
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON THE ERGODIC CONVERGENCE PROPERTIES OF THE
PEACEMAN-RACHFORD METHOD AND THEIR APPLI-
CATIONS IN SOLVING LINEAR PROGRAMMING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we study the ergodic convergence properties of the Peaceman-
Rachford (PR) method with semi-proximal terms for solving convex optimiza-
tion problems (COPs). By reformulating the PR method as a degenerate proximal
point method, for the first time we establish the global convergence of the ergodic
sequence generated by the PR method with broadly chosen semi-proximal terms
under the assumption that there exists a Karush–Kuhn–Tucker (KKT) solution
to the COPs. This result represents a significant departure from previous stud-
ies on the non-ergodic convergence of the PR method, which typically requires
strong convexity (or strong monotonicity in the reformulated operator) conditions
that are hardly satisfied for COPs. Moreover, we establish an ergodic iteration
complexity of O(1/k) of the PR method with semi-proximal terms, measured by
the objective error, the feasibility violation, and the KKT residual using the ε-
subdifferential. Based on these convergence properties, we introduce the solver
EPR-LP, using the ergodic sequence of the PR method with semi-proximal terms
for solving linear programming (LP) problems. EPR-LP incorporates an adaptive
restart strategy and dynamic penalty parameter updates for efficiency and robust-
ness. Extensive numerical experiments on LP benchmark datasets, executed on a
high-performance GPU, show that our Julia-based solver outperforms the award-
winning solver PDLP at a tolerance level of 10−8.

1 INTRODUCTION

In this paper, we focus on solving the following linear programming (LP) problem:

min
x∈Rn

⟨c, x⟩

s.t. A1x = b1

A2x ≥ b2

x ∈ C,

(1)

where A1 ∈ Rm1×n, A2 ∈ Rm2×n, b1 ∈ Rm1 , b2 ∈ Rm2 , and c ∈ Rn. The set C is defined as
C := {x ∈ Rn | l ≤ x ≤ u}, with the vectors l ∈ (R ∪ {−∞})n and u ∈ (R ∪ {+∞})n. Let
A = [A1;A2] ∈ Rm×n with m = m1+m2 and b = [b1; b2] ∈ Rm. We assume that A is a non-zero
matrix, which is also occasionally treated as a linear operator. Then, the dual of problem (1) can be
expressed as:

min
y∈Rm,z∈Rn

− ⟨b, y⟩+ δD(y) + δ∗C(−z)

s.t. A∗y + z = c,
(2)

where δD(·) is the indicator function over D := {y = (y1, y2) ∈ Rm1 × Rm2
+ } and δ∗C(·) is the

conjugate of δC(·). LP is a fundamental optimization subject in applied mathematics, operations
research, and computer science, with a wide range of applications. The interior point methods and
the simplex methods are the standard algorithms used in commercial LP solvers such as Gurobi
(Gurobi Optimization, LLC, 2024) and CPLEX (IBM, 1987), efficiently solving problems with
hundreds to millions of variables and constraints. However, their performance can be inadequate for

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

problems with huge dimensions (Lu, 2024). Furthermore, these methods are difficult to parallelize,
limiting their ability to leverage modern GPUs effectively.

Recently, the first-order methods, especially those based on the alternating direction method of
multipliers (ADMM) (O’donoghue et al., 2016; Stellato et al., 2020; Applegate et al., 2021; Lin
et al., 2021; O’Donoghue, 2021; Applegate et al., 2023; Deng et al., 2024; Lu & Yang, 2024; Chen
et al., 2024) have attracted increasing attention for solving large-scale LP problems, due to their low
iteration cost and ease of parallelization. Specifically, let σ > 0 be a given penalty parameter. The
augmented Lagrangian function associated with the dual problem (2), for any (y, z, x) ∈ Rm ×
Rn × Rn, is defined as

LLP
σ (y, z;x) := −⟨b, y⟩+ δD(y) + δ∗C(−z) + ⟨x,A∗y + z − c⟩+ σ

2
∥A∗y + z − c∥2.

