
Published in Transactions on Machine Learning Research (4/2024)

A True-to-the-model Axiomatic Benchmark for
Graph-based Explainers

Corrado Monti corrado.monti@centai.eu
CENTAI Institute, Turin, Italy

Paolo Bajardi paolo.bajardi@centai.eu
CENTAI Institute, Turin, Italy

Francesco Bonchi francesco.bonchi@centai.eu
CENTAI Institute, Turin, Italy

André Panisson andre.panisson@centai.eu
CENTAI Institute, Turin, Italy

Alan Perotti alan.perotti@centai.eu
CENTAI Institute, Turin, Italy

Reviewed on OpenReview: https: // openreview. net/ forum? id= HSQTv3R8Iz

Abstract

Regulators, researchers, and practitioners recognize the urgency of explainability in artificial
intelligence systems, including the ones based on machine learning for graph-structured
data. Despite the large number of proposals, however, a common understanding of what
constitutes a good explanation is still lacking: different explainers often arrive at different
conclusions on the same problem instance, making it hard for practitioners to choose among
them. Furthermore, explainers often produce explanations through opaque logic hard to
understand and assess – ironically mirroring the black box nature they aim to elucidate.

Recent proposals in the literature for benchmarking graph-based explainers typically involve
embedding specific logic into data, training a black-box model, and then empirically assessing
how well the explanation matches the embedded logic, i.e., they test truthfulness to the data.
In contrast, we propose a true-to-the-model axiomatic framework for auditing explainers in
the task of node classification on graphs. Our proposal hinges on the fundamental idea that
an explainer should discern if a model relies on a particular feature for classifying a node.
Building on this concept, we develop three types of white-box classifiers, with clear internal
logic, that are relevant in real-world applications. We then formally prove that the set of
features that can induce a change in the classification correctly corresponds to a ground-
truth set of predefined important features. This property allows us to use the white-box
classifiers to build a testing framework.

We apply this framework to both synthetic and real data and evaluate various state-of-the-
art explainers, thus characterizing their behavior. Our findings highlight how explainers
often react in a rather counter-intuitive fashion to technical details that might be easily
overlooked. Our approach offers valuable insights and recommended practices for selecting
the right explainer given the task at hand, and for developing new methods for explaining
graph-learning models.

1

https://openreview.net/forum?id=HSQTv3R8Iz

Published in Transactions on Machine Learning Research (4/2024)

1 Introduction

The success of machine learning methods in solving problems over graph-structured data has spurred a
great deal of applications in a variety of domains, ranging from biology to finance, from social media to
neuroscience. However, these models – and in particular graph neural networks (GNNs) – are often black
boxes, as they have no intrinsic mechanism to provide human-understandable explanations of their inner
decision logic (et al., 2020). Increasing concerns from regulators, practitioners, algorithmic-assisted decision-
takers, and subjects of algorithmic decisions (e.g., patients, customers etc.) boosted the research effort
devoted to the development of novel explainability techniques for graph classification (see Yuan et al. (2020)
for a recent survey). Regardless of the great deal of attention, a common understanding of what makes a
good explanation is still lacking. As a consequence, different explainers often arrive to completely different
conclusions on the same problem instance. Moreover, those explainers are themselves, more often than not,
black-boxes producing explanations through opaque logic hard to understand and assess. Because of these
reasons, while the usage of explainers for tabular data is now common (e.g., SHAP, Lundberg & Lee (2017)),
their adoption in practice for node classification in graphs is lagging behind: domain experts have no clear
way to understand whether an explanation can be reliable, or to decide which explainer would be appropriate
for a specific problem.

Motivating example. Let us consider the following scenario. Imagine we have a model running in pro-
duction in a banking system, that employs the network of financial transactions, together with attributes of
its users, to determine a risk score for each user. The role of an explainer in this setting might be to assert
the user’s right to explanation as required by EU regulations (Selbst & Powles, 2018; Goodman & Flaxman,
2017). In particular, a user might want to know if a particular protected feature (e.g. ethnicity or gender) of
a node, or of its neighbors, is employed by the model in making an automated decision. A watchdog might
analyze such a model using an explainer. Our goal is therefore to ensure that a given explainer can correctly
diagnose whether a model is using a feature or not. While this task might be straightforward in tabular
data, in node classification in graphs a specific feature of a node (e.g. ethnicity) might not be used directly
to classify it, but it is still possible that the feature of its neighbors might be employed.

Proposed framework. In this work, we propose a rigorous framework aimed at assessing whether a node-
classification explainer can identify when a given model uses a certain feature to produce the classification.
Recent efforts in this direction (Rathee et al., 2022; Longa et al., 2022; Amara et al., 2022; Jaume et al., 2021)
typically adopt the following approach: they (1) implant some target patterns in a synthetic training set, (2)
train a black-box node classifier, (3) apply the explainer under scrutiny, (4) finally measure empirically the
adherence of the produce explanation to the implanted logic, i.e., they test truthfulness to the data. Such an
approach to auditing explainers in inherently complex, as it aims at assessing a software (the explainer), which
in turn analyzes another software (the model), which in turn is the output of another software (the training
algorithm). This process has many dependencies; for instance, it depends on the specific learning algorithm
and its parameters. All these dependencies can make the overall auditing process unstable. Moreover, there
is a degree of uncertainty about whether the trained black box has learned the intended logic (i.e., the planted
patterns). Departing from this literature, we propose an axiomatic framework aimed at assessing whether a
given explainer is true to the model (Chen et al., 2020): the explainer should capture the logic underlying the
classification performed by the model, and not the patterns planted in the data. In fact, although present
in the training data, those patterns might not be used by the classifier. Our goal is thus to evaluate the
accordance of the explainer with the model itself, without making assumptions on what the model might
have learned from the data. By measuring the concordance of explainers directly with the model logic, we
can guarantee that our measure is not affected by any complex interaction between features in the data.

Our goal is formalized in a simple axiom: explainers should be able to differentiate whether a feature is used
by a given model or not. Towards the operationalization of this intuition, we adopt a simple definition of
what an important feature is within our framework. We define a feature f important for the classification
of a node v by a model M, if and only if changing it, while maintaining all the other features unchanged,
changes the classification of v. By no means this can be considered a general definition of feature importance
in machine learning, however, within the strict limits of our framework we consistently use “important” with

2

Published in Transactions on Machine Learning Research (4/2024)

Graph Features

Whitebox node classifier

True Importances

Estimated Importances

Feature
Importance Fidelity

Explainer

Node Classification

CharacterizationExplaining

Figure 1: Our proposed framework. We start from a graph G with node features. We randomly mark
subsets of features (F ′) as important: this is the ground truth for our evaluations. We also use a white-box
node classifier M implementing a known logic, with ground truth importance for the features. We then
feed these components to the explainer E , thus obtaining an explanation as estimated importance for the
features, which are then compared to the ground-truth.

this simple yet powerful semantic. We then axiomatize that an explainer should assign, to any important
feature, a higher explanation score than to any unimportant feature.

We then devise three “white-box models”, i.e., classifiers whose internal logic is visible, in which we are
able to hard-code which features are “important”. Our white boxes have different logic and cover relevant
scenarios in real-world applications of node classification: a local model, where the class of a node depends
on a subset of its own features; a neighborhood model, where the class depends on the features of some of
its neighbors; and a two-hop model where the class depends on the features of the nodes that are more
likely to be reached in a two-hop random walk. All these models can also keep in consideration the degree
of a node, which is often valuable for applications. For each white box we justify its practical relevance
and we discuss its PyTorch implementation as message-passing GNN. The simplicity of our white boxes
allows us to prove (Theorem 1) that the set of features that are able to induce a change in the classification,
correctly corresponds to a predefined set of important features. Thanks to this theorem, we can develop our
quantitative benchmark which, taking as input a given explainer, verifies whether it respects our axiom. A
schematization of our framework is given in Figure 1.

