1 is strictly more expressive than M2,
thus preventing any quantitative comparison between models. Second, Dell et al. (2018) leveraged
treewidth to describe results, which, unfortunately, cannot be applied to most GNN models studied
here. Instead, we resort to the novel concept of NED, by which we successfully derive unified and
elegant descriptions for all models. Moreover, as will be shown later, NED is quite flexible and can
be naturally generalized to node/edge-level expressivity, which is not studied in prior work.

Finally, we remark that one can derive an equivalent (perhaps simpler) description of FSub, based
on the fact that a graph F has an endpoint-shared NED iff F becomes a forest when deleting the
shared endpoint. Formally, denoting by F\{u} the induced subgraph of F over VF \{u}, we have
Corollary 3.5. FSub = {F : ∃u ∈ VF s.t. F\{u} is a forest}.

3.3 EXTENDING TO NODE/EDGE-LEVEL EXPRESSIVITY

So far, this paper mainly focuses on the graph-level expressivity, i.e., what information is encoded in
the graph representation. In this subsection, we extend all results in Theorem 3.4 to the more fine-
grained node/edge-level expressivity by answering what information is encoded in the node/edge
features of a GNN (i.e., χM

G (u) or χM
G (u, v) in Section 2). This yields the following definition:

Definition 3.6. The node-level homomorphism expressivity of a GNN model M , denoted by FM
n ,

is a family of connected rooted graphs satisfying the following conditions:
a) For any connected graphs G,H and vertices u ∈ VG, v ∈ VH , χM

G (u) = χM
H (v) iff

hom(Fw, Gu) = hom(Fw, Hv) for all Fw ∈ FM
n ;

b) For any connected rooted graph Fw /∈ FM
n , there exists a pair of connected graphs G,H and

vertices u ∈ VG, v ∈ VH such that χM
G (u) = χM

H (v) and hom(Fw, Gu) ̸= hom(Fw, Hv).

One can similarly define the edge-level homomorphism expressivity FM
e to be a family of connected

rooted graphs, each marking two special vertices (we omit the definition for clarity). The following
result exactly characterizes FM

n and FM
e for all models M considered in this paper:

Theorem 3.7. For all model M defined in Section 2, FM
n and FM

e (except MPNN) exist. Moreover,

• MPNN: FMP
n = {Fw : F is a tree};

• Subgraph GNN:
FSub

n = {Fw : F has a NED with shared endpoint w} = {Fw : F\{w} is a forest},
FSub

e = {Fwx :F has a NED with shared endpoint w} = {Fwx :F\{w} is a forest};

• 2-FGNN: FF
n = {Fw : F has a NED where w is an endpoint of the first ear},

FF
e = {Fwx : F has a NED where w and x are endpoints of the first ear}.

The cases of Local 2-GNN and Local 2-FGNN are similar to 2-FGNN by replacing “NED” with
“strong NED” and “almost-strong NED”, respectively.

In summary, the node/edge-level homomorphism expressivity can be naturally described using NED
by further specifying the endpoints of the first ear.

3.4 EXTENDING TO HIGHER-ORDER GNNS

Finally, we discuss how our results can be naturally extended to higher-order GNNs, thus providing
a complete picture of the homomorphism expressivity hierarchy for infinitely many architectures.
We focus on three representative examples: Subgraph k-GNN (Qian et al., 2022), Local k-GNN
(Morris et al., 2020), and k-FGNN (Azizian & Lelarge, 2021). Subgraph k-GNN extracts a graph
Gu for each vertex k-tuple u ∈ V k

G and runs MPNNs independently, which recovers Subgraph GNN
when k = 1. As the reader may have guessed, the following result exactly parallels Corollary 3.5:
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Theorem 3.8. The homomorphism expressivity of Subgraph k-GNN exists and can be described as
FSub(k) = {F : ∃U ⊂ VF s.t. |U | ≤ k and F\U is a forest}.

𝑘𝑘 = 1 𝑘𝑘 = 2 𝑘𝑘 = 3

(a) k-order ears (b) nested “interval”

Figure 2: Illustration of higher-order
ears. Each curve indicates a path (with
possibly zero length) and each straight
segment indicates an edge.

We next turn to Local k-GNN. To describe the result,
we introduce a novel extension of Definition 3.3, called
the k-order ear. Intuitively, it is formed by a graph of
no more than k vertices, plus k paths each linking to a
vertex in the graph (see Figure 2(a) for an illustration).
Note that a 2-order ear is exactly a simple path. Then,
we can naturally define the nested “interval” (see the
solid orange lines in Figure 2(b) for an illustration)
and thus define the concept of k-order strong NED.
Due to space limit, a formal definition is deferred to
Definition E.3. We have the following main result:
Theorem 3.9. The homomorphism expressivity of Local k-GNN exists and can be described as
FL(k) = {F : F has a k-order strong NED}.

Finally, let us consider the standard k-FGNN (or equivalently, the k-FWL). Unfortunately, we cannot
find a description of its homomorphism expressivity based on some form of higher-order NED;
nevertheless, it is easy to describe the results using the notion of treewidth (see Definition C.2).
Specifically, denoting tw(F ) to be the treewidth of graph F , we have the following result:

Theorem 3.10. The homomorphism expressivity of k-FGNN exists and can be described as FF(k) =
{F : tw(F ) ≤ k}.

Interestingly, one can see that FSub(0), FL(1), and FF(1) all degenerate to the family of forests,
which coincides with the fact that all these higher-order GNNs reduces to MPNN for the base case.

4 IMPLICATIONS

The previous section has provided a complete description of the homomorphism expressivity for a
variety of GNN models. In this section, we highlight the significance of these results through three
different contexts. We will show how homomorphism expressivity can be used to link different GNN
subareas, provide new insights into various known results, and answer a number of open problems.

4.1 QUALITATIVE EXPRESSIVITY COMPARISON

One direct corollary of Theorem 3.4 is that it readily enables expressivity comparison among all
models in Section 2. This can be summarized below:
Corollary 4.1. Under the notation of Theorem 3.4, FMP ⊊ FSub ⊊ FL ⊊ FLF ⊊ FF. Thus, the
expressive power of the following GNN models strictly increases in order (in terms of distinguishing
non-isomorphic graphs): MPNN, Subgraph GNN, Local 2-GNN, Local 2-FGNN, and 2-FGNN.

Proof. FMP ⊂ FSub follows from Corollary 3.5 and the fact that deleting any vertex of a forest
yields a forest. FSub ⊂ FL follows by the fact that any endpoint-shared NED is a strong NED. FL ⊂
FLF ⊂ FF follows similarly since any strong NED is an almost-strong NED and any almost-strong
NED is a NED. To prove strict separation results, one can check that the four graphs in Figure 1(b)
precisely reveal the gap between each pair of graph families, thus concluding the proof.

Corollary 4.1 recovers a series of results recently proved in Zhang et al. (2023a); Frasca et al. (2022).
Compared to their results, our approach draws a much clearer picture of the expressivity gap be-
tween different architectures and essentially answers how large the gaps are. Moreover, we provide
systematic guidance for finding counterexample graphs that unveil the expressivity gap: as shown in
Corollary C.54, any graph F ∈ FM2\FM1 immediately gives a pair of non-isomorphic graphs that
reveals the gap between models M1 and M2. We note that this readily recovers the counterexamples
constructed in Zhang et al. (2023a) and greatly simplifies their sophisticated case-by-case analysis.

We next turn to three types of higher-order GNNs studied in Section 3.4, for which we can establish
a complete expressiveness hierarchy, as presented in Corollary 4.2. A graphical illustration of these
results is given in Figure 3.
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Figure 3: Expressiveness hierarchy of MPNN, Subgraph GNN, Local GNN, and FGNN.

Corollary 4.2. Under the notations in Section 3.4, for any k > 0, the following hold:
a) FSub(k−1)⊊FSub(k). I.e., the expressive power of Subgraph k-GNN strictly increases with k;
b) FL(k) ⊊ FL(k+1). I.e., the expressive power of Local k-GNN strictly increases with k;
c) FSub(k)⊊FL(k+1). I.e., Local (k+1)-GNN is strictly more expressive than Subgraph k-GNN;
d) FF(k) ⊊ FL(k+1) ⊊ FF(k+1). I.e., the expressive power of Local (k + 1)-GNN lies strictly

between k-FWL and (k + 1)-FWL;
e) FSub(k) ⊊FF(k+1), and for all k > 1, FSub(k)\FF(k+1) ̸= ∅ and FF(k+1)\FSub(k) ̸= ∅. In

other words, the expressive power of Subgraph k-GNN lies strictly within (k + 1)-FWL, but
it is incomparable to k-FWL when k > 1.

Corollary 4.2 recovers results in Morris et al. (2020); Qian et al. (2022) and further answers two open
problems. First, Corollary 4.2(c) is a new result that bridges Morris et al. (2020) with Qian et al.
(2022) and partially answers an open question in Zhang et al. (2023a, Appendix C). Another new
result is Corollary 4.2(d), which essentially answers a fundamental open problem raised in Frasca
et al. (2022, Appendix E), showing that their proposed ReIGN(k) model is bounded by k-FWL
with an inherent expressivity gap (see Appendix E.4 for a detailed discussion). To sum up, all these
challenging open problems become straightforward through the lens of homomorphism expressivity.

4.2 SUBGRAPH COUNTING POWER

The significance of homomorphism expressivity can go much beyond qualitative comparisons be-
tween models. As another implication, it provides a systematic way to study GNNs’ ability to encode
structural information such as subgraph count, which has been found crucial in numerous practical
applications. Specifically, a well-known result in graph theory states that, for any graphs F,G, the
subgraph count sub(F,G) can be determined by hom(F̃ , G) where F̃ ranges over all homomorphic
images of F (i.e., Spasm(F ), see Section 2) (Lovász, 2012; Curticapean et al., 2017).

Mathematically, given any graph F , let Spasm̸≃(F ) be any maximal set of pairwise non-isomorphic
graphs chosen from Spasm(F ) (see Figure 4(a) for an illustration). Then, we have the following
linear relation for all graph G:

sub(F,G) =
∑

F̃∈Spasm ̸≃(F )

α(F, F̃ ) · hom(F̃ , G), (6)

where α(F, F̃ ) ̸= 0 is a constant scalar coefficient independent of G. Based on this formula, we can
easily study the subgraph counting power of GNN models as shown in Proposition 4.4.
Definition 4.3. Given a GNN model M , we say M can subgraph-count graph F at graph-level if
χM
G (G) = χM

H (H) implies sub(F,G) = sub(F,H) for any graphs G,H . We say M can subgraph-
count rooted graph Fw at node-level if χM

G (u) = χM
H (v) implies sub(Fw, Gu) = sub(Fw, Hv) for

any graphs G,H and vertices u ∈ VG, v ∈ VH . We can similarly define the edge-level subgraph
counting ability for rooted graphs marking two special vertices.
Proposition 4.4. For any GNN model M defined in Section 2, it can subgraph-count graph F (at
graph-level) if F̃ ∈ FM for all F̃ ∈ Spasm(F ). It can subgraph-count Fw (at node-level) if
F̃w ∈ FM

n for all F̃w ∈ Spasm(Fw). A similar result holds for edge-level subgraph counting.

The above proposition offers a simple way to affirm the ability of a GNN model M to subgraph-
count any pattern at graph/node/edge-level. On the other hand, one may wonder whether the con-
verse direction also holds, i.e., M cannot subgraph-count F if there exists a homomorphic image
F̃ ∈ Spasm(F ) such that F̃ /∈ FM . We find that it is indeed the case. Specifically, if the set
Spasm(F )\FM is not empty, then one can always find a pair of counterexample graphs G,H such
that χM

G (G) = χM
H (H) but sub(F,G) ̸= sub(F,H). We eventually arrive at the following main

theorem (see Appendix G.1 for a proof):
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Theorem 4.5. For any GNN model M such that their homomorphism expressivity FM exists, M
can subgraph-count F iff Spasm(F ) ⊂ FM . Similar results hold for rooted graphs Fu/Fuv by
replacing FM with node/edge-level homomorphism expressivity FM

n /FM
e .

Example 4.6. As an example, we can readily characterize the cycle/path counting power of various
GNNs. Denote by Cn/Pn the simple cycle/path of n vertices. Let {u, v} ∈ ECn

be any edge in
Cn, and {w, x} ∈ EPn

be any edge in Pn where w is an endpoint of Pn. The following table lists
exactly all cycles/paths each model can count at graph/node/edge-level.

Model
Structure Cycle Path

Cn Cu
n Cuv

n Pn Pw
n Pwx

n

MPNN None None None n≤3 n≤3 n≤3
Subgraph GNN n≤7 n≤4 n≤4 n≤7 n≤4 n≤4
Local 2-GNN

n≤7 n≤7Local 2-FGNN
2-FGNN

(a) Spasm ̸≃(C6) has 10 graphs. (b) Rooted C6

Figure 4: Illustration of homomorphic im-
ages of the 6-cycle and rooted 6-cycle.

Discussions with prior work. Our results significantly extend Huang et al. (2023) in several aspects.
First, we show Subgraph GNN can count 6-cycle at graph-level by simply enumerating its spasm
(see Figure 4(a)). However, it cannot count rooted 5/6-cycle at node-level because the homomorphic
image can contain cycles that do not pass the marked vertex (see Figure 4(b)). This provides novel
insights into Huang et al. (2023) and extends their results (albeit with a simpler analysis). Second,
we reveal that Local 2-GNN can already count all cycles/paths that 2-FWL can count (even at edge-
level). This identifies a new architecture with both efficiency and strong expressiveness in subgraph
counting, considerably extending the finding in the concurrent work of Zhou et al. (2023b).

In Appendix G.2 (Tables 4 and 5), we summarize the statistics of all moderate-size patterns each
model can count under homomorphisms/subgraphs, which enables quantitative expressivity com-
parisons of different models in a clear and exact manner. We also comprehensively list the counting
ability of all moderate-size patterns in Table 6, which we believe can be helpful for future research.

4.3 POLYNOMIAL EXPRESSIVITY

As the third implication, homomorphism expressivity is closely related to the polynomial expressiv-
ity recently proposed in Puny et al. (2023). Concretely, given a model M , a graph F is in FM if
M can express the invariant graph polynomial PF (defined in Puny et al. (2023), Section 2.2), and a
rooted graph Fuv is in FM

e if M can express the equivariant graph polynomial PFuv . Based on this
connection, our work introduces a novel toolbox for studying polynomial expressivity via the NED
framework and offers new insights into which graph polynomials can be computed for a variety of
practical GNNs. Moreover, we readily settle an open question in Puny et al. (2023), which upper
bounds the polynomial expressivity for their proposed PPGN++:
Corollary 4.7. PPGN++ is bounded by (and thus as expressive as) the Prototypical edge-based
model defined in Puny et al. (2023) for computing equivariant graph polynomials.

Due to space limit, please refer to Appendix H for proof and more discussions.

5 EXPERIMENTS

This section aims to verify our theory through a comprehensive set of experiments. In each exper-
iment, we implement four types of GNN models listed in Section 2, i.e., MPNN, Subgraph GNN,
Local 2-GNN, and Local 2-FGNN. Note that all of these models are much more efficient than 2-
FWL. Our primary objective here is not to produce SOTA results, but rather to provide a unified and
equitable empirical comparison among these models. To ensure fairness, we employ the same GIN-
based design (Xu et al., 2019) for all models and control their model sizes and training budgets to be
roughly the same on each task. Details of model configurations are given in Appendix I. Our code
is available at https://github.com/subgraph23/homomorphism-expressivity.

Synthetic task. We first test whether these GNN models can easily learn homomorphism infor-
mation from data as our theory predicts. We use the benchmark dataset from Zhao et al. (2022a)
and comprehensively test the homomorphism expressivity at graph/node/edge-level by carefully se-
lecting 8 substructures shown in Table 1. The reported performance is measured by the normalized
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Table 1: Experimental results on homomorphism
counting. Red/blue nodes indicate marked vertices.

Model
Task Graph-level Node-level Edge-level

MPNN .300 .233 .254 .505 .478 - - -
Subgraph GNN .011 .015 .012 .004 .058 .003 .058 .048
Local 2-GNN .008 .008 .010 .003 .004 .005 .006 .008

Local 2-FGNN .003 .005 .004 .005 .005 .007 .007 .008

Table 2: Experimental results on ZINC and
Alchemy datasets. See Appendix I.4 for com-
parisons of more GNN models in literature.

Model
Task ZINC AlchemySubset Full

MPNN .138± .006 .030± .002 .122± .002
Subgraph GNN .110± .007 .028± .002 .116± .001
Local 2-GNN .069± .001 .024± .002 .114± .001

Local 2-FGNN .064± .002 .023± .001 .111± .001

Table 3: Experimental results on the (Chordal) Cycle Counting task.

Model
Task Graph-level Node-level Edge-level

MPNN .358 .208 .188 .146 .261 .205 .600 .413 .300 .207 .318 .237 - - - - - -
Subgraph GNN .010 .020 .024 .046 .007 .027 .003 .005 .092 .082 .050 .073 .001 .003 .090 .096 .038 .065
Local 2-GNN .008 .011 .017 .034 .007 .016 .002 .005 .010 .023 .004 .015 .001 .005 .010 .019 .005 .014

Local 2-FGNN .003 .004 .010 .020 .003 .010 .004 .006 .012 .021 .004 .014 .003 .006 .012 .022 .005 .012

Mean Absolute Error (MAE) on the test dataset. It can be seen that the model performance indeed
correlates to our theoretical predictions: (i) MPNN cannot encode any substructure under homomor-
phism; (ii) Subgraph GNN cannot encode the 2th, 3rd, 5th, 7th, 8th substructures; (iii) Local 2-GNN
cannot encode the 3rd and 8th substructures; (iv) Local 2-FGNN can encode all substructures.

Cycle counting power. Cycles are important structures in numerous graph learning tasks, yet en-
coding them is notoriously hard for GNNs. We next test the ability of different GNN models to
subgraph-count (chordal) cycles at graph/node/edge-level. We follow the setting in Frasca et al.
(2022); Zhang et al. (2023a); Huang et al. (2023) and present results in Table 3 (measured by the
normalized test MAE). Remarkably, despite the same computational cost and model size, Local
2-(F)GNN performs significantly better than Subgraph GNN and achieves good performance for
counting all 3/4/5/6-cycles as well as chordal 4/5-cycles (even at edge-level). These results match
Example 4.6 and may suggest Local 2-(F)GNN as generic, efficient, yet powerful architectures in
solving chemical and biological tasks where counting cycles is essential (e.g., benzene rings).

Real-world tasks. We finally test these GNN models on three real-world benchmarks: ZINC-
subset, ZINC-full (Dwivedi et al., 2020), and Alchemy (Chen et al., 2019a). Following the standard
configuration, all models obey a 500K parameter budget. The results are shown in Table 2. It
can be seen that the performance continues to improve when a more expressive model is used. In
particular, Local 2-FGNN achieves the best performance on all tasks, suggesting that its theoretical
expressivity guarantee can translate to practical performance in real-world settings.

6 CONCLUSION

In this paper, we present a new framework for systematically and quantitatively studying the expres-
sive power of various GNN architectures. Through the lens of homomorphism expressivity, we give
exact descriptions of the graph family each model can encode in terms of homomorphism counting.
Our framework stands as a valuable toolbox to unify the landscape between different subareas in the
GNN community, providing deep insights into a number of prior works and answering their open
problems. In particular, one can establish a complete expressiveness hierarchy between models, de-
termine the subgraph counting capabilities of GNNs at graph/node/edge-level, and understand their
polynomial expressivity. On the theoretical side, our results establish deep connections with a se-
ries of fundamental topics in graph theory (see Appendix A.2); On the practical side, these results
closely correlate with the empirical performance of GNN models, as demonstrated through exten-
sive experiments. Finally, Appendix B outlines several open directions for further exploration, and
we believe that the homomorphism expressivity framework paves a fresh way for future study of
more expressive GNNs.

Acknowledgement Bohang Zhang would like to thank Shengjie Luo for helpful discussions. We
sincerely appreciate all reviewers for the valuable suggestions. This work is supported by Na-
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
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A MORE RELATED WORK

A.1 EXPRESSIVE GRAPH NEURAL NETWORKS

Since Morris et al. (2019); Xu et al. (2019) discovered the limited expressive power of MPNNs
in distinguishing non-isomorphic graphs, a large amount of work has been devoted to developing
GNNs with better expressiveness. Below, we briefly review representative approaches in this area.
For a comprehensive survey on expressive GNNs, we refer readers to Morris et al. (2023).

Higher-order GNNs. Inspired by the relation between MPNNs and the 1-WL test, a natural ap-
proach to designing provably more expressive GNNs is to mimic the higher-order WL tests. This
gives rise to two fundamental types of higher-order GNNs. One type of GNNs mimics the k-WL
test (Grohe, 2017), and representative architectures include k-GNN (Morris et al., 2019) and k-IGN
(Maron et al., 2019b;c); the other type of GNNs mimics the k-FWL (Folklore WL) test (Cai et al.,
1992) and is referred to as the the k-FGNN (Maron et al., 2019a). Azizian & Lelarge (2021); Geerts
& Reutter (2022) proved that each of these architectures is exactly as expressive as the correspond-
ing higher-order WL/FWL test. Therefore, the expressiveness grows strictly as the order k increases;
when k approaches infinity, they can universally approximate any continuous graph functions (Chen
et al., 2019b; Keriven & Peyré, 2019). However, due to the inherent computation/memory complex-
ity, these architectures are generally not practical in real-world applications.

Local GNNs. To improve computational efficiency, a subsequent line of work seeks to develop
more scalable and practical GNN architectures by taking into account the local/sparse nature of
graphs. Locality/sparsity is also an important inductive bias for graphs but is not well-exploited
in higher-order GNNs, since their layer aggregation is inherently global and the graph adjacency
information is only encoded in initial node features. To address these shortcomings, Morris et al.
(2020) proposed the Local k-GNN (and several variants) as a replacement of k-GNN, which directly
incorporates graph adjacency into network layers and only aggregates neighboring information in-
stead of the global one. The authors further proved that Local k-GNN is strictly more expressive
than k-GNN. Building upon Local k-GNN, Morris et al. (2022) proposed the (k, s)-SpeqNet that
further reduces the computational cost by considering a subset of k-tuples whose vertices can be
grouped into no more than s connected components. A similar idea appeared in Zhao et al. (2022b),
in which the authors proposed the (k, s)-SetGNN by considering k-sets instead of k-tuples. Besides
Local k-GNN, recent architectures proposed in Frasca et al. (2022) and Zhang et al. (2023a) can be
analogously understood as Local k-IGN and Local k-FGNN, respectively. Very recently, Feng et al.
(2023); Zhou et al. (2023b) generalized the Local k-FGNN to a broad class of Folklore-type GNNs
and achieved good performance on several benchmark datasets.

Subgraph GNNs. Graphs that are indistinguishable by WL tests typically possess a high degree
of symmetry. In light of this observation, Subgraph GNNs have recently emerged as a compelling
approach to designing expressive GNNs. The basic idea is to break symmetry by transforming the
original graph into a collection of slightly modified subgraphs and feeding these subgraphs into a
GNN model. The earliest forms of Subgraph GNNs may track back to Cotta et al. (2021); Papp
et al. (2021) (albeit with a different motivation), where the authors proposed to feed node-deleted
subgraphs into an MPNN. Papp & Wattenhofer (2022) later argued to use node marking instead of
node deletion for better expressive power, resulting in the standard Subgraph GNN studied in this
paper. Zhang & Li (2021); You et al. (2021) proposed the Nested GNN and Identity-aware GNN,
both of which can be treated as variants of Subgraph GNNs that use ego networks as subgraphs.
In particular, the heterogeneous message passing proposed in You et al. (2021) can also be seen
as a form of node marking. We note that the model proposed in Vignac et al. (2020) can also be
interpreted as a Subgraph GNN. Qian et al. (2022) proposed the higher-order Subgraph GNN by
marking k nodes per subgraph, resulting in nk different subgraphs when the original graph has n
vertices. We call this architecture Subgraph k-GNN in this paper. The authors proved that Subgraph
k-GNN is strictly bounded by (k+1)-FWL and is incomparable to k-FWL when k > 1. Zhou et al.
(2023a) further generalized Subgraph k-GNN to (l, k)-GNN by using l-GNN instead of MPNN to
process each subgraph. It was proved that (l, k)-GNN is bounded by (k + l)-GNN for l ≥ 2.

Recently, Subgraph GNNs have been greatly extended by further allowing interactions between sub-
graphs. This is achieved by designing cross-subgraph aggregation layers (rather than feeding each
subgraph independently into a GNN). Bevilacqua et al. (2022) developed the Equivariant Subgraph
Aggregation Network that introduces a global aggregation between subgraphs. A similar design is
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proposed in the concurrent work of Zhao et al. (2022a). These architectures were later proved to
strictly improve the expressivity of the original Subgraph GNNs (Zhang et al., 2023b;a). Frasca
et al. (2022) built a general design space of Subgraph GNNs that unifies prior work and showed that
all models in this space are bounded by a variant of 2-IGN (dubbed the Local 2-IGN in this paper),
which is then bounded by 2-FWL. Zhang et al. (2023a) later proved that Local 2-IGN is as expres-
sive as Local 2-GNN and strictly less expressive than 2-FWL (2-FGNN). In this paper, we still use
the term “Subgraph GNN” to refer to the original architecture in the previous paragraph, while using
“Local 2-GNN” to refer to the general architecture in Frasca et al. (2022); Zhang et al. (2023a).

Substructure-based GNNs. Another line of work sought to develop expressive GNNs from prac-
tical considerations. In particular, Chen et al. (2020) pointed out that the ability of GNNs to de-
tect/count graph substructures like path, cycle, and clique is crucial in numerous applications. Yet,
MPNNs cannot subgraph-count any cycles/cliques. While higher-order WL tests can be more pow-
erful in counting cycles (Fürer, 2017; Arvind et al., 2020), they suffer from substantial computational
cost. As such, several works proposed to directly incorporate substructure/homomorphism count-
ing into the node features as a preprocessing step to boost the expressiveness of MPNNs (Bouritsas
et al., 2022; Barceló et al., 2021) or serve as an expressive graph kernel (Grohe, 2020; Nguyen &
Maehara, 2020; Welke et al., 2023). Going beyond node features, Bodnar et al. (2021b;a); Giusti
et al. (2023) further proposed a message-passing framework that enables interaction between nodes,
edges, and higher-order substructures like cycles and cliques. We note that the Autobahn, TOGL,
and Cy2C-GNN proposed in Thiede et al. (2021); Horn et al. (2022); Choi et al. (2022) can also be
viewed as Substructure-based GNNs. However, most of the above approaches consider a fixed, pre-
defined set of substructures rather than designing generic architectures that can learn substructures
in an end-to-end fashion. Recently, Tahmasebi et al. (2023) proposed the RNP-GNN, an architecture
that can count any substructure by recursively splitting a graph into a collection of vertex-marked
subgraphs. We note that this design shares interesting similarities to higher-order subgraph GNNs
and also the SpeqNet (Morris et al., 2022). Huang et al. (2023) proposed a generic model called I2-
GNN based on a variant of Subgraph 2-GNN, which can count 6-cycle at node-level. In this paper,
we show the Local 2-GNN can already count all cycles/paths within 7 nodes even at edge-level while
being more efficient than I2-GNN (when using a similar ego network design). Finally, we remark
that the polynomial expressivity proposed in Puny et al. (2023) can also be seen as a generalization
of substructure counting, which further takes into account the real-valued node/edge features.

Distance-based GNNs. Besides structural information, distance serves as another fundamental at-
tribute of a graph, which, again, is not captured by MPNNs and the 1-WL test. Li et al. (2020)
first proposed to improve the expressive power of GNNs by augmenting node features with Distance
Encoding (DE). Related to DE, another approach to injecting distance information is the k-hop
MPNN, which aggregates k-hop neighbors in a message-passing layer (Feng et al., 2022; Abboud
et al., 2022; Wang et al., 2023). Feng et al. (2022); Zhang et al. (2023a) proved that the expressive
power of k-hop MPNN is strictly bounded by 2-FWL. Distance can also be naturally incorporated
in Graph Transformers through relative positional encoding, yielding the Graphormer architecture
that has achieved remarkable performance across various benchmarks (Ying et al., 2021). Recently,
Zhang et al. (2023b) built an interesting connection between distance and biconnectivity properties,
showing that distance-enhanced GNNs can detect cut vertices and cut edges of a graph. This pro-
vides insights into the practical superiority of these models as biconnectivity is closely linked to
real applications in chemistry and social network analysis. Zhang et al. (2023a) proved that Local
2-GNN can provably encode the distance (and thus biconnectivity) of a graph.