A preconditioned (semi-proximal) ADMM (pADMM) (Xiao et al., 2018) for solving LP is then
outlined in Algorithm 1. Consider the case where S1 = 0. When ρ = 1, Algorithm 1 reduces to the
Douglas-Rachford method (Gabay, 1983). When ρ = 2, it becomes equivalent to the generalized
ADMM (GADMM) induced by the Peaceman-Rachford (PR) method (Eckstein & Bertsekas, 1992;
Lions & Mercier, 1979). For a more detailed comparison of Algorithm 1 with other algorithms,
refer to Xiao et al. (2018) and Sun et al. (2024).

Algorithm 1 A pADMM method for the LP problem (2)

1: Input: Set the penalty parameter σ > 0. Choose ρ ∈ (0, 2]. Let S1 : Rm → Rm be a self-
adjoint positive semidefinite linear operator such that S1 +AA∗ is positive definite. Choose an
initial point w0 = (y0, z0, x0) ∈ D × dom(δ∗C(−·))× Rn.

2: for k = 0, 1, ..., do
3: Step 1. z̄k = argmin

z∈Rn

{
LLP
σ

(
yk, z;xk

)}
;

4: Step 2. x̄k = xk + σ(A∗yk + z̄k − c);
5: Step 3. ȳk = argmin

y∈Rm

{
LLP
σ

(
y, z̄k; x̄k

)
+

σ

2
∥y − yk∥2S1

}
;

6: Step 4. wk+1 = (1− ρ)wk + ρw̄k;

Notably, Applegate et al. (Applegate et al., 2021; 2023) developed the award-winning solver PDLP1,
which uses a modified version of the primal-dual hybrid gradient (PDHG) method (Zhu & Chan,
2008) as its base algorithm. This modified PDHG is a special case of Algorithm 1 with ρ = 1 (Esser
et al., 2010; Chambolle & Pock, 2011). To enhance the modified PDHG’s performance, PDLP incor-
porates several effective techniques, including using the ergodic iterate as a restart point, employing
an adaptive update rule for the penalty parameter σ, and implementing a line search strategy. It is
worth noting that, compared to non-ergodic sequences, the ergodic sequence of the semi-proximal
ADMM (sPADMM) (Fazel et al., 2013), including the modified PDHG (Esser et al., 2010; Cham-
bolle & Pock, 2011), achieves a better O(1/k) iteration complexity with respect to the objective
error and the feasibility violation (Cui et al., 2016). Consequently, the GPU implementation of
PDLP (cuPDLP.jl (Lu & Yang, 2023) and cuPDLP-c (Lu et al., 2023)) has demonstrated advantages
over commercial LP solvers like Gurobi (Gurobi Optimization, LLC, 2024) and COPT (Ge et al.,
2022), particularly for large-scale LP problems.

More recently, Chen et al. (Chen et al., 2024) introduced HPR-LP, an implementation of the Halpern
Peaceman-Rachford (HPR) method (Sun et al., 2024) with semi-proximal terms for solving LP
problems. This method integrates the Halpern iteration (Halpern, 1967; Lieder, 2021) into the
PR method (Lions & Mercier, 1979; Eckstein & Bertsekas, 1992) with semi-proximal terms, cor-
responding to Algorithm 1 using ρ = 2. It achieves an iteration complexity of O(1/k) for the
Karush–Kuhn–Tucker (KKT) residual and the objective error. The Julia implementation of HPR-LP
has demonstrated superior performance compared to PDLP on classical LP benchmark datasets.

A key difference between HPR-LP and PDLP is the choice of ρ. PDLP uses a conservative ρ = 1
and adopts a line-search strategy to enhance performance, while HPR-LP employs a more aggressive

1The authors of Applegate et al. (2021; 2023) received the Beale–Orchard-Hays Prize for Excellence in
Computational Mathematical Programming at the 25th International Symposium on Mathematical Program-
ming (https://ismp2024.gerad.ca/), held from July 21-26, 2024, in Montréal, Canada.