Our findings. We apply our framework to several state-of-the-art explainers, carefully selected to cover all
the main classes of approaches in the literature. Our analysis uncovers important phenomena emerging in
different explainers and highlights key differences in semantics across explainers that are often overlooked.

1. Our findings show that explainers based on surrogates can deliver an incomplete explanation when
the surrogate they use does not faithfully represent the given model to explain. For instance,
our framework detects that GraphLIME (Huang et al., 2022) is not able to model correctly the
neighborhood model, where the class of a node depends on a feature of its neighbors.

2. Our framework also shines a light on peculiar behaviors that could be easily overlooked. For instance,
we discovered that some explainers interpret feature importance as a difference from zero-valued
features. When this is the case, zero-valued features cannot be, by definition, important.

3. Furthermore, some explainers define important features only as those that positively contribute to
the classification of a node to the output class, while others consider both positive and negative
contributions as important.

3

Published in Transactions on Machine Learning Research (4/2024)

These crucial differences in semantics among explainers highlighted by our auditing framework, typically
lead to completely different behaviors: without a proper systematization, they can be an obstacle to clarity.
The goal of our auditing framework is exactly to help assess and clarify the behavior of explainable graph
learning techniques, aiding practitioners in choosing explainability methods that can correctly expose the
criticality of graph learning applications.

Summary of contributions and paper roadmap. The technical contributions of this work can be
summarized as follows:

• We present a quantitative benchmark based on three different white-box classifiers with known inner
logic, to assess if an explainer can recognize whether a model is using some features (Section 3). For
each white box we discuss its PyTorch implementation as message-passing GNN. We prove (Theo-
rem 1) that if an explainer respects our axiom, then its output must necessarily be in accordance
with the white-box ground truth.

• We use our framework to audit five explainers, chosen as representatives of the taxonomic classes of
node-level explainers identified by Yuan et al. (2020) (Section 4).

• We show how the potential limits diagnosed by our framework are a product of the internal logic
of each explainer (Section 5), we thus provide suggestions for their users and for designers of novel
explainers. We are also the first to adopt salient deconvolutional networks (Mahendran & Vedaldi,
2016), an explainer that was originally introduced to explain image classification, to explain node
classification on graphs. Such a method performs perfectly on our benchmark.

• We provide code to let other researchers use our framework to test or to develop new graph explainers.
Our code is available at https://github.com/corradomonti/axiomatic-g-xai.

Finally, a key contribution of this work is to show that a radically different approach to assessing explainers,
based on testing trustfulness-to-the-model through white boxes with hard-coded logic, is possible and can
produce important insights. Next section discusses the most relevant related literature.

2 Related Work

Graphs serve as fundamental structures in a myriad of real-world domains, and as a consequence graph
neural networks (GNNs) have evolved as a cornerstone in machine learning. Notable state-of-the art ap-
proaches include Graph Convolutional Networks (GCNs)(Welling & Kipf, 2016), Graph Attention Networks
(GATs)(Veličković et al., 2017), and GraphSAGE (Hamilton et al., 2017). The effectiveness of these models
comes at the cost of a remarkable opacity, which is especially problematic in domains where understanding
and trust in model predictions are crucial.

In response, several explainers for GNNs have been developed, using techniques like gradient-based meth-
ods (Integrated Gradients, Sundararajan et al. (2017)), perturbation analysis (GNNExplainer, Ying et al.
(2019)), surrogate models (GraphLIME, Huang et al. (2022)), decomposition approaches (Layer-Relevance
Propagation, Bach et al. (2015)), and substructure-based methods (GraphShap, Perotti et al. (2023), Sub-
graphX, Yuan et al. (2021)). In turn, these alternative solutions produce explanations which are hard to
evaluate and compare, making it hard to decide which explainer would be appropriate for a specific problem.

This gap is particularly evident in the context of graph-structured data due to its complexity and diversity.
Several frameworks and desiderata have been suggested for evaluating explanations (Langer et al., 2021;
van der Waa et al., 2021; Rosenfeld, 2021; Amparore et al., 2021; Agarwal et al., 2022a), but these often
do not cater specifically to graph-based models, failing to capture their unique properties. The need for
graph-specific evaluation frameworks is underscored in the taxonomic survey by (Yuan et al., 2020), which,
while focusing on explainability methods for GNNs, does not address the auditing problem in depth.

Auditing efforts, such as those by Agarwal et al. (2022b), provide valuable insights but often rely on synthetic
or empirical data. This reliance on approximations can lead to potential discrepancies between the actual and

4

https://github.com/corradomonti/axiomatic-g-xai

Published in Transactions on Machine Learning Research (4/2024)

perceived effectiveness of explainers. Other proposals are strongly domain-specific: for instance, Jaume et al.
(2021) propose a set of quantitative metrics based on class separability statistics using pathologically relevant
concepts, thus quantifying the alignment of algorithmically-generated explanations with known concepts
in pathology. Besides the impossibility of generalising these metrics to other domains, these approaches
highlight the lack of existing quantitative metrics for evaluating graph-based explanations. Other recent
effort1 is devoted to develop benchmarks for the evaluation of graph-based explanation. BAGEL (Rathee
et al., 2022) focuses both on explanation usability, measuring explanation sparsity and plausibility, and on
explanation correctness, through the metrics of faithfulness (ability to characterize model’s inner logic) and
correctness (ability to recognize the externally injected correlations). Longa et al. (2022) propose a similar
comparative survey, where the implemented metrics are plausibility (consistency between the explainer mask
and ground truth mask) and fidelity (consistency between the model prediction on the full graph and on the
explanation subgraph). Remarkably, edge masks are converted to node masks. Finally, Amara et al. (2022)
introduce the characterization score, combining necessary-based and sufficient-based fidelity metrics.

As already highlighted in the Introduction, all these approaches train black-box models, such as GCN
and GAT, and fundamentally root their metrics on querying these models on perturbed and/or masked
data, i.e., they test truthfulness to the data. Interestingly, in all the mentioned papers, the authors either
explicitly acknowledge the strong limitation of assuming that the explanation ground truth is actually picked
up by the model to make its decision or constrain their analysis to scenarios where the model almost
memorized the injected patterns to achieve almost perfect classification. Conversely, we propose a true-to-the-
model axiomatic benchmark by means of white-box models with known internal logic, which allows a direct
comparison between models and explanations, by-passing the approximation and uncertainty introduced by
the training process.

3 A True-to-the-model Benchmark

We consider binary node classification on a node-attributed directed graph, defined over a set of nodes V
and features F . In this setting a model M can be seen as a function that takes a graph G = (V, E) with
E ⊆ 2V ×V , a node-feature matrix X ∈ R|V |×|F |, and a node v ∈ V , it returns the probability that v belongs
to the positive class:

M : 2V ×V ×R|V |×|F | × V → [0, 1].

Note that the graph G, being always defined over the same set of nodes V , is completely identified solely by
the edge set E ∈ 2V ×V . For simplicity, we omit E and X from M(E, X, v), when clear from the context,
and just denote M(v) the outcome of model M on node v.