Spectral-based GNNs. Graph spectra are also a class of fundamental properties and have long been
used to design GNN models (Bruna et al., 2014; Defferrard et al., 2016). Balcilar et al. (2021b;a)
showed that designing GNNs in the spectral domain can easily break the 1-WL expressivity. For
Graph Transformers, Kreuzer et al. (2021); Dwivedi & Bresson (2020); Dwivedi et al. (2022) pro-
posed to incorporate the spectra of the graph Laplacian matrix to boost the expressive power beyond
the 1-WL test. Lim et al. (2023) further designed a principled equivariant architecture that takes the
Laplacian eigenvalues and eigenvectors as inputs, which generalizes prior work.

Other approaches. Murphy et al. (2019); Chen et al. (2020) proposed Relational Pooling as a
general approach to designing expressive GNN architectures, whose basic idea is to implement
a permutation-invariant GNN by symmetrizing permutation-sensitive base models. Wijesinghe &
Wang (2022b) proposed the GraphSNN, which improves the expressive power of MPNNs by using
more distinguishing edge features. Specifically, each edge feature encodes the structure of the over-
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lap subgraph of two 1-hop ego networks centered on the two endpoints of the edge. Very recently,
Dimitrov et al. (2023) designed a GNN model that can distinguish all planar graphs, thus achieving
a strong expressivity in chemical applications since molecular graphs are often planar.

A.2 BROADER IMPACTS AND ADDITIONAL DISCUSSIONS

Broader impact in graph theory. Due to the fundamental nature of GNN architectures studied in
this paper, our theoretical results may potentially have broader impacts on the graph theory com-
munity. Specifically, we study the color refinement (CR) algorithms corresponding to four types of
(higher-order) GNNs: Subgraph (k−1)-GNN, Local k-GNN, Local k-FGNN, and k-FGNN. All
algorithms can be seen as natural extensions of the 1-WL test since they all reduce to 1-WL when
k = 1. In the graph theory community, Subgraph GNN has another name known as the vertex-
individualized CR algorithm, which appears widely in literature (Babai, 2016; Rattan & Seppelt,
2023; Neuen & Schweitzer, 2018) and has become part of the core algorithm for fast graph isomor-
phism testing software (e.g., McKay & Piperno, 2014). On the other hand, Local k-GNN and Local
k-FGNN are surprisingly related to the guarded logic (Barceló et al., 2020; De Rijke, 2000; Baader,
2003), since the aggregations are purely local (guarded by the edge). From this perspective, these
CR algorithms can be seen as natural extensions of guarded logic in higher-order scenarios.

Besides these CR algorithms, our new extensions of NED may also have implications in graph the-
ory. In particular, the strong NED (as well as its higher-order version) is elegant and may serve as a
descriptive tool to characterize certain graph families. In addition, we establish intrinsic connections
between NED and tree decomposition, which may have value in understanding other graph topics
related to tree decomposition.

Finally, to our knowledge, the node/edge-level homomorphism and the corresponding subgraph
counting abilities of different CR algorithms do not seem to have been systematically investigated
before. Whereas in this paper, all graph/node/edge-level expressivity is studied in a unified manner.
To achieve this, we introduce additional proof techniques which we believe may facilitate future
study in related areas. For example, the original technique for constructing counterexample graphs
satisfying Definition 3.1(b) does not apply to node/edge-level settings, since they are no longer
counterexample graphs satisfying Definition 3.6(b) (no matter which vertices u ∈ VG, v ∈ VH

are marked). To address the problem, we propose clique-augmented Fürer graphs, a novel class of
counterexample graphs that extend several prior works (e.g., Cai et al., 1992; Fürer, 2001), and
conduct a fine-grained analysis of their automorphism property (see Appendix D.2). We believe this
new technique can be used to generalize other results from graph-level to node/edge-level settings.

Discussions with Barceló et al. (2021). In the GNN community, Barceló et al. (2021) first pro-
posed to incorporate the homomorphism count of predefined substructures into node features as an
approach to enhancing the expressivity of MPNNs. They systematically investigated the questions
of what substructures are useful and how the homomorphism information of these substructures
can boost the model expressivity to even break out k-FWL. Yet, they only gave a partial (incom-
plete) characterization of the substructures that can be counted by the specific F-MPNN architecture
and did not answer what substructures cannot be encoded, whereas our paper fully addresses both
questions for a variety of popular GNN models. Note that these aspects are crucial to ensure that
homomorphism expressivity is well-defined. As such, our paper first identifies that homomorphism
expressivity is a complete, quantitative expressivity measure to compare different GNN models.

Discussions with the concurrent work of Neuen (2023). After the initial submission, we became
aware of a concurrent work (Neuen, 2023), which proved that k-FWL cannot count any graph with
treewidth larger than k under homomorphism. In our context, this result exactly shows that Defini-
tion 3.1(b) is satisfied, and thus the homomorphism expressivity of k-FWL is well-defined. Notably,
their construction of counterexample graphs is also based on Fürer graphs. Nevertheless, the proof
technique between the two works is quite different: the proof in Neuen (2023) is built upon a key
concept called oddomorphism, while our proof is based on the relation between tree decomposition
and the simplified pebble game developed in Zhang et al. (2023a). It is essential to underscore that
our results and proof technique are more general and go beyond the standard k-FWL, in that (i) it
applies to a broad range of color refinement algorithms related to practical GNN architectures and
(ii) it further extends to node/edge-level homomorphism expressivity. Our theoretical results thus
strictly incorporate the results in Neuen (2023). The approach in Neuen (2023) (based on oddomor-
phism) cannot be easily generalized to these settings.
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B LIMITATIONS AND OPEN DIRECTIONS

There are still several open questions that are not fully explored in this paper. We list them below as
promising directions for future study.

Existence of homomorphism expressivity for refinement-based GNN architectures. In this pa-
per, we prove that homomorphism expressivity exists for a wide range of architectures defined in
Section 2. On the other hand, we also note that it may not be well-defined for certain pathological
GNNs, as illustrated in Appendix F.1. Given this observation, a fundamental question is: what con-
ditions can guarantee that the homomorphism expressivity of a GNN exists? Here, we hypothesize
that a very mild condition can suffice. Specifically, we conjecture that as long as a GNN architecture
is defined following a general form of color refinement procedure that outputs stable color map-
pings, its homomorphism expressivity always exists. We leave this conjecture as an important open
problem for future study.

Regarding higher-order Local FGNN. This paper characterizes the homomorphism expressivity
for three classes of higher-order GNNs: Subgraph k-GNN, Local k-GNN, and k-FGNN. In particu-
lar, we introduce the k-order ear and k-order strong NED as a way to describe the homomorphism
expressivity of Local k-GNN. However, it remains unclear how to give a simple description of the
homomorphism expressivity for Local k-FGNN that can generalize the concept of almost-strong
NED for k = 2. As such, our current expressiveness hierarchy (Figure 3) does not support Local
k-FGNN yet. We leave this as an open problem and make the following conjecture below. We note
that a similar open question has been informally raised in Zhang et al. (2023a).

Conjecture B.1. For all k ≥ 2, Local k-FGNN is strictly more expressive than Local k-GNN and
strictly less expressive than k-FGNN.

Expressivity gap between Local 2-(F)GNN and 2-FGNN in practical aspects. We have proved
that 2-FGNN is strictly more expressive than Local 2-(F)GNN. However, from a practical perspec-
tive, we surprisingly find that the subgraph counting ability of Local 2-(F)GNN matches that of
2-FGNN for all structures within a moderate size (see Table 5), although the former is much more
efficient. This leads to the intriguing question of what fundamental gaps exist between the two
models in practical aspects, or is the efficiency gain free?

Other architectures. In this paper, we comprehensively study a variety of popular GNN architec-
tures ranging from Subgraph GNNs and Local GNNs to higher-order GNNs, and further link these
architectures to Substructure-based GNNs (see Appendix A.1). Yet, we still do not cover all popular
GNN architectures, such as the GSWL-based Subgraph GNN (Zhang et al., 2023a; Bevilacqua et al.,
2022), SpeqNet (Morris et al., 2022), and I2-GNN (Huang et al., 2023). Moreover, the classes of
Distance-based GNNs and Spectral-based GNNs (Appendix A.1) are also widely used in practice,
which deserve future study. We would like to raise the question of characterizing the homomorphism
expressivity of Distance-based GNNs and Spectral-based GNNs as an important open question. In
this way, one can gain deep insights into these models’ true expressivity and enable quantitative
comparisons between all mainstream architectures. Moreover, it will become clear to what extent
other GNN models can encode distance and spectral information about a graph.

C PROOF OF THEOREM 3.4

This section gives the proof of the main theorem. For ease of reading, we first restate Theorem 3.4:

Theorem 3.4. For all GNN models M defined in Section 2, the graph family FM satisfying Defini-
tion 3.1 exists (and is unique). Moreover, each FM can be separately described below:

• Subgraph GNN: FSub = {F : F has an endpoint-shared NED};

• Local 2-GNN: FL = {F : F has a strong NED};

• Local 2-FGNN: FLF = {F : F has an almost-strong NED};

• 2-FGNN: FF = {F : F has a NED}.

For MPNN, since it is a special case of Subgraph k-GNN, the proof can be found in Appendix E.3.
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C.1 PRELIMINARY

Additional notations and concepts. Besides the notations defined in Section 2, we further define
the following notations. We use the symbol G to denote the set of all finite, simple, undirected,
labeled graphs. Let G = (VG, EG, ℓG) be a graph in G. When the label is the same for all vertices,
we can omit the term ℓG and write G = (VG, EG). Given vertex u ∈ VG, denote the degree of u
as degG(u) = |NG(u)|, and denote the closed neighborhood of u as NG[u] = NG(u) ∪ {u}. The
shortest path distance between vertices u and v is denoted by disG(u, v).

Given a vertex set S ⊂ VG, the induced subgraph of G over S, denoted as G[S], is the subgraph of
G with vertex set S and edge set {{u, v} ∈ EG : u, v ∈ S}. Similarly, without abuse of notation,
given an edge set R ⊂ EG, the induced subgraph of G over R, denoted as G[R], is the subgraph
of G with vertex set

⋃
{u,v}∈R{u, v} and edge set R. Given a vertex tuple u = (u1, · · · , uk),

denote by Gu = Gu1,··· ,uk the rooted graph obtained from G by marking vertices u1, · · · , uk. The
atomic type of G over u, denoted by atpG(u), is a k× k matrix where the element at position (i, j)
is the tuple (I[ui = uj ], I[{ui, uj} ∈ EG]). Given two graphs G,H , the graph union G ∪ H is
defined to be the graph (VG ∪ VH , EG ∪ EH , ℓG∪H), where ℓG∪H(u) := ℓG(u) for all u ∈ VG and
ℓG∪H(u) := ℓH(u) for all u ∈ VH . It is well-defined iff ℓG(u) = ℓH(u) for all u ∈ VG ∩ VH .
Finally, we use the notation G ≃ H to denote that G and H are isomorphic graphs.

A graph T = (VT , ET , ℓT ) is called a tree if it does not contain cycles. Let T r be a rooted tree
where r is the root vertex. For each vertex t ∈ VT , define its depth depT r (t) := disT (t, r) to be the
distance to the root, and denote by DescT r (t) the set of descendants of t, namely, s ∈ DescT r (t) iff
depT r (s) = depT r (t) + disT (t, s). For each t ∈ VT \{r}, denote by paT r (t) the parent vertex of
t, i.e., the unique vertex s ∈ NT (t) satisfying depT r (t) = depT r (s) + 1. Define the subtree of T r

rooted at node t by T r[t], which is exactly the induced subgraph T [DescT r (t)]t with root t.

Tree decomposition. Our proof is based on a central concept in graph theory, called tree decompo-
sition. It can be formally defined below:
Definition C.1 (Tree decomposition). Given a graph G = (VG, EG, ℓG), its tree decomposition is a
tree T = (VT , ET , βT ), where the label function βT : VT → 2VG satisfies the following conditions:

a) Each tree node t ∈ VT is associated to a non-empty subset of vertices βT (t) ⊂ VG in G,
called a bag. We say tree node t contains vertex u if u ∈ βT (t);

b) For each edge {u, v} ∈ VG, there exists at least one tree node t ∈ VT that contains the edge,
i.e., {u, v} ⊂ βT (t);

c) For each vertex u ∈ VG, all tree nodes t containing u form a (non-empty) connected subtree.
Formally, denoting BT (u) = {t ∈ VT : u ∈ βT (t)}, then T [BT (u)] is connected.

If T is a tree decomposition of G, we call the pair (G,T ) a tree-decomposed graph.

We remark that given a graph G, there are multiple ways to decompose it and thus its tree decom-
position is not unique. Several examples of tree decomposition are given in Figure 5.
Definition C.2 (Treewidth). The width of a tree decomposition is defined as one less than the max-
imum bag size, i.e., maxt∈T |βT (t)| − 1. The treewidth of a graph G, denoted as tw(G), is the
minimum positive integer k such that there exists a tree decomposition of width k.

Some important facts about treewidth are listed below:
Fact C.3. For any graph G, the following hold:

• The treewidth of G is at most |VG|−1, i.e., a trivial tree decomposition that only has one node
t and βT (t) = VG.

• tw(G) = |VG| − 1 iff G is a clique.

• tw(G) = 1 iff G is a forest.

The above definition of tree decomposition is quite flexible without constraints on the structure of
the tree or the size of each bag. Below, we define several restricted variants of tree decomposition,
which (we will later see) are closely related to the GNN architectures studied in this paper. To begin
with, we first define a general concept that slight modifies the original definition (Definition C.1)
such that the tree becomes rooted and each bag is a multiset of vertices rather than a set.
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(a) The treewidth
of a tree is 1.

(b) Illustration of the canonical tree decomposition and Definition C.6.
The four tree-decomposed graphs are in SSub, SL, SLF, SF, respectively.

Figure 5: Illustration of tree decomposition.

Definition C.4 (Canonical tree decomposition). Given a graph G = (VG, EG, ℓG), a canonical tree
decomposition of width k is a rooted tree T r = (VT , ET , βT ) satisfying the following conditions:

a) The depth of T is even, i.e. maxt∈VT
depT r (t) is even;

b) Each tree node t ∈ VT is associated to a multiset of vertices βT (t) ⊂ VG, called a bag.
Moreover, |βT (t)| = k if depT r (t) is even and |βT (t)| = k + 1 if depT r (t) is odd;

c) For all tree edges {s, t} ∈ ET where depT r (s) is even and depT r (t) is odd, βT (s) ⊂ βT (t)
(where “⊂” denotes the multiset inclusion relation);

d) The conditions (b) and (c) in Definition C.1 are satisfied.

As examples, one can check that the tree decomposition of all graphs in Figure 5(b) is canonical,
but the tree decomposition in Figure 5(a) is not. An important observation about canonical tree
decomposition is shown below:
Proposition C.5. Let (F, T r) be any tree-decomposed graph where T r is a canonical tree decom-
position of F . For any vertices u, v ∈ VF , either of the following holds:

• u and v are in the same bag of T r, i.e., there is a node t ∈ VT such that {{u, v}} ⊂ βT (t);

• The induced subgraph T [BT (u) ∪BT (v)] is disconnected.

Proof. Assume that u and v are not in the same bag, i.e., BT (u)∩BT (v) = ∅. Pick s ∈ BT (u) and
t ∈ BT (v) such that depT r (s) and depT r (t) are minimal, respectively. Without loss of generality,
assume that depT r (s) ≤ depT r (t). Then, t ̸= r is not the root node and thus we can pick its
parent paT r (t). It follows that depT r (t) is odd and βT (paT r (t)) ⊂ βT (t) by definition of canonical
tree decomposition. Therefore, u /∈ βT (paT r (t)). Moreover, by the assumption that depT r (s) ≤
depT r (t), any node in BT (u) is not a descendent of t. We thus conclude that there does not exist a
tree edge such that the two endpoints contain u and v, respectively.

Now we are ready to define several restricted variants of canonical tree decomposition:
Definition C.6. Define four families of tree-decomposed graphs SSub, SL, SLF, and SF as follows:

a) (F, T r) ∈ SF iff (F, T r) satisfies Definition C.4 with width k = 2;

b) (F, T r) ∈ SLF iff (F, T r) satisfies Definition C.4 with width k = 2, and for any tree node t
of odd depth, it has only one child if w /∈ {v : v ∈ NG[u], u ∈ βT (s)} where s is the parent
node of t and w is the unique vertex in βT (t)\βT (s);

c) (F, T r) ∈ SL iff (F, T r) satisfies Definition C.4 with width k = 2, and any tree node t of odd
depth has only one child;

d) (F, T r) ∈ SSub iff (F, T r) satisfies Definition C.4 with width k = 2, and there exists a vertex
u ∈ VG such that u ∈ βT (t) for all t ∈ VT .
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Examples of tree-decomposed graphs in the four families are illustrated in Figure 5(b).

Before closing this subsection, we define several notations for tree-decomposed graphs:
Definition C.7. Given canonical tree-decomposed graph (G,T r) and node t ∈ VT , denote by
G[T r[t]] the subgraph of G induced by the vertex set {u : u ∈ βT r (s), s ∈ DescT r (t)}.

Definition C.8. Given two canonical tree-decomposed graphs (G,T r) and (G̃, T̃ s), a pair of map-
pings (ρ, τ) is called an isomorphism from (G,T r) to (G̃, T̃ s), denoted by (G,T r) ≃ (G̃, T̃ s), if
the following hold:

a) ρ is an isomorphism from G to G̃;

b) τ is an isomorphism from T r to T̃ s (ignoring labels β);

c) For any t ∈ T r, ρ(βT (t)) = βT̃ (τ(t)).

Equivalent formulation of GNN architectures. Below, we give equivalent definitions for several
GNN architectures presented in Section 2, which will be used in subsequent analysis. Let G be a
graph and u, v ∈ VG. For all models M including Subgraph GNN, Local 2-GNN, Local 2-FGNN,
and 2-FGNN, we define the initial color χ̃

M,(0)
G (u, v) to be the isomorphism type of vertex pair

(u, v) (i.e., atpG(u, v) plus labels of each vertex). Note that this matches the original definition
except for Subgraph GNN. Then in each iteration t, the color is updated according to the following
formula. Here, for clarity, we denote χ̃

M,(t)
G (u, S) = {{χ̃M,(t)

G (u, v) : v ∈ S}} and χ̃
M,(t)
G (S, v) =

{{χ̃M,(t)
G (u, v) : u ∈ S}} for any model M and set S.

• Subgraph GNN:

χ̃
Sub,(t+1)
G (u, v) = hash

(
χ̃
Sub,(t)
G (u, v), χ̃

Sub,(t)
G (u,NG(v)), χ̃

Sub,(t)
G (u, VG)

)
. (7)

• Local 2-GNN:

χ̃
L,(t+1)
G (u, v) = hash

(
χ̃
L,(t)
G (u, v), χ̃

L,(t)
G (u,NG(v)), χ̃

L,(t)
G (NG(u), v),

χ̃
L,(t)
G (u, VG), χ̃

L,(t)
G (VG, v)

)
.

(8)

• Local 2-FGNN:

χ̃
LF,(t+1)
G (u, v) = hash

(
χ̃
LF,(t)
G (u, v), {{(χ̃LF,(t)

G (w, v), χ̃
LF,(t)
G (u,w)) :w∈NG[u]∪NG[v]}},

χ̃
LF,(t)
G (u, VG), χ̃

LF,(t)
G (VG, v)

)
.

(9)
• 2-FGNN:

χ̃
F,(t+1)
G (u, v) = hash

(
χ̃
F,(t)
G (u, v), {{(χ̃F,(t)

G (w, v), χ̃
F,(t)
G (u,w)) : w ∈ VG}},

χ̃
F,(t)
G (u, VG), χ̃

F,(t)
G (VG, v)

)
.

(10)

It can be seen that we additionally add global aggregations for these architectures. Moreover, in
Local 2-FGNN we replace the neighbors by closed neighbors NG[u] ∪ NG[v]. The stable color of
(u, v) for different models is denoted by χ̃Sub

G (u, v), χ̃L
G(u, v), χ̃

LF
G (u, v), χ̃F

G(u, v), respectively.
We have the following result:
Proposition C.9. Let M ∈ {Sub, L, LF,F} be any model. For any graphs G,H , χ̃M

G (G) = χ̃M
H (H)

iff χM
G (G) = χM

H (H). Furthermore, if G and H are connected, then for any vertices u, v ∈ VG and
x, y ∈ VH , χ̃M

G (u, v) = χ̃M
H (x, y) iff χM

G (u, v) = χM
H (x, y). In other words, the color mapping χ̃M

is as fine as the original one χM .

Proof. The proof simply follows from Zhang et al. (2023a, Proposition 4.2 and Theorem 4.4), be-
cause (i) node marking in the initial color of Subgraph GNN is as expressive as using the isomor-
phism type, (ii) the global aggregation does not improve the expressivity when the corresponding
local aggregation is presented, (iii) the single-point aggregation does not improve the expressivity
in Local 2-FGNN.
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C.2 PART 1: TREE DECOMPOSITION

We first define the unfolding tree of different CR algorithms, which is a standard tool in analyzing
GNN expressivity.
Definition C.10 (Unfolding tree of Subgraph GNN). Given a graph G, vertices u, v ∈ VG, and a
non-negative integer D, the depth-2D Subgraph GNN unfolding tree of graph G at (u, v), denoted
as
(
F

Sub,(D)
G (u, v), T

Sub,(D)
G (u, v)

)
, is a tree-decomposed graph (F, T r) ∈ SSub constructed as

follows:

1. Initialization. At the beginning, F = G[{u, v}] (if u = v, F only has one vertex), and T
only has a root node r with βT (r) = {{u, v}}. Define a mapping π : VF → VG as π(u) = u
and π(v) = v.

2. Loop for D rounds. For each leaf node t in T r, do the following procedure:
Let βT (t) = {{u, x}}. For each w ∈ VG, add a fresh child node tw to T r and designate t as its
parent. Then, consider the following three cases:

a) If w ̸= π(u) and w ̸= π(x), then add a fresh vertex z to F and extend π with π(z) = w.
The label of z in F is set by ℓF (z) = ℓG(w). Define βT (tw) = βT (t) ∪ {{z}}. Then,
we add edges between z and βT (t), so that π is an isomorphism from F [βT (tw)] to
G[π(βT (tw))].

b) If w = π(u), then we simply set βT (tw) = βT (t) ∪ {{u}} without modifying graph F .
c) If w = π(x), then we simply set βT (tw) = βT (t) ∪ {{x}} without modifying graph F .

Finally, add a fresh child node t′w to T r, designate tw as its parent, and set βT (t
′
w) based on

the following three cases:

a) If w ̸= π(u) and w ̸= π(x), then βT (t
′
w) = {{u, z}}.

b) If w = π(u), then βT (t
′
w) = {{u, u}}.

c) If w = π(x), then βT (t
′
w) = {{u, x}}.

It is easy to see that the depth of tree T r increases by 2 after each round, T r is always a canonical
tree decomposition of F , and (F, T r) ∈ SSub. An illustration of the construction of unfolding tree
is given in Figure 6(a).

We next define the unfolding tree of Local 2-GNN, which differs in the loop part such that the bags
βT (tw) and βT (t

′
w) now do not necessarily contain u.

Definition C.11 (Unfolding tree of Local 2-GNN). Given a graph G, vertices u, v ∈ VG, and a
non-negative integer D, the depth-2D Local 2-GNN unfolding tree of graph G at (u, v), denoted as(
F

L,(D)
G (u, v), T

L,(D)
G (u, v)

)
, is a tree-decomposed graph (F, T r) ∈ SL constructed as follows:

1. Initialization. The procedure is exactly the same as Subgraph GNN (Definition C.10).

2. Loop for D rounds. For each leaf node t in T r, do the following procedure:
Let βT (t) = {{x, y}}. For each w ∈ VG, add a fresh child node tw to T and designate t as its
parent. Then, consider the following three cases:

a) If w ̸= π(x) and w ̸= π(y), then add a fresh vertex z to F and extend π with π(z) = w.
The label of z in F is set by ℓF (z) = ℓG(w). Define βT (tw) = βT (t) ∪ {{z}}. Then,
we add edges between z and βT (t), so that π is an isomorphism from F [βT (tw)] to
G[π(βT (tw))].

b) If w = π(x), then we simply set βT (tw) = βT (t) ∪ {{x}} without modifying graph F .
c) If w = π(y), then we simply set βT (tw) = βT (t) ∪ {{y}} without modifying graph F .

Next, add a fresh child node t′w in T r, designate tw as its parent, and set βT (t
′
w) based on the

following three cases:

a) If w ̸= π(x) and w ̸= π(y), then βT (t
′
w) = {{x, z}}.

b) If w = π(x), then βT (t
′
w) = {{x, x}}.

c) If w = π(y), then βT (t
′
w) = {{x, y}}.

Finally, we repeat the above procedure (point 2) once more, but this time the bag βT (t
′
w) is

replaced by the following three cases (changing x to y):
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Figure 6: The depth-2 unfolding tree of graph G at vertex pair (1,2) for Subgraph GNN, Local 2-
GNN, Local 2-FGNN, and 2-FGNN, respectively.

a) If w ̸= π(x) and w ̸= π(y), then βT (t
′
w) = {{y, z}}.

b) If w = π(y), then βT (t
′
w) = {{y, y}}.

c) If w = π(x), then βT (t
′
w) = {{x, y}}.

An illustration of the construction of unfolding tree is given in Figure 6(b).

We next define the unfolding tree of Local 2-FGNN, which differs in the loop part such that the node
tw can have two children under certain conditions.

Definition C.12 (Unfolding tree of Local 2-FGNN). Given a graph G, vertices u, v ∈ VG, and a
non-negative integer D, the depth-2D Local 2-FGNN unfolding tree of graph G at (u, v), denoted as(
F

LF,(D)
G (u, v), T

LF,(D)
G (u, v)

)
, is a tree-decomposed graph (F, T r) ∈ SLF constructed as follows:

1. Initialization. The procedure is exactly the same as Subgraph GNN (Definition C.10).

2. Loop for D rounds. For each leaf node t in T r, do the following procedure:
Let βT (t) = {{x, y}}. For each w ∈ NG[π(x)] ∪ NG[π(y)], add a fresh child node tw to T
and designate t as its parent. Then, consider the following three cases:

a) If w ̸= π(x) and w ̸= π(y), then add a fresh vertex z to F and extend π with π(z) = w.
The label of z in F is set by ℓF (z) = ℓG(w). Define βT (tw) = βT (t) ∪ {{z}}. Then,
we add edges between z and βT (t), so that π is an isomorphism from F [βT (tw)] to
G[π(βT (tw))].

b) If w = π(x), then we simply set βT (tw) = βT (t) ∪ {{x}} without modifying graph F .
c) If w = π(y), then we simply set βT (tw) = βT (t) ∪ {{y}} without modifying graph F .
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Next, add two fresh children t′w and t′′w in T r, designate tw as their parent, and set βT (t
′
w) and

βT (t
′
w) based on the following three cases:

a) If w ̸= π(x) and w ̸= π(y), then βT (t
′
w) = {{x, z}} and βT (t

′′
w) = {{y, z}}.

b) If w = π(x), then βT (t
′
w) = {{x, x}} and βT (t

′′
w) = {{x, y}}.

c) If w = π(y), then βT (t
′
w) = {{x, y}} and βT (t

′′
w) = {{y, y}}.

For each w /∈ NG[π(x)] ∪ NG[π(y)], follow the the same procedure as Local 2-GNN (Defi-
nition C.11).

An illustration of the construction of unfolding tree is given in Figure 6(c).

We finally define the unfolding tree of 2-FGNN, which differs in the loop part such that all nodes tw
have two children.
Definition C.13 (Unfolding tree of 2-FGNN). Given a graph G, vertices u, v ∈ VG, and a
non-negative integer D, the depth-2D 2-FGNN unfolding tree of graph G at (u, v), denoted as(
F

Sub,(D)
G (u, v), T

Sub,(D)
G (u, v)

)
, is a tree-decomposed graph (F, T r) ∈ SF constructed as follows:

1. Initialization. The procedure is exactly the same as Local 2-FGNN (Definition C.12).

2. Loop for D rounds. The procedure is similar to Local 2-FGNN (Definition C.12) except that
the condition w ∈ NG[π(x)] ∪NG[π(y)] is relaxed to all vertices.

An illustration of the construction of unfolding tree is given in Figure 6(d).