2

https://ismp2024.gerad.ca/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ρ = 2. It is well known that the PR method (ρ = 2) is faster than the DR method (ρ = 1) when the
PR method converges (Lions & Mercier, 1979). This difference in ρ selection motivates our study
of using the ergodic sequence of the PR method with semi-proximal terms to solve LP problems.

0 1 2 3 4 5

10
6

-7

-6

-5

-4

-3

-2

-1

0

ergodic

nonergodic

Figure 1: The performance of PR, using ergodic and non-ergodic sequences, in solving the LP
instance “datt256” from Mittelmann’s LP benchmark set. The optimality is evaluated based on the
relative primal-dual infeasibility and the relative duality gap.

To the best of our knowledge, the ergodic convergence of the PR method with semi-proximal terms
(corresponding to Algorithm 1 with ρ = 2) is still unknown. In this paper, we address this gap by
proving, for the first time, the global convergence of the ergodic sequence using the theory of the
degenerate proximal point method (dPPM) (Bredies et al., 2022). This result marks a significant
departure from previous studies on the non-ergodic convergence of the PR method, which typically
relies on strong convexity that is not met in LP (see Figure 1). Moreover, we also investigate the
ergodic iteration complexity of the pADMM in Algorithm 1 in terms of the objective error, the
feasibility violation, and the KKT residual based on ε-subdifferential (Rockafellar, 1970). The main
contributions of this paper can be summarized as follows:

• For a more general convex optimization problem (COP), by reformulating the pADMM
with ρ ∈ (0, 2] as a dPPM, we establish the ergodic convergence of the dPPM, thereby
proving the ergodic convergence of the pADMM through this reformulation.

• For solving COP, we establish the ergodic iteration complexity of O(1/k) for the pADMM
with ρ ∈ (0, 2] in terms of the objective error, the feasibility violation, and the KKT residual
based on ε-subdifferential.

• We propose the solver EPR-LP, an implementation of the ergodic sequence of PR method
(corresponding to Algorithm 1 with ρ = 2) to solve LP problems, incorporating an adaptive
restart strategy and dynamic penalty parameter updates. Extensive numerical experiments
on LP benchmark datasets using a GPU demonstrate the superior performance of the Julia
implementation of EPR-LP compared to PDLP (Lu & Yang, 2023).

The remainder of this paper is structured as follows: Section 2 establishes the ergodic convergence
and iteration complexity of pADMM for solving convex optimization problems. The detailed im-
plementation of EPR-LP is discussed in Section 3. Section 4 presents the results of numerical
experiments on LP benchmark datasets. Finally, we conclude the paper in Section 5.

Notation. Let U, W, X, Y, and Z be finite-dimensional real Euclidean spaces, each equipped
with an inner product ⟨·, ·⟩ and its corresponding norm ∥ · ∥. For any convex function f : X →
(−∞,+∞], we define its effective domain as dom(f) := {x ∈ X : f(x) < ∞}, its con-
jugate as f∗(z) := supx∈X{⟨x, z⟩ − f(x)}, z ∈ X, and its proximal mapping as Proxf (x) :=
argminz∈X

{
f(z) + 1

2∥z − x∥2
}
, x ∈ X. Furthermore, consider a closed convex set C ⊆ X. We

define the distance from x ∈ X to C as dist(x,C) := infz∈C ∥z−x∥, and we express the Euclidean
projection of x onto C as ΠC(x) := argmin{∥x − z∥ | z ∈ C}. Moreover, for a linear operator
A : X → Y, we denote its adjoint by A∗ and express its spectral norm as ∥A∥ := sup∥x∥≤1 ∥Ax∥.
Finally, for any self-adjoint, positive semidefinite linear operator M : X → X, we define the semi-
norm as ∥x∥M :=

√
⟨x,Mx⟩ for any x ∈ X.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2 ERGODIC CONVERGENCE PROPERTIES OF THE PADMM

In this section, we study the ergodic convergence properties of the pADMM method, including the
PR method, for solving COP. We begin by reformulating the pADMM method as a dPPM. Next,
we prove the ergodic convergence of the dPPM, thereby establishing the ergodic convergence of
pADMM. Finally, we analyze the ergodic iteration complexity of the pADMM method.