In this setting, an instance-level explainer is a function that takes the model M, the edge set E, the node-
feature matrix X, a node v and returns an explanation for M(v), i.e., a score of importance for each feature
f ∈ F . Again, we omit E and X when clear from the context and just denote the explainer as a function
EM : V → R|F |. Here EM(v) = β denotes the explanation for M(v), where the vector β determines the
explanation scores: βf is the explanation score given to the feature f ∈ F .

3.1 The axiom: important features should receive higher importance score than non-important ones

We start a simple, yet fundamental, intuition that we want the explainers to respect: features truly employed
by the model to perform a classification, should receive higher explanation scores than features that are not
used. We thus adopt a simple definition of what an important feature is within our framework: a feature f
important for the classification of a node v by a model M, if and only if changing it, while maintaining all
the other features unchanged, changes the classification of v.
Definition 1. Given the graph G = (V, E) with node-feature matrix X ∈ R|V |×|F |, we say that a feature
f∗ ∈ F is important for the prediction of a model M on node v ∈ V iff it exists another matrix Y ∈ R|V |×|F |,
which is identical to X except for the column f∗ (i.e., yu,f = xu,f , ∀f ̸= f∗, u ∈ V) such that M(X, v) ̸=
M(Y, v). We denote F ∗(v) ⊆ V the set of important features for the classification of v.

1To the best of our knowledge, not yet peer-reviewed.

5

Published in Transactions on Machine Learning Research (4/2024)

When clear from the context, we denote the set of important features for a node v, simply by F ∗. We
can now formalize our starting intuition in an axiom of the desired behavior of explainers w.r.t. important
features. Recall that βf denotes the importance score given by the explainer to the feature f ∈ F .
Axiom 1. Let EM be an explainer producing importance scores EM(v) = β when given model M and node
v. Let F ∗ denote the set of important features (Definition 1). It must hold that βf < βf∗ ∀f /∈ F ∗, f∗ ∈ F ∗.

We next introduce a benchmark of three simple models aimed at stressing a given explainer w.r.t. Axiom 1.
Such models are “white boxes” (in contrast to black boxes) meaning that their internal logic is visible.
In particular, they are geared on a predefined (ground truth) set F ′ ⊂ F of important features, which is
encoded inside each model as binary vector β̂ ∈ {0, 1}|F | where β̂f = 1F ′(f). After introducing such white
boxes (Section 3.2), we prove that, for each of them, the ground truth set F ′ and the set of important
features coincide (Theorem 1). We finally (Section 3.3) measure how much the explanation β produced
by the explainer adheres to the ground truth β̂, or in other terms, to which extent the explainer respects
Axiom 1. It is worth stressing that our test is a necessary, but not sufficient, condition for an explainer to be
considered a valid tool: passing our test, does not imply that an explainer might not have other issues, on
the other hand, failing our simple test clearly highlight some important drawbacks of the given explainer.

3.2 The white-box models

We first provide a general schema common to all three white boxes, then we introduce them in details. For
each of them, we discuss (i) their relevance to real-world applications of node classification, and (ii) their
PyTorch implementation as message-passing graph neural networks.

As pointed out earlier, each white box receives, as part of the input, the set F ′ ⊂ F of ground-truth features
which is encoded as a binary vector β̂. Inside each white-box model, β̂ is used as a kernel: i.e., instead of
considering the feature vector xv of a node v, the model considers β̂⊤xv (indicating with xv the v-th row of
X). The general schema for the white-box models M(E, X, v) is as follows:

M(E, X, v) = ϕK,ϑ(M̂(E, X, v)) (1)

where M̂ is a base model and ϕK,ϑ is the sigmoid function

ϕK,ϑ(z) =
(

eK(ϑ−z) + 1
)−1

. (2)

The sigmoid function serves two purposes: first, it allows to obtain y ∈ [0, 1] even if the base model M̂ has
a range in R; second, it normalizes such scores as explained next.

Consider S as the sequence of outputs ŷ = M̂(E, X, v) of the base model M̂ for all the nodes v ∈ V . We use
S to adjust the midpoint ϑ and steepness K of the sigmoid function ϕK,ϑ(z). Specifically, we set ϑ as the
mean of S, and its steepness K as the inverse of the standard deviation of S. This adjustment serves as a
normalization mechanism, ensuring that the rescaled output effectively has zero mean and unit variance. By
doing so, we standardize the distribution of the base model’s outputs across different datasets and models,
ensuring that on average, nodes have an equal probability of being classified into one class or the other
and that the variance in scores is consistent, facilitating comparability and interpretability across different
modelling contexts.

As in real-world scenarios, node classifiers might employ a subset of the edges for their classification, according
to some internal criteria, and this selection might have an impact on the performance of the explainers, our
white boxes consider a randomly chosen subset E′ ⊂ E, obtained by including each edge with a 1

2 probability.

We next present in detail three different base models M̂, which differ in their usage of the information coming
from neighborhood nodes. In the following N(v) indicates the set of predecessor of v which are connected
to v through an edge in E′: i.e., N(v) = {u ∈ V |(u, v) ∈ E′}.

Local model (LM). In this model, the class of a node v ∈ V depends solely on its features xv. However,
we also introduce a dependence on the in-degree of v controlled by a parameter γ ∈ R. The model assigns

6

Published in Transactions on Machine Learning Research (4/2024)

the probability of v belonging to the positive class as

M̂(E, X, v) = γ|N(v)| + β̂⊤xv (3)

The PyTorch implementation is straightforward. First, the in-degree component is obtained via a one-layer
message-passing network where each message is a 1 and the aggregation function is the sum. Then, the
output of this network is given to the main model that integrates the local parts (i.e., adding β̂⊤xv and
passing the output to the sigmoid).

This model is the simplest one we consider, but it represents a variety of real-world situations. Information
from local attributes of a node and from its degree might often be sufficient to identify popular users in
social media (Hansen et al., 2010) or high-quality web pages (Upstill et al., 2003).

Neighborhood model (NM). In this model, the class of a node v ∈ V depends on the features xu of the
neighboring nodes u ∈ N(v). Moreover, as in the previous model, we introduce a dependence regulated by
γ on the in-degree. The model is thus defined by

M̂(E, X, v) = γ|N(v)| +
∑

u∈N(v)

β̂⊤xu

|N(v)| . (4)

Intuitively, in this model, the classification of a node in the positive class depends on the average of the
important features of that node’s neighbors.

To implement this model, the main PyTorch module uses two one-layer message-passing networks. The first
is the degree one, as in the local model previously explained. The second layer’s message through (u, v) ∈ E′

is the feature vector xu, while the aggregation function is the average. Then, these two components are
aggregated according to Eq. (4).

This model represents a typical situation in several application scenarios in which nodes are classified based
on their neighbors. For instance, in opinion mining on social media, it is common to classify the opinion of
a user using their neighbor’s observable features (Barberá, 2015), leveraging the assumption of homophily.
More in general, GNN models composed by a single GraphSAGE convolution (Hamilton et al., 2017) can be
implemented as a combination of a local and a neighborhood models, and have been used in node classification
tasks for citation networks, social media, and graph classification for protein-protein interactions.

Two-hop model (2HM). Our third white-box model represents a generalization of the former neighborhood
model to random walks of length 2. While this behavior could easily be generalized to longer paths, we restrict
our attention to this case since it is by far the most common in practice (Tang et al., 2015). Let P2

V,E′(v, u)
indicate the probability that a random walk of length 2 starting in v ∈ V ends up in u ∈ V on the graph
(V, E′).