We are now ready to present the first core result:
Lemma C.14. Let M ∈ {Sub, L, LF,F} be any model. For any two graphs G,H , any vertices
u, v ∈ VG, x, y ∈ VH , and any non-negative integer D, χ̃M,(D)

G (u, v) = χ̃
M,(D)
H (x, y) iff there exists

an isomorphism (ρ, τ) from
(
F

M,(D)
G (u, v), T

M,(D)
G (u, v)

)
to
(
F

M,(D)
H (x, y), T

M,(D)
H (x, y)

)
such

that ρ(u) = x, ρ(v) = y.

Proof. Here, we only give the proof for Local 2-GNN, and the proofs for Subgraph GNN, Local
2-FGNN and 2-FGNN are almost the same so we omit them for clarity.

Proof for Local 2-GNN. The proof is based on induction over D. When D = 0, the theorem
obviously holds. Now assume that the theorem holds for D ≤ d, and consider D = d + 1. Below,
we omit L in the corner mark for clarity.

1. We first prove that χ̃(d+1)
G (u, v) = χ̃

(d+1)
H (x, y) implies that there exists an isomorphism

(ρ, τ) from
(
F

(d+1)
G (u, v), T

(d+1)
G (u, v)

)
to
(
F

(d+1)
H (x, y), T

(d+1)
H (x, y)

)
such that ρ(u) =

x, ρ(v) = y. If χ̃(d+1)
G (u, v) = χ̃

(d+1)
H (x, y), then

{{(χ̃(d)
G (u,w), atpG(u, v, w)) : w ∈ VG}} = {{(χ̃(d)

H (x, z), atpH(x, y, z)) : z ∈ VH}}, (11)

{{(χ̃(d)
G (w, v), atpG(u, v, w)) : w ∈ VG}} = {{(χ̃(d)

H (z, y), atpH(x, y, z)) : z ∈ VH}}. (12)

Let n = |VG| = |VH |. Thus, we can denote VG = {w1, · · · , wn} = {w′
1, · · · , w′

n} and
VH = {z1, · · · , zn} = {z′1, · · · , z′n} such that

• (χ̃
(d)
G (u,wi), atpG(u, v, wi)) = (χ̃

(d)
H (x, zi), atpH(x, y, zi)) for all i ∈ [n];

• (χ̃
(d)
G (w′

i, v), atpG(u, v, w
′
i)) = (χ̃

(d)
H (z′i, y), atpH(x, y, z′i)) for all i ∈ [n].

On the other hand, by definition of tree unfolding, we have

F
(d+1)
G (u, v) =

(⋃
wi

F
(d)
G (u,wi)

)
∪

⋃
w′

i

F
(d)
G (w′

i, v)

 ∪ F
(1)
G (u, v),

F
(d+1)
H (x, y) =

(⋃
zi

F
(d)
H (x, zi)

)
∪

⋃
z′
i

F
(d)
H (z′i, y)

 ∪ F
(1)
H (x, y),
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Assume �1 = �1
′ = �,

�2 = �2
′ = �

� �

��
′

��

�  2�  �, �2 

�  2�  �1
′ , � 

�  2�  �, �� 

�  2�  ��
′, � 

�  2�  �, �1 

�  2�  �2
′ , � 

� = 3,⋯�

� = 3,⋯�

…

…

…

…

�, �

�, �, �1 �, �, �2 �, �, �� �, �, �1
′ �, �, �2

′ �, �, ��
′

�, �1 �, �2 �, �� �, �1
′ �, �2

′ �, ��
′

� (2�)

(�, �1)
� (2�)

(�, �2)
� (2�)

(�, ��)
� (2�)

(�1
′ , �)

� (2�)

(�2
′ , �)

� (2�)

(��
′ , �)

Figure 7: Illustration of the proof of Lemma C.14.

where ∪ represents the graph union. Here, all wi, w
′
j /∈ {u, v} in different graphs are treated

as different vertices when taking the union, while u, v in different graphs are shared. See
Figure 7 for an illustration of the above equations.

By induction, there exists an isomorphism (ρi, τi) from
(
F

(d)
G (u,wi), T

(d)
G (u,wi)

)
to(

F
(d)
H (x, zi), T

(d)
H (x, zi)

)
such that ρi(u) = x, ρi(wi) = zi (i ∈ [n]), and there exist

an isomorphism ρ′i from
(
F

(d)
G (w′

i, v), T
(d)
G (w′

i, v)
)

to
(
F

(d)
H (z′i, y), T

(d)
H (z′i, y)

)
such that

ρ′i(v) = y, ρ′i(w
′
i) = z′i (i ∈ [n]). Moreover, we have atpG(u, v, wi) = atpH(x, y, zi)

and atpG(u, v, w
′
i) = atpH(x, y, z′i) for i ∈ [n], which implies that F (1)

G (u, v) is isomorphic
to F

(1)
H (x, y). Therefore, if we construct ρ̃ by merging all ρi and ρ′i (i ∈ [n]), and con-

struct τ̃ by merging all τi and τ ′i and further specifying an appropriate mapping between tree
nodes of depth no more than 1 in T

(d+1)
G (u, v) and T

(d+1)
H (x, y), then it is straightforward to

see that (ρ̃, τ̃) is well-defined and is an isomorphism from
(
F

(d+1)
G (u, v), T

(d+1)
G (u, v)

)
to(

F
(d+1)
H (x, y), T

(d+1)
H (x, y)

)
such that ρ̃(u) = x, ρ̃(v) = y.

2. We next prove that if there exists an isomorphism (ρ, τ) from the tree-decomposed graph(
F

(d+1)
G (u, v), T

(d+1)
G (u, v)

)
to
(
F

(d+1)
H (x, y), T

(d+1)
H (x, y)

)
such that ρ(u) = x, ρ(v) = y,

then χ̃
(d+1)
G (u, v) = χ̃

(d+1)
H (x, y).

Without loss of generality, assume u ̸= v and x ̸= y. since τ is an isomorphism from
T

(d+1)
G (u, v) to T

(d+1)
H (x, y), τ maps all tree nodes of depth 1 in T

(d+1)
G (u, v) to all tree

nodes of depth 1 in T
(d+1)
H (x, y). Let s1, · · · , sn be all nodes of depth 2 in T

(d+1)
G (u, v) such

that u ∈ β
T

(d+1)
G (u,v)

(si) (it follows that n = |VG|), and let s′i be the parent of si. Similarly,

let t1, · · · , tn be all nodes of depth 2 in T
(d+1)
H (x, y) such that x ∈ β

T
(d+1)
H (x,y)

(ti), and let t′i
be the parent of ti. Moreover, we can arrange the order so that the following are satisfied (for
each i ∈ [n]):

a) τ is an isomorphism from the subtree T
(d+1)
G (u, v)[si] to the subtree T

(d+1)
H (x, y)[ti].

b) For all s ∈ Desc
T

(d+1)
G (u,v)

(si), ρ(βT
(d+1)
G (u,v)

(s)) = β
T

(d+1)
H (x,y)

(τ(s)).

c) By definition of the unfolding tree, ρ is an isomorphism from the induced subgraph
F

(d+1)
G (u, v)[T

(d+1)
G (u, v)[si]] to the induced subgraph F

(d+1)
H (x, y)[T

(d+1)
H (x, y)[ti]]

(see Definition C.7).
d) Let β

T
(d+1)
G (u,v)

(s′i) = {{u, v, w̃i}} and β
T

(d+1)
H (x,y)

(t′i) = {{x, y, z̃i}}. Then, ρ(w̃i) =

z̃i, and thus {v, w̃i} ∈ E
F

(d+1)
G (u,v)

iff {y, z̃i} ∈ E
F

(d+1)
H (x,y)

.

By items (a) to (c),
(
F

(d+1)
G (u, v)

[
T

(d+1)
G (u, v)[si]

]
, T

(d+1)
G (u, v)[si]

)
is isomorphic to(

F
(d+1)
H (x, y)

[
T

(d+1)
H (x, y)[ti]

]
, T

(d+1)
H (x, y)[ti]

)
. On the other hand, by definition of

the unfolding tree,
(
F

(d+1)
G (u, v)

[
T

(d+1)
G (u, v)[si]

]
, T

(d+1)
G (u, v)[si]

)
is isomorphic to
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the depth-2d unfolding tree
(
F

(d)
G (u,wi), T

(d)
G (u,wi)

)
for some wi ∈ VG satisfying that

{wi, v} ∈ EG iff {w̃i, v} ∈ E
F

(d+1)
G (u,v)

.

Similarly,
(
F

(d+1)
H (x, y)

[
T

(d+1)
H (x, y)[ti]

]
, T

(d+1)
H (x, y)[ti]

)
is isomorphic to(

F
(d)
H (x, zi), T

(d)
H (x, zi)

)
for some zi ∈ VH satisfying that {zi, y} ∈ EH

iff {z̃i, y} ∈ E
F

(d+1)
H (x,y)

. Combining all the above equivalence yields that(
F

(d)
G (u,wi), T

(d)
G (u,wi)

)
is isomorphic to

(
F

(d)
H (x, zi), T

(d)
H (x, zi)

)
, and {wi, v} ∈ EG

iff {zi, y} ∈ EH .

By induction, we have χ̃
(d)
G (u,wi) = χ̃

(d)
H (x, zi). Moreover, we clearly have that {u,wi} ∈

EG iff {x, zi} ∈ EH , and {u, v} ∈ EG iff {x, y} ∈ EH . Therefore,

(χ̃
(d)
G (u,wi), atpG(u, v, wi)) = (χ̃

(d)
H (x, zi), atpH(x, y, zi)). (13)

Next, note that w̃i are different from each other for i ∈ [n] by definition of unfolding tree.
Thus, wi are also different from each other. It follows that

{{(χ̃(d)
G (u,w), atpG(u, v, w)) : w ∈ VG}} = {{(χ̃(d)

H (x, z), atpH(x, y, z)) : z ∈ VH}}. (14)

Again using the same analysis as before, we obtain

{{(χ̃(d)
G (w, v), atpG(u, v, w)) : w ∈ VG}} = {{(χ̃(d)

H (z, y), atpH(x, y, z)) : z ∈ VH}}. (15)

It remains to prove that χ̃(d)
G (u, v) = χ̃

(d)
H (x, y). To prove this, note that Equation (14) implies

that

{{(χ̃(d′)
G (u,w), atpG(u, v, w)) : w ∈ VG}} = {{(χ̃(d′)

H (x, z), atpH(x, y, z)) : z ∈ VH}} (16)

holds for all 0 ≤ d′ ≤ d, and Equation (15) implies that

{{(χ̃(d′)
G (w, v), atpG(u, v, w)) : w ∈ VG}} = {{(χ̃(d)

H (z, y), atpH(x, y, z)) : z ∈ VH}}. (17)

holds for all 0 ≤ d′ ≤ d. Combined with Equations (16) and (17) and the fact that
χ̃
(0)
G (u, v) = χ̃

(0)
H (x, y), we can incrementally prove that χ̃(d′)

G (u, v) = χ̃
(d′)
H (x, y) for all

d′ ≤ d+ 1.

We have thus concluded the proof.

Definition C.15. Let M ∈ {Sub, L, LF,F} be any model. Given a graph G and a tree-decomposed
graph (F, T r), define

cntM ((F, T r) , G) :=
∣∣∣{(u, v) ∈ V 2

G : ∃D ∈ N+ s.t.
(
F

M,(D)
G (u, v), T

M,(D)
G (u, v)

)
≃ (F, T r)

}∣∣∣ ,
where

(
F

M,(D)
G (u, v), T

M,(D)
G (u, v)

)
is the depth-2D unfolding tree of G at (u, v) for model M .

Corollary C.16. Let M ∈ {Sub, L, LF,F} be any model. For any graphs G,H , χM
G (G) = χM

H (H)
iff cntM ((F, T r) , G) = cntM ((F, T r) , H) holds for all (F, T r) ∈ SM .

Proof. “=⇒”. If χM
G (G) = χM

H (H), then {{χM
G (u, v) : u, v ∈ VG}} = {{χM

H (x, y) : x, y ∈ VH}}.
For each color c in the above multiset, pick u, v ∈ VG with χM

G (u, v) = c. It follows that if
(F, T r) ≃ (F

M,(D)
G (u, v), T

M,(D)
G (u, v)) ∈ SM for some D, then cntM ((F, T r) , G) = |{{(u, v) ∈

V 2
G : χM

G (u, v) = c}}| = |{{(x, y) ∈ V 2
H : χM

H (x, y) = c}}| = cntM ((F, T r) , H) by Lemma C.14.
On the other hand, if (F, T r) ̸≃ (F

M,(D)
G (u, v), T

M,(D)
G (u, v)) for all u, v ∈ VG and all D, then

clearly cntM ((F, T r) , G) = cntM ((F, T r) , H) = 0.

“⇐=”. If cntM ((F, T r) , G) = cntM ((F, T r) , H) holds for all (F, T r) ∈ SM , it clearly holds
for all (F (D)

M (u, v), T
(D)
M (u, v)) with u, v ∈ VG and a sufficiently large D. This guarantees that for

all color c, |{(u, v) ∈ V 2
G : χM

G (u, v) = c}| = |{(x, y) ∈ V 2
H : χM

H (x, y) = c}| by Lemma C.14.
Therefore, {{χM

G (u, v) : u, v ∈ VG}} = {{χM
H (x, y) : x, y ∈ VH}}, concluding the proof.
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We next define an important concept called bag isomorphism (Dell et al., 2018).

Definition C.17. Given a tree-decomposed graph (F, T r) and a graph G, a bag isomorphism from
(F, T r) to G (abbreviated as “bIso”) is a homomorphism f from F to G such that, for all t ∈ VT , f
is an isomorphism from F [βT (t)] to G[f(βT (t))]. Denote BIso((F, T r), G) to be the set of all bag
isomorphisms from (F, T r) to G, and denote bIso((F, T r), G) = |BIso((F, T r), G)|.
Remark C.18. To prove that a mapping f from (F, T r) to G is a bIso, it suffices to prove the
following conditions:

1. For any two different vertices u, v ∈ VG in the same bag, f(u) ̸= f(v);
2. For any two vertices u, v ∈ VG in the same bag, {u, v} ∈ EF iff {f(u), f(v)} ∈ EG;
3. For any u ∈ VG, ℓF (u) = ℓG(f(u)).

The following fact is straightforward from the construction of the unfolding tree:

Fact C.19. Let M ∈ {Sub, L, LF,F} be any model considered above. For any graph G,
any vertex pair (u, v) ∈ V 2

G, and any non-negative integer D, there is a bIso π from(
F

M,(D)
G (u, v), T

M,(D)
G (u, v)

)
to G.

Similarly, we need the following concept to describe the relation between two tree-decomposed
graphs. We note that these technical concepts also appeared in Dell et al. (2018).

Definition C.20. Given two tree-decomposed graphs (F, T r) and (F̃ , T̃ s), a pair of mappings (ρ, τ)
is called homomorphism from (F, T r) to (F̃ , T̃ s) if it satisfies the following conditions:

a) τ is a homomorphism from T to T̃ (ignording labels β) and is depth-preserving, i.e.,
depT r (t) = depT̃ s(τ(t)) for all t ∈ VT ;

b) For all t ∈ VT , ρ is a homomorphism from F [βT (t)] to F̃ [βT̃ (τ(t))]. Note that this implies
that ρ is a homomorphism from F to F̃ .

c) The depth of T r is equal to the depth of T̃ s.

Definition C.21. Under Definition C.20, (ρ, τ) is further called a bag-isomorphism homo-
morphism (abbreviated as “bIsoHom”) from (F, T r) to (F̃ , T̃ s) if it a homomorphism satis-
fying that, for all t ∈ VT , ρ is an isomorphism from F [βT (t)] to F̃ [βT̃ (τ(t))]. Further-
more, (ρ, τ) is called a bIsoSurj if τ is surjective; and (ρ, τ) is called a bIsoInj if τ is in-
jective. We use BIsoHom

(
(F, T r), (F̃ , T̃ s)

)
to denote the set of bIsoHoms from (F, T r) to

(F̃ , T̃ s), and let bIsoHom
(
(F, T r), (F̃ , T̃ s)

)
=

∣∣∣BIsoHom((F, T r), (F̃ , T̃ s)
)∣∣∣. The nota-

tions BIsoSurj
(
(F, T r), (F̃ , T̃ s)

)
, bIsoSurj

(
(F, T r), (F̃ , T̃ s)

)
, BIsoInj

(
(F, T r), (F̃ , T̃ s)

)
, and

bIsoInj
(
(F, T r), (F̃ , T̃ s)

)
are defined accordingly.

Remark C.22. In the above definition, the depth of a tree T r is the maximal depth among all tree
nodes in T r. Note that we do not require that all leaf nodes have the same depth in T r.

We are now ready to present the second core result:

Lemma C.23. Let M ∈ {Sub, L, LF,F} be any model. For any graph G and tree-decomposed
graph (F, T r) ∈ SM ,

bIso ((F, T r) , G) =
∑

(F̃ ,T̃ s)∈SM

bIsoHom
(
(F, T r) ,

(
F̃ , T̃ s

))
· cntM

((
F̃ , T̃ s

)
, G
)
. (18)

Here, the summation ranges over all non-isomorphic (tree-decomposed) graphs in SM and is well-
defined as there are only a finite number of graphs making the value in the summation non-zero.

Proof. Here, we only give the proof for Local 2-GNN, and the proofs for Subgraph GNN, Local
2-FGNN and 2-FGNN are almost the same so we omit them for clarity.
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Proof for Local 2-GNN. We assume that the root bag of (F, T r) is {{u, v}}, and the depth of (F, T r)

is 2d. Let y, z ∈ VG be any vertices in G, and denote (F
(d)
G (y, z), T

(d)
G (y, z)) as the depth-2d Local

2-GNN unfolding tree at (y, z). Define the following two sets:

S1(y, z) = {g : g ∈ BIso ((F, T r) , G) , g(u) = y, g(v) = z},

S2(y, z) =
{
(ρ, τ) : (ρ, τ) ∈ BIsoHom

(
(F, T r), (F

(d)
G (y, z), T

(d)
G (y, z))

)
, ρ(u) = y, ρ(v) = z

}
.

Then, Lemma C.23 is equivalent to the following equation:∑
y,z∈VG

|S1(y, z)| =
∑

y,z∈VG

|S2(y, z)|.

We will prove that |S1(y, z)| = |S2(y, z)| for all y, z ∈ VG.

Given y, z ∈ VG, according to Fact C.19, there exists a bIso π from (F
(d)
G (y, z), T

(d)
G (y, z)) to graph

G. Define a mapping σ such that σ(ρ, τ) = π ◦ ρ for all (ρ, τ) ∈ S2(y, z). It suffices to prove that
σ is a bijection from S2(y, z) to S1(y, z).

1. We first prove that σ is a mapping from S2(y, z) to S1(y, z), i.e., π ◦ ρ ∈ S1(y, z) for all
(ρ, τ) ∈ S2(y, z). First, we clearly have (π ◦ ρ)(u) = π(y) = y, (π ◦ ρ)(v) = π(z) = z. We
next prove that π ◦ ρ ∈ BIso ((F, T r) , G). The proof is based on Remark C.18.

a) Let w, x ∈ VF , w ̸= x be any vertices in the same bag of T r. Since (ρ, τ) is a bIsoHom,
ρ(w) ̸= ρ(x) and ρ(w) and ρ(x) are in the same bag of T (d)

G (y, z). Again, since π is a
bIso, we have π(ρ(w)) ̸= π(ρ(x)).

b) Let w, x ∈ VF be any vertices in the same bag of T r. Since (ρ, τ) is a bIso-
Hom, ρ(w) and ρ(x) are in the same bag of T

(d)
G (y, z), and {w, x} ∈ EF iff

{ρ(w), ρ(x)} ∈ E
F

(d)
G (y,z)

. Again, since π is a bIso, {ρ(w), ρ(x)} ∈ E
F

(d)
G (y,z)

iff
{π(ρ(w)), π(ρ(x))} ∈ EG. Therefore, {w, x} ∈ EF iff {π(ρ(w)), π(ρ(x))} ∈ EG.

c) We clearly have ℓF (w) = ℓ
F

(d)
G (y,z)

(ρ(w)) = ℓG(π(ρ(w))).

We have proved that π ◦ ρ ∈ BIso ((F, T r) , G).

2. We then prove that σ is a surjection. For all g ∈ S1(y, z), we define a mapping (ρ, τ) from
(F, T r) to (F

(d)
G (y, z), T

(d)
G (y, z)) as follows. First define ρ(u) = y, ρ(v) = z, and set τ(r)

to be the root of (F (d)
G (y, z), T

(d)
G (y, z)). Let w1, · · · , wm ∈ VF and w′

1, · · · , w′
m′ ∈ VF be

vertices such that all {u,wi} and {w′
i, v} correspond to bags of T r associated to all tree nodes

of depth 2. Similarly, by definition of the Local 2-GNN unfolding tree, let x1, · · · , xn ∈
V
F

(d)
G (y,z)

be different vertices and x′
1, · · · , x′

n ∈ V
F

(d)
G (y,z)

be different vertices such that all

{y, xi} and {x′
i, z} correspond to bags of T (d)

G (y, z) associated to all tree nodes of depth 2.
Since g and π are bIsos, we have:

• For every wi (i ∈ [m]), there exists xj (j ∈ [n]), such that g(wi) = π(xj) = x̃j for
some x̃j ∈ VG and F [{{u, v, wi}}] ≃ F

(d)
G (y, z)[{{y, z, xj}}] ≃ G[{{y, z, x̃j}};

• For every w′
i (i ∈ [m′]), there exists x′

j (j ∈ [n]), such that g(w′
i) = π(x′

j) = x̃′
j for

some x̃′
j ∈ VG and F [{{u, v, w′

i}}] ≃ F
(d)
G (y, z)[{{y, z, x′

j}}] ≃ G[{{y, z, x̃′
j}}.

We then define ρ(wi) = xj for each i ∈ [m] and ρ(w′
i) = x′

j for each i ∈ [m′]. Based on
the above two items, one can easily define τ such that each node s in T r of depth 1 or 2 is
mapped by τ to a node t in T

(d)
G (y, z) of the same depth, ρ(βT (s)) = β

T
(d)
G

(t), and ρ is an

isomorphism from F [βT (s)] to F
(d)
G (y, z)[β

T
(d)
G (y,z)

(t)].

Next, we can recursively define ρ’s image on F [T r[s]] for each tree node s of depth 2 follow-
ing the same construction above. This is because g is still a bIso from (F [T r[s]], T r[s]) to G,
π is still a bIso from

(
F

(d)
G (y, z)[T

(d)
G (y, z)[τ(s)]], T

(d)
G (y, z)[τ(s)]

)
to G, and g(βT (s)) =

π(β
T

(d)
G

(τ(s))). Recursively applying this procedure, we can construct (ρ, τ) such that it is a
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bIsoHom from (F, T r) to
(
F

(d)
G (y, z), T

(d)
G (y, z))

)
. That is to say, we have proved that for

all g ∈ S1(u, v), there is a preimage (ρ, τ) ∈ S2(y, z) such that σ(ρ, τ) = g.

3. We finally prove that σ is an injection. Let (ρ1, τ1), (ρ2, τ2) ∈ S2(y, z) such that π ◦ ρ1 =
π ◦ ρ2. Let w1, · · · , wm ∈ VF , w′

1, · · · , w′
m′ ∈ VF , x1, · · · , xn ∈ V

F
(d)
G (y,z)

, and
x′
1, · · · , x′

n ∈ V
F

(d)
G (y,z)

be defined as in the previous item. For each i ∈ [m], let j1(i)
and j2(i) be indices satisfying ρ1(wi) = xj1(i) and ρ2(wi) = xj2(i). It follows that
π(xj1(i)) = π(xj2(i)). By definition of the Local 2-GNN unfolding tree, we must have
xj1(i) = xj2(i), and thus ρ1(wi) = ρ2(wi). Using a similar approach, we can prove that
ρ1(w

′
i) = ρ2(w

′
i) for each i ∈ [m′]. Next, we can recursively apply the above procedure to

the subtree T r[s] for each tree node of depth 2 following the previous item, and finally prove
that ρ1 = ρ2. Therefore, σ is an injection.

Combining the above three items completes the proof.

Proposition C.24. Under Definition C.21, (i) if (ρ, τ) is a bIsoSurj, then ρ is a surjection from F

to F̃ on both vertices and edges; (ii) if (ρ, τ) is a bIsoInj, then ρ is an injection from F to F̃ on both
vertices and edges.

Proof. We first prove that ρ is surjective if (ρ, τ) is a bIsoSurj. We will only prove that ρ is surjective
on edges, as proving that ρ is surjective on vertices is almost the same. For any {x, y} ∈ EF̃ , by
Definition C.1(b) we can pick t̃ ∈ VT̃ such that {x, y} ∈ βT̃ (t̃). Since τ is surjective, there exists
t ∈ VT such that τ(t) = t̃. By definition of bag isomorphism, there exists u, v ∈ βT (t) such that
ρ(u) = x, ρ(v) = y, and F [{u, v}] ≃ F̃ [{x, y}]. Therefore, {u, v} ∈ EF .

We next prove that ρ is injective if (ρ, τ) is a bIsoInj. Pick any u ∈ VF . It suffices to prove that
ρ(u) = ρ(v) iff u = v for any v ∈ VF . If the result does not hold, consider two cases:

• There exists v ∈ VF , v ̸= u such that ρ(u) = ρ(v) and {u, v} are in the same bag of F . This
contradicts the definition of bag isomorphism.

• For all v ∈ VF such that v ̸= u and ρ(u) = ρ(v), {u, v} are not in the same bag of
F . By Proposition C.5, T

[⋃
v∈VF :ρ(u)=ρ(v) BT (v)

]
is disconnected. We can thus pick

a path P in T such that the endpoints t1 and t2 are in different connected components
of T

[⋃
v∈VF :ρ(u)=ρ(v) BT (v)

]
. This implies that there is tree node t3 in P such that

βT (t3) ∩ {v ∈ VF : ρ(u) = ρ(v)} = ∅. Consequently, ρ(u) ∈ ρ(βT (t1)) = βT̃ (τ(t1)),
ρ(u) ∈ ρ(βT (t2)) = βT̃ (τ(t2)), but ρ(u) /∈ βT̃ (τ(t3)). On the other hand, since τ is injec-
tive, T̃ [τ(VP )] is also a path and τ(t3) is on the path between τ(t1) and τ(t2) in T̃ . This
contradicts the definition of tree decomposition (Definition C.1(c)).

Combining the two cases concludes the proof.

Lemma C.25. Let M ∈ {Sub, L, LF,F} be any model. For any tree-decomposed graphs
(F, T r), (F̃ , T̃ s) ∈ SM ,

bIsoHom((F, T r), (F̃ , T̃ s)) =
∑

(F̂ ,T̂ t)∈SM

bIsoSurj
(
(F, T r), (F̂ , T̂ t)

)
· bIsoInj

(
(F̂ , T̂ t), (F̃ , T̃ s)

)
aut(F̂ , T̂ t)

,

where aut(F̂ , T̂ t) denotes the number of automorphisms of (F̂ , T̂ t). Here, the summation ranges
over all non-isomorphic (tree-decomposed) graphs in SM and is well-defined as there are only a
finite number of graphs making the value in the summation non-zero.

Proof. We define the following set of three-tuples:

S =
{(

(F̂ , T̂ t), (ρS, τS), (ρI, τ I)
)
: (F̂ , T̂ t) ∈ SM ,

(ρS, τS) ∈ BIsoSurj((F, T r), (F̂ , T̂ t)), (ρI, τ I) ∈ BIsoInj((F̂ , T̂ t), (F̃ , T̃ s))
}
.
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Define a mappings σ such that

σ
(
(F̂ , T̂ t), (ρS, τS), (ρI, τ I)

)
= (ρI ◦ ρS, τ I ◦ τS)

for all
(
(F̂ , T̂ t), (ρS, τS), (ρI, τ I)

)
∈ S. It suffices to prove the following three statements:

1. σ is a mapping from S to BIsoHom((F, T r), (F̃ , T̃ s));

2. σ is surjective;

3. σ
(
(F̂1, T̂

t1
1 ), (ρS1, τ

S
1 ), (ρ

I
1, τ

I
1)
)

= σ
(
(F̂2, T̂

t2
2 ), (ρS2, τ

S
2 ), (ρ

I
2, τ

I
2)
)

iff there exists an iso-

morphism (ρ̂, τ̂) from (F̂1, T̂
t1
1 ) to (F̂2, T̂

t2
2 ) such that ρ̂ ◦ ρS1 = ρS2, τ̂ ◦ τS1 = τS2 , ρI1 = ρI2 ◦ ρ̂,

τ I1 = τ I2 ◦ τ̂ .