2.1 ERGODIC CONVERGENCE OF PADMM

Consider the following COP:
min

y∈Y,z∈Z
f1(y) + f2(z)

s.t. B1y +B2z = c,
(3)

where f1 : Y → (−∞,+∞] and f2 : Z → (−∞,+∞] are proper closed convex functions,
B1 : Y → X and B2 : Z → X are given linear operators, and c ∈ X is a given vector. Given a
penalty parameter σ > 0, the augmented Lagrangian function for problem (3) is defined, for any
(y, z, x) ∈ Y× Z× X, as

Lσ(y, z;x) := f1(y) + f2(z) + ⟨x,B1y +B2z − c⟩+ σ

2
∥B1y +B2z − c∥2.

The dual of problem (3) is given by

max
x∈X

{−f∗
1 (−B∗

1x)− f∗
2 (−B∗

2x)− ⟨c, x⟩} . (4)

Let w := (y, z, x) ∈ W := Y×Z×X. The pADMM method (Xiao et al., 2018) for solving problem
(3) is outlined in Algorithm 2.

Algorithm 2 A pADMM for solving COP (3)

1: Input: Let T1 and T2 be two self-adjoint, positive semidefinite operators on Y and Z, respec-
tively. Select an initial point w0 = (y0, z0, x0) ∈ dom(f1)× dom(f2)×X. Set the parameters
σ > 0 and ρ ∈ (0, 2].

2: for k = 0, 1, ..., do
3: Step 1. z̄k = argmin

z∈Z

{
Lσ

(
yk, z;xk

)
+ 1

2∥z − zk∥2T2

}
;

4: Step 2. x̄k = xk + σ(B1y
k +B2z̄

k − c);
5: Step 3. ȳk = argmin

y∈Y

{
Lσ

(
y, z̄k; x̄k

)
+ 1

2∥y − yk∥2T1

}
;

6: Step 4. wk+1 = (1− ρ)wk + ρw̄k;

As shown in Rockafellar (1970, Corollary 28.3.1), a pair (y∗, z∗) ∈ Y × Z is an optimal solution
to problem (3) if and only if there exists x∗ ∈ X such that (y∗, z∗, x∗) satisfies the following KKT
system:

−B∗
1x

∗ ∈ ∂f1(y
∗), −B∗

2x
∗ ∈ ∂f2(z

∗), B1y
∗ +B2z

∗ − c = 0, (5)
where ∂fi denotes the subdifferential mapping of fi for i = 1, 2. To discuss the ergodic convergence
of pADMM as outlined in Algorithm 2, we make the following assumption:
Assumption 2.1. The KKT system (5) has a nonempty solution set.

Under Assumption 2.1, solving problem (3) is equivalent to finding w ∈ W such that 0 ∈ T w,
where the maximal monotone operator T is defined as

T w =

(
∂f1(y) +B∗

1x
∂f2(z) +B∗

2x
c−B1y −B2z

)
, ∀w = (y, z, x) ∈ W. (6)

On the other hand, since f1 and f2 are proper closed convex functions, there exist two self-adjoint,
positive semidefinite operators, Σf1 and Σf2 , such that for all y, ŷ ∈ dom(f1), ϕ ∈ ∂f1(y), and
ϕ̂ ∈ ∂f1(ŷ), the following hold:

f1(y) ≥ f1(ŷ) + ⟨ϕ̂, y − ŷ⟩+ 1

2
∥y − ŷ∥2Σf1

, and ⟨ϕ− ϕ̂, y − ŷ⟩ ≥ ∥y − ŷ∥2Σf1
,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

and for all z, ẑ ∈ dom(f2), φ ∈ ∂f2(z), and φ̂ ∈ ∂f2(ẑ):

f2(z) ≥ f2(ẑ) + ⟨φ̂, z − ẑ⟩+ 1

2
∥z − ẑ∥2Σf2

, and ⟨φ− φ̂, z − ẑ⟩ ≥ ∥z − ẑ∥2Σf2
.