Then, we define our model as

M̂(E, X, v) = γ|N2
E′(v)| +

∑
u

P2
V,E′(v, u) · β̂⊤xu (5)

where
N2

E′(v) = {u ∈ V | P2
V,E′(v, u) > 0}. (6)

In other words, this model classifies nodes as positive according to the important features of the nodes
that can be reached with two steps on the graph. The implementation of this model involves two layers
of message-passing networks for the degree component, and two for the feature aggregation, which finally
are aggregated according to Eq. (5). Each single layer shares the same structure as the one used by
NM. Node classification using random-walk-based analysis of node attributes has been well explored in the
literature (Huang et al., 2019). Moreover, the most scalable methods typically leverage information coming
from the two-hop neighborhood (Tang et al., 2015).

7

Published in Transactions on Machine Learning Research (4/2024)

3.3 The auditing framework

Now that we have presented our white-box models, we are ready to present our axiomatic benchmark. The
first needed step is to prove that the above white boxes indeed have the desired behavior; that is, the features
F ′ ⊂ F that are encoded as important inside each model (through β̂), coincide with the important features
F ∗(v) of an explanation M(E, X, v), for the classification of a node v ∈ V , as in Definition 1. This is proved
in Theorem 1, whose formal proof is deferred to Appendix A.
Theorem 1. Let M be one of our three white-box node classifiers (LM, NM, or 2HM) defined over a graph
G = (V, E) with no zero-degree nodes and node-feature matrix X ∈ R|V |×|F |. Let Xf be the set of matrices
that might differ from X only in the feature f : Xf = {X ′ ∈ R|V |×|F | | ∀v ∈ V, ∀i ∈ F . x′

v,i ̸= xv,i ⇒ i = f}.
For the classification M(E, X, v) with v ∈ V , it holds that

β̂f = 1 ⇔ ∃X ′ ∈ Xf : M(X ′, v) ̸= M(X, v),

or in other terms, a feature f is a ground-truth important feature f ∈ F ′, iff changing it has the potential of
changing the classification of v.

Thanks to Theorem 1 we know that the three white boxes are such that the features F ∗ (Definition 1)
that should be recognized as important, correspond exactly to the ground-truth important features F ′ that
we can control. Thus, we can use them to measure how much the explanation β produced by a given
explainer adheres to the ground truth β̂. We frame such a benchmark as a binary-classification task where
the explainer, given a white box, needs to classify the features as important or not.

Testing Explainers: The Feature Importance Fidelity. Since Axiom 1 poses that βf < βf∗ for all
f /∈ F ∗, f∗ ∈ F ∗, AUC ROC is the most natural measure, as it evaluates how well the scores β can separate
F ∗ from F \ F ∗. We take the mean value among all the test nodes. This measure that ranges from 0 to
1 is dubbed feature importance fidelity. A fidelity of 1 means that the explainer scores are perfectly able
to separate the important features from the non-important ones. A fidelity of 0.5 corresponds to random
performance: the importance scores are random with respect to the true importance of features. A fidelity
of 0, instead, indicates anticorrelation: important features consistently receive lower importance scores than
non-important ones.

To summarize, our framework, whose schematic representation is given in Figure 1, consists of the following
steps.

1. Given a directed graph G = (V, E) and a node-feature matrix X ∈ R|V |×|F |, generate randomly
a set of important features F ′ ⊂ F .

2. Using F ′, define a white-box model M, which treats as important features the set F ′, encoded
as β̂f = 1F ′(f).

3. Run the explainer E on M for a set of test nodes v ∈ V , obtaining an importance score vector
β, that should express (according to E) the importance of each feature for the model M when
classifying a node v.

4. For each test node, compute the ROC AUC between β (the importance assigned by the explainer)
and β̂ (the ground truth importance of features for the white-box model M). We call the mean
of these measures the feature importance fidelity.

4 Experimental settings

In this section, we present the main external components we use in our experiments: explainers and graphs.

Explainers. In order to characterize a representative set of explainers, we choose one algorithm for each
of the four classes identified in the survey by Yuan et al. (2020): gradient-based, perturbation, surrogate,

8

Published in Transactions on Machine Learning Research (4/2024)

and decomposition. From the Gradient-based class, we select Integrated Gradients (Sundararajan et al.,
2017), because of its implementation provided in Captum.2 Albeit not included in the survey (Yuan et al.,
2020) due to its recency, it belongs to this class as it uses the gradient values to approximate importance.
Among the Perturbation explainers, we use GNNExplainer (Ying et al., 2019), the most widely-known
representative of this class. Perturbation explainers, largely employed in image classification, analyze how
an input perturbation impacts the model outputs in order to discover important features for the model.
From the Surrogate class, we employ GraphLIME (Huang et al., 2022), the only method in this class
which is able to assign importance to features, and for which an implementation exists.3 As representative
of Decomposition explainers, we select Layer-wise Relevance Propagation (Bach et al., 2015) (LRP). Its
importance scores are computed by decomposing the final output of the model layer-by-layer according to
layer-specific rules, until the input layer is reached.

Furthermore, we also consider a fifth method, Deconvolution (Mahendran & Vedaldi, 2016), an explainer
that displays a hybrid decomposition - gradient-based approach. This method was originally introduced to
explain image classification and, to the best of our knowledge, it has not been considered yet in literature
as an explainer for node classification.

All of these methods share a common interface: they output an importance score for all features when given
a model and a specific target node to classify.4 As such, they fit in the framework summarized at the end of
the last section.

Datasets. Although our white boxes are not trained, our framework still needs data. For our purposes, we
use an array of Erdős–Rényi graph with 100 nodes and a set of random 50 binary features for each node.
We generate an array of such data sets by varying the fraction of positive features. We opted for this kind
of random graph in order to test the explainers on a networked system with topological features drastically
different from the real data set. In our experiments, we randomly select a given fraction of features as
important (varying among experiments) for the model M, and we set the value of γ to 1.

Finally, we also test a real-world dataset (He & McAuley, 2016) with 786 anonymized Facebook users (with
319 binary features) and 14024 edges between. Some features (e.g., gender) are considered protected for
many tasks, and this data set has been widely used in studies of fairness in graphs (Dong et al., 2022). Our
framework can therefore answer the question: if a model M is using a protected feature f , for instance using
the gender of a user to classify whether their ads should gain more visibility, is a given explainer E able to
detect it?

5 Results

We test the explainers presented above varying the values of important features and, for the synthetic data
sets, the number of positive ones. We run each setting 4 times. From each experiment, we obtain a feature
importance fidelity score that ranges from 0 (explainer scores are anticorrelated with important features) to
1 (all important features have a higher score than unused features, and thus Axiom 1 is respected). Values
around 0.5 indicate random performance in capturing features’ importance. We present our results on the
array of synthetic data sets in Figure 2. In each plot, each dot represents the average fidelity obtained under
each setting; whiskers extend to the maximum and minimum scores obtained. The different percentages
of positive and important features are indicated on the x-axis of each plot. Figure 3 shows results for our
framework on the Facebook data set; here, adherence to our axiom means that an explainer is able to detect
whether the white-box models are employing a certain real, possibly protected, feature (such as the gender
of users).

2https://captum.ai/
3https://github.com/WilliamCCHuang/GraphLIME: we double-checked that the implementation is correct with respect to

the original paper (Huang et al., 2022).
4For some explainers where feature importance is reflected by score magnitude, we applied an absolute value function to

their outputs, ensuring consistency with our framework’s assumption of larger scores indicating more important features.