We will prove these statements one by one.

1. We first prove that σ is a mapping from S to BIsoHom((F, T r), (F̃ , T̃ s)). This simply fol-
lows from the fact that both bIsoSurj and bIsoInj are bIsoHom, and the composition of two
bIsoHoms are still a bIsoHom.

2. We next prove that σ is surjective. Given (ρH, τH) ∈ BIsoHom((F, T r), (F̃ , T̃ s)), we define
(F̂ , T̂ t), (ρS, τS), and (ρI, τ I) as follows:

a) Let F̂ = F̃ [ρH(VF )] and T̂ t = T̃ s[τH(VT )]. We clearly have (F̂ , T̂ t) ∈ SM .
b) Let ρS = ρH and τS = τH. Obviously, (ρS, τS) is a bIsoSurj from (F, T r) to (F̂ , T̂ t).
c) Define identity mappings ρI(u) = u for all u ∈ VF̂ and τ I(t) = t for all t ∈ VT̂ .

Obviously, (ρI, τ I) is a bIsoInj from (F̂ , T̂ t) to (F̃ , T̃ s).

We clearly have ρH = ρI ◦ ρS and τH = τ I ◦ τS. Thus, σ is a surjection.

3. We finally prove the aforementioned item 3. It suffices to prove only one direction, namely,
σ
(
(F̂1, T̂

t1
1 ), (ρS1, τ

S
1 ), (ρ

I
1, τ

I
1)
)
= σ

(
(F̂2, T̂

t2
2 ), (ρS2, τ

S
2 ), (ρ

I
2, τ

I
2)
)

implies that there exists

an isomorphism (ρ̂, τ̂) from (F̂1, T̂
t1
1 ) to (F̂2, T̂

t2
2 ) such that ρ̂ ◦ ρS1 = ρS2, τ̂ ◦ τS1 = τS2 ,

ρI1 = ρI2 ◦ ρ̂, τ I1 = τ I2 ◦ τ̂ .

a) We first prove that F̂1 ≃ F̂2 and T̂ t1
1 ≃ T̂ t2

2 .
For any u, v ∈ VF , if ρS1(u) ̸= ρS1(v), then ρI1(ρ

S
1(u)) ̸= ρI1(ρ

S
1(v)) since ρI1 is an

injection (by Proposition C.24). Therefore, ρI2(ρ
S
2(u)) ̸= ρI2(ρ

S
2(v)), and thus ρS2(u) ̸=

ρS2(v). By symmetry, we also have that ρS2(u) ̸= ρS2(v) implies ρS1(u) ̸= ρS1(v). This
proves that ρS1(u) = ρS1(v) iff ρS2(u) = ρS2(v).
For any u, v ∈ VF , if {ρS1(u), ρS1(v)} ∈ EF̂1

, then {ρI1(ρS1(u)), ρI1(ρS1(v))} ∈ EF̃

since ρI1 is a homomorphism. Therefore, {ρI2(ρS2(u)), ρI2(ρS2(v))} ∈ EF̃ . This implies
that ρI2(ρ

S
2(u)) and ρI2(ρ

S
2(v)) are in the same bag of T̃ s. Therefore, there are vertices

x, y ∈ VF̂2
in the same bag of T̂ s2

2 such that ρI2(x) = ρI2(ρ
S
2(u)) and ρI2(y) = ρI2(ρ

S
2(v)),

and by definition of bag isomorphism we have {x, y} ∈ EF̂2
. Since ρ2 is injective,

x = ρS2(u) and y = ρS2(v), namely, {ρS2(u), ρS2(v)} ∈ EF̂2
. By symmetry, we can prove

that {ρS1(u), ρS1(v)} ∈ EF̂1
iff {ρS2(u), ρS2(v)} ∈ EF̂2

.
Finally, noting that ρS1 and ρS2 are surjective (by Proposition C.24) and ℓF̂1

(ρS1(u)) =

ℓF (u) = ℓF̂2
(ρS2(u)) for all u ∈ VF , we obtain that F̂1 ≃ F̂2. Following the same

procedure, we can prove that T̂ t1
1 ≃ T̂ t2

2 .
b) Consequently, there exist isomorphisms ρ̂ and τ̂ such that ρ̂◦ρS1 = ρS2, τ̂ ◦ τS1 = τS2 . For

any node q ∈ VT ,

ρ̂(βT̂1
(τS1 (q))) = ρ̂(ρS1(βT (q))) = ρS2(βT (q))) = βT̂2

(τS2 (q)) = βT̂2
(τ̂(τS1 (q))).

Since τS1 is surjective, τS1 (q) ranges over all nodes in T̂ s1
1 when q ranges over VT . We

thus conclude that (ρ, τ) is an isomorphism from (F̂1, T̂
t1
1 ) to (F̂2, T̂

t2
2 ) (see Defini-

tion C.8).
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c) We finally prove that ρI1 = ρI2 ◦ ρ̂ and τ I1 = τ I2 ◦ τ̂ . Pick any u ∈ VF , we have
ρI2(ρ̂(ρ

S
1(u))) = ρI2(ρ

S
2(u)) = ρI1(ρ

S
1(u)). Since ρS1 is surjective, ρS1(u) ranges over all

nodes in F̂1 when u ranges over VF . This proves that ρI1 = ρI2 ◦ ρ̂. Following the same
procedure, we can prove that τ I1 = τ I2 ◦ τ̂ .

Combining the above three items concludes the proof.

In the following, we further define two technical concepts that will be used to describe the next
result. We note that these technical concepts also appeared in Dell et al. (2018).

Definition C.26. A tree-decomposed graph (F̃ , T̃ s) is called a bag extension of another tree-
decomposed graph (F, T r) if there is a graph H and a mapping (ρ, τ) such that F is a subgraph
of H and (ρ, τ) is an isomorphism from the tree-decomposed graph (H,T r) to (F̃ , T̃ s). Define
BExt

(
(F, T r), (F̃ , T̃ s)

)
to be the set of all mappings (ρ, τ) that satisfies the above conditions, and

define bExt
(
(F, T r), (F̃ , T̃ s)

)
=
∣∣∣BExt((F, T r), (F̃ , T̃ s)

)∣∣∣.
Remark C.27. In other words, a bag extension of a tree-decomposed graph (F, T r) can be obtained
by adding an arbitrary number of edges to F while ensuring that each added edge is contained in a
tree node in T r. A immediate fact is that (ρ, τ) is a homomorphism from (F, T r) to (F̃ , T̃ s).

Definition C.28. Given a tree-decomposed graph (F, T r) and a graph G, a bag-strong homomor-
phism from (F, T r) to G (abbreviated as “bStrHom”) is a homomorphism f from F to G such that,
for all t ∈ VT , f is a strong homomorphism from F [βT (t)] to G[f(βT (t))], i.e., {u, v} ∈ EF [βT (t)]

iff {f(u), f(v)} ∈ EG[f(βT (t))]. Denote BStrHom((F, T r), G) to be the set of all bStrHom from
(F, T r) to G, and denote bStrHom((F, T r), G) = |BStrHom((F, T r), G)|.

The following equation is straightforward:

Lemma C.29. Let M ∈ {Sub, L, LF,F} be any model. For any graph G and tree-decomposed
graph (F, T r) ∈ SM ,

hom(F,G) =
∑

(F̃ ,T̃ s)∈SM

bExt
(
(F, T r), (F̃ , T̃ s)

)
· bStrHom

(
(F̃ , T̃ s), G

)
aut(F̃ , T̃ s)

,

where aut(F̃ , T̃ s) denotes the number of automorphisms of (F̃ , T̃ s). Here, the summation ranges
over all non-isomorphic (tree-decomposed) graphs in SM and is well-defined as there are only a
finite number of graphs making the value in the summation non-zero.

Proof. The proof has a similar structure to the previous lemma. We define the following set of
three-tuples:

S=
{(

(F̃ , T̃ s), (ρ, τ), g
)
: (F̃ , T̃ s)∈SM , (ρ, τ)∈BExt

(
(F, T r), (F̃ , T̃ s)

)
, g∈BStrHom((F̃ , T̃ s), G)

}
.

Define a mappings σ such that σ
(
(F̃ , T̃ s), (ρ, τ), g

)
= g ◦ ρ for all

(
(F̃ , T̃ s), (ρ, τ), g

)
∈ S. It is

straightforward to see that σ is a mapping from S to BIsoHom((F, T r), (F̃ , T̃ s)), namely, g ◦ ρ is a
homomorphism from F to G for all

(
(F̃ , T̃ s), (ρ, τ), g

)
∈ S.

We then prove that σ is surjective. Given h ∈ Hom(F,G), define (F̃ , T̃ s), (ρ, τ), and g as follows:

a) Define F̃ be the graph obtained from F by adding edges {{u, v} : ∃t ∈ VT s.t. u, v ∈
βT (t), {h(u), h(v)} ∈ EG}, and let T̃ s = T r. Clearly, (F̃ , T̃ s) is a bag extension of (F, T r).

b) Define identity mappings ρ(u) = u for all u ∈ VF and τ(t) = t for all t ∈ VT . Clearly,
(ρ, τ) ∈ BExt((F, T r), (F̃ , T̃ s)).

c) Let g = h. It is easy to see that g is a strong homomorphism from F̃ [βT̃ (t)] to G[g(βT̃ (t))]

for each t ∈ VT̃ . Thus, g ∈ BStrHom((F̃ , T̃ s), G).
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Noting that h = g = g ◦ ρ, we have proved that σ is a surjection.

We finally prove that σ
(
(F̃1, T̃

s1
1 ), (ρ1, τ1), g1

)
= σ

(
(F̃2, T̃

s2
2 ), (ρ2, τ2), g2

)
implies that there

exists an isomorphism (ρ̃, τ̃) from (F̃1, T̃
s1
1 ) to (F̃2, T̃

s2
2 ) such that ρ̃ ◦ ρ1 = ρ2, τ̃ ◦ τ1 = τ2,

g1 = g2 ◦ ρ̃. We first prove that F̃1 ≃ F̃2 and T̃ s1
1 ≃ T̃ s2

2 . (i) For any u, v ∈ VF , we obviously have
ρ1(u) = ρ1(v) iff u = v iff ρ2(u) = ρ2(v). (ii) Let i ∈ {1, 2}. For any u, v ∈ VF , {ρi(u), ρi(v)} ∈
EF̃i

iff {u, v} ∈ EF or u, v are in the same bag of T r and {gi(ρi(u)), g(ρi(v))} ∈ EG. Since
g1 ◦ ρ1 = g2 ◦ ρ2, we have {ρ1(u), ρ1(v)} ∈ EF̃1

iff {ρ2(u), ρ2(v)} ∈ EF̃2
. (iii) Finally, noting

that ρ1 and ρ2 are bijective and ℓF̃1
(ρ1(u)) = ℓF (u) = ℓF̃2

(ρ2(u)) for all u ∈ VF , we obtain that
F̃1 ≃ F̃2. On the other hand, T̃ s1

1 ≃ T̃ s2
2 trivially holds. The remaining procedure is almost the

same as in the previous lemma.

We next show that the mapping bStrHom can be further decomposed as shown in Lemma C.31. We
need an auxiliary concept:

Definition C.30. Given two tree-decomposed graphs (F, T r) and (F̃ , T̃ s), a homomorphism (ρ, τ)

from (F, T r) to (F̃ , T̃ s) is called bag-strong surjective (abbreviated as “bStrSurj”) if ρ is a bag-
strong homomorphism from (F, T r) to F̃ and is surjective on both vertices and edges, and τ is an
isomorphism from T r to T̃ s. Denote BStrSurj((F, T r), (F̃ , T̃ s)) to be the set of all bStrSurj from
(F, T r) to (F̃ , T̃ s), and denote bStrSurj((F, T r), (F̃ , T̃ s)) = |BStrSurj((F, T r), (F̃ , T̃ s))|.
Lemma C.31. Let M ∈ {Sub, L, LF,F} be any model. For any graph G and tree-decomposed
graph (F, T r) ∈ SM ,

bStrHom((F, T r), G) =
∑

(F̃ ,T̃ s)∈SM

bStrSurj
(
(F, T r), (F̃ , T̃ s)

)
· bIso

(
(F̃ , T̃ s), G

)
aut(F̃ , T̃ s)

,

where aut(F̃ , T̃ s) denotes the number of automorphisms of (F̃ , T̃ s). Here, the summation ranges
over all non-isomorphic (tree-decomposed) graphs in SM and is well-defined as there are only a
finite number of graphs making the value in the summation non-zero.

Proof. The proof has a similar structure to the previous lemma. We define the following set of
three-tuples:

S=
{(

(F̃ , T̃ s), (ρ, τ), g
)
: (F̃ , T̃ s)∈SM , (ρ, τ)∈BStrSurj

(
(F, T r), (F̃ , T̃ s)

)
, g∈BIso((F̃ , T̃ s), G)

}
.

Define a mappings σ such that σ
(
(F̃ , T̃ s), (ρ, τ), g

)
= g ◦ ρ for all

(
(F̃ , T̃ s), (ρ, τ), g

)
∈ S. It

suffices to prove the following three statements:

1. σ is a mapping from S to BStrHom((F, T r), G);

2. σ is surjective;

3. σ
(
(F̃1, T̃

s1
1 ), (ρ1, τ1), g1

)
= σ

(
(F̃2, T̃

s2
2 ), (ρ2, τ2), g2

)
iff there exists an isomorphism

(ρ̃, τ̃) from (F̃1, T̃
s1
1 ) to (F̃2, T̃

s2
2 ) such that ρ̃ ◦ ρ1 = ρ2, τ̃ ◦ τ1 = τ2, g1 = g2 ◦ ρ̃.

We will prove these statements one by one.

1. We first prove that σ is a mapping from S to BStrHom((F, T r), G). Pick any(
(F̃ , T̃ s), (ρ, τ), g

)
∈ S. Pick any t ∈ VT and u, v ∈ βT (t). Then, {u, v} ∈ EF iff

{ρ(u), ρ(v)} ∈ EF̃ (since ρ is a strong homomorphism from F [βT (t)] to F̃ [ρ(βT (t))]).
Also, ρ(u), ρ(v) ∈ βT̃ (τ(t)) are in the same bag. Similarly, {ρ(u), ρ(v)} ∈ EF̃ iff
{g(ρ(u)), g(ρ(v))} ∈ EG (since g is a bIso). Thus, g ◦ ρ is a bag-strong homomorphism.

2. We next prove that σ is surjective. Given h ∈ BStrHom((F, T r), G), define (F̃ , T̃ s), (ρ, τ),
and g as follows. First define a relation ∼ on set VF such that u ∼ v iff the following hold:

a) h(u) = h(v);
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b) There exists a path P in T r with endpoints t1, t2 ∈ VT such that u ∈ βT (t1), v ∈
βT (t2), and all node t on path P satisfies that h(u) ∈ h(βT (t)).

It is easy to see that ∼ is an equivalence relation on VF . We can thus define a mapping ρ
that respects the relation, i.e., ρ(u) = ρ(v) iff u ∼ v for all u, v ∈ VF . Moreover, for any
edge {u, v} ∈ EF , ρ(u) ̸= ρ(v) (since h is a homomorphism and h(u) ̸= h(v)). This
implies that we can define F̃ to be the homomorphic image of F such that ρ is the surjective
homomorphism on both vertices and edges.

We then define the mapping g : VF̃ → VG such that g(ρ(u)) = h(u) for all u ∈ VF . Note that
g is well-defined since ρ(u) = ρ(v) implies h(u) = h(v) for all u, v ∈ VF , and ρ : VF → VF̃
is surjective. It follows that h = g ◦ ρ. To prove that g is a homomorphism, note that for all
{x, y} ∈ EF̃ , there exists an edge {u, v} ∈ EF with ρ(u) = x, ρ(v) = y, which implies that
{h(u), h(v)} ∈ EG (since h is a homomorphism), namely, {g(x), g(y)} ∈ EG.

We next define tree T̃ s = (VT , ET , βT̃ ), s = t, and identity mapping τ so that τ is an
isomorphism from Tr to Ts (ignoring the labels). Set βT̃ (t) = ρ(βT (t)) for all t ∈ VT .
We will prove that (F̃ , T̃ s) ∈ SM is a valid tree decomposition. It suffices to prove that
Definition C.1(c) holds. Pick any vertex x ∈ VF̃ and tree node t1, t2 ∈ BT̃ (x). Then, there
exists u ∈ βT (t1), v ∈ βT (t2) such that ρ(u) = x, ρ(v) = x. Therefore, u ∼ v. As such,
there exists a path P in T r such that all node t on P satisfies that there exists w ∈ βT (t)

with h(w) = h(u), namely, w ∼ u. Consequently, ρ(u) ∈ βT̃ (t), implying that T̃ s[BT̃ (x)]

is connected. This proves that (F̃ , T̃ s) ∈ SM . Also, (ρ, τ) is clearly a homomorphism from
(F, T r) to (F̃ , T̃ s) according to Definition C.20.

It remains to prove that ρ is a bag-strong homomorphism and g is a bIso. Pick any t ∈
VT and u, v ∈ βT (t). If {u, v} /∈ EF , then {h(u), h(v)} /∈ EG (since h is a bag-strong
homomorphism). Therefore, {ρ(u), ρ(v)} /∈ EF̃ (since g is a homomorphism), namely, ρ is a
bag-strong homomorphism. Since ρ is surjective, {ρ(u), ρ(v)} ranges over all vertices in the
same bag of T̃ s when t ∈ VT and u, v ∈ βT (t) are arbitrary. Therefore, g is a bIso because
{ρ(u), ρ(v)} /∈ EF̃ iff {h(u), h(v)} /∈ EG.

3. We finally prove that σ
(
(F̃1, T̃

s1
1 ), (ρ1, τ1), g1

)
= σ

(
(F̃2, T̃

s2
2 ), (ρ2, τ2), g2

)
implies there

exists an isomorphism (ρ̃, τ̃) from (F̃1, T̃
s1
1 ) to (F̃2, T̃

s2
2 ) such that ρ̃ ◦ ρ1 = ρ2, τ̃ ◦ τ1 = τ2,

g1 = g2 ◦ ρ̃. Let h = g1 ◦ ρ1 = g2 ◦ ρ2. Here, we will only prove that F̃1 ≃ F̃2 since
the remaining procedure is almost the same as previous proofs. Since both F̃1 and F̃2 are
homomorphic images of F , it suffices to prove that, for all u, v ∈ VF , ρ1(u) = ρ1(v) iff the
following hold:

a) h(u) = h(v);
b) There exists a path P in T r with endpoints t1, t2 ∈ VT such that u ∈ βT (t1), v ∈

βT (t2), and all node t on path P satisfies that h(u) ∈ h(βT (t)).

On one hand, if ρ1(u) = ρ1(v), we clearly have h(u) = h(v) and there exists t1 ∈
BT (u), t2 ∈ BT (v) such that t1, t2 ∈ BT̃1

(ρ1(u)). Since T̃1[BT̃1
(ρ1(u))] is connected,

there is a path P with endpoints t1, t2 such that all node t on P satisfies ρ1(u) ∈ ρ1(βT (t))
and thus h(u) ∈ h(βT (t)).
On the other hand, if ρ1(u) ̸= ρ1(v) but the above items (a) and (b) hold, consider two cases:

• u and v are in the same bag of T . Then, ρ1(u) and ρ1(v) are in the same bag of T̃1.
Since g1 is a bIso, g1(ρ1(u)) ̸= g1(ρ1(v)), which contradicts item (a).

• u and v are not in the same bag of T . Then, there exist two adjacent nodes t1, t2 on P
such that ρ1(u) ∈ βT̃1

(t1), ρ1(u) /∈ βT̃1
(t2). By Definition C.4(c), βT̃1

(t2) ⊂ βT̃1
(t1).

Also, item (b) implies that there exists w ∈ βT (t2) such that h(w) = h(u). Therefore,
ρ1(u) and ρ1(w) are two different nodes in βT̃1

(t1) with g1(ρ1(u)) = h(u) = h(w) =

g1(ρ1(w)). This contradicts the condition that g1 is a bIso.

This yields the desired result that F̃1 ≃ F̃2.

Combining the above three items concludes the proof.
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Let M ∈ {Sub, L, LF,F} be any model. We can list all non-isomorphic tree-decomposed (labeled)
graphs in SM into an infinite sequence (F1, T

r1
1 ), (F2, T

r2
2 ), · · · . Consider two types of ordering:

• Ordered by the size of the graphs Fi. We denote this ordering as 1st. This ordering requires
that for any i < j, either |VFi | < |VFj | or |VFi | = |VFj | and |EFi | ≥ |EFj |. Note that when
two graphs have an equal number of vertices, we place the graph with more edges to the front.
When the number of edges is also the same, they can be arranged in any fixed order.

• Ordered by the size of the trees Ti. We denote this ordering as 2nd. This ordering requires
that |VTi

| ≤ |VTj
| for any i < j. When the number of tree nodes is the same, they can be

arranged in any fixed order.

Without loss of generality, we assume that the labels of each graph Fi are integers in the range of
[1, |VFi |]. Note that using integer labels of a bounded range is already sufficient to represent all
non-isomorphic labeled graphs up to a bijective label transformation. This ensures that the index i
is countable.

For the 1st ordering, define the following notations:

a) Let f : SM × SM → N be any mapping. Define the associated (infinite) matrix Af,M,1st ∈
NN+×N+ such that Af,M,1st

i,j = f((Fi, T
ri
i ), (Fj , T

rj
j )).

b) Let g : SM × G → N be any mapping. Given a graph G ∈ G, define the (infinite) vector
pg,M,1st
G ∈ NN+ such that pf,M,1st

G,i = g((Fi, T
ri
i ), G).

c) Let h : G × G → N be any mapping. Given a graph G ∈ G, define the (infinite) vector
ph,M,1st
G ∈ NN+ such that ph,M,1st

G,i = h(Fi, G).

We can similarly define Af,M,2nd, pg,M,2nd
G , ph,M,2nd

G for the ordering 2nd.
Corollary C.32. Let M ∈ {Sub, L, LF,F} be any model and G,H be two graphs. Then,
hom(F,G) = hom(F,H) for all (F, T r) ∈ SM iff bIso((F, T r), G) = bIso((F, T r), H) for all
(F, T r) ∈ SM .

Proof. We separately consider each direction.

1. We first prove that if bIso((F, T r), G) = bIso((F, T r), H) for all (F, T r) ∈ SM , then
hom(F,G) = hom(F,H) for all (F, T r) ∈ SM . According to Lemmas C.29 and C.31,
we can rewrite the corresponding equations into matrix forms for any F ∈ G:

phom,M,1st
F = AbExt,M,1st(Aaut,M,1st)−1pbStrHom,M,1st

F (19)

pbStrHom,M,1st
F = AbStrSurj,M,1st(Aaut,M,1st)−1pbIso,M,1st

F . (20)

From the above equations, we immediately obtain that pbIso,M,1st
G = pbIso,M,1st

H implies
phom,M,1st
G = phom,M,1st

H .

2. We next prove that if hom(F,G) = hom(F,H) for all (F, T r) ∈ SM , then
bIso((F, T r), G) = bIso((F, T r), H) for all (F, T r) ∈ SM . This can be seen from the
following facts:

a) Aaut,M,1st is a diagonal matrix and all diagonal elements are positive integers.
b) AbExt,M,1st is a lower triangular matrix and all diagonal elements are positive inte-

gers. This is because for any two tree-composed graphs (Fi, T
ri
i ) and (Fj , T

rj
j ),

bExt((Fi, T
ri
i ), (Fj , T

rj
j )) > 0 only if |VFi

| = |VFj
| and |EFi

| ≤ |EFj
|.

c) AbStrSurj,M,1st is also a lower triangular matrix and all diagonal elements are positive
integers. This is because for any two tree-composed graphs (Fi, T

ri
i ) and (Fj , T

rj
j ),

bStrSurj((Fi, T
ri
i ), (Fj , T

rj
j )) > 0 only if |VFi

| > |VFj
| or (|VFi

| = |VFj
| and |EFi

| =
|EFj

|).

Therefore, the composition AbExt,M,1st(Aaut,M,1st)−1AbStrSurj,M,1st(Aaut,M,1st)−1 is lower
triangular and is invertible (although is it an infinite matrix). We thus arrive at the desired
conclusion that phom,M,1st

G = phom,M,1st
H implies pbIso,M,1st

G = pbIso,M,1st
H .
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Corollary C.33. Let M ∈ {Sub, L, LF,F} be any model and G,H be two graphs. Then,
cntM ((F, T r), G) = cntM ((F, T r), H) for all (F, T r) ∈ SM iff bIso((F, T r), G) =
bIso((F, T r), H) for all (F, T r) ∈ SM .

Proof. We separately consider each direction.

1. We first prove that if cntM ((F, T r), G) = cntM ((F, T r), H) for all (F, T r) ∈ SM , then
bIso((F, T r), G) = bIso((F, T r), H) for all (F, T r) ∈ SM . According to Lemma C.23, we
can rewrite Equation (18) into the matrix form for all F ∈ G:

pbIso,M,2nd
F = AbIsoHom,M,2ndpcnt,M,2nd

F . (21)

This immediately obtains that pcnt,M,2nd
G = pcnt,M,2nd

H implies pbIso,M,2nd
G = pbIso,M,2nd

H .

2. We next prove that pbIso,M,2nd
G = pbIso,M,2nd

H implies pcnt,M,2nd
G = pcnt,M,2nd

H . According to
Lemma C.25, we have

AbIsoHom,M,2nd = AbIsoSurj,M,2nd(Aaut,M,2nd)−1AbIsoInj,M,2nd. (22)

Moreover, we have the following facts:

a) Aaut,M,2nd is a diagonal matrix and all diagonal elements are positive integers.
b) AbIsoInj,M,2nd is an upper triangular matrix and all diagonal elements are positive in-

tegers. This is because for any two tree-composed graphs (Fi, T
ri
i ) and (Fj , T

rj
j ),

bIsoInj((Fi, T
ri
i ), (Fj , T

rj
j )) > 0 only if |VTi

| ≤ |VTj
|.

c) Similarly, AbIsoSurj,M,2nd is a lower triangular matrix and all diagonal elements are pos-
itive integers.

Unfortunately, since AbIsoInj,M,2nd is an infinite upper triangular matrix, the inverse matrix
is not well-defined. Nevertheless, we can use a special property of bIsoHom to complete
our proof, namely, bIsoHom((Fi, T

ri
i ), (Fj , T

rj
j )) > 0 implies that the depth of T ri

i is equal
to the depth of T

rj
j . Therefore, denoting by Adep,d the diagonal matrix where Adep,d

ii =

I[the depth of T ri
i is d], we have

Adep,dpbIso,M,2nd
F = AbIsoSurj,M,2nd(Aaut,M,2nd)−1AbIsoInj,M,2ndAdep,dpcnt,M,2nd

F (23)

for all F ∈ G. Fix any integer d ≥ 0, and assume that Adep,dpbIso,M,2nd
G = Adep,dpbIso,M,2nd

H .
We will prove that Adep,dpcnt,M,2nd

G = Adep,dpcnt,M,2nd
H . Since AbIsoSurj,M,2nd is lower trian-

gular with positive diagonal elements, it is invertible and thus

AbIsoInj,M,2ndAdep,dpcnt,M,2nd
G = AbIsoInj,M,2ndAdep,dpcnt,M,2nd

H .

Moreover, by definition of unfolding tree, there are only finite non-zero elements in both
Adep,dpcnt,M,2nd

G and Adep,dpcnt,M,2nd
H , and the corresponding non-zero indices can only be

in a fixed (finite) set. In this case, the upper triangular matrix AbIsoInj,M,2nd is reduced to a
finite-dimensional matrix and thus Adep,dpcnt,M,2nd

G = Adep,dpcnt,M,2nd
H . By enumerating all

d ≥ 0, we obtain the desired result.

Combined with all previous results, we have arrived at the concluding corollary:
Corollary C.34. Let M ∈ {Sub, L, LF,F} be any model. For any two graphs G,H , χM

G (G) =
χM
H (H) iff hom(F,G) = hom(F,H) for all (F, T r) ∈ SM .

Proof. According to Corollary C.16, for any two graphs G,H , we have χM
G (G) = χM

H (H) iff
cntM ((F, T r) , G) = cntM ((F, T r) , H) for all (F, T r) ∈ SM . Then, Corollary C.33 im-
plies that cntM ((F, T r) , G) = cntM ((F, T r) , H) for all (F, T r) ∈ SM iff bIso((F, T r), G) =
bIso((F, T r), H) for all (F, T r) ∈ SM . Finally, Corollary C.32 implies that bIso((F, T r), G) =
bIso((F, T r), H) for all (F, T r) ∈ SM iff hom(F,G) = hom(F,H) for all (F, T r) ∈ SM . We
thus conclude the proof.
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C.3 PART 2: NESTED EAR DECOMPOSITION

In this part, we give equivalent formulations of the set SM for any model M ∈ {Sub, L, LF,F} using
the concept of NED defined in Definition 3.3.