To ensure that each step of the pADMM is well-defined, we also make the following assumption:
Assumption 2.2. Both Σf1 +B∗

1B1 + T1 and Σf2 +B∗
2B2 + T2 are positive definite.

Define the self-adjoint linear operator M : W → W as follows:

M =

 σB∗
1B1 + T1 0 B∗

1
0 T2 0
B1 0 σ−1I

 . (7)

According to Sun et al. (2024, Proposition 3.2), we have the following equivalence between Algo-
rithm 2 and the dPPM (Bredies et al., 2022).
Proposition 2.1. Suppose that Assumption 2.2 holds. Consider the operators T defined in (6) and
M defined in (7). Then the sequence

{
wk
}

generated by the pADMM in Algorithm 2 coincides with
the sequence

{
wk
}

generated by the dPPM as follows:

w̄k = T̂ wk = (M+ T)−1Mwk, wk+1 = (1− ρ)wk + ρw̄k (8)

with the same initial point w0 ∈ W. Additionally, M is an admissible preconditioner2 such that
(M+ T)−1 is Lipschitz continuous.

We now analyze the ergodic convergence of the dPPM for a general maximal monotone operator T
and an admissible preconditioner M, encompassing Algorithm 2 for solving the COP problem (3).
To this end, we define the following two ergodic sequences:

wk
a :=

1

k + 1

k∑
t=0

wt, w̄k
a :=

1

k + 1

k∑
t=0

w̄t, ∀k ≥ 0, (9)

where the sequences {wt} and {w̄t} are generated by the dPPM in (8). Note that, for a maximal
monotone operator T : W → 2W and ε ≥ 0, the ε-enlargement of T at w (Burachik et al., 1997) is
defined as

T ε(w) = {v ∈ W : ⟨w − w′, v − v′⟩ ≥ −ε, ∀(w′, v′) ∈ gph(T)},
where gph(T) = {(w, v) ∈ W ×W | v ∈ T w}. Using the ε-enlargement of T , we can derive the
following proposition regarding the ergodic convergence properties of the dPPM.
Proposition 2.2. Let T : W → 2W be a maximal monotone operator with T −1(0) ̸= ∅, and let
M be an admissible preconditioner. Then the ergodic sequences {w̄k

a} and {wk
a}, generated by the

dPPM in (8) with ρ ∈ (0, 2], satisfy the following properties for any k ≥ 0:

(a) ∥w̄k
a − wk

a∥M ≤ 2
ρ(k+1)∥w

0 − w∗∥M, ∀w∗ ∈ T −1(0);

(b) M(wk
a − w̄k

a) ∈ T ε̄ka(w̄k
a), where ε̄ka := 1

k+1

∑k
t=0⟨w̄t − w̄k

a , w
t − w̄t⟩M and

0 ≤ ε̄ka ≤ 1

2ρ(k + 1)
∥w0 − w∗∥2M, ∀w∗ ∈ T −1(0).

Remark 2.1. Monteiro & Sim (2018) used a non-Euclidean hybrid proximal extragradient frame-
work to obtain a similar result to Proposition 2.2, which could be adapted to analyze the ergodic
iteration complexity of Algorithm 2 with T1 = 0, T2 = 0, and ρ = 2. In contrast, Proposition 2.2,
developed using the dPPM framework, is more general as it only requires M to be positive semidef-
inite. This broader setting allows for the analysis of the ergodic iteration complexity of Algorithm 2
for positive semidefinite linear operators T1 and T2.