9

https://github.com/WilliamCCHuang/GraphLIME

Published in Transactions on Machine Learning Research (4/2024)

0.1 0.3 0.5 0.7 0.9
Fraction of positive features

0.5

0.6

0.7

0.8

0.9

1.0

Fi
de

lit
y

Local Model

0.1 0.3 0.5 0.7 0.9
Fraction of positive features

Neighborhood Model

0.1 0.3 0.5 0.7 0.9
Fraction of positive features

Two-hop Model

0.1 0.2 0.3 0.4 0.5
Fraction of important features

0.5

0.6

0.7

0.8

0.9

1.0

Fi
de

lit
y

0.1 0.2 0.3 0.4 0.5
Fraction of important features

0.1 0.2 0.3 0.4 0.5
Fraction of important features

Deconvolution GNN Explainer Graphlime Integrated Gradients LRP

Figure 2: Feature importance fidelity measured by our framework on an array of synthetic data sets, with
three white-box models to explain, one per column. Each explainer is represented by a different color. In each
plot, the obtained fidelity is on the y-axis, and each dot represents the average of 4 experiments, whiskers
extend to the minimum and maximum value obtained in each setting. In the top row, we vary the fraction
of positive features (on the x-axis), and the fraction of important features is set to 50%. In the bottom row,
we vary the fraction of important features, and the fraction of positive features is set to 50%.

0.1 0.3 0.5
Fraction of important features

0.5

0.6

0.7

0.8

0.9

1.0

Fi
de

lit
y

Local Model

0.1 0.3 0.5
Fraction of important features

Neighborhood Model

0.1 0.3 0.5
Fraction of important features

Two-hop Model

Deconvolution GNN Explainer Graphlime Integrated Gradients LRP

Figure 3: Feature importance fidelity measured by our framework on the Facebook users dataset with
different fractions of randomly assigned important features, and three white-box models to explain, one per
plot. In each plot, the fraction of important features is on the x-axis, and the obtained fidelity is on the
y-axis. Each explainer is represented by a different color.

We next present these results explainer by explainer, highlighting under which conditions they respect
Axiom 1, investigating the rationale beyond their performance, and discussing the consequences of their
practical application.

5.1 GraphLIME

Among the explainers we assess, GraphLIME is the only one for which we are not able to find any setting
where it fully respects Axiom 1. Its best results are obtained on the local model; in other contexts its
performance often approaches a random baseline.

Rationale. These results show that GraphLIME suffers from the inability of its surrogate model to deal
with non-local characteristics in node classification. To better understand the reasons, we have to analyze
the way GraphLIME works. First, GraphLIME extracts a set of n nodes in a k-hop subgraph around the
explained node i ∈ V (k being a parameter, that we set to 2). Then, it considers the rows of the feature
matrix X corresponding to this set of nodes, and it computes a distance matrix K ∈ R|F |×n×n between
them: intuitively, the element Ki,j represents a measure of similarity between xi and xj (we observe that
this is computed for each pair of nodes u and v in the k-hop subgraph, regardless of whether (u, v) ∈ E or

10

Published in Transactions on Machine Learning Research (4/2024)

not). Following the same logic, GraphLIME computes a matrix L ∈ Rn×n using the model’s outcomes for
each node: the element Li,j represents a measure of similarity between yi and yj . Finally, GraphLIME uses
these two matrices to explain predictions by using a regression method (i.e., its surrogate model): it assumes
that if two nodes obtain a similar classification score when their feature f is similar, then f is important;
otherwise, it is not.

We can see how this approach does not account for non-local correlations. Two nodes might have different
features, but if the features of their respective neighbors are very similar, a message-passing model might
assign them similar labels. In this case, no correlation would be detected by GraphLIME between the
similarity of a specific feature and the model’s outcome; even in the case that the outcome depends only on
that feature. Moreover, we observe that even in the local model, GraphLIME obtains worse performances
when there are many important features. This phenomenon is due to the regularization term in GraphLIME
regression model, which favors sparse solutions.

Fixes and warnings. In the general case, GraphLIME might not be able to explain models that consider
non-local features. Therefore, users should carefully evaluate if the regression model proposed by GraphLIME
can suit their use case.

The performance of GraphLIME on our axiomatic benchmark highlights the defining bias of surrogate
explainers: their simplified model can be incapable of explaining a model that follows a logic that cannot be
modeled by the surrogate one. This hints at a promising direction for future research.

5.2 LRP

LRP respects Axiom 1 in the local model and on the two-hop model; on the neighborhood model, it does so
only when the data set presents few positive features. As we will see next, this crucially depends on how we
choose to represent negative features.

Rationale. The fundamental reason behind the scores obtained by LRP in our axiomatic benchmark, is
that this method is not always able to correctly identify the zero-valued features as important. In the original
paper Bach et al. (2015), in fact, authors normalize their image data set so that relevant features are not
encoded as zeros. The importance of this step is nowhere acknowledged, for instance, it does not seem to
be mentioned in the documentation of the implementation we use (https://captum.ai/api/lrp.html). If this
fact is not clear to users, it might lead to an incorrect interpretation of LRP explanations.

Let us consider a practical example: opinion mining of social media users. Suppose to have a feature f
representing whether they have blocked a conservative politician account: 1 encodes them having blocked
them and 0 they have not. If a model uses this feature to classify an individual i, when the feature Xi,f is
0, the explanation offered by LRP will not assign high importance to that feature.

This issue is more present when there are more zero-valued features, and less impactful when there are more
positive features, e.g., on the two-hop model than on the neighborhood one. Finally, since the possibility
of a component being exactly zero greatly decreases when all the neighborhood features are averaged, this
phenomenon is less severe when explaining non-local models. We observe that with LRP (contrarily to Inte-
grated Gradient, as we will show below) this issue does not affect the local model but only the neighborhood
one. We conjecture that this issue affects the propagation rule of the importance decomposition inside LRP:
when the model is composed of only one layer–as in the local one–such an issue does not appear.

Fixes and warnings. Users should be warned that this explainer will not work as expected with zero-valued
features. A simple solution is to choose a different encoding. For example, if we encode binary features with
{−1, 1} instead of {0, 1}, the feature importance fidelity of this explainer becomes almost perfect. We test
this claim with an experiment, with the same exact setting as the one previously used, but encoding binary
features with {−1, 1} instead of {0, 1}. Figure 4 shows our results: as expected, LRP fidelity shifts from
around 0.5 to close to 1 against all models, thus confirming our hypothesis.

11

Published in Transactions on Machine Learning Research (4/2024)

0.1 0.3 0.5 0.7 0.9
Fraction of positive features

0.5

0.6

0.7

0.8

0.9

1.0

Fi
de

lit
y

Local Model

0.1 0.3 0.5 0.7 0.9
Fraction of positive features

Neighborhood Model

0.1 0.3 0.5 0.7 0.9
Fraction of positive features

Two-hop Model

0.1 0.2 0.3 0.4 0.5
Fraction of important features

0.5

0.6

0.7

0.8

0.9

1.0

Fi
de

lit
y

0.1 0.2 0.3 0.4 0.5
Fraction of important features

0.1 0.2 0.3 0.4 0.5
Fraction of important features

Deconvolution GNN Explainer Graphlime Integrated Gradients LRP

Figure 4: Feature importance fidelity when binary features are encoded with {−1, 1} instead of {0, 1}, for
each of the three white-box models (one per column). In each plot, the fidelity is on the y-axis. In the top
row, the x axis reports different fractions of positive features; in the bottom row, it reports different fractions
of important features.