We first present some technical lemmas that will be used to deal with the tree decomposition of
disconnected graphs.

Lemma C.35. Let M ∈ {Sub, L, LF,F} be any model, and let (F, T r) ∈ SM be a tree-decomposed
graph with βT (t) = {{u, v}} for some u, v ∈ VF . Assume that F has two connected components
S1, S2 ⊂ VF and u ∈ S1 and v ∈ S2 are in different components. Then, there exist tree decomposi-
tions (F [S1], T

r1
1 ), (F [S2], T

r2
2 ) ∈ SM such that βT1(r1) = {{u, u}} and βT2(r2) = {{v, v}}.

Proof. We can simply define T1 = (VT1
, ET1

, βT1
) with VT1

= VT , ET1
= ET , r1 = r, and

βT1
(t) = {{ϕ1(w) : w ∈ βT (t)}} with

ϕ1(w) =

{
w if w ∈ S1,
u if w ∈ S2.

In other words, T1 has the same structure as T but with different bags such that all vertices in the
same connected component as v are replaced by u. It is easy to see that T r1

1 is a canonical tree
decomposition of F [S1] following Definition C.1. Moreover, we clearly have that for all M ∈
{Sub, L, LF,F}, (F [S1], T

r1
1 ) ∈ SM . We can construct T2 = (VT2

, ET2
, βT2

) by symmetry, which
concludes the proof.

The above lemma can be immediately generalized into the following one:

Corollary C.36. Let M ∈ {Sub, L, LF,F} be any model, and let (F, T r) ∈ SM be a tree-
decomposed graph. For each connected component S ∈ VF of F , pick any t ∈ VT with the minimum
depth such that S ∩ βT (t) ̸= ∅. Then, there exists a tree decomposition T̃ s of F [S] satisfying that
(F [S], T̃ s) ∈ SM and S ∩ βT (t) ⊂ βT̃ (s).

Lemma C.37. Let M ∈ {Sub, L, LF,F} be any model, and let (F, T r) ∈ SM be a tree-decomposed
graph such that F is connected. Then, for each child node t of r in T r and any vertex x in F [T r[t]],
there is a path in F [T r[t]] from x to some vertex in βT (r). Consequently, the number of connected
components of F [T r[t]] is bounded by the number of different elements in βT (r).

Proof. Assume the above statement does not hold, and let S ⊂ VF [T r[t]] be the connected compo-
nent of F [T r[t]] such that S ∩ βT (r) = ∅. Note that F [S] = F [T r[t]][S]. Since F is connected,
there exists an edge {v, w} ∈ EF such that v ∈ S and w /∈ S. Since S is a connected component
of F [T r[t]], we have w /∈ VF [T r[t]], and thus both v, w /∈ βT (r). This yields a contradiction since
{v, w} should be contained in a bag in T r but BT (v) ∩BT (w) = ∅.

To reduce duplication, below we only give proofs for Local 2-GNN and Local 2-FGNN. One can
easily write a proof for Subgrapph GNN based on the proof of Local 2-GNN, and write a proof for
2-FGNN based on the proof of Local 2-FGNN.

Lemma C.38. For any tree-decomposed graph (F, T r) ∈ SL, F has a strong NED.

Proof. Based on Corollary C.36, we can assume that F is connected without loss of generality. We
will prove the following stronger result: for any connected (F, T r) ∈ SL with βT (r) = {{u, v}}, F
has a strong NED where u, v are endpoints of the first ear. (For the case of u = v, the other endpoint
can be arbitrary.)

The proof is based on induction over the number the vertices in T r. The above statement obviously
holds for the base case of |VT | = 1. Now assume that the statement holds when |VT | ≤ m, and
consider the case of |VT | = m + 1. Note that for any two different children t, t′ of r, F [T r[t]] and
F [T r[t′]] can only share vertices u, v. For each child node t of r, denote its unique child node as t̃.
It is easy to see that T r[t̃] is a canonical tree decomposition of F [T r[t̃]] and (F [T r[t̃]], T r[t̃]) ∈ SL.
However, one needs to be cautious as F [T r[t̃]] may not be connected (unlike the original graph F ).
Below, we separately consider the following cases:
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1. First consider the case when u = v. In this case, Lemma C.37 impies that F [T r[t̃]] is con-
nected. According to the induction hypothesis, F [T r[t̃]] has a strong NED (denoted as Pt̃)
such that u is an endpoint of the first ear. We then merge the ear decompositions Pt̃ for all
t̃ into a whole P , specify a root ear P1 in any Pt̃, and let the first ear of other Pt̃ nest on P1

(with empty nested interval). It is easy to see that P is a strong NED of F and u is an endpoint
of the first ear.

2. Next consider the case when u ̸= v. In this case, without loss of generality, assume βT (t̃) =
{{u,w}} for some w ∈ VF .

• Subcase 1: F [T r[t̃]] is connected. Then, F [T r[t̃]] has a strong NED Pt̃ such that u and
w are endpoints of the first ear.

a) If w = v, then F [T r[t]] = F [T r[t̃]] and F [T r[t]] clearly has a strong NED.
b) If w /∈ NF [v] or w = u, there are two additional subcases depending on whether

{u, v} ∈ EF . If {u, v} ∈ EF , then F [T r[t]] has a strong NED (which can be
constructed from Pt̃ by adding an ear {{u, v}} and letting the first ear in Pt̃ nest
on {{u, v}} (with empty nested interval). Otherwise, F [T r[t]]\{v} has a strong
NED and v is an isolated vertex in F [T r[t]].

c) If w ∈ NF (v) and w ̸= u, then F [T r[t]] also has a strong NED, which can be
constructed from Pt̃ by extending the first ear to incorporate the edge {w, v} (we
still need an additional ear {{u, v}} if {u, v} ∈ EF ).

• Subcase 2: F [T r[t̃]] is disconnected. In this subcase, Lemma C.37 implies that F [T r[t̃]]
has exactly two connected components, and u and w are in different connected compo-
nents (which can be easily proved by noting that v can only link to u or w in F [T r[t̃]]).
We can thus invoke Lemma C.35, which shows that both connected components of
F [T r[t̃]], denoted as F̂1 and F̂2, admits tree decompositions T̂ s1

1 and T̂ s2
2 such that

(F̂1, T̂
s1
1 ), (F̂2, T̂

s2
2 ) ∈ SL, βT̂1

(s1) = {{u, u}} and βT̂2
(s2) = {{w,w}}. Moreover,

|VT̂1
| = |VT̂2

| = |VT r[t̃]| < m+ 1. Therefore, according to the induction hypothesis, F̂1

has a strong NED Pt̃,1 with u as an endpoint of the first ear, and F̂2 has a strong NED
Pt̃,2 with w as an endpoint of the first ear. If {w, v} ∈ EF , we can extend the first ear
in Pt̃,2 to include the edge {w, v}. Finally, if {u, v} ∈ EF , by setting the first ear to be
{{u, v}}, we can merge the two NEDs Pt̃,1 and Pt̃,2 to obtain the NED of F [T r[t]] such
that u, v are endpoints of the first ear.

Overall, we always have that:

a) If F [T r[t]] is connected, then it admits a strong NED such that u, v are endpoints of the
first ear.

b) If F [T r[t]] is disconnected, then it has two connected components each admitting a
strong NED such that u, v belong to an endpoint of the first ear for each of the two
NEDs, respectively.

Finally, noting that F =
⋃

t,paTr (t)=r F [T r[t]], we can merge all NEDs of F [T r[t]] to obtain
a strong NED of F satisfying that u, v are endpoints of the first ear.

We thus conclude the proof of the induction step.

Lemma C.39. For any graph F , if F admits a strong NED, then there exists a tree decomposition
T r of F such that (F, T r) ∈ SL.

Proof. We can assume that F is connected without loss of generality, as it is easy to merge the tree
decompositions of different connected components to form a single tree which is a tree decomposi-
tion of the whole graph. We will prove the following stronger result: for any connected graph F , if
F admits a strong NED where u and v are two different endpoints of the first ear, then there exists a
tree decomposition T r of F such that (F, T r) ∈ SL and βT (r) = {{u, v}}.

The proof is based on induction over the number the edges in F . The above statement ob-
viously holds for the base case of |EF | = 1. Now assume that the statement holds when
|EF | ≤ m, and consider the case of |EF | = m + 1. Denote the i-th ear as Pi and denote
P1 = {{w0, w1}, · · · , {wl−1, wl}} where w0 = u, wl = v. Consider the following three cases:
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1. Either u or v is a cut vertex in F . Without loss of generality, assume that u is a cut vertex.
In this case, there must exist a child ear Pi nested on P1 such that u is an endpoint of Pi

and I(Pi) = ∅. We can thus split all ears into two parts P1 and P2, where P1 contains
the ear Pi and its descendant ears in the NED tree, and P2 contains other ears. Denote by
F [Pk] the connected graph induced by all edges in Pk (k ∈ {1, 2}). Then, Pk is a strong
NED of the graph F [Pk]. Since both P1 and P2 contain no more than m edges, according
to the induction hypothesis, there are tree decompositions T rk

k of F [Pk] (k ∈ {1, 2}) such
that βT1(r1) = {{u,w}} for some w ∈ VF , βT2(r2) = {{u, v}}, and (F [Pk], T

rk
k ) ∈ SL

(k ∈ {1, 2}). We can glue the tree T r1
1 and T r2

2 into a larger tree T r2 by adding a new node t
with βT (t) = {{u, v, w}}, setting paT r (t) = r2 and paT r (r1) = t. Clearly, T r2 is a valid tree
decomposition of F , βT (r2) = {{u, v}}, and (F, T r2) ∈ SL.

2. There is an ear Pi nested on P1 with I(Pi) = P1. In this case, we can split all ears into
two parts P1 and P2, where P1 contains the ear Pi and its descendant ears in the NED tree,
and P2 contains other ears. Then, Pk is a strong NED of the graph F [Pk]. Since both P1

and P2 contain no more than m edges, according to the induction hypothesis, there is a tree
decomposition T rk

k of F [Pk] such that βTk
(rk) = {{u, v}} and (F [Pk], T

rk
k ) ∈ SL. By

merging the root node, we can glue the tree T r1
1 and T r2

2 into a larger tree T r. Clearly, T r is
a valid tree decomposition of F , βT (r) = {{u, v}}, and (F, T r) ∈ SL.

3. Neither u nor v is a cut vertex in F and all ears Pi nested on P1 satisfies I(Pi) ⊊ P1. In this
case, we have either {w0, w1} /∈ I(Pi) for all ear Pi nested on P1 or {wl−1, wl} /∈ I(Pi) for
all ear Pi nested on P1 (otherwise, it would contradict the definition of strong NED). Without
loss of generality, assume {w0, w1} /∈ I(Pi) for all ears Pi nested on P1. Then, it is clear that
l > 1, and the subgraph F\{u} is connected and also admits a strong NED where w1 and v are
two endpoints of the first ear. Therefore, according to the induction hypothesis, there is a tree
decomposition T̃ s of F\{u} satisfying (F\{u}, T̃ s) ∈ SL and βT̃ (s) = {{w1, v}}. We can
then construct a tree T r from T̃ s by adding two fresh nodes r and r′ and setting paT r (s) = r′

and paT r (r′) = r. Set βT (r) = {{u, v}}, βT (r
′) = {{u, v, w1}}, and βT (t) = βT̃ (t) for all

t ∈ VT̃ . It is easy to see that the constructed T r is a tree decomposition of F and (F, T r) ∈ SL.

Combining the above three cases concludes the induction step.

Theorem C.40. For any graph F , F has a strong NED iff there is a tree decomposition T r of F
such that (F, T r) ∈ SL.

Proof. This is a direct consequence of Lemmas C.38 and C.39.

We next turn to Local 2-FGNN, where the proof has a similar structure as that of Local 2-GNN.

Lemma C.41. For any tree-decomposed graph (F, T r) ∈ SLF, F has an almost-strong NED.

Proof. Based on Corollary C.36, we can assume that F is connected without loss of generality. We
will prove the following stronger result: for any connected (F, T r) ∈ SLF with βT (r) = {{u, v}}, F
has an almost-strong NED where u, v are endpoints of the first ear. (For the case of u = v, the other
endpoint can be arbitrary.)

Similar to the proof of Lemma C.38, assume that the statement holds when |VT | ≤ m, and consider
the case of |VT | = m+1. For each child node t of r, if t only has one child, the proof exactly follows
the one in Lemma C.38. Therefore, it suffices to consider the case where t has two children q1 and q2.
Denote βT (t) = {{u, v, w}}, βT (q1) = {{u,w}}, and βT (q2) = {{v, w}}. Since w ∈ NF [u] ∪NF [v]
(by definition of SLF), we can assume that w ∈ NF [v] without loss of generality. Recall that
(F [T r[q1]], T

r[q1]), (F [T r[q2]], T
r[q2]) ∈ SLF. Below, we separately consider the following cases:

1. First consider the case when u = v. In this case, Lemma C.37 implies that both F [T r[q1]] and
F [T r[q2]] are connected (since either u = w or {u,w} ∈ EF ). According to the induction
hypothesis, both F [T r[q1]] and F [T r[q2]] admit an almost-strong NED such that u and w are
endpoints of the first ear. If w = u, we can merge the two almost-strong NEDs so that the
first ear in one NED is nested on the first ear of the other (with an empty nested interval).
Otherwise, the first ears in the two almost-strong NEDs share both endpoints and we can
clearly merge them (in case of {u,w} ∈ EF , there is a common ear {{u,w}} in both NEDs,
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which is taken only once). In both subcases, we obtain an almost-strong NED of F [T r[t]]
such that u is an endpoint of the first ear.

2. Next consider the case when u ̸= v. In this case, F [T r[q1]] and F [T r[q2]] share only one
vertex w. Note that F [T r[q2]] is connected by Lemma C.37. We separately consider two
subcases:

• Subcase 1: F [T r[q1]] is connected. Then, according to the induction hypothesis,
F [T r[q1]] admits an almost-strong NED P1 such that u and w are endpoints of the
first ear, and F [T r[q2]] admits an almost-strong NED P2 such that w and v are end-
points of the first ear. (i) If w = v, we can merge the two almost-strong NEDs so that
the first ear of P2 is nested on the first ear of P1 (with empty nested interval). (ii) If
w = u, we can merge the two almost-strong NEDs so that the first ear of P1 is nested on
the first ear of P2 (with empty nested interval). (iii) If w ∈ NF (v) and w ̸= u, the first
ear of P2 can be chosen as {{w, v}}. Then, we can merge the two almost-strong NEDs
by gluing the first year in P1 with the ear {{w, v}} in P2. One can see that the resulting
NED is almost-strong. Overall, we always have that F [T r[t]] admits an almost-strong
NED such that u, v are endpoints of the first ear.

• Subcase 2: F [T r[q1]] is disconnected. In this subcase, w ̸= u. Similar to the proof
of Lemma C.38, we obtain that F [T r[q1]] has exactly two connected components, and
u and w are in different connected components. We can thus invoke Lemma C.35,
which shows that both connected components of F [T r[q1]], denoted as F̂1 and F̂2,
admit almost-strong NEDs P1 and P2, respectively. Moreover, u is an endpoint of the
first ear in P1, and w is an endpoint of the first ear in P2. Besides, F [T r[q2]] admits an
almost-strong NED P3 with w, v as the endpoints of the first ear. By letting the first ear
of P2 nest on the first ear of P3 (with an empty nested interval), we can merge P2 and
P3. Then, we can merge P1 and P2 ∪P3 following the same procedure as Subcase 2 in
the proof of Lemma C.38.

Overall, we always have that:

a) If F [T r[t]] is connected, then it admits an almost-strong NED such that u, v are end-
points of the first ear.

b) If F [T r[t]] is disconnected, then it has two connected components each admitting an
almost-strong NED such that u, v belong to an endpoint of the first ear for each of the
two NEDs, respectively.

In both subcases, it follows that F [T r[t]] admits an almost-strong NED with u, v as two
endpoints. Noting that F =

⋃
t,paTr (t)=r F [T r[t]], we can merge all NEDs of F [T r[t]] to

obtain an almost-strong NED of F with u, v as two endpoints.

We thus conclude the proof of the induction step.

Lemma C.42. For any graph F , if F admits an almost-strong NED, then there exists a tree decom-
position T r of F such that (F, T r) ∈ SLF.

Proof. We can assume that F is connected without loss of generality. We will prove the following
stronger result: for any graph F , if F admits an almost-strong NED where u and v are two different
endpoints of the first ear, then there exists a tree decomposition T r of F such that (F, T r) ∈ SLF

and βT (r) = {{u, v}}.

Similar to the proof of Lemma C.39, assume that the statement holds when |EF | ≤ m, and consider
the case of |EF | = m+1. Denote the first ear as P1 = {{w0, w1}, · · · , {wl−1, wl}} where w0 = u,
wl = v. Consider the following three cases:

1. Either u or v is a cut vertex in F . This case is exactly the same as in Lemma C.39.

2. There is an ear Pi nested on P1 with I(Pi) = P1. This case is also the same as in Lemma C.39.

3. Otherwise, l ≥ 2.

• If there is an ear Pi nested on P1 with {w0, w1}, {w1, w2} ∈ I(Pi), then l ≥ 3. By
definition of almost-strong NED, there does not exist an ear Pj nested on P1 with
{wl−2, wl−1}, {wl−1, wl} ∈ I(Pi). In this case, we can split P1 into two parts:

42



Published as a conference paper at ICLR 2024

P1,u = P1\{{wl−1, wl}}, and P1,v = {{wl−1, wl}}. Then, we can rearrange any
ear nested on P1 so that it is nested on either P1,u or P1,v . In this way, we can
split all ears into two sets Pu and Pv , one corresponding to P1,u and its descendant
ears, and the other corresponding to P1,v and its descendant ears. Therefore, accord-
ing to the induction hypothesis, there is a tree decomposition T̃ s

u of F [Pu] satisfying
(F [Pu], T̃

s
u) ∈ SLF and βT̃u

(s) = {{u,wl−1}}, and similarly, there is a tree decompo-
sition T̃ s′

v of F [Pv] satisfying (F [Pv], T̃
s′
v ) ∈ SLF and βT̃v

(s) = {{wl−1, v}}. We can
then construct a tree T r by merging T̃ s

u and T̃ s′
v and adding two fresh nodes r, r′, where

r is the root node, paT r (r′) = r and paT r (s) = paT r (s′) = r′. Set βT (r) = {{u, v}}
and βT (r

′) = {{u, v, wl−1}}. It is easy to see that the constructed T r is a tree decom-
position of F and (F, T r) ∈ SLF.

• If there does not exist an ear Pi nested on P1 with {w0, w1}, {w1, w2} ∈ I(Pi), then
we follow exactly the same analysis as in the previous item, except that now we split P1

into two parts: P1,u = {{w0, w1}}, and P1,v = P1\{{w0, w1}}. We can still construct
a tree decomposition T r of F such that (F, T r) ∈ SLF.

Combining the above three cases concludes the proof.

Theorem C.43. For any graph F , F has an almost-strong NED iff there is a tree decomposition T r

of F such that (F, T r) ∈ SLF.

Proof. This is a direct consequence of Lemmas C.41 and C.42.

C.4 PART 3: PEBBLE GAME

In this part, we prove that SM is maximal (Definition 3.1(b)) for any M ∈ {Sub, L, LF,F}. To
achieve this, we first introduce a general class of graphs which we call Fürer graphs (Fürer, 2001).
Intuitions and illustrations of Fürer graphs can be found in Zhang et al. (2023a).
Definition C.44 (Fürer graphs). Given any connected graph F = (VF , EF , ℓF ), the Fürer graph
G(F ) = (VG(F ), EG(F ), ℓG(F )) is constructed as follows:

VG(F ) = {(x,X) : x ∈ VF , X ⊂ NF (x), |X| mod 2 = 0},
EG(F ) = {{(x,X), (y, Y )} ⊂ VG : {x, y} ∈ EF , (x ∈ Y ↔ y ∈ X)},
ℓG(F )(x,X) = ℓF (x) ∀(x,X) ∈ VG(F ).

Here, x ∈ Y ↔ y ∈ X holds when either (x ∈ Y and y ∈ X) or (x /∈ Y and y /∈ X) holds. For
each x ∈ VF , denote the set

MetaF (x) := {(x,X) : X ⊂ NF (x), |X| mod 2 = 0}, (24)

which is called the meta vertices of G(F ) associated to x. Note that VG(F ) =
⋃

x∈VF
MetaF (x).

We next define an operation called “twist”:
Definition C.45 (Twist). Let G(F ) = (VG(F ), EG(F ), ℓG(F )) be the Fürer graph of F =
(VF , EF , ℓF ), and let {x, y} ∈ EF be an edge of F . The twisted Fürer graph of G(F ) for edge
{x, y}, is constructed as follows: twist(G(F ), {x, y}) := (VG(F ), Etwist(G(F ),{x,y}), ℓG(F )), where

Etwist(G(F ),{x,y}) := EG(F )△{{ξ, η} : ξ ∈ MetaF (x), η ∈ MetaF (y)},

and △ is the symmetric difference operator, i.e., A△B = (A\B) ∪ (B\A). For an edge set S =
{e1, · · · , ek} ⊂ EF , we further define

twist(G(F ), S) := twist(· · · twist(G(F ), e1) · · · , ek). (25)

Note that Equation (25) is well-defined as the resulting graph does not depend on the order of edges
e1, · · · , ek for twisting.

The following result is well-known (see e.g., Zhang et al., 2023a, Corollary I.5 and Lemma I.7)):
Theorem C.46. For any connected graph F and any set S1, S2 ⊂ EF , twist(G(F ), S1) ≃
twist(G(F ), S2) iff |S1| mod 2 = |S2| mod 2.
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This result shows that the structure of twisted Fürer graph does not depend on which edge is twsited.
Therefore, we can pick any edge {u, v} ∈ EF and denote H(F ) = twist(G(F ), {u, v}). We now
show that G(F ), H(F ) can be distinguished via homomorphism information:
Theorem C.47. For any graph F , let (twisted) Fürer graphs G(F ), H(F ) be defined above. Then,
hom(F,G(F )) ̸= hom(F,H(F )).

Proof. In the proof below, we use g and h to denote mappings where g : VF → VG(F ) and h :
VF → VH(F ). The proof is divided into the following parts.

1. We first prove that there is a homomorphism g ∈ Hom(F,G(F )) satisfying g(w) ∈
MetaF (w) for all w ∈ VF , but there is no homomorphism h ∈ Hom(F,H(F )) satisfying
h(w) ∈ MetaF (w) for all w ∈ VF .

a) Define a mapping g : VF → VG(F ) such that g(w) = (w, ∅) for all w ∈ VF . We clearly
have {w, x} ∈ EF implies that {g(w), g(x)} ∈ EG(F ). Moreover, ℓG(F )(g(w)) =
ℓF (w). Therefore, g ∈ Hom(F,G(F )) is indeed a homomorphism.

b) If we similarly define h : VF → VH(F ) such that h(w) = (w, ∅) for all w ∈ VF , then for
all {w, x} ∈ EF \{{u, v}} we have {h(w), h(x)} ∈ EH(F ), but {h(u), h(v)} /∈ EH(F )

since the edge {u, v} is twisted.

It remains to prove that for all h : VF → VH(F ) of the form h(w) = (w,Uw) (for each
w ∈ VF ), h /∈ Hom(F,H(F )). It suffices to prove that there is an odd number of edges
{w, x} ∈ EF such that {h(w), h(x)} /∈ EH(F ). Let h, h̃ be two such mappings that differ in
only one vertex z, i.e., h(w) = h̃(w) for all w ̸= z but h(z) = (z, Uz) ̸= (z, Ũz) = h̃(z).
Denote Dz = Ũz△Uz . Based on the definition of Fürer graph, it follows that

• for all {w, x} ∈ EF with w ̸= z, x ̸= z, we have {h(w), h(x)} ∈ EH(F ) iff
{h̃(w), h̃(x)} ∈ EH(F );

• for all {w, z} ∈ EF with w /∈ Dz , we also have {h(w), h(z)} ∈ EH(F ) iff
{h̃(w), h̃(z)} ∈ EH(F );

• for all {w, z} ∈ EF with w ∈ Dz , we have {h(w), h(z)} ∈ EH(F ) iff {h̃(w), h̃(z)} /∈
EH(F ).

Since |Uz| mod 2 = 0 and |Ũz| mod 2 = 0, we have |Dz| mod 2 = 0 and thus the number
of edges {w, x} ∈ EF such that {h(w), h(x)} /∈ EH(F ) has the same parity as the number of
edges such that {h̃(w), h̃(x)} /∈ EH(F ). Finally, noting that all mappings h can be obtained
from the one in (b) by continually modifying Uw for each w ∈ VF and the parity remains
unchanged, we have concluded the proof of this part.

2. We next prove that for any permutation π : VF → VF , there does not exist a homomorphism
h ∈ Hom(F,H(F )) satisfying h(w) ∈ MetaF (π(w)) for all w ∈ VF . Assume the conclusion
does not hold and pick any h satisfying the above condition. Consider the following cases:

a) Case 1: if π is an automorphism of F , then it is easy to see that h ◦ π−1 ∈
Hom(F,H(F )), because {w, x} ∈ EF =⇒ {π−1(w), π−1(x)} ∈ EF =⇒
{h(π−1(w)), h(π−1(x))} ∈ EF for all w, x ∈ VF , and ℓF (w) = ℓF (π

−1(w)) =
ℓG(F )(h(π

−1(w))) for all w ∈ VF . Moreover, h ◦ π−1 satisfies that h(π−1(w)) ∈
MetaF (w), yielding a contradiction to point 1.

b) Case 2: if π is not an automorphism of F , then there exists an edge {w, x} ∈ EF such
that {π(w), π(x)} /∈ EF . In this case, we must have {h(w), h(x)} /∈ EH(F ) since by
definition h(w) ∈ MetaF (π(w)), h(x) ∈ MetaF (π(x)), and {π(w), π(x)} is not an
edge of F .

In both cases, h is invalid and thus there is no homomorphism h ∈ Hom(F,H(F )) satisfying
h(w) ∈ MetaF (π(w)) for all w ∈ VF .

3. We finally prove that the following two sets have equal size (i.e., |SG| = |SH |):
SG := {g ∈ Hom(F,G(F )) : ∃w, x, y ∈ VF s.t. x ̸= y, g(x), g(y) ∈ MetaF (w)} ,
SH := {h ∈ Hom(F,H(F )) : ∃w, x, y ∈ VF s.t. x ̸= y, h(x), h(y) ∈ MetaF (w)} .
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It suffices to prove that, for any proper subset U ⊊ VF , we have |SU
G | = |SU

H |, where SG and
SH are defined as follows:

SU
G :=

{
g ∈ Hom(F,G(F )) : g(x) ∈

⋃
w∈U

MetaF (w) ∀x ∈ VF

}
,

SU
H :=

{
h ∈ Hom(F,H(F )) : h(x) ∈

⋃
w∈U

MetaF (w) ∀x ∈ VF

}
.

Fix U ⊊ VF and pick z ∈ VF \U . Let P be a simple path from u to z of the form P =
{{w0, w1}, · · · , {wk−1, wk}} ⊂ EF where {w0, w1} = {u, v}, wk = z. Define a mapping
σ that takes g ∈ SU

G as input and outputs a mapping h : VF → VH(F ):

h(x) =

{
g(x) if [g(x)]0 /∈ {w1, · · · , wk−1},
([g(x)]0, [g(x)]1△{wi−1, wi+1}) if [g(x)]0 = wi, i ∈ [k − 1],

where we write g(x) = ([g(x)]0, [g(x)]1). We will prove that h ∈ SU
H . Since we clearly have

h(w) ∈ U for all w ∈ VF , it suffices to prove that h ∈ Hom(F,H(F )). Let {x, y} ∈ EF be
any edge in F .

• If [g(x)]0, [g(y)]0 /∈ {w1, · · · , wk−1}, then {h(x), h(y)} = {g(x), g(y)} ∈ EG(F ).
Also, since {[g(x)]0, [g(y)]0} ̸= {u, v}, {[g(x)]0, [g(y)]0} is not twisted and thus
{h(x), h(y)} ∈ EH(F ).