2In Bredies et al. (2022), an admissible preconditioner for the operator T : W → 2W is a linear, bounded,
self-adjoint, and positive semidefinite operator M : W → W such that T̂ = (M + T)−1M is single-valued
and has full domain.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 2.1. Let T : W → 2W be a maximal monotone operator with T −1(0) ̸= ∅, and let M
be an admissible preconditioner such that (M+ T)−1 is L-Lipschitz continuous. Then, the ergodic
sequence {w̄k

a} generated by the dPPM in (8) with ρ ∈ (0, 2] converges to a point in T −1(0).
Remark 2.2. Note that we only assume M to be positive semidefinite in Theorem 2.1. If M is pos-
itive definite, one can directly apply Baillon’s nonlinear ergodic theorem (Baillon, 1975) to obtain
the ergodic convergence.

Consider the ergodic sequence of the pADMM:

(yka , z
k
a , x

k
a) :=

1

k + 1

k∑
t=0

(yt, zt, xt), (ȳka , z̄
k
a , x̄

k
a) :=

1

k + 1

k∑
t=0

(ȳt, z̄t, x̄t), k ≥ 0,

where the sequences {wt} = {(yt, zt, xt)} and {w̄t} = {(ȳt, z̄t, x̄t)} are generated by the pADMM
in Algorithm 2. The equivalence established in Proposition 2.1 demonstrates that the ergodic con-
vergence of the dPPM in Theorem 2.1 can be leveraged to derive the ergodic convergence of the
pADMM, as stated in the following corollary.
Corollary 2.1. Suppose that Assumptions 2.1 and 2.2 hold. Then the ergodic sequence {w̄k

a} =
{(ȳka , z̄ka , x̄k

a)}, generated by the pADMM in Algorithm 2, converges to the point w∗ = (y∗, z∗, x∗),
where (y∗, z∗) is a solution to problem (3), and x∗ is a solution to problem (4).

2.2 ERGODIC ITERATION COMPLEXITY OF PADMM

We introduce the concept of the ε-subgradient of a convex function f (Rockafellar, 1970):
Definition 2.1. Let f : X → (−∞,+∞] be a proper convex function, and let x̄ ∈ dom(f). Given
ε ≥ 0, the ε-subgradient of f at x̄ is defined as

∂εf(x̄) := {x∗ ∈ X∗ | ⟨x∗, x− x̄⟩ ≤ f(x)− f(x̄) + ε, ∀x ∈ X} .

Based on the optimality conditions of each subproblem in the pADMM, we derive the following
lemma regarding the ergodic sequence {w̄k

a} using the ε-subgradient.
Lemma 2.1. Suppose that Assumptions 2.1 and 2.2 hold. Let {(ȳka , z̄ka , x̄k

a)} be the sequence gen-
erated by Algorithm 2 and Let w∗ = (y∗, z∗, x∗) be a solution to the KKT system (5). The following
things hold: for any k ≥ 0,{

−B∗
2 x̄

k
a − T2(z̄ka − zka) ∈ ∂ε̄kzf2(z̄

k
a),

−B∗
1(x̄

k
a + σ(B1ȳ

k
a +B2z̄

k
a − c))− T1(ȳka − yka) ∈ ∂ε̄kyf1(ȳ

k
a),

(10)

where{
ε̄kz = 1

k+1

∑k
t=0⟨−B∗

2 x̄
t − T2(z̄t − zt), z̄t − z̄ka⟩ ≥ 0,

ε̄ky = 1
k+1

∑k
t=0⟨−B∗

1(x̄
t + σ(B1ȳ

t +B2z̄
t − c))− T1(ȳt − yt), ȳt − ȳka⟩ ≥ 0,

(11)

and
ε̄kz + ε̄ky ≤ 1

2ρ(k+1)∥w
0 − w∗∥2M. (12)