5.3 Integrated Gradients

Integrated Gradients shows in general results similar to LRP. The only difference lies in the local model in
the case features are encoded as zero, where Integrated Gradients obtains worse results than LRP.

Rationale. Integrated Gradients suffers from the same issue of LRP when important features are encoded
as zeroes: this phenomenon for Integrated Gradients is very clear even in the local model, where fidelity
scales proportionally with the fraction of positive features. This behavior confirms that zero-valued features
do not behave as expected with this explainer. We dub explainers with this issue as zero-baseline explainers:
in fact, Integrated Gradients’ authors Sundararajan et al. (2017) explicitly state this requirement, observing
that the explanation depends on a baseline input that “for image networks, [..] could be the black image,
while for text models it could be the zero embedding vector. [..] A key step in applying integrated gradients
is to select a good baseline. We recommend that developers check that the baseline has a near-zero score.”

Fixes and warnings. As for LRP, Figure 4 shows that by encoding binary features with {−1, 1} instead
of {0, 1}, Integrated Gradients’ performance shifts to a perfect one.

5.4 GNNExplainer

We observe that GNN Explainer obtains a fidelity score proportional to the number of positive features when
they are encoded as {0, 1} (similarly to Integrated Gradients). With non-local models, instead, it obtains
fair yet not-perfect results (fidelity ∼ 0.75), regardless of the type of encoding. This problem is alleviated
(fidelity ∼ 0.8 − 0.9) when the important features are fewer.

Rationale. First of all, we recognize that also GNN Explainer is unable to recognize important features
when their value is zero; as such, we focus on the experiments where features are encoded as {−1, 1}. We
show such results in Figure 4. Here, the imperfect results obtained by this explainer are due to a combination
of different factors. First, we find that GNNExplainer has a different semantic than other explainers. To
better explain this semantic difference we use the notation introduced in Section 3. We consider a model
M that takes as input the features X and classifies a node v as class c ∈ {0, 1}, in particular c = 1 when
M(X, v) > ϑ for some threshold ϑ ∈ [0, 1]. An explainer E analyzing this classification instance will output
EM(X, v) = β, assigning an importance score βf to each feature f . Now, such scores can obey one of the
two distinct semantics that we define next.

12

Published in Transactions on Machine Learning Research (4/2024)

(1) Signed attribution. Importance scores β should identify all features that have any impact, either positive
or negative, in the classification of the node v as class c. This is equivalent to what is required by Axiom 1.

(2) Decision-aligned attribution. Importance scores β should identify only features that move the classifica-
tion of the node v towards the actual class c. In other words, βf should be high when changing xv,f increases
M(X, v) in the case M(X, v) > ϑ, or decreases M(X, v) in the case M(X, v) < ϑ.

While other explainers implement the former semantic, GNNExplainer follows the latter: only features that
reinforce the given class assignment are deemed as important.

Even besides this semantic difference, the results obtained by GNNExplainer are not perfect. Upon additional
experiments, we observe that the presence of a mask on the edges significantly impacts the performance of
GNNExplainer. In other words, the presence of edges where varying a feature does not affect the output (even
when there are edges where it does) makes it harder for this explainer to recognize a feature as important.
Finally, the constraint imposed by default by GNNExplainer to select a low number of important features
often leads to a lower number of features recognized as important. For this reason, its performance degrades
when there is a high number of important features.

Fixes and warnings. Regarding semantics, while both semantics have their applications, we emphasize
the importance of distinguishing the two, so that practitioners can understand correctly the obtained expla-
nations.

Regarding sparsity, we find out that GNNExplainer is very sensitive to some hyperparameters, such as KM

and KF that control the size of subgraph and feature explanations respectively. In this work the default values
of hyperparameters are used across all experiments, i.e., the regularization hyperparameters for subgraph
size is 0.005 and for feature explanation is 1. Optimal values should be informed by prior knowledge about
the dataset, and as can be seen from experiments, fixed values of hyperparameters might result in degraded
performance if they are not optimal for the number of features in the ground truth.

5.5 Deconvolution

In every configuration, Deconvolution obtains perfect results with a fidelity of 1.0, showing that it is the
only explainer to fully adhere to Axiom 1 in all tested settings. Its perfect results, however, do not come
for free. Since it is not model-agnostic, its application is fundamentally limited to graph neural networks.
Also, it might require modifications at the implementation level or in the logic of the classifier in order to be
applicable. However, the reliability of the explanations offered by Deconvolution for graph machine learning
models constitutes a promising and novel result.

6 Discussion

This work proposes an axiomatic approach to audit node classification explainers through a model-driven
framework. In particular, our proposal is to assess whether an explainer is able to detect as important,
features that are hard-coded as such, in three white-box models with known internal logic. The simplicity
of the three white boxes that we define allows us to prove that the features that exhibit the capability of
changing the classification, correctly correspond to the hard-coded set of ground-truth important features.
Therefore, we can directly assess the concordance of explainers with the model logic, avoiding the training
of a black-box on some syntectic data as done by the other proposals in the literature. The main advantage
of our approach over this literature lies exactly in bypassing the training phase with its inherent uncertainty
about whether the intended logic implanted in the training data has been indeed maintained in the learned
model. Moreover, one main contribution of our paper is showing that this different approach, assessing
trustfulness-to-the-model, is indeed possible and can produce interesting insights.

We applied our framework to five explainers, covering the main classes of approaches in the literature. Our
analysis brought to light the existence of some subtle differences among explainers that have an important
impact on the quality of the explanations and that are easily overlooked.

13

Published in Transactions on Machine Learning Research (4/2024)

Model Name GNNExplainer

Intended Use Case The explainer is intended to be used to gain insights
into how GNN models make predictions, and to increase
transparency and trust in the predictions made by these
models.

Model Aware/Agnostic The algorithm is defined as model agnostic, the available
implementation is model (and library) specific.

Zero Awareness GNNExplainer is a zero-baseline explainer, as it treats
zero-valued features as a baseline: their importance
might go undetected. Feature encoding is critical (e.g.
use {−1, 1} instead of {0, 1} for binary features).

Attribution Semantics A feature is considered important only if it contributes
in the direction of the current classification.

Employed Feature Detection Fully respected only when node classification is driven
by local features.

Table 1: Example of the contribution of the axiomatic framework to an explainer model card for GNNEx-
plainer.

Limitations. Our contributions should be viewed within the limits of our work. Firstly, our framework
follows a binary logic: it does not determine which explainers provide a better approximation of the different
degrees of importance of each feature used by the model, but only which explainer is able to correctly
identify important features, i.e., features that are used to make a prediction. It is worth noting that our
simple definition of important features does not capture complex scenarios, e.g., a prediction that depends
on a disjunction of important features. Yet, we show that this elementary criterion is nevertheless sufficient
to develop a significant complexity in our analysis, bringing to light some important differences and pitfalls
of different explainers. We recognize that our work only operationalizes one notion of truthfulness to the
model, from which one metric is derived. However, our metric should not be the sole criterion for selecting
among different explanation algorithms. Importantly, human aspects such as usability and adherence to the
desired semantics must be considered in making such choices. In the light of these limitations, we consider
our proposal as a first, yet important, step towards developing more nuanced axiomatic frameworks.