• If [g(x)]0 /∈ {w1, · · · , wk−1}, [g(y)]0 = wi for some i ∈ [k − 1], and
{[g(x)]0, [g(y)]0} ≠ {{u, v}, {wk−1, wk}}, then

{h(x), h(y)} = {([g(x)]0, [g(x)]1), ([g(y)]0, [g(y)]1△{wi−1, wi+1})}.

We have

{g(x), g(y)} ∈ EG(F ) ⇐⇒ ([g(x)]0 ∈ [g(y)]1) ↔ ([g(y)]0 ∈ [g(x)]1)

⇐⇒ ([g(x)]0 ∈ [g(y)]1△{wi−1, wi+1}) ↔ ([g(y)]0 ∈ [g(x)]1)

⇐⇒ {h(x), h(y)} ∈ EG(F ).

Also, since {[g(x)]0, [g(y)]0} is not twisted, {h(x), h(y)} ∈ EH(F ).
• If [g(x)]0, [g(y)]0 ∈ {w1, · · · , wk−1}, the analysis is similar to the above one and we

can still prove that {h(x), h(y)} ∈ EG(F ) and thus {h(x), h(y)} ∈ EG(F ).
• If {[g(x)]0, [g(y)]0} = {u, v}, without loss of generality assume w0 = u = [g(x)]0

and w1 = v = [g(y)]0. We have

{g(x), g(y)} ∈ EG(F ) ⇐⇒ (u ∈ [g(y)]1) ↔ (v ∈ [g(x)]1)

⇐⇒ (u /∈ [g(y)]1△{u,w2}) ↔ (v ∈ [g(x)]1)

⇐⇒ {h(x), h(y)} /∈ EG(F ).

However, since {u, v} is twisted, we still have {h(x), h(y)} ∈ EH(F ).
• Finally, we do not need to consider the case {[g(x)]0, [g(y)]0} = {wk−1, wk} since
wk = z /∈ U .

This proves that h ∈ SU
H . Moreover, it is straightforward to see that the mapping σ(g) = h is

a bijection from SU
G to SU

H . We have thus proved that |SU
G | = |SU

H |.
Combining the above three items, we obtain Hom(F,G(F )) > Hom(F,H(F )), concluding the
proof.

In the subsequent analysis, we will prove that for all model M considered in Theorem 3.4 and any
connected graph F , χM

G(F )(G(F )) = χM
H(F )(H(F )) if F /∈ SM . The proof is based on an important

technique developed in Cai et al. (1992), called the pebble game. When restricting our analysis on
Fürer graphs, the pebble game can be greatly simplified as shown in Fürer (2001); Zhang et al.
(2023a). Below, we separately describe the corresponding pebble game for each model M .

We first define a key concept called the connected component.
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Definition C.48 (Connected components). Let F = (VF , EF ) be a connected graph and let U ⊂ VF

be a vertex set, called separation vertices. We say two edges {u, v}, {x, y} ∈ EF are in the same
connected component if there is a simple path {{y0, y1}, · · · , {yk−1, yk}} satisfying that {y0, y1} =
{u, v}, {yk−1, yk} = {x, y} and yi /∈ U for all i ∈ [k − 1]. It is easy to see that the above relation
between edges forms an equivalence relation. Therefore, we can define a partition over the edge
set, denoted by CCF (U) = {Pi : i ∈ [m]} for some m, where each Pi ⊂ EF is called a connected
component.

We are now ready to describe the game rule. There are two players (named Alice and Bob), a
graph F , and several pebbles. At the beginning, all pebbles lie outside the graph. Through the
game process, some pebbles will be placed on the vertices of F and thus separate the edges EF into
connected components according to Definition C.48. In each game round, Alice updates the location
of pebbles, while Bob maintains a subset of connected components, ensuring that the number of
selected components is odd. There are three major types of operations:

1. Add a pebble p. Alice places a pebble p (previously outside the graph) on some vertex
of F . If introducing this new pebble does not change the connected components, then Bob
does nothing. Otherwise, there must be a connected component P separated by p into several
components P =

⋃
i∈[m] Pi for some m. Bob will update his selected components as follows:

if P is selected, then remove P and add a subset of connected components in {P1, · · · , Pm}
while ensuring that the number of selected components in total is odd.

2. Remove a pebble p. Alice removes a pebble p (previously on some vertex) outside the graph.
If introducing this new pebble does not change the connected components, then Bob does
nothing. Otherwise, there are multiple connected component P1, · · · , Pm getting merged into
a whole P =

⋃
i∈[m] Pi. Bob will update his selected components by removing all Pi, i ∈ [m]

(if selected) and optionally adding P , while ensuring that the number of selected components
in total is odd.

3. Swap two pebbles p and p′. Alice swaps the position of two pebbles p and p′. This operation
does not change the connected components and thus Bob does nothing.

At any time, if there is an edge {x, y} such that both endpoints hold pebbles and the connected
component {{x, y}} is selected by Bob, then Bob loses the game and Alice wins. If Alice cannot
win through the game process, then Bob wins.

We now define the concrete pebble game for each model M considered in this paper. In cases of
Subgraph GNN, Local 2-GNN, Local 2-FGNN, and 2-FGNN, there are three pebbles pu, pv , pw.
As described before, all pebbles lie outside the graph at the beginning. Alice first adds the pebble
pu (operation 1) and then adds the pebble pv (operation 1). Next, the game cyclically executes the
following process:

• Subgraph GNN. Alice can choose either one of the following ways to play:
– Remove the pebble pv (operation 2), and re-add the pebble pv (operation 1).
– Add the pebble pw (operation 1) adjacent to the pebble pv , swap pebble pv with pw

(operation 3), and remove the pebble pw (operation 2).
• Local 2-GNN. Alice can choose either one of the following ways to play:

– Remove the pebble pu (operation 2), and re-add the pebble pu (operation 1).
– Remove the pebble pv (operation 2), and re-add the pebble pv (operation 1).
– Add the pebble pw (operation 1) adjacent to the pebble pu, swap pebble pu with pw

(operation 3), and remove the pebble pw (operation 2).
– Add the pebble pw (operation 1) adjacent to the pebble pv , swap pebble pv with pw

(operation 3), and remove the pebble pw (operation 2).
• Local 2-FGNN. Alice can choose either one of the following ways to play:

– Remove the pebble pu (operation 2), and re-add the pebble pu (operation 1).
– Remove the pebble pv (operation 2), and re-add the pebble pv (operation 1).
– Add the pebble pw (operation 1) adjacent to either pebble pu or pebble pv , swap pebble
pw with any adjacent pebble (operation 3), and remove the pebble pw (operation 2).

• 2-FGNN. Alice adds the pebble pw (operation 1), swap the pebbles pw with either pu or pv
(operation 3), and remove the pebble pw (operation 2).
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Proposition C.49. For any model M ∈ {Sub, L, LF,F} and any graph F , if Alice cannot win the
pebble game associated to model M on graph F , then χM

G(F )(G(F )) = χM
H(F )(H(F )).

Proof. Note that the pebble game does not depend on the vertex labels ℓF in F . We first assume that
the vertex labels are all different, i.e., ℓF (x) ̸= ℓF (y) for all x, y ∈ VF . Then, the labels of vertices
ξ ∈ VG(F ), η ∈ VH(F ) are the same iff ξ and η belong to the same meta vertex, i.e., ξ, η ∈ MetaF (x)

for some x ∈ VF . Based on Proposition C.9, χM
G(F )(G(F )) = χM

H(F )(H(F )) iff χ̃M
G(F )(G(F )) =

χ̃M
H(F )(H(F )) where χ̃M is defined in Equations (7) to (10). In this case, the pebble games above

exactly correspond to the aggregation formulas in Equations (7) to (10), and we can invoke the
results in Zhang et al. (2023a, Theorem I.17) to show that χ̃M

G(F )(G(F )) = χ̃M
H(F )(H(F )) (note

that we do not need to consider the augmented Fürer graphs defined in their paper based on our label
assignment). Therefore, χM

G(F )(G(F )) = χM
H(F )(H(F )).

We next consider the general case when multiple vertices can have the same label in F . How-
ever, this can only make it harder to distinguish between G(F ) and H(F ), and we clearly have
χM
G(F )(G(F )) = χM

H(F )(H(F )).

Based on the above result, in the subsequent proof we will analyze the players’ strategy in the pebble
game. Surprisingly, it turns out that given a graph F , if Alice can win the game, then her strategy
can be described using the tree decomposition of F defined in Definition C.6.

To illustrate this point, we need the concept of game state graph. Given a graph F , a game state is a
three-tuple (u, v,Q) where u, v ∈ VF ∪ {∅} and Q ⊂ CCF ({u, v}), denoting the vertex that holds
pebble pu, the vertex that holds pebble pv , and a subset of connected component selected by Bob,
respectively. Here, the symbol ∅ means that a pebble is left outside the graph. One can see that after
any round, whether Alice can win the remaining game purely depends on this tuple. Now fix Alice’s
strategy. In each round, each game state will be transited to a finite number of states depending on
how Bob plays, and all states and transitions form a directed graph, which we call the game state
graph. The state (u, v,Q) is called a terminal state if minP∈Q |P | = 1. It is straightforward to see
that Alice wins the game at any terminal state, as stated in the following result:
Proposition C.50. Given graph F and model M ∈ {Sub, L, LF,F}, let GS be the game state
graph defined above corresponding to an Alice’s strategy. Then, Alice can win the game if there is
an integer t such that any path in GS of length t starting from the initial state (∅, ∅, {EF }) goes
through a terminal state.

Proof. It suffices to prove that, at any terminal state, Alice can win the game. Let (u, v,Q) be
a terminal state with {x, y} ∈ Q. If {u, v} = {x, y}, Alice already wins. If u /∈ {x, y} and
v ∈ {x, y}, Alice also wins in the next round since she can add the pebble pw on some vertex
w adjacent to pv such that {v, w} = {x, y}. This is a valid game rule for all model M . Next, if
u ∈ {x, y} and v /∈ {x, y}, Alice also wins in the next round since she can first remove the pebble pv
and then place it on the unique vertex in {x, y}\{u}. This is also a valid game rule for all model M .
Note the removing pv does not merge the connected component {{x, y}} since v /∈ {x, y}. Finally,
if both u /∈ {x, y} and v /∈ {x, y}, F only has one edge and Alice can clearly win. Combining these
cases, we conclude that Alice can always win.

Based on the above proposition, a game state (u, v,Q) is called unreachable if any path starting from
the initial state (∅, ∅, {EF }) and ending at (u, v,Q) goes through some terminal state. We do not
need to consider unreachable states since Alice always wins before reaching it. We next introduce
an important technical concept:
Definition C.51. Given a game state graph GS, a state (u, v, {P}) is termed as “contracted” if for
any transition ((u, v, {P}), (u′, v′, {P ′})) ∈ EGS , P ′ ⊂ P . It is called strictly contracted if for any
transition ((u, v, {P}), (u′, v′, {P ′})) ∈ EGS , P ′ ⊊ P .

We have the following result:
Lemma C.52. For any model M ∈ {Sub, L, LF,F} and any graph F , if Alice can win the pebble
game associated to model M on graph F , then there exists a game state graph GS corresponding to
a winning strategy of Alice such that any reachable and non-terminal state is strictly contracted.
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Proof. We first prove that there is a strategy for Alice such that any reachable and non-terminal
state is contracted. We will assume that for any reachable and non-terminal state (u, v, {P}), if
there is only one transition of the form ((u, v, {P}), (u′, v′, {P ′})), then P ̸⊂ P ′, since making the
connected component larger should be a bad strategy. (Otherwise, it is straightforward to construct
a new strategy for Alice satisfying the assumption.) Now suppose that there exists a reachable state
(u, v, {P}) that is not contracted. Note that the game state graph induced by all reachable states is a
Directed Acyclic Graph (DAG), so we can choose the state (u, v, {P}) such that any path from the
initial state (∅, ∅, {EF }) to (u, v, {P}) does not pass any intermediate state that is not contracted.
Below, we will construct a new strategy that removes the state (u, v, {P}) (making it unreachable).

Note that we clearly have u ̸= ∅ and v ̸= ∅. Without loss of generality, assume
that ((u, v, {P}), (u, v′, {P ′})) is a transition such that P ′ ̸⊂ P (the case of transition
((u, v, {P}), (u′, v, {P ′})) is the same by symmetry). Moreover, we can assume that P /∈
CCF ({u}) and P /∈ CCF ({v}) (in other words, both u and v are at the boundary of the connected
component P ). It would be easier to analyze the case where either u or v are not at the boundary.
We separately consider the following cases:

1. The transition ((u, v, {P}), (u, v′, {P ′})) corresponds to Alice removing pebble pv and plac-
ing it on v′. Let (u0, v0, Q0), · · · , (uT , vT , QT ) be any path from the initial state (∅, ∅, {EF })
to (u, v, {P}), and let t ≤ T be the maximal number such that vt ̸= v. We will construct a
new strategy for Alice as follows.

• At state (ut, vt, Qt), she removes pebble pv and places it on v′, yielding (possibly
multiple) states of the form (ut, v

′, Q̃t).

• For all t < t̃ < T , we have vt = v. For each t̃ and possible Q̃t̃, she will apply the
original strategy at (ut̃, vt̃, Qt̃) to the state (ut̃, v

′, Q̃t̃), namely, placing pebble pw on
vertex ut̃+1, swapping pebble pu with pw, and leaving pw outside the graph. (Note that
she cannot remove pebble pu first; otherwise the state (ut̃, vt̃, Qt̃) will not be contracted
since u is at the boundary of Qt̃.)

It follows that ((ut̃, v
′, Q̃t̃), (ut̃+1, v

′, Q̃t̃+1)) is a transition of the new strategy, (ut̃, v
′, Q̃t̃)

is contracted, and all states of the form (u, v′, Q̃T̃ ) is reachable in the original strategy.

We can repeat the above procedure for all paths from the initial state (∅, ∅, {EF }) to state
(u, v, {P}). Then, in the new strategy (u, v, {P}) will be unreachable. However, the state
(ut, vt, Qt) now may violate the condition in Lemma C.52. Note that the assumption in the
first paragraph is still satisfied for state (ut, vt, Qt). In this case, we can recursively apply the
above procedure for state (ut, vt, Qt). Note that the procedure will only repeat a finite number
of times, as the length of the path from the initial state to the state (ut, vt, Qt) is strictly less
than the length of the path from the initial state to the state (u, v, {P}).

2. The transition ((u, v, {P}), (u, v′, {P ′})) corresponds to Alice placing pebble pw on v′,
swapping pv and pw, and removing pebble pw. In this case, we must have P /∈
CCF ({u, v, v′}) (i.e., v′ further splits the component P ). Otherwise, the state (u, v, {P})
must have only one transition and P ⊂ P ′, a contradiction to the first paragraph. Since
P /∈ CCF ({u, v, v′}), it is thus easy to see that, if Alice changes her strategy by just removing
pebble pv and placing it on vertex v′, all transitions starting from (u, v, {P}) does not change.
Therefore, we can just invoke the previous item to construct a desired strategy.

Combining the two cases, we conclude that there is a strategy for Alice such that any reachable
and non-terminal state is contracted. We next prove that any reachable and non-terminal state can
be strictly contracted. Assume the result does not hold and the state (u, v, {P}) is reachable, non-
terminal, but not strictly contracted. Then, there is a transition ((u, v, {P}), (u′, v′, {P})) ∈ EGS .
Consider the following two cases:

1. P /∈ CCF ({u}) and P /∈ CCF ({v}) (i.e., both u and v are at the boundary of the connected
component P ). It follows that u′ = u and v′ = v. This implies that the game state graph is
not acyclic, a contradiction.

2. P ∈ CCF ({u}) or P ∈ CCF ({v}). Without loss of generality, assume that P ∈ CCF ({u}).
Since (u, v, {P}) is non-terminal and not strictly contracted, there is a reachable and non-
terminal state (ũ, ṽ, {P}) with either ũ = u or ṽ = u such that there is a path from (u, v, {P})
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to (ũ, ṽ, {P}) and (ũ, ṽ, {P}) is strictly contracted. We can then change the strategy at state
(u, v, {P}) to make it strictly contracted. Concretely, Alice can remove pebble pv (which does
not merge connected components selected by Bob since P ∈ CCF ({u})), and place pebble pv
on the vertex that corresponds to the strategy at state (ũ, ṽ, {P}) (possibly with a difference
that u and v become exchanged). This makes the state (u, v, {P}) strictly contracted.

Combining the two cases concludes the proof.

We are now ready to state the main theorem:

Theorem C.53. Let M ∈ {Sub, L, LF,F} be any model. Given any connected graph F , if Alice can
win the pebble game associated with model M on graph F , then there is a tree decomposition T r

of F such that (F, T r) ∈ SM , where SM is defined in Definition C.6.

Proof. Let GS be the game state graph satisfying Lemma C.52. For each game state s, denote
by nextGS(s) the set of states s′ such that (s, s′) is a transition in GS and s′ contains only a sin-
gle connected component, i.e., s′ has the form (u, v, {P}). For a terminal state s of the form
(u, v, {{x, y}}), define nextGS(s) = {(x, y, {{x, y}})}. By definition, nextGS(∅, ∅, {EF }) =
{(u, ∅, Q1), · · · , (u, ∅, Qm)} for some u ∈ VF and Q1, · · · , Qm is the finest partition of CCF ({u}).
The tree T r will be recursively constructed as follows. First create the tree root r with βT (r) =
{{u, u}}. As we will see later, the root node will be associated with the set of states S(r) :=
nextGS(∅, ∅, {EF }). We then do the following procedure:

Let t be a leaf node in the current tree associated with a non-empty set of game states S(t) such that
|
⋃

(u,v,{P})∈S(t) P | > 1. For each state (u, v, {P}) ∈ S(t), create a new node t̃ and set its parent
to be t. Pick any state (u′, v′, {P ′}) ∈ nextGS(u, v, {P}). Then, there must be a unique vertex
w ∈ {{u′, v′}}\{{u, v}} and w does not depend on which (u′, v′, {P ′}) is picked (by definition of the
game rule). Set βT (t̃) = βT (t) ∪ {{w}}. Then, do the following constructions:

• If there is a state of the form (u,w, {P ′}) ∈ nextGS(u, v, {P}), then create a new node t′ and
connect it to the parent t̃. Set βT (t

′) = {{u,w}}, and the node t′ will be associated to the set
of states S(t′) = {(u,w, {P ′}) : (u,w, {P ′}) ∈ nextGS(u, v, {P})}.

• If there is a state of the form (w, v, {P ′′}) ∈ nextGS(u, v, {P}), then create a new node t′′

and connect it to the parent t̃. Set βT (t
′′) = {{w, v}}, and the node t′′ will be associated to the

set of states S(t′′) = {(w, v, {P ′′}) : (w, v, {P ′′}) ∈ nextGS(u, v, {P})}.

Note that (i) either w ̸= u or w ̸= v (since the game state graph is a DAG); (ii) both items can be
used for one state (u, v, {P}), which happens for FWL-type GNNs. The construction of the tree
completes when each leaf node is associated with only one game state of the form (x, y, {{x, y}}).
It is easy to see that the above procedure terminates after adding a finite number of tree nodes.

We now prove that T r is a canonical tree decomposition of F and (F, T r) ∈ SM .

1. We first prove that any edge in F is contained in some bag of T r. Pick any non-leaf tree node
t of even depth and any of its child t̃, denote (u, v, P ) ∈ S(t) be the state associated with t̃ in
the above construction, and denote βT (t̃) = {{u, v, w}}. We have

P =

 ⋃
t′,paTr (t′)=t̃,

(x,y,{P ′})∈S(t′)

P ′

 ∪ {{u,w} ∈ EF } ∪ {{v, w} ∈ EF }.

Here, P ′ ⊂ P is a consequence of Lemma C.52, and the remaining edges {u,w} or {v, w}
are in P because (u, v, P ) is strictly contracted and w must be in the interior of P . Therefore,

P ∪ {{u, v} ∈ EF } =

 ⋃
t′,paTr (t′)=t̃,

(x,y,{P ′})∈S(t′)

(P ′ ∪ {{x, y} ∈ EF })

 ∪ {{x, y} ∈ EF : x, y ∈ βT (t̃)}.
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Recursively applying the above equation yields the desired result

EF =
⋃

t̃,depT (t̃) is odd

{{x, y} ∈ EF : x, y ∈ βT (t̃)},

because (i)
⋃

(u,∅,P )∈S(r) P = EF , and (ii) all leaf node t with S(t) = (x, y, {{x, y}})
contains an edge {x, y} in its bag.

2. We next prove that T r satisfies the condition of Definition C.1(c). Fix any vertex w ∈ VF ,
and let t be the tree node with minimal depth that contains w. Without loss of generality,
assume that t is not the root. In this case, the depth of t is odd and βT (t) = {{u, v, w}} for
some u ̸= w, v ̸= w. Let t′ be a child node of t and we have w ∈ βT (t

′). It remains to
prove that for any descendent t̃ ∈ DescT (t

′), if w ∈ βT (t̃), then w ∈ βT (t̂) for all t̂ on the
path between t′ and t̃. This is actually a direct consequence of Lemma C.52, because when a
pebble originally placed on w is removed, all edges linked to w will not be selected by Bob
and thus any pebble can never be placed on w again.

3. T r is canonical as Definition C.4 is clearly satisfied.

4. Finally, it is also easy to see that (F, T r) satisfies Definition C.6.

We thus conclude the proof.

Corollary C.54. Let M ∈ {Sub, L, LF,F} be any model. For any connected graph F /∈ FM ,
let G(F ) and H(F ) be the Fürer graph and twisted Fürer graph with respect to F . Then,
hom(F,G(F )) ̸= hom(F,H(F )) and χM

G(F )(G(F )) = χM
H(F )(H(F )).

Proof. The proof directly follows from applying Theorems C.47 and C.53 and Proposition C.49.

Finally, we remark that our construction can be easily generalized for disconnected graphs F /∈ FM .
Let F be the disjoint union of graphs {Fi : i ∈ [m]} where each Fi is the graph corresponding to
a connected component of F . Assume that F1 is the connected component with the most number
of edges (in case of a tie, pick the graph with the most number of vertices). Define G̃(F ) be the
disjoint union of G(F1), F2, · · · , Fm and H̃(F ) to be the disjoint union of H(F1), F2, · · · , Fm. It
follows that χG̃(F )G̃(F ) = χH̃(F )H̃(F ) and

hom(F, G̃(F )) =
∏

i∈[m]

hom(Fi, G̃(F )) =
∏

i∈[m]

(hom(Fi, G(F1)) + hom(Fi, F2 ∪ · · · ∪ Fm))

>
∏

i∈[m]

(hom(Fi, H(F1)) + hom(Fi, F2 ∪ · · · ∪ Fm)) = hom(F, H̃(F )),

where we use the fact that hom(Fi, G(F1)) = hom(Fi, H(F1)) when F1 /∈ Spasm(Fi) (which can
be easily proved following Theorem C.47). This concludes the proof of the general case.

D NODE/EDGE-LEVEL EXPRESSIVITY

This section aims to prove Theorem 3.7. For the ease of reading, we first restate it below:

Theorem 3.7 For all model M defined in Section 2, FM
n and FM

e (except MPNN) exist. Moreover,

• MPNN: FMP
n = {Fw : F is a tree};

• Subgraph GNN:
FSub

n = {Fw : F has a NED with shared endpoint w} = {Fw : F\{w} is a forest},
FSub

e = {Fwx :F has a NED with shared endpoint w} = {Fwx :F\{w} is a forest};

• 2-FGNN: FF
n = {Fw : F has a NED where w is an endpoint of the first ear},

FF
e = {Fwx : F has a NED where w and x are endpoints of the first ear}.

The cases of Local 2-GNN and Local 2-FGNN are similar to 2-FGNN by replacing “NED” with
“strong NED” and “almost-strong NED”, respectively.
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We remark that the definition of node/edge-level homomorphism expressivity involves only con-
nected graphs for sake of simplicity. Similar to the proof of the graph-level expressivity, the proof
of Theorem 3.7 consists of three parts. Among them, the proof related to tree decomposition and
ear decomposition is quite similar to that of graph-level expressivity, so we only illustrate the proof
sketch for clarity (Appendix D.1). However, the proof related to pebble game and counterexample
graphs will require additional techniques, which is detailed in Appendix D.2.

D.1 RELATED TO TREE DECOMPOSITION AND EAR DECOMPOSITION

We first extend several notations that are used in Appendix C.2.
Definition D.1 (Tree decomposition for rooted graphs). Given a rooted graph Gu and tree T r, we
say T r is a tree decomposition of Gu if T r is a tree decomposition of G and all elements in u
belongs to the root bag, i.e., ui ∈ βT (r) for all i.

Based on this definition, given model M , we can define SM
n to be the family of tree-decomposed

graphs (Fu, T r) such that (F, T r) ∈ SM ; similarly, we define SM
e to be the family of tree-

decomposed graphs (Fuv, T r) such that (F, T r) ∈ SM .
Definition D.2 (Bag isomorphism for rooted graphs). Given tree-decomposed graph (Fu, T r) and
rooted graph Gv where u and v have equal length, a bag isomorphism from (Fu, T r) to Gv is a
homomorphism f from Fu to Gv such that f is a bag isomorphism from (F, T r) to G.

We can similarly define bag-isomorphism homomorphism (bIsoHom, bIsoSurj, bIsoInj), bag ex-
tension (bExt), and bag-strong surjective (bStrSurj) from tree-decomposed graph (Fu, T r) to tree-
decomposed graph (F̃ v, T̃ s).
Definition D.3 (Generalization of Definition C.15 for rooted graphs). Let M ∈ {Sub, L, LF,F} be
any model. Given a rooted graph Gu and a tree-decomposed graph (Fw, T r), define

cntM ((Fw, T r) , Gu) :=
∣∣∣{v ∈ VG : ∃D ∈ N+ s.t.

([
F

M,(D)
G (u, v)

]u
, T

M,(D)
G (u, v)

)
≃ (Fw, T r)

}∣∣∣ .
Given a rooted graph Guv and a tree-decomposed graph (Fwx, T r), define

cntM ((Fwx, T r) , Guv) := I
[
∃D ∈ N+ s.t.

([
F

M,(D)
G (u, v)

]uv
, T

M,(D)
G (u, v)

)
≃ (Fwx, T r)

]
.

Here,
(
F

M,(D)
G (u, v), T

M,(D)
G (u, v)

)
is the depth-2D unfolding tree of G at (u, v) for model M .

All the following lemmas are straightforward extensions of those in Appendix C.2.
Lemma D.4. Let M ∈ {Sub, L, LF,F} be any model. For any graph Gv and tree-decomposed
graph (Fu, T r) ∈ SM

n , we have

bIso ((Fu, T r) , Gv) =
∑

(F̃w,T̃ s)∈SM
n

bIsoHom
(
(Fu, T r) ,

(
F̃w, T̃ s

))
· cntM

((
F̃w, T̃ s

)
, Gv

)
.

The edge-level result is similar.
Lemma D.5. Let M ∈ {Sub, L, LF,F} be any model. For any tree-decomposed graphs
(Fu, T r), (F̃ v, T̃ s) ∈ SM

n ,

bIsoHom((Fu, T r), (F̃ v, T̃ s)) =
∑

(F̂w,T̂ t)∈SM
n

bIsoSurj
(
(Fu, T r), (F̂w, T̂ t)

)
· bIsoInj

(
(F̂w, T̂ t), (F̃ v, T̃ s)

)
aut(F̂w, T̂ t)

.

The edge-level result is similar.
Lemma D.6. Let M ∈ {Sub, L, LF,F} be any model. For any graph Gv and tree-decomposed
graph (Fu, T r) ∈ SM

n ,

hom(Fu, Gv) =
∑

(F̃w,T̃ s)∈SM
n

bExt
(
(Fu, T r), (F̃w, T̃ s)

)
· bStrHom

(
(F̃w, T̃ s), Gv

)
aut(F̃w, T̃ s)

.

The edge-level result is similar.
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Lemma D.7. Let M ∈ {Sub, L, LF,F} be any model. For any graph Gv and tree-decomposed
graph (Fu, T r) ∈ SM

n ,

bStrHom((Fu, T r), Gv) =
∑

(F̃w,T̃ s)∈SM
n

bStrSurj
(
(Fu, T r), (F̃w, T̃ s)

)
· bIso

(
(F̃w, T̃ s), Gv

)
aut(F̃w, T̃ s)

,

The edge-level result is similar.
Corollary D.8. Let M ∈ {Sub, L, LF,F} be any model. For any two graphs Gu, Hv , χM

G (u) =
χM
H (v) iff hom(Fw, Gu) = hom(Fw, Hv) for all (Fw, T r) ∈ SM

n . For any two graphs Guv, Hwx,
χM
G (u, v) = χM

H (w, x) iff hom(F yz, Guv) = hom(F yz, Hwx) for all (F yz, T r) ∈ SM
e .