Furthermore, to estimate the objective error, we define

h(ȳka , z̄
k
a) := f1(ȳ

k
a) + f2(z̄

k
a)− f1(y

∗)− f2(z
∗), ∀k ≥ 0,

where (y∗, z∗) is the limit point of the sequence {(ȳka , z̄ka)}. Then the ergodic iteration complexity
of pADMM is established in Theorem 2.2.
Theorem 2.2. Suppose that Assumptions 2.1 and 2.2 hold. Let {(ȳka , z̄ka , x̄k

a)} be the ergodic se-
quence generated by Algorithm 2 with ρ ∈ (0, 2]. Let w∗ = (y∗, z∗, x∗) be a solution to the KKT
system (5), and R0 = ∥w0 − w∗∥M. For all k ≥ 0, the following bound holds:

dist
(
0, ∂ε̄kyf1(ȳ

k
a) +B∗

1 x̄
k
a

)
+ dist

(
0, ∂ε̄kzf2(z̄

k
a) +B∗

2 x̄
k
a

)
+ ∥B1ȳ

k
a +B2z̄

k
a − c∥

≤
(

σ∥B∗
1∥+1√
σ

+ ∥
√
T2∥+ ∥

√
T1∥
)

2R0

ρ(k+1) ,
(13)

where ε̄kz + ε̄ky ≤ 1
2ρ(k+1)∥w

0 − w∗∥2M. Moreover,(
−1√
σ
∥x∗∥

)
2R0

ρ(k + 1)
≤ h(ȳka , z̄

k
a) ≤ (R0 + 4

√
σ∥B1y

∗∥) R0

2ρ(k + 1)
+

∥x0 + σB1y
0∥2

2ρ(k + 1)
.

(14)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Remark 2.3. For the ergodic iteration complexity about LP, please refer to Appendix B. The
pADMM with ρ ∈ (0, 2) achieves only a non-ergodic iteration complexity of o(1/

√
k) with re-

spect to the objective error, feasibility violation, and KKT residual, as established in Appendix C. A
detailed comparison of the iteration complexities of related algorithms can be found in Appendix D.

Based on the ergodic complexity results in Theorem 2.2, the optimal choice for ρ is 2, resulting in an
ergodic PR (EPR) method with semi-proximal terms. In the next section, we apply this EPR method
to solve large-scale LP problems.

3 A PEACEMAN-RACHFORD METHOD USING ERGODIC SEQUENCE FOR
SOLVING LP

In this section, we introduce the solver EPR-LP for large-scale LP problems (Algorithm 3), which
incorporates a restart strategy and adaptive updates of the penalty parameter σ into the EPR method
with semi-proximal terms.

Algorithm 3 EPR-LP: A Peaceman-Rachford method using ergodic sequence for the problem (2)

1: Input: Let S1 : Rm → Rm be a self-adjoint, positive semidefinite linear operator such that S1+
AA∗ is positive definite. Choose an initial point w0,0 = (y0,0, z0,0, x0,0) ∈ D×dom(δ∗C(−·))×
Rn.

2: Initialization: Set the outer loop counter r = 0, the total loop counter k = 0, and the initial
penalty parameter σ0 > 0.

3: repeat
4: initialize the inner loop: set inner loop counter t = 0;
5: repeat
6: z̄r,t = argmin

z∈Rn

{
LLP
σr

(
yr,t, z;xr,t

)}
;

7: x̄r,t = xr,t + σr(A
∗yr,t + z̄r,t − c);

8: ȳr,t = argmin
y∈Rm

{
LLP
σr

(
y, z̄r,t; x̄r,t

)
+

σr

2
∥y − yr,t∥2S1

}
;

9: wr,t+1 = 2w̄r,t − wr,t;

10: w̄r,t
a =

t∑
i=0

1

t+ 1
w̄r,i;

11: t = t+ 1, k = k + 1;
12: until one of the restart criteria holds or termination criteria hold
13: restart the inner loop: τr = t, wr+1,0 = w̄r,τr

a ,

14: σr+1 = SigmaUpdate(w̄r,τr
a , wr,0,S1, A), r = r + 1;

15: until termination criteria hold
16: Output: {w̄r,t

a }.