Future work. In our future work, we aim to tackle such limitations by extending our framework in
several directions. First, as discussed above, we would like to generalize the framework to handle the notion
of non-binary importance of features. Second, we aim to devise more complex white boxes, for instance
where important features could be different on different nodes, or including non-linear transformations of
the features: towards this goal, it is needed to strike a balance between the complexity of GNNs and
the simplicity required to achieve formal guarantees as the ones provided by Theorem 1, whose extension
to general GNNs is not easy. Third, we aim to generalize our framework to different tasks: e.g., graph
classification or link prediction.

Broader impact. Besides these technical developments, we believe that a fundamental aim for the research
community’s future goals should be securing the reliability of analyses on machine learning systems. We
hope that our framework represents a step in this direction, by allowing any researcher to use the proper
tools to verify if a machine learning model is using or not a feature — possibly protected, such as their
gender, religion, or their political ideas — to guide choices that could impact individuals. In this regard,
our framework can also be an ingredient towards building a model card for explainers, similarly to what has

14

Published in Transactions on Machine Learning Research (4/2024)

been done by Mitchell et al. (2019) for trained machine learning models. A model card provides information
about a model for the sake of transparency and accountability for its creators and users, mitigating bias,
fairness issues, and other ethical and power-balance concerns in their deployment. Similarly, an explainer
model card should warn the user of an explainer on the limitations, the semantics, and the intended use of
a given explainer—allowing practitioners to assess whether that explainer is fit for their particular purpose.
In this sense, as exemplified in Table 1, our framework allows to check whether an explainer is fit to detect
the usage of a given, possibly protected, feature in the context of graph-based machine learning. Building
and analyzing explainers, and offering formal guarantees to their behavior, is a step towards making anyone
able, in principle, to open the black boxes of key decision-making systems.

References
Chirag Agarwal, Eshika Saxena, Satyapriya Krishna, Martin Pawelczyk, Nari Johnson, Isha Puri, Marinka

Zitnik, and Himabindu Lakkaraju. Openxai: Towards a transparent evaluation of model explanations.
arXiv preprint arXiv:2206.11104, 2022a.

Chirag Agarwal, Marinka Zitnik, and Himabindu Lakkaraju. Probing gnn explainers: A rigorous theoretical
and empirical analysis of gnn explanation methods. In International Conference on Artificial Intelligence
and Statistics, pp. 8969–8996. PMLR, 2022b.

Kenza Amara, Rex Ying, Zitao Zhang, Zhihao Han, Yinan Shan, Ulrik Brandes, Sebastian Schemm, and
Ce Zhang. Graphframex: Towards systematic evaluation of explainability methods for graph neural
networks. arXiv preprint arXiv:2206.09677, 2022.

Elvio Amparore, Alan Perotti, and Paolo Bajardi. To trust or not to trust an explanation: using LEAF to
evaluate local linear XAI methods. PeerJ Computer Science, 7:e479, Apr 2021.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, and
Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PloS one, 10(7):e0130140, 2015.

Pablo Barberá. Birds of the same feather tweet together: Bayesian ideal point estimation using twitter data.
Political analysis, 23(1):76–91, 2015.

Hugh Chen, Joseph D Janizek, Scott Lundberg, and Su-In Lee. True to the model or true to the data?
arXiv preprint arXiv:2006.16234, 2020.

Yushun Dong, Jing Ma, Chen Chen, and Jundong Li. Fairness in graph mining: A survey. arXiv preprint
arXiv:2204.09888, 2022.

Alejandro Barredo Arrieta et al. Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities
and challenges toward responsible ai. Information Fusion, 58:82–115, 2020.

Bryce Goodman and Seth Flaxman. European union regulations on algorithmic decision-making and a “right
to explanation”. AI magazine, 38(3):50–57, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017.

Derek Hansen, Ben Shneiderman, and Marc A Smith. Analyzing social media networks with NodeXL: Insights
from a connected world. Morgan Kaufmann, 2010.

Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion trends with
one-class collaborative filtering. In proceedings of the 25th international conference on world wide web, pp.
507–517, 2016.

Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. Graphlime: Local interpretable
model explanations for graph neural networks. IEEE Transactions on Knowledge and Data Engineering,
2022.

15

Published in Transactions on Machine Learning Research (4/2024)

Xiao Huang, Qingquan Song, Yuening Li, and Xia Hu. Graph recurrent networks with attributed random
walks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 732–740, 2019.

Guillaume Jaume, Pushpak Pati, Behzad Bozorgtabar, Antonio Foncubierta, Anna Maria Anniciello,
Florinda Feroce, Tilman Rau, Jean-Philippe Thiran, Maria Gabrani, and Orcun Goksel. Quantifying
explainers of graph neural networks in computational pathology. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp. 8106–8116, 2021.

Markus Langer, Kevin Baum, Kathrin Hartmann, Stefan Hessel, Timo Speith, and Jonas Wahl. Explain-
ability auditing for intelligent systems: A rationale for multi-disciplinary perspectives. In 2021 IEEE
29th International Requirements Engineering Conference Workshops (REW), pp. 164–168, 09 2021. doi:
10.1109/REW53955.2021.00030.

Antonio Longa, Steve Azzolin, Gabriele Santin, Giulia Cencetti, Pietro Liò, Bruno Lepri, and Andrea
Passerini. Explaining the explainers in graph neural networks: a comparative study. arXiv preprint
arXiv:2210.15304, 2022.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 30, pp. 4765–4774. Curran Associates, Inc., 2017.

Aravindh Mahendran and Andrea Vedaldi. Salient deconvolutional networks. In European conference on
computer vision, pp. 120–135. Springer, 2016.

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, Elena
Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. Model cards for model reporting. In Proceedings of
the conference on fairness, accountability, and transparency, pp. 220–229, 2019.

Alan Perotti, Paolo Bajardi, Francesco Bonchi, and André Panisson. Explaining identity-aware graph classi-
fiers through the language of motifs. In International Joint Conference on Neural Networks, IJCNN 2023,
Gold Coast, Australia, June 18-23, 2023, pp. 1–8. IEEE, 2023.

Mandeep Rathee, Thorben Funke, Avishek Anand, and Megha Khosla. Bagel: A benchmark for assessing
graph neural network explanations. arXiv preprint arXiv:2206.13983, 2022.

Avi Rosenfeld. Better metrics for evaluating explainable artificial intelligence. In Proceedings of the
20th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’21, pp. 45–50,
Richland, SC, 2021. International Foundation for Autonomous Agents and Multiagent Systems. ISBN
9781450383073.

Andrew Selbst and Julia Powles. “meaningful information” and the right to explanation. In Conference on
Fairness, Accountability and Transparency, pp. 48–48. PMLR, 2018.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In Proceedings of
the 34th International Conference on Machine Learning - Volume 70, ICML’17, pp. 3319–3328. JMLR.org,
2017.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale information
network embedding. In Proceedings of the 24th international conference on world wide web, pp. 1067–1077,
2015.

Trystan Upstill, Nick Craswell, and David Hawking. Predicting fame and fortune: Pagerank or indegree?
In Proceedings of the Australasian Document Computing Symposium, ADCS2003, pp. 31–40, 2003.

Jasper van der Waa, Elisabeth Nieuwburg, Anita Cremers, and Mark Neerincx. Evaluating xai: A com-
parison of rule-based and example-based explanations. Artificial Intelligence, 291:103404, 2021. ISSN
0004-3702. doi: https://doi.org/10.1016/j.artint.2020.103404. URL https://www.sciencedirect.com/
science/article/pii/S0004370220301533.