Lemma D.9. Let M ∈ {Sub, L, LF,F} be any model.

• For any rooted connected graph Fu, Fu ∈ FM
n iff there is a tree decomposition T r of Fu

such that (Fu, T r) ∈ SM
n .

• For any rooted connected graph Fuv , Fuv ∈ FM
e iff there is a tree decomposition T r of Fuv

such that (Fuv, T r) ∈ SM
e .

By combining the proof of previous lemmas and theorems, we can prove that both FM
n and FM

e
satisfy Definition 3.6(a) for all M ∈ {Sub, L, LF,F}.

D.2 COUNTEREXAMPLES

Let Fw be a rooted graph that marks the special vertices w1, · · · , wm. Assume that Fw /∈ FM
n

(m = 1) or Fw /∈ FM
e (m = 2). In this subsection, we will construct a pair of graphs Gu and Hv

such that χM
G (u) = χM

H (v) and hom(Fw, Gu) ̸= hom(Fw, Hv). However, it turns out that, if we
naı̈vely follow the proof in Appendix C.4 by constructing the Fürer graph and twisted Fürer graph
with respect to F without considering the marked vertices w, then the graphs may no longer be
counterexamples here. For example, for the edge-level expressivity, Fw1,w2 /∈ FM

e does not imply
that F /∈ FM where M can be any model studied in this paper.

To address the problem, we instead introduce a novel construction of counterexample graphs defined
as follows:
Definition D.10 (Clique-augmented Fürer graphs). Let F be any connected graph and
w1, · · · , wm ∈ VF be a sequence of vertices. Given an integer k ≥ m, the k-clique-augmented
Fürer graph with respect to Fw, denoted by Gk(F

w), is the Fürer graph of F̃ where F̃ is the union
of graph F and a k-clique that contains w1, · · · , wm (and does not contain other vertices in F ). The
twisted Fürer graph of Gk(F

w) is denoted as Hk(F
w).

We have the following main result:
Theorem D.11. Let M ∈ {Sub, L, LF,F} be any model defined in Section 2.

• For any rooted graph Fw marking vertex w, if Fw /∈ FM
n , then there is a vertex (w,U) ∈

MetaF̃ (w) such that U ⊂ VF and χM
G4(Fw)((w, ∅)) = χM

H4(Fw)((w,U));

• For any rooted graph Fw marking two vertices w1, w2, if Fw /∈ FM
e , then there are two

vertices (w1, U1) ∈ MetaF̃ (w1) and (w2, U2) ∈ MetaF̃ (w2) such that U1, U2 ⊂ VF and
χM
G4(Fw)((w1, ∅), (w2, ∅)) = χM

H4(Fw)((w1, U1), (w2, U2)).

Proof. Below, we only give a proof of the second item. Let F̃ be the union of F and the 4-clique
according to Definition D.10. Similar to the graph-level expressivity, we will extend the pebble
game defined in Appendix C.4 to edge-level. For the edge-level pebble game, the two pebbles
pu, pv are initially placed on two predefined vertices w1, w2, and Bob initially selects a predefined
set of connected components Q ⊂ CCF̃ ({w1, w2}) (of odd size). Then, the game executes the same
process as in the text above Proposition C.49. The winning criterion for the two players is also the
same. We denote the above edge-level pebble game as PGF̃ (w1, w2, Q).

Based on the isomorphism property of Fürer graphs established in Zhang et al. (2023a, Theorem
I.9 and and Theorem I.17), it is straightforward to see that, for any vertices ξ, ξ′ ∈ MetaF̃ (w1) and
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η, η′ ∈ MetaF̃ (w2), χM
G4(Fw)(ξ, η) = χM

H4(Fw)(ξ
′, η′) iff Alice cannot win the edge-level pebble

game PGF̃ (w1, w2, Q) for some Q ⊂ CCF̃ ({w1, w2}) (depending on ξ, ξ′, η, η′). Moreover, let
ξ′ = (w1, ∅), η′ = (w2, ∅) and let ξ2 and η2 range over all even-size subset of NF (w1) and NF (w2),
respectively, that is to say, ξ2 and η2 does not contain vertices that are only in the 4-clique. Then,
the equivalent pebble game ranges over all Q of odd size such that every connected component in
Q contains only vertices in F , i.e., Q ⊂ CCF ({w1, w2}). Therefore, if Alice cannot win the edge-
level pebble game PGF̃ (w1, w2, Q) for some Q ⊂ CCF ({w1, w2}), then there are two vertices
ξ ∈ MetaF̃ (w1) and η ∈ MetaF̃ (w2) such that ξ2, η2 ⊂ VF and χM

G4(Fw)((w1, ∅), (w2, ∅)) =

χM
H4(Fw)(ξ, η).

It thus remains to prove that, if Alice can win the edge-level pebble game PGF̃ (w1, w2, Q) for all
Q ⊂ CCF ({w1, w2}), then Fw ∈ FM

e . To prove this result, we similarly define the game state
graph as in Appendix C.4, with the only difference that the initial state is now (w1, w2, Q). The
proof is divided into the following steps:

1. Assume that Q contains a single connected component, i.e., Q = {P}. We will prove that,
if Alice can win the game PGF̃ (w1, w2, {P}), then there is a game strategy for Alice such
that for any reachable and non-terminal state (x, y, {P ′}), P ′ ⊂ P . If it is not the case, pick
any state (x, y, {P ′}) such that P ′ ̸⊂ P and any path from (w1, w2, {P}) to (x, y, {P ′})
does not pass any intermediate state that is not contracted. It follows that either w1 or w2

does not hold any pebble, and all edges connected to this vertex is in P ′. Therefore, P ′

contains all vertices in the 4-clique. In this case, Alice cannot win as Bob can always keep the
connected component containing all vertices in the 4-clique in subsequent rounds, i.e., Bob
always selects a component containing a vertex in the 4-clique that does not hold a pebble.

2. Based on the above result, in the game PGF̃ (w1, w2, {P}), the connected components se-
lected by Bob are always in F , and thus the game process is the same as PGF (w1, w2, {P}).
We can then prove the same result as Lemma C.52. Concretely, if Alice can win the edge-level
pebble game PGF̃ (w1, w2, {P}), then there exists a game state graph GS corresponding to a
winning strategy, such that for any transition ((x, y, {P ′}), (x′, y′, {P ′′})) where (x, y, {P ′})
is a reachable and non-terminal state, we have P ′′ ⊊ P ′.

3. Next, we can follow the same procedure in the proof of Theorem C.53 to construct a tree
decomposition T r for the subgraph F [P ] containing all edges in P , such that (F [P ], T r) ∈
SM
e and βT (r) = {{w1, w2}}.

4. Finally, let P ranges over all connected component in CCF ({w1, w2}), for each P we have
a tree-decomposed graph. We can glue these tree-decomposed graphs by merging the root
to obtain the tree decomposition of F , because the root bags of all T r are the same and any
vertex x /∈ {w1, w2} appears in the bag of only one T r. Moreover, the glued tree T̃ s clearly
satisfies that (F, T̃ s) ∈ SM

e .

Combining these items shows that Fw ∈ FM
e and concludes the proof.

Corollary D.12. Let Fw any rooted graph marking m vertices such that Fw /∈ FM
n (m = 1) or

Fw /∈ FM
e (m = 2), and let Gk(F

w) and Hk(F
w) be clique-augmented Fürer graphs defined

above. Denote by ξ,η ∈ V m
Gk(Fw) two vertex tuples of length m where ξi = (wi, ∅) and ηi ∈

MetaF̃ (wi) with ηi,2 ⊂ VF for i ∈ [m]. Then, hom(Fw, [Gk(F
w)]ξ) ̸= hom(Fw, [Hk(F

w)]η)).

Proof. The proof exactly parallels that of Theorem C.47 by separately considering three cases. We
omit the proof for clarity.

Corollary D.13. Let M ∈ {Sub, L, LF,F} be any model.

• For any graph Fw /∈ FM
n , let G4(F

w) and H4(F
w) be the clique-augmented Fürer graph

and the corresponding twisted Fürer graph. Then, there exists two vertices ξ, ξ′ such that
hom(Fw, [G4(F

w)]ξ) ̸= hom(Fw, [H4(F
w)]ξ

′
) and χM

G4(Fw)(ξ) = χM
H4(Fw)(ξ

′).

• For any graph Fwx /∈ FM
e , let G4(F

wx) and H4(F
wx) be the clique-augmented Fürer graph

and the corresponding twisted Fürer graph defined in Definition D.10. Then, there exists
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four vertices ξ, η, ξ′, η′ such that hom(Fwx, [G4(F
wx)]ξη) ̸= hom(Fwx, [H4(F

wx)]ξ
′η′

) and
χM
G4(Fwx)(ξ, η) = χM

H4(Fwx)(ξ
′, η′).

Proof. The proof directly follows from Corollary D.12 and Theorem D.11.

E HIGHER-ORDER GNNS

E.1 DEFINITION OF HIGHER-ORDER GNNS

In this subsection, we give formal definitions of the CR algorithms for various higher-order GNNs,
each of which generalizes a model in Section 2.

• Subgraph k-GNN. In a Subgraph k-GNN, a graph G is treated as a set of subgraphs
{{Gu : u ∈ V k

G}}, where each subgraph Gu is obtained from G by marking k special ver-
tices u ∈ V k

G , and thus there are nk subgraphs when G has n vertices. Subgraph GNN
maintains a color χSub(k)

G (u, v) for each vertex v in graph Gu. Initially, χSub(k),(0)
G (u, v) =

(ℓG(v), atpG(u), I[u1 = v], · · · , I[uk = v]). It then runs MPNNs independently on each
graph Gu:

χ
Sub(k),(t+1)
G (u, v) = hash

(
χ
Sub(k),(t)
G (u, v), {{χSub(k),(t)

G (u, w) : w ∈ NG(v)}}
)
. (26)

Denote the stable color as χSub(k)
G (u, v). Define χ

Sub(k)
G (u) := {{χSub(k)

G (u, v) : v ∈ VG}}.
Then, the graph representation is defined as χ

Sub(k)
G (G) = {{χSub(k)

G (u) : u ∈ VG}}. We
remark that Subgraph k-GNN is precisely the k-VSAN proposed in Qian et al. (2022).

• Local k-GNN. Local k-GNN maintains a color χL(k)
G (u) for each vertex k-tuple u ∈ V k

G . Ini-
tially, χL(k),(0)

G (u) = (ℓG(u1), · · · , ℓG(uk), atpG(u)), called the isomorphism type of vertex
k-tuple u, where atpG(u) is the atomic type of u. Then, in each iteration t+ 1,

χ
L(k),(t+1)
G (u) = hash

(
χ
L(k),(t)
G (u), {{χL(k),(t)

G (v) : v ∈ N
(1)
G (u)}}, · · · ,

{{χL(k),(t)
G (v) : v ∈ N

(k)
G (u)}}

)
,

(27)

where N
(j)
G (u) = {(u1, · · · , uj−1, w, uj+1, · · · , uk) : w ∈ NG(uj)}. Denote the stable

color as χL(k)
G (u). The graph representation is defined as χL(k)

G (G) := {{χL(k)
G (u) : u ∈ VG}}.

We remark that Local k-GNN is precisely the δ-k-LWL proposed in Morris et al. (2020).
• Local k-FGNN. Local k-FGNN is almost the same as Local k-GNN except that the update

formula is replaced by the following one:

χ
LF(k),(t+1)
G (u)=hash

(
χ
LF(k),(t)
G (u), {{(χLF(k),(t)

G (w,u2,· · ·,uk), χ
LF(k),(t)
G (u1,w,u3,· · ·,uk),

· · · , χLF(k),(t)
G (u1,· · ·,uk−1, w)) : w ∈ NG(u1) ∪ · · · ∪NG(uk)}}

)
.

(28)
We remark that Local k-FGNN is precisely the SLFWL(k) proposed in Zhang et al. (2023a).

• k-FGNN. It is just the standard k-FWL (Cai et al., 1992). Compared with Local k-FGNN,
the update formula is now global:

χ
F(k),(t+1)
G (u)=hash

(
χ
F(k),(t)
G (u), {{(χF(k),(t)

G (w,u2,· · ·,uk), χ
F(k),(t)
G (u1,w,u3,· · ·,uk),

· · · , χF(k),(t)
G (u1,· · ·,uk−1, w)) : w ∈ VG}}

)
.

(29)

We note that the computational complexity of Subgraph (k − 1)-GNN, Local k-GNN, and Local
k-FGNN is the same, i.e., Θ(nk−1m) for a graph of n vertices and m edges. Moreover, it is easy
to see that Subgraph 0-GNN, Local 1-GNN, and Local 1-FGNN all reduce to MPNN. For k-FGNN,
the computational complexity is Θ(nk+1), which is strictly higher than Subgraph (k − 1)-GNN,
Local k-GNN, and Local k-FGNN.
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E.2 HIGHER-ORDER STRONG NED

In this subsection, we generalize the strong NED into higher-order versions. We first define the
concept of higher-order ear:
Definition E.1 (k-order ear). Given integer k ≥ 1, a k-order ear is a graph G formed by the union
of k paths P1, · · · , Pk (possibly with zero length) plus an edge set Q satisfying the following con-
ditions:

• For each path Pi, denote its two endpoints as ui, vi, called the outer endpoint and in-
ner endpoint, respectively. Then, all edges in Q are linked between inner endpoints, i.e.,
Q ⊂ {{vi, vj} : 1 ≤ i, j ≤ k, vi ̸= vj}.

• Any different paths Pi, Pj do not intersect except at the inner endpoint (when vi = vj).

• G is a connected graph.

The endpoints of the k-order ear is defined to be all outer endpoints u1, · · · , uk.

It is easy to see that a 2-order ear is precisely a simple path, since linking two different paths (pos-
sibly with an additional edge) still yields a path. Below, we denote by inner(G) and outer(G) the
set of inner endpoints and outer endpoints in ear G, respectively. We also denote by path(G) the set
of paths in ear G. It follows that |inner(G)| = |outer(G)| = |path(G)| = k. Finally, given a path
P and two vertices w1, w2 in P , denote by subpathP (w1, w2) the subpath in P such that the two
endpoints are w1, w2.
Definition E.2 (Nested interval). Let G and H be two k-order ears with inner(G) = {v1, · · · , vk},
outer(G) = {u1, · · · , uk}, and outer(H) = {w1, · · · , wk}, where each {ui, vi} corresponds to the
endpoints of a path Pi ∈ path(G). We say H is nested on G if one or more endpoint wi of H
(i ∈ [k]) is in path Pi, and all other vertices in H are not in G. The nested interval is defined to be
the union of subpaths subpathPi

(wi, vi) for all i ∈ [k] satisfying that wi is in Pi.

We give an illustration of the nested interval of two 3-order ears in Figure 2. Equipped with the
above definition, we are ready to introduce the higher-order strong NED:
Definition E.3 (k-order strong NED). Given a graph G, a k-order strong NED P is a partition of
the edge set EG into a sequence of edge sets Q1, · · · , Qm, which satisfies the following conditions:

• Each Qi is a k-order ear.

• Any two ears Qi and Qj with indices 1 ≤ i < j ≤ c do not intersect, where c is the number
of connected components of G.

• For each Qj with index j > c, it is nested on some k-order ear Qi with index 1 ≤ i < j.
Moreover, except for the endpoints of Qj on Qi, no other vertices in Qj are in any previous
ear Qk for 1 ≤ k < i.

• Denote by I(Qj) ⊂ Qi the nested interval of Qj in Qi. For all Qj , Qk with c < j < k ≤ m,
if Qj and Qk are nested on the same ear, then I(Qj) ⊂ I(Qk).

E.3 PROOFS IN SECTION 3.4

We first generalize the tree-decomposed graphs in Definition C.6 to higher-order versions:
Definition E.4. Define four families of tree-decomposed graphs SSub(k), SL(k), SLF(k), and SF(k)

as follows:

a) (F, T r) ∈ SF(k) iff (F, T r) satisfies Definition C.4 with width k;

b) (F, T r) ∈ SLF(k) iff (F, T r) satisfies Definition C.4 with width k, and for any tree node t of
odd depth, it has only one child if w /∈ {v : v ∈ NG(u), u ∈ βT (s)} where s is the parent
node of t and w is the unique vertex in βT (t)\βT (s);

c) (F, T r) ∈ SL(k) iff (F, T r) satisfies Definition C.4 with width k, and any tree node t of odd
depth has only one child;

d) (F, T r) ∈ SSub(k) iff (F, T r) satisfies Definition C.4 with width k, and there exists a multiset
U ⊂ VG of size |U | = k such that U ⊂ βT (t) for all t ∈ VT .
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Then, we can analogously prove the following theorems. The proofs are almost the same as in
Appendix C, so we omit them for clarity.
Theorem E.5. Let M ∈ {Sub(k), L(k), LF(k),F(k)}. Then, any graphs G and H have the same
representation under model M (i.e., χM

G (G) = χM
H (H)) iff hom(F,G) = hom(F,H) for all

(F, T r) ∈ SM .
Theorem E.6. Let M ∈ {Sub(k), L(k), LF(k),F(k)} be any model, and let F be any graph such
that no tree decomposition (F, T r) ∈ SM . Let G(F ) and H(F ) be the Fürer graph and twisted
Fürer graph with respect to F . Then, hom(F,G(F )) ̸= hom(F,H(F )) and χM

G(F )(G(F )) =

χM
H(F )(H(F )).

Theorem E.7. For any graph F , there is a tree decomposition T r of F such that (F, T r) ∈ SSub(k)

iff there exists U ⊂ VF such that |U | ≤ k and F\U is a forest.

Theorem E.8. For any graph F , there is a tree decomposition T r of F such that (F, T r) ∈ SL(k)

iff F has a k-order strong NED.
Theorem E.9. For any graph F , there is a tree decomposition T r of F such that (F, T r) ∈ SF(k)

iff tw(F ) ≤ k.

E.4 EXPRESSIVITY GAP BETWEEN HIGHER-ORDER GNNS

In this subsection, we show how homomorphism expressivity can be used to build a complete ex-
pressiveness hierarchy for higher-order GNNs as shown in Corollary 4.2.

Gap between Subgraph k-GNN and Local (k + 1)-GNN (k ≥ 1). The counterexample graph is
a (k + 1) × (2k + 2) grid consisting (k + 1) × (2k + 2) vertices. First, it is easy to see that the
graph is not in FSub(k), i.e., deleting k vertices of the graph cannot yield a forest. To see this, note
that the graph consists of k× (2k+ 1) “squares”, and each vertex is related to at most four squares.
Therefore, deleting k vertices cannot eliminate all squares when k ≥ 2 (because 4k < k×(2k+1)).
For the case of k = 1, we clearly have that deleting one vertex cannot eliminate all squares.

Figure 8: An 4-order strong NED of the
4× 8 grid graph.

We next show that the (k+1)×(2k+2) grid is in FL(k+1).
This is also simple as shown in Figure 8, where each color
represents a k-order ear. It can be seen that the (k+ 1)×
(2k + 2) grid has a (k + 1)-order strong NED.

Relation between Subgraph k-GNN and k-FGNN
(k ≥ 2). To show that FSub(k) ̸⊂ FF(k), consider the
(k + 2)-clique. Clearly, deleting k vertices from the
(k + 2)-clique yields a graph consisting of two vertices
linked by an edge, which is a tree. On the other hand, the
treewidth of a (k+2)-clique is k+1 (Fact C.3). So the (k+2)-clique is in FSub(k) but not in FF(k).

To show that FF(k) ̸⊂ FSub(k), we can again use the grid graph, but this time consider the k×(2k+2)
grid. On the one hand, a standard result in graph theory shows that the treewidth of a a×b grid graph
is min(a, b). On the other hand, following the similar analysis above, we can prove that deleting k
vertices from the k × (2k + 2) grid cannot eliminate all squares.

Gap between Local k-GNN and k-FGNN (k ≥ 2). The counterexample graph F is the union of the
following graphs K0∪K1∪· · ·∪Kk, where K0 is a (k+1)-clique with vertex set {u1, · · · , uk+1},
and for i ∈ [k+1], Ki is a (k+1)-clique with vertex set {u1, · · · , ui−1, vi, ui+1, · · · , uk+1} where
vi is a new vertex (not in K0) and vi ̸= vj for i ̸= j. Namely, each Ki has k common vertices
with K0. It is easy to construct a tree decomposition T r of F such that (F, T r) ∈ SF(k). On the
other hand, it is easy to see that the graph does not have a k-order strong NED (equivalently, one
can easily check that F does not admit a tree decomposition T r satisfying (F, T r) ∈ SL(k)).

Gap between k-FGNN and Local (k + 1)-GNN (k ≥ 2). The counterexample graph is again the
(k + 1)× (2k + 2) grid. We have proved that the graph is in FL(k+1) but not in FL(k).

Regarding Local k-IGN and Frasca et al. (2022). Finally, we remark that based on the above
results, we essentially proved an open question raised in Frasca et al. (2022) regarding the expressive
power of Local k-IGN (i.e., the ReIGN(k) proposed in their paper). Following Zhang et al. (2023a),
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Figure 9: More illustration of NED. All NEDs in these example graphs are strong but not endpoint-
shared. See Appendix F.2 for additional discussions.

it is straightforward to see that Local k-IGN is as expressive as Local k-GNN. Therefore, Local
k-IGN is strictly more expressive than (k − 1)-FGNN and strictly less expressive than k-FGNN.

F ADDITIONAL DISCUSSIONS

F.1 REGARDING THE DEFINITION OF HOMOMORPHISM EXPRESSIVITY

In this paper, we have shown that homomorphism expressivity exists for a variety of popular GNNs.
Unfortunately, due to the “iff” statement in Definition 3.1, homomorphism expressivity may not
always be well-defined in the general case. We remark in this subsection that, there do exist patho-
logical, intentionally designed GNNs such that the homomorphism expressivity is not well-defined.

Consider a simple GNN M that outputs the representation of a graph G as follows. If G is a cycle of
odd length, it outputs (1, L) where L is the length of the cycle. Otherwise, it outputs (0, χMP

G (G)),
namely, running a MPNN on the graph. It follows that M is strictly more powerful than MPNN,
e.g., it can distinguish between the 9-cycle and three triangles, which MPNN fails to distinguish.
As a result, M can count all trees under homomorphism. Moreover, it cannot count other patterns
under homomorphism, as the counterexample graphs for MPNN (i.e., Fürer graphs) are not cycles
of odd length, so they are still counterexample graphs for model M . Therefore, the homomorphism
expressivity of M should be exactly the family of forests if it exists. However, the homomorphism
information of forests cannot determine the representation of model M since M is strictly more
powerful than MPNN. So we conclude that FM does not exist.

Note that the above GNN construction is inherently unnatural and hardly appears in practice. Actu-
ally, when a GNN is defined via the message-passing paradigm, we suspect that its homomorphism
expressivity is always well-defined. As stated in Appendix B, we conjecture that, for any GNN char-
acterized by a color refinement algorithm that outputs stable colors, the homomorphism expressivity
always exists.

F.2 REGARDING THE DEFINITION OF NED

In the main text, we have illustrated several types of NED with simple example graphs. To gain a
deeper understanding of Definition 3.3, in this section we will present a few more complex examples
(see Figure 9). Notably, unlike graphs in Figure 1(b), for all graphs in Figure 9 their NED contains
ears such that only one endpoint is in its nested ear (e.g., ears 2 and 4 in Figure 9(a)). In other words,
these ears have empty nested intervals.

The presence of ears with empty nested interval stems from the fact that the corresponding graph is
not biconnected (Zhang et al., 2023b). Indeed, one can check that all graphs in Definition 3.3(b) do
not have cut vertices, while all graphs in Figure 9 have cut vertices. Moreover, in these examples, the
number of ears with empty nested interval always equals to the number of biconnected components
minus one. In particular, for biconnected graphs, it can proved that any NED does not contain an ear
with empty nested interval.
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G HOMOMORPHISM AND SUBGRAPH COUNTING POWER

G.1 PROOF OF THEOREM 4.5

Our proof draws inspiration from a recent technique developed in Seppelt (2023). We note that the
original results in Seppelt (2023) are described for unlabeled graphs, but it is easy to extend these
results to labeled graphs. To begin with, we define a concept called the graph categorical product.
Definition G.1. The categorical product of two graphs G,H , denoted as G ×H , is a graph where
VG×H = VG × VH , ℓG×H(g, h) = (ℓG(g), ℓH(h)) for all g ∈ VG, h ∈ VH , and EG×H =
{{(g, h), (g′, h′)} : {g, g′} ∈ EG, {h, h′} ∈ EH}.
Lemma G.2 (Seppelt (2023)). For any graphs F , G, and H , hom(F,G × H) = hom(F,G) ·
hom(F,H).

Proof. We define a mapping τ from Hom(F,G)× Hom(F,H) to Hom(F,G ×H) as follows. for
all σ1 ∈ Hom(F,G) and σ2 ∈ Hom(F,H), define ρ = τ(σ1, σ2) where ρ(f) = (σ1(f), σ2(f))
for all f ∈ VF . It is easy to see that τ is a bijective mapping from Hom(F,G) × Hom(F,H) to
Hom(F,G×H).

Definition G.3. Given graphs F and G, denote by Surj(F,G) the set of all homomorphisms from
F to G that are surjective on both the vertices and edges of G, and define surj(F,G) = |Surj(F,G)|.

The following proposition is straightforward (similar to Lemma C.25):
Proposition G.4. hom(G,H) =

∑
F surj(G,F ) · sub(F,H), where F ranges over all non-

isomorphic graphs.
Lemma G.5. Let M be a GNN model such that its homomorphism expressivity FM exists. Given a
finite set of graphs L and a function α : L → R/{0}, if

χM
G (G) = χM

H (H) =⇒
∑
L∈L

α(L)hom(L,G) =
∑
L∈L

α(L)hom(L,H),

holds for all graphs G and H , then L ⊂ FM .

Proof. Let n be the largest number of vertices for all graphs in L, and let L̃ be the set of all non-
isomorphic graphs with no more than n vertices. We can arrange all graphs in L̃ into a sequence
L1, L2, . . . , LN satisfying the following property: |VLi

| ≤ |VLi+1
| or (|VLi

| = |VLi+1
| and |ELi

| ≤
|ELi+1

|) for all i = 1, 2, . . . , N − 1 . We then define the matrices Ahom, Asurj, and Asub, where the
elements in the ith row and jth column are hom(Li, Lj), surj(Li, Lj), and sub(Li, Lj), respectively.
Proposition G.4 implies that Ahom = Asurj ·Asub. Since Asurj is a lower triangular matrix with non-
zero diagonal elements and Asub is an upper triangular matrix with non-zero diagonal elements, the
matrix Ahom is invertible.

We next extend α to a function α̃ : L̃ → R by setting α̃(L) = α(L) for all L ∈ L and α̃(L̃) = 0 for
all L̃ ∈ L̃\L. Additionally, if χM

G (G) = χM
H (H), then hom(F,G) = hom(F,H) for all F ∈ FM

(by definition of homomorphism expressivity). Then, given any graph K ∈ L̃, Lemma G.2 implies
that hom(F,G×K) = hom(F,H×K) for all F ∈ FM . This further implies that χM

G×K(G×K) =

χM
H×K(H ×K) by definition of homomorphism expressivity. Therefore, Lemma G.2 implies that∑

L∈L
α(L)hom(L,G) · hom(L,K) =

∑
L∈L

α(L)hom(L,H) · hom(L,K). (30)

Namely, ∑
L∈L̃

α̃(L)hom(L,G) · hom(L,K) =
∑
L∈L̃

α̃(L)hom(L,H) · hom(L,K). (31)

Now define vectors pG and pH , where the ith element of vector pG and pH is α̃(Li)hom(Li, G)
and α̃(Li)hom(Li, H), respectively. We then have the following equation:

Ahom · pG = Ahom · pH .
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Since Ahom is invertible, phom
G = phom

H . Therefore, α̃(L)hom(L,G) = α̃(L)hom(L,H) for all
L ∈ L̃, namely, hom(L,G) = hom(L,H) for all L ∈ L. To sum up, we have prove that for all
graph G,H , χM

G (G) = χM
H (H) implies that hom(L,G) = hom(L,H) for all L ∈ L. By definition

of homomorphism expressivity, we conclude that L ⊂ FM .

Theorem G.6. Let M ∈ {Sub, L, LF,F} be any model. For any graph F , if Spasm(F )\FM ̸= ∅,
then there exists a pair of graphs G,H such that χM

G (G) = χM
H (H) and sub(F,G) ̸= sub(F,H).