16

https://www.sciencedirect.com/science/article/pii/S0004370220301533
https://www.sciencedirect.com/science/article/pii/S0004370220301533

Published in Transactions on Machine Learning Research (4/2024)

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks, 2017.

Max Welling and Thomas N Kipf. Semi-supervised classification with graph convolutional networks. In J.
International Conference on Learning Representations (ICLR 2017), 2016.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer: Generating
explanations for graph neural networks. Advances in neural information processing systems, 32, 2019.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A taxonomic
survey. arXiv preprint arXiv:2012.15445, 2020.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural networks
via subgraph explorations. In Proceedings of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research,
pp. 12241–12252. PMLR, 2021.

A Proof of Theorem 1

Proof. We proceed by proving each direction of this equivalence (⇒, ⇐) for each of our three white boxes
(LM, NM, 2HM).

LM (⇒): Assume β̂f = 1. We construct X ′ ∈ Xf as x′
v,f = xv,f + k, ∀v ∈ V , for a constant k ̸= 0. By

definition of LM we have that M(X ′, v) = ϕ(|NE′(v)| +
∑

i ̸=f β̂ix
′
v,i + β̂f x′

v,f) and by construction of X ′,
it follows M(X ′, v) = ϕ(|NE′(v)| +

∑
i ̸=f β̂ixv,i + β̂f xv,f + β̂f k), which can be rewritten grouping the two

terms ϕ(|NE′(v)| + β̂⊤xv + β̂f k). Since β̂f = 1, then M(X ′, v) = ϕ(|NE′(v)| + β̂⊤xv + k). Now, since k ̸= 0
and ϕ (as defined in Equation 2) is injective, we have

M(X ′, v) = ϕ(|NE′(v)| + β̂⊤xv + k) ̸= ϕ(|NE′(v)| + β̂⊤xv) = M(X, v).

LM (⇐): Assume ∃X ′ ∈ Xf : M(X ′, v) ̸= M(X, v). Now assume by absurd that β̂f = 0. By definition of
LM we have that: M(X, v) = ϕ(|NE′(v)| + β̂⊤xv) = ϕ(|NE′(v)| +

∑
i ̸=f β̂ixv,i + β̂f xv,f). As β̂f = 0, then

M(X, v) = ϕ(|NE′(v)| +
∑

i̸=f β̂ixv,i). Now consider X ′. It holds that

M(X ′, v) = ϕ(|NE′(v)| +
∑
i ̸=f

β̂ix
′
v,i + β̂f x′

v,f).

By definition of Xf , we have that
∑

i ̸=f β̂ix
′
v,i =

∑
i ̸=f β̂ixv,i and therefore

M(X ′, v) = ϕ(|NE′(v)| +
∑
i ̸=f

β̂ixv,i + β̂f x′
v,f).

As β̂f = 0, then M(X ′, v) = ϕ(|NE′(v)| +
∑

i ̸=f β̂ixv,i) = M(X, v), ∀X ′ ∈ Xf which contradicts the initial
assumption.

NM (⇒): Assume β̂f = 1. We construct X ′ ∈ Xf as x′
v,f = xv,f + k, ∀v ∈ V , for a constant k ̸= 0.

By definition of NM we have that M(X, v) = ϕ
(

γ|N(v)| + 1
|N(v)|

∑
u∈N(v)

∑
i∈F β̂xu,i

)
. For simplicity we

rewrite it as M(X, v) = ϕ(Q1 + Q2 + Q3) where:

Q1 = |N(v)|;

Q2 = 1
|N(v)|

∑
u∈N(v)

∑
i ̸=f

β̂xu,i;

Q3 = 1
|N(v)|

∑
u∈N(v)

β̂f xu,f .

17

Published in Transactions on Machine Learning Research (4/2024)

Similarly we denote M(X ′, v) = ϕ(Q′
1 +Q′

2 +Q′
3). We have that Q1 = Q′

1 and Q2 = Q′
2 due to our definition

of X ′ ∈ Xf . For what concerns Q′
3 instead we have that

Q′
3 = 1

|N(v)|
∑

u∈N(v)

β̂f x′
u,f

= 1
|N(v)|

∑
u∈N(v)

β̂f xu,f + 1
|N(v)|

∑
u∈N(v)

β̂f k

= Q3 + 1
|N(v)|

∑
u∈N(v)

β̂f k.

Since β̂f = 1, k ̸= 0 and N(v) is not empty (no singleton nodes), it follows that
∑

u∈N(v) β̂f k ̸= 0. Therefore,

since ϕ is injective, ϕ(Q1 + Q2 + Q3) ̸= ϕ(Q1 + Q2 + Q3 +
∑

u∈N(v)
β̂f k

|N(v)|) and M(X, v) ̸= M(X ′, v).

NM (⇐): Assume ∃X ′ ∈ Xf : M(X ′, v) ̸= M(X, v). Now assume by absurd that β̂f = 0. Using the same
rewriting as above we denote M(X, v) = ϕ(Q1 + Q2 + Q3) and M(X ′, v) = ϕ(Q′

1 + Q′
2 + Q′

3), with Q1 = Q′
1

and Q2 = Q′
2 as the case above. Instead, contrarily to the case above, since we are assuming that β̂f = 0,

we also have that ∀X ′ ∈ Xf , Q3 = Q′
3 and thus M(X, v) = M(X ′, v), ∀X ′ ∈ Xf , which is a contradiction

with the assumption.

2HM (⇒): Assume β̂f = 1. We construct X ′ ∈ Xf as x′
v,f = xv,f + k, ∀v ∈ V , for a constant k ̸= 0. By

definition of 2HM we have that M(X, v) = ϕ(|N2
E′(v)| +

∑
uP

2
V,E′(v, u) · β̂⊤xu). For simplicity we rewrite

it as M(X, v) = ϕ(Q1 + Q2 + Q3) where:

Q1 = |N2
E′(v)|;

Q2 =
∑

u

∑
i ̸=f

P2
V,E′(v, u) · β̂ixu,i;

Q3 =
∑

u

P2
V,E′(v, u) · β̂f xu,f .

Similarly we denote M(X ′, v) = ϕ(Q′
1 + Q′

2 + Q′
3). For all X ′ ∈ Xf , we have that Q1 = Q′

1 = |N2
E′(v)| and

Q2 = Q′
2. Instead, Q′

3 is

Q′
3 =

∑
u

P2
V,E′(v, u) · β̂f x′

u,f

=
∑

u

P2
V,E′(v, u) · β̂f xu,f +

∑
u

P2
V,E′(v, u) · β̂f,k

= Q3 +
∑

u

P2
V,E′(v, u) · β̂f,k.

As the graph has no zero-degree nodes the random walk is well-defined and ∃u P2
V,E′(v, u) > 0. Moreover,

we assumed β̂f = 1 and k ̸= 0, and thus
∑

uP
2
V,E′(v, u) · β̂f k ̸= 0. Therefore, since ϕ is injective, ϕ(Q1 +

Q2 + Q3) ̸= ϕ(Q1 + Q2 + Q3 +
∑

uP
2
V,E′(v, u) · β̂f k) and M(E, X, v) ̸= M(E, X ′, v).

2HM (⇐): Follows exactly the proof of the case NM (⇐).

This concludes the proof.

18

	Introduction
	Related Work
	A True-to-the-model Benchmark
	The axiom: important features should receive higher importance score than non-important ones
	The white-box models
	The auditing framework

	Experimental settings
	Results
	GraphLIME
	LRP
	Integrated Gradients
	GNNExplainer
	Deconvolution

	Discussion
	Proof of Theorem 1