Proof. Recall that sub(F,G) =
∑

F̃∈Spasm̸≃(F ) α(F, F̃ ) · hom(F̃ , G) where α(F, F̃ ) ̸= 0 for all

F̃ ∈ Spasm̸≃(F ). If the above theorem does not hold, then for all graphs G,H , χM
G (G) = χM

H (H)
implies that ∑

F̃∈Spasm ̸≃(F )

α(F, F̃ ) · hom(F̃ , G) =
∑

F̃∈Spasm ̸≃(F )

α(F, F̃ ) · hom(F̃ , G).

Then, Lemma G.5 implies that Spasm(F ) ⊂ FM , yielding a contradiction.

We next extend our analysis to the node/edge-level subgraph counting. Since the proof techniques
are almost the same as the graph-level setting, we only present key definitions and lemmas below
while omitting the detailed proofs for clarity.
Definition G.7. Given two rooted graphs Gu and Hv with u ∈ V m

G and v ∈ V m
H for some m ∈ N+,

the categorical product of Gu and Hv , denoted as (G × H)(u1,v1),··· ,(um,vm), is a rooted graph
obtained from G×H by marking vertices (u1, v1), · · · , (um, vm).
Lemma G.8 (Extension of Lemma G.2). For any rooted graphs Fw, Gu, Hv where |u| = |v| =
|w| = m,

hom(Fw, (G×H)(u1,v1),··· ,(um,vm)) = hom(Fw, Gu) · hom(Fw, Hv).

Proposition G.9 (Extension of Proposition G.4). For any rooted graphs Gu, Hv where |u| = |v| =
m, hom(Gu, Hv) =

∑
Fw surj(Gu, Fw)·sub(Fw, Hv), where Fw ranges over all non-isomorphic

rooted graphs marking m vertices.

We next present the main lemma for node-level subgraph counting. We omit the edge-level result
for clarity.
Lemma G.10 (Extension of Lemma G.5). Let M be a GNN model such that its node-level ho-
momorphism expressivity FM

n exists. Given a finite set of rooted graphs Ln and a function
α : Ln → R/{0}, if

χM
G (u) = χM

H (v) =⇒
∑

Lw∈Ln

α(Lw)hom(Lw, Gu) =
∑

Lw∈Ln

α(Lw)hom(Lw, Hv),

holds for all rooted graphs Gu and Hv , then Ln ⊂ FM
n .

Theorem G.11. Let M ∈ {Sub, L, LF,F} be any model. For any rooted graph Fw, if
Spasm(Fw)\FM

n ̸= ∅, then there exist a pair of graphs G,H and vertices u ∈ VG, v ∈ VH ,
such that χM

G (u) = χM
H (v) and sub(Fw, Gu) ̸= sub(Fw, Hv).

G.2 GRAPH STATISTICS AND EXAMPLES

In this section, we list the statistics of all moderate-size graphs that can/cannot be counted for each
model in Section 2 at graph/node/edge-level. Table 4 presents the statistics under homomorphism
count, while Table 5 presents the statistics under subgraph count. These tables offer a clear picture
into how large the expressivity gaps are between different models. Several important findings are
discussed below:

• For homomorphism counting, graphs of 8 edges suffices to reveal the expressivity gaps be-
tween each pair of architectures (at edge-level).

• However, for subgraph counting, moderate-size graphs cannot reveal the gap between Local
2-GNN, Local 2-FGNN, and 2-FGNN. Moreover, even Subgraph GNN already matches the
power of 2-FWL in counting small subgraphs at graph-level, but it is quite weak in counting
subgraphs at node/edge-level.
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• Subgraph counting is much more challenging than homomorphism counting. Intuitively, this
is because the homomorphism image of a graph usually has 4-cliques, and any graph that
contains a 4 clique as subgraph cannot be counted under homomorphism.

In Table 6, we list all subgraphs at moderate size (no more than 6 vertices or 8 edges) that can/cannot
be counted by each GNN model. Here, we only list the graph-level expressivity as the node/edge-
level expressivity involves too many non-isomorphic rooted graphs and cannot be fully presented
(see Tables 4 and 5). We believe these results is comprehensive enough to cover most substructures
of interest in the GNN community.

Table 4: The number of (connected) graphs (or rooted graphs) of n vertices or m edges that can be
counted under homomorphism by different models. These statistics can be viewed as a quantitative
expressivity comparison between models.

Number of vertices n Number of edges m
2 3 4 5 6 1 2 3 4 5 6 7 8

Graph
level

MPNN 1 1 2 3 6 1 1 2 3 6 11 23 47
Subgraph GNN 1 2 5 15 51 1 1 3 5 12 29 76 210
Local 2-GNN 1 2 5 15 55 1 1 3 5 12 29 77 216

Local 2-FGNN 1 2 5 15 56 1 1 3 5 12 29 77 216
2-FGNN 1 2 5 15 56 1 1 3 5 12 29 77 216

All 1 2 6 21 112 1 1 3 5 12 30 79 227

Node
level

MPNN 1 2 4 9 20 1 2 4 9 20 48 115 286
Subgraph GNN 1 3 8 27 88 1 2 5 12 31 83 228 640
Local 2-GNN 1 3 10 44 215 1 2 5 13 37 113 361 1210

Local 2-FGNN 1 3 10 44 217 1 2 5 13 37 113 361 1210
2-FGNN 1 3 10 44 217 1 2 5 13 37 113 361 1210

All 1 3 11 58 407 1 2 5 13 37 114 367 1248

Edge
level

Subgraph GNN 1 4 18 77 340 1 3 10 33 107 347 1126 3664
Local 2-GNN 1 4 21 116 693 1 3 10 35 124 450 1665 6267

Local 2-FGNN 1 4 21 118 735 1 3 10 35 124 451 1678 6373
2-FGNN 1 4 21 118 735 1 3 10 35 124 451 1678 6374

All 1 4 23 162 1549 1 3 10 35 125 460 1747 6830

Table 5: The number of (connected) graphs (or rooted graphs) of n vertices or m edges that can be
subgraph-counted by different models. These statistics can be viewed as a quantitative expressivity
comparison between models.

Number of vertices n Number of edges m
2 3 4 5 6 1 2 3 4 5 6 7 8

Graph
level

MPNN 1 1 1 1 1 1 1 1 1 1 1 1 1
Subgraph GNN 1 2 5 13 24 1 1 3 5 12 20 21 22
Local 2-GNN 1 2 5 13 24 1 1 3 5 12 20 21 22

Local 2-FGNN 1 2 5 13 24 1 1 3 5 12 20 21 22
2-FGNN 1 2 5 13 24 1 1 3 5 12 20 21 22

All 1 2 6 21 112 1 1 3 5 12 30 79 227

Node
level

MPNN 1 2 2 2 2 1 2 2 2 2 2 2 2
Subgraph GNN 1 3 8 18 27 1 2 5 10 16 23 30 38
Local 2-GNN 1 3 10 37 84 1 2 5 13 37 72 75 86

Local 2-FGNN 1 3 10 37 84 1 2 5 13 37 72 75 86
2-FGNN 1 3 10 37 84 1 2 5 13 37 72 75 86

All 1 3 11 58 407 1 2 5 13 37 114 367 1248

Edge
level

Subgraph GNN 1 4 18 47 81 1 3 10 25 46 69 95 124
Local 2-GNN 1 4 21 92 208 1 3 10 35 105 171 179 216

Local 2-FGNN 1 4 21 92 208 1 3 10 35 105 171 179 216
2-FGNN 1 4 21 92 208 1 3 10 35 105 171 179 216

All 1 4 23 162 1549 1 3 10 35 125 460 1747 6830
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Table 6: The ability of GNNs to homomorphism-count and subgraph-count different graphs F
within a bounded size of n ≤ 6 vertices or m ≤ 8 edges. When one or more GNNs fail to subgraph-
count F , this table also gives a homomorphic image F̃ ∈ Spasm(F ) that can be used to construct
counterexample graphs (see Section 4.2).

nm F
Homomorphism Subgraph

F̃ n m F
Homomorphism Subgraph

F̃MPSub L LF F MPSub L LF F MPSub L LF F MPSub L LF F

2 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - 5 7 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

3 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - 5 8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

3 3 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 5 8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

4 3 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 5 9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

4 3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - 5 10 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

4 4 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6 5 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

4 4 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6 5 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

4 5 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6 5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -

4 6 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 5 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

5 4 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6 5 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

5 4 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6 5 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

5 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - 6 6 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

5 5 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6 6 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

5 5 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6 6 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

5 5 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6 6 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

5 5 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6 6 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

5 5 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6 6 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

5 6 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 6 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

5 6 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6 6 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

5 6 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6 6 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

5 6 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6 6 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

5 6 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6 6 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

5 7 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 6 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

5 7 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 6 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

5 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 7 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

(see the next page)
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nm F
Homomorphism Subgraph

F̃ n m F
Homomorphism Subgraph

F̃MPSub L LF F MPSub L LF F MPSub L LF F MPSub L LF F

6 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

6 7 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

6 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

6 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 8 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

6 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 7 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

6 7 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

6 7 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6 8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 7 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6 8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

6 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 8 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

6 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

6 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 9 ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

6 7 ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 9 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

6 8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 9 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

6 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 8 ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 8 ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 9 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
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n m F
Homomorphism Subgraph

F̃ n m F
Homomorphism Subgraph

F̃MPSubL LF F MPSubL LF F MPSub L LF F MPSub L LF F

6 9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 11 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 11 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 9 ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 6 11 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 11 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 11 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 12 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 12 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 12 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 10 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 12 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 10 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 12 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 10 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 13 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 10 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 13 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 10 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 14 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 10 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 6 15 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

6 10 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 7 6 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

6 10 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 7 6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -

6 10 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 7 6 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

6 10 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 7 6 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

6 10 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 7 6 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

6 10 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 7 6 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

6 10 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 7 6 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

6 10 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 7 6 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

6 11 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 7 6 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

6 11 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 7 6 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

6 11 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 7 6 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

6 11 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
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nm F
Homomorphism Subgraph

F̃ n m F
Homomorphism Subgraph

F̃MPSub L LF F MPSub L LF F MPSub L LF F MPSub L LF F

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 7 8 ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 7 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
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nm F
Homomorphism Subgraph

F̃ n m F
Homomorphism Subgraph

F̃MPSub L LF F MPSub L LF F MPSub L LF F MPSub L LF F

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

7 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
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nm F
Homomorphism Subgraph

F̃ n m F
Homomorphism Subgraph

F̃MPSub L LF F MPSub L LF F MPSub L LF F MPSub L LF F

8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

8 7 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

(see the next page)

66



Published as a conference paper at ICLR 2024

nm F
Homomorphism Subgraph

F̃ n m F
Homomorphism Subgraph

F̃MPSub L LF F MPSub L LF F MPSub L LF F MPSub L LF F

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
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nm F
Homomorphism Subgraph

F̃ n m F
Homomorphism Subgraph

F̃MPSub L LF F MPSub L LF F MPSub L LF F MPSub L LF F

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

8 8 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

9 8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

68



Published as a conference paper at ICLR 2024

H POLYNOMIAL EXPRESSIVITY

Puny et al. (2023) proposed the equivariant graph polynomials, which are polynomials P that take
real squared matrices X ∈ Rn×n as input and outputs P (X) ∈ Rn×n, such that P is equivari-
ant under permutations, i.e, P (π · X) = π · P (X) for all permutation π ∈ Sn. The authors
gave a concrete basis of equivariant polynomials, where each basis element PFuv corresponds to a
rooted multi-graph Fuv marking two vertices u, v. Puny et al. (2023) showed that when X is re-
stricted to be the adjacency matrix of an undirected simple graph G, each Fuv will also reduce to an
undirected simple graph, and PFuv (X) precisely computes the (unlabeled) homomorphism count
hom(Fuv, Gwx) for all w, x ∈ VG. Besides the original definition, Puny et al. (2023) also proposed
the invariant graph polynomials and node-level equivariant graph polynomials, which are similarly
related to the graph-level and node-level homomorphism count.

As a direct consequence, if a GNN model M cannot count graph Fuv/Fu/F under homomorphism,
it then cannot compute the equivariant/invariant graph polynomial PFuv /PFu /PF . Based on these
connections, our results can be directly used to provide insights into which equivariant graph poly-
nomials cannot be computed by model M . This recovers several results in their paper and answers
an open problem shown below.

Corollary H.1. MPNN and PPGN++ are bounded by the Prototypical node-based model and Pro-
totypical edge-based model (defined in Puny et al. (2023)) for computing node-level and edge-level
equivariant graph polynomials, respectively.

Proof. Without loss of generality, we assume that the corresponding graphs of all equivariant poly-
nomials are connected. According to Puny et al. (2023, Proposition H.2), the Prototypical node-
based model can compute all PFu where Fu is a (rooted) tree and cannot compute other graph
polynomials. If MPNN is not bounded by the Prototypical node-based model, then it can compute
some PF̃u where F̃ is not a tree. However, this is impossible since MPNN can only count forests
under homomorphism according to Theorem 3.7. Note that the MPNN defined in their paper is
equivalent to our definition when only considering connected graphs (the extra global aggregation
11⊤X in their definition (9) does not improve the homomorphism expressivity).

We next turn to PPGN++, and the proof is similar (but more involved). We first show that the
Prototypical edge-based model can compute any PFuv satisfying that the treewidth of the graph
F̃ := (VF , EF ∪ {{u, v}}, ℓF ) is no more than 2. If tw(F̃ ) ≤ 2, it is a partial 2-tree. Thus, there is
an ordering w1, · · · , wn of the vertex set VF such that when deleting each vertex wi and all incident
edges in turn, we only ever delete vertices of degree at most 2. Now we claim that we can always
order the two vertices u, v at the end, i.e., wn−1 = u and wn = v. Otherwise, there is a subset
U ⊂ VF such that all vertices in the induced subgraph F̃ [U ] are of degree at least 3 except u, v.
It follows that the tw(F̃ [U ]) ≥ tw(H) ≥ 3 where graph H is the graph obtained from F̃ [U ] by
contracting u (or v) if degF̃ [U ](u) ≤ 2 (or degF̃ [U ](v) ≤ 2). This yields a contradiction and verifies
the claim that we can always set wn−1 = u and wn = v.

Now, following the proof in Puny et al. (2023, Proposition H.3), the Prototypical edge-based model
can contract F̃uv to a graph with only two vertices u, v and thus can compute the edge-level poly-
nomial PF̃uv . If PPGN++ is not bounded by the Prototypical edge-based model, then it can com-
pute some PF̃uv where tw(F̃ ) ≥ 3. Therefore, it can count the graph F̃ under homomorphism at
graph-level (since it can already count F̃ at edge-level). This implies that PPGN++ is strictly more
expressive than 2-FGNN (2-FWL) because we have proved that all graphs in FF have a treewidth no
more than 2. This yields a contradiction since PPGN++ is still bounded by 2-FWL in distinguishing
non-isomorphic graphs.

We also provide insights into the following results in their paper:

Corollary H.2. The Prototypical node-based model is not 3-node-polynomial-exact. The Prototyp-
ical edge-based model is not 6-node-polynomial-exact and not 5-edge-polynomial-exact.

This is simply because the triangle is not a tree and the 4-clique does not have a NED (or equiva-
lently, the treewidth of a 4-clique is 3). It is also clear why the degree of the edge-based polynomial
is 6, which is one less than that of the node-based polynomial using the concept of NED.
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I EXPERIMENTAL DETAILS

In this section, we provide all the experimental details in Section 5.

I.1 DATASETS

We conduct experiments on tive tasks: (i) graph homomorphism counting, (ii) subgraph counting,
(iii) ZINC-subset (Dwivedi et al., 2020), (iii) ZINC-full (Dwivedi et al., 2020), and (iv) Alchemy
(Chen et al., 2019a).

Homomorphism/Subgraph Counting. For both homomorphism and subgraph counting tasks,
we use the standard synthetic graph dataset constructed in Zhao et al. (2022a) (which has been
used in a number of papers, see e.g., Frasca et al., 2022; Huang et al., 2023; Zhang et al.,
2023a). For homomorphism counting, we count the number of graph/node/edge-level homomor-
phisms for each pattern in Table 1 and normalize the value by the mean and variance across all
graphs in the dataset. The evaluation metric of graph-level expressivity is chosen as the Mean
Absolute Error (MAE). For node/edge-level expressivity, the error on each graph is defined to be
the sum of absolute error over all vertices/edges. We then report the MAE across all graphs in
the dataset. This ensures that graph/node/edge-level errors are roughly at the same scale (since
hom(F,G) =

∑
w∈VG

hom(Fu, Gw) =
∑

w,x∈VG
hom(Fuv, Gwx) for all u, v ∈ VF ). For sub-

graph counting, the data processing and evaluation metric is similar to homomorphism counting, but
there is a slight difference in the node/edge-level setting: there are no marked vertices in the pattern
graph F (see Table 3). Instead, given a graph G in the dataset and a vertex w ∈ VG, we count the
number of subgraphs containing w that are isomorphic to F and w can be mapped to any vertex in
F . Due to this difference, in the node/edge-level setting, the error on each graph is defined to be the
average of absolute error over all vertices/edges.

ZINC. ZINC (Dwivedi et al., 2020) is a standard real-world dataset for benchmarking molecular
property prediction. The dataset consists of 250K molecular graphs, and the task is to predict the
constrained solubility of the given molecule. In addition to the full dataset (denoted as ZINC-full),
ZINC-subset is a sampled dataset with 12k molecules from the ZINC-full dataset. We train and test
our models on both datasets following the standard protocol from Dwivedi et al. (2020).

Alchemy. Alchemy (Chen et al., 2019a) is another real-world dataset with 12 graph-level quan-
tum mechanical properties. We follow the sampling and training protocol from Lim et al. (2023);
Puny et al. (2023), using 100K samples for training, 10K samples for testing, and 10K samples for
validation.

I.2 MODEL DETAILS

All models are implemented using the PyTorch (Paszke et al., 2019) framework and the PyTorch
Geometric library (Fey & Lenssen, 2019). We consider four types of GNNs defined in Section
2: MPNN, Subgraph GNN, Local 2-GNN, and Local 2-FGNN. For each GNN model, the feature
initialization, message-passing layers, and final pooling operation are separately defined below.

Initialization. On both ZINC and Alchemy datasets, each graph node is an atom. We maintain a
learnable atom embedding for each type of atom and use it to initialize features in GNN models. For
MPNN, the initial feature h(0)(u) of node u is simply the atom embedding, denoted as h(0)(u) =
eNatom(u). For other models, the initial feature h(0)(u, v) of node pair (u, v) consists of two parts:
the first part is the node embedding of v, and the second part is a distance encoding that embeds
the shortest path distance between u and v, as adopted in Zhang et al. (2023a). We note that while
incorporating distance encoding does not increase the models’ theoretical expressive power (see
Zhang et al. (2023a)), it may add an inductive bias that can be helpful in real-world tasks. Formally,
the initial feature can be written as h(0)(u, v) = [eNatom(v), e

D
clip(dis(u,v))]. Here, we clip the distance to

a predefined value max dis so that there are a finite number of distance embeddings, and distances
greater than the hyper-parameter max dis (including the disconnected case) share the embedding.

Propagation. On both ZINC and Alchemy datasets, each edge in a graph corresponds to a chemical
bond and has a bond type. We maintain a learnable edge embedding for each type of edges in each
layer and denote the embedding of edge {u, v} in layer l as g(l)(u, v). For MPNN, we use the
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standard GIN architecture proposed in Xu et al. (2019), which has the following form:

h(l+1)(u) = ReLU(BN(l)(f (l)(u))), (32)

f (l)(u) = GIN(l)

h(l)(u),
∑

v∈NG(u)

ReLU
(
FC(l)(h(l)(v)) + g(l)(u, v)

) , (33)

where
GIN(l)(x,y) = MLP(l)

(
(1 + ϵ(l))x+ y

)
. (34)

Here, FC(l) is a parameterized linear transformation, ϵ(l) is a learnable parameter, BN(l) is the batch
normalization (Ioffe & Szegedy, 2015), and MLP(l) is a two-layer feed-forward network with an-
other batch normalization in the hidden layer.

For other architectures, the l-th GNN layer analogously has the following form:

h(l+1)(u, v) = ReLU(BN(l)(f (l)(u, v))), (35)

where the term f (l)(u, v) is defined separately for each model:

• Subgraph GNN:

f (l)(u, v) = GIN(l)

h(l)(u, v),
∑

w∈NG(v)

ReLU
(
FC(l)(h(l)(u,w)) + g(l)(w, v)

) . (36)

• Local 2-GNN:

f (l)(u, v) = GIN(l,1)

h(l)(u, v),
∑

w∈NG(u)

ReLU
(
FC(l,1)(h(l)(w, v)) + g(l)(u,w)

)
+ GIN(l,2)

h(l)(u, v),
∑

w∈NG(v)

ReLU
(
FC(l,2)(h(l)(u,w)) + g(l)(w, v)

) .

(37)
• Local 2-FGNN:

f (l)(u, v)

= GIN(l,1)

h(l)(u, v),
∑

w∈NG(u)

ReLU
(
FC(l,1)(h(l)(u,w)) + FC(l,2)(h(l)(w, v)) + g(l)(u,w)

)
+ GIN(l,2)

h(l)(u, v),
∑

w∈NG(v)

ReLU
(
FC(l,1)(h(l)(w, v)) + FC(l,2)(h(l)(u,w)) + g(l)(w, v)

) .

(38)

For all the above GNN architectures, it can be seen that each layer only aggregates the local neigh-
borhood of vertices or vertex pairs. This design will have shortcomings for disconnected graphs
since a vertex cannot aggregate information from other connected components no matter how deep
the model is (Barceló et al., 2020). Note that there do exist disconnected graphs in real-world
datasets like ZINC. Therefore, on real-world datasets like ZINC and Alchemy, we also incorporate
a global aggregation with the following form for each layer (similar to the global aggregation in
Frasca et al. (2022); Zhang et al. (2023a)):

GIN(l,G)

(
h(l)(u, v),

∑
w∈VG

h(l)(u,w)

)
(39)

Note that the global aggregation does not increase model’s theoretical expressive power according
to Zhang et al. (2023a).
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Pooling. Except for edge-level tasks, a final pooling layer is used to produce node-level features
h(u) for all nodes u. It is implemented as follows:

h(u) = MLP

(∑
v∈V

h(L)(u, v)

)
, (40)

where MLP is a 2-layer perceptron. For graph-level tasks, we further use a mean pooling layer to
aggregate all h(u) and obtain the graph representation.

I.3 TRAINING DETAILS

All experiments are run on a single NVIDIA Tesla V100 GPU. For all tasks, we use the distance
encoding hyper-parameter max dis = 5. To enable a fair comparison between models, for each
task we keep the same depth for different models while varying the hidden dimension so that the
number of model parameters is roughly the same. Note that the dimensions are chosen such that all
models roughly obey the 500K parameter budget in ZINC and Alchemy. The hidden dimension size
and the number of model parameters are listed as follows. All models are trained using the Adam
optimizer.

Table 7: Model size in different tasks.
Hidden dimension # Parameters

Task Counting ZINC Alchemy Counting ZINC Alchemy
MPNN 128 150 150 314,119 510,158 509,719

Subgraph GNN 128 120 120 314,759 503,774 503,425
Local 2-GNN 96 96 96 317,388 495,188 494,911

Local 2-FGNN 96 96 96 317,388 495,188 494,911

Homomorphism/Subgraph Counting. We use a model depth of L = 5 in all experiments. Follow-
ing prior work (Huang et al., 2023), we remove all BN layers in all models. The initial learning rate
is chosen as 0.001 and is decayed by a factor of 0.9 once the MAE on the validation set plateaus for
10 epochs. Each model is trained for 1200 epochs with a batch size of 512. We ran each experiment
4 times independently with different seeds and reported the average performance at the last epoch.
We found that the standard deviation among different seeds is negligible.

ZINC. We use a model depth of L = 6 in all experiments for both ZINC-subset and ZINC-full.
Following prior work (Zhang et al., 2023a; Frasca et al., 2022), The initial learning rate is chosen
as 0.001 and is decayed by a factor of 0.5 once the MAE on the validation set plateaus for 20
epochs. Each model is trained for 400 epochs on ZINC-subset and 500 epochs on ZINC-full, both
with a batch size of 128. We report the MAE for the model checkpoint with the best validation
performance. We ran each experiment 10 times independently with different seeds and reported the
average performance as well as the standard deviation.

Alchemy. We use a model depth of L = 6 in all experiments. Following prior work (Lim et al.,
2023; Puny et al., 2023), The initial learning rate is chosen as 0.002 and is decayed by a factor of 0.5
once the MAE on the validation set plateaus for 20 epochs. Each model is trained for 500 epochs
with a batch size of 128. We report the MAE for the model checkpoint with the best validation
performance. We ran each experiment 10 times independently with different seeds and reported the
average performance as well as the standard deviation.

I.4 PERFORMANCE OF BASELINE MODELS IN LITERATURE

For completeness, in this subsection we give a comprehensive list of the performance of GNN mod-
els in the literature on ZINC and Alchemy datasets. The numbers in each table below are directly
taken from the original papers.
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Table 8: Performance of different GNN models on ZINC dataset reported in the literature.
Method Model Reference Test MAE

MPNN

GIN (Xu et al., 2019) 0.526±0.051
GraphSAGE (Hamilton et al., 2017) 0.398±0.002
GAT (Veličković et al., 2018) 0.384±0.007
GCN (Kipf & Welling, 2017) 0.367±0.011
MoNet (Monti et al., 2017) 0.292±0.006
GatedGCN-PE (Bresson & Laurent, 2017) 0.214±0.006
MPNN(sum) (Gilmer et al., 2017) 0.145±0.007
PNA (Corso et al., 2020) 0.142±0.010

Higher-order
GNN

RingGNN (Chen et al., 2019b) 0.353±0.019
PPGN (Maron et al., 2019a) 0.303±0.068
PPGN (Puny et al., 2023) 0.079±0.005
PPGN++ (Puny et al., 2023) 0.076±0.003

Subgraph GNN

NGNN (Zhang & Li, 2021) 0.111±0.003
GNN-AK (Zhao et al., 2022a) 0.105±0.010
GNN-AK+ (Zhao et al., 2022a) 0.091±0.002
ESAN (Bevilacqua et al., 2022) 0.102±0.003
SUN (Frasca et al., 2022) 0.083±0.003
I2-GNN (Huang et al., 2023) 0.083±0.001
ID-MPNN (Zhou et al., 2023a) 0.083±0.003

Local (F)GNN

SetGNN (Zhao et al., 2022b) 0.075±0.003
GNN-SSWL (Zhang et al., 2023a) 0.082±0.010
GNN-SSWL+ (Zhang et al., 2023a) 0.070±0.005
N2-GNN (Feng et al., 2023) 0.059±0.002

Substructure-
based GNN

GSN (Bouritsas et al., 2022) 0.101±0.010
CIN (Small) (Bodnar et al., 2021a) 0.094±0.004
CIN (Bodnar et al., 2021a) 0.079±0.006
CIN++ (Giusti et al., 2023) 0.077±0.004

Graph
Transformer

SAN (Kreuzer et al., 2021) 0.139±0.006
K-Subgraph SAT (Chen et al., 2022) 0.094±0.008
Graphormer (Ying et al., 2021) 0.122±0.006
URPE (Luo et al., 2022) 0.086±0.007
Graphormer-GD (Zhang et al., 2023b) 0.081±0.009
GPS (Rampasek et al., 2022) 0.070±0.004

Other

PF-GNN (Dupty et al., 2021) 0.122±0.010
KP-GIN (Feng et al., 2022) 0.093±0.007
SignNet (Lim et al., 2023) 0.084±0.006
PathNN (Michel et al., 2023) 0.090±0.004
PPGN++(6) (Puny et al., 2023) 0.071±0.001
PlanE (Dimitrov et al., 2023) 0.076±0.003

Table 9: Performance of different GNN models on Alchemy dataset reported in the literature.
Model Reference Test MAE
GIN (Xu et al., 2019) 0.180±0.006
PF-GNN (Dupty et al., 2021) 0.111±0.010
δ-2-GNN (Morris et al., 2020) 0.118±0.001
Recon-GNN (Cotta et al., 2021) 0.125±0.001
SpeqNet (Morris et al., 2022) 0.115±0.001
SignNet (Lim et al., 2023) 0.113±0.002
PPGN (Puny et al., 2023) 0.113±0.001
PPGN++ (Puny et al., 2023) 0.111±0.002
PPGN++(6) (Puny et al., 2023) 0.109±0.001
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