Remark 3.1. If line 9 in Algorithm 3 is modified to wr,t+1 = w̄r,t, the resulting method is referred
to as EDR-LP, which uses the ergodic sequence of the DR method with semi-proximal terms for
solving LP. In the numerical experiments, we compare the performance of EPR-LP and EDR-LP to
evaluate the impact of the parameter ρ.

3.1 RESTART STRATEGY

The EPR method with semi-proximal terms achieves an ergodic iteration complexity of O(1/k) for
the objective error, the feasibility violation, and the KKT condition, as shown in Theorem 2.2. This
result, derived from Proposition 2.2, guides the restart criteria using the merit function:

Rr,t := ∥wr,t − w∗∥M, ∀r ≥ 0, t ≥ 0,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

where w∗ is a solution to the KKT system (5). Rr,0 gives the upper bound from Proposition 2.2.
A natural restart occurs when Rr,t ≤ α1Rr,0, with α1 ∈ (0, 1). In practice, if α1 is too small, the
algorithm may fail to reduce sufficiently, so we also consider the inner loop length and oscillation
in Rr,t. These ideas are implemented in PDLP with other merit functions (Applegate et al., 2021;
Lu & Yang, 2023). In addition, since w∗ is unknown, we replace Rr,t with the following weighted
primal and dual infeasibility:

R̃r,t =

√
σ−1
r ∥ΠD(b−Ax̄r,t

a)∥2 + σr∥c−A∗ȳr,ta − z̄r,ta ∥2.
Consequently, the restart criteria in EPR-LP are defined as follows:

1. Sufficient decay of R̃r,t:
R̃r,t ≤ α1R̃r,0; (15)

2. Necessary decay + no local progress of R̃r,t:

R̃r,t ≤ α2R̃r,0 and R̃r,t+1 > R̃r,t; (16)
3. Long inner loop:

t ≥ α3k, (17)

where α1 ∈ (0, α2), α2 ∈ (0, 1), and α3 ∈ (0, 1). In EPR-LP, we set α1 = 0.2, α2 = 0.6, and
α3 = 0.2. Once any of the three restart criteria is met, we restart the inner loop for the (r + 1)-th
iteration, set wr+1,0 = w̄r,τr

a , and update σr+1.

3.2 UPDATE RULE FOR σ

Motivated by the update rule for σ based on the iteration complexity of pADMM proposed in Chen
et al. (2024), we update σr+1 at the (r + 1)-th restart for any r ≥ 0 by solving the following
optimization problem:

σr+1 := argmin
σ

∥∥wr+1,0 − w∗∥∥2
M , (18)

where
∥∥wr+1,0 − w∗

∥∥
M represents the upper bound of the complexity results in Proposition 2.2 at

the (r+1)-th outer loop. A smaller upper bound is expected to lead to a smaller residual ∥w̄r+1,t
a −

wr+1,t
a ∥M for any t ≥ 0. Specializing M in (7) to Algorithm 1, we derive the following:

σr+1 = argmin
σ

∥∥wr+1,0 − w∗∥∥2
M

=

√
∥xr+1,0 − x∗∥2

∥yr+1,0 − y∗∥2S1
+ ∥A∗(yr+1,0 − y∗)∥2

.
(19)

Since computing ∥xr+1,0 − x∗∥ and ∥yr+1,0 − y∗∥2S1
+ ∥A∗(yr+1,0 − y∗)∥2 is not implementable,

we approximate these terms in EPR-LP using:

∆x := ∥x̄r,τr
a − xr,0∥ and ∆y :=

√
∥ȳr,τra − yr,0∥2S1

+ ∥A∗(ȳr,τra − yr,0)∥2, (20)

respectively. Consequently, we update σr+1 as follows:

σr+1 =
∆x

∆y
. (21)

Because the approximations ∆x and ∆y may deviate significantly from their true values, we im-
plement some safeguards for the σ update rule. For more details, see Appendix E. Furthermore,
to ensure that the EPR-LP method has an explicit update formula for ȳr,t for solving general LP
problems, we select

S1 = λIm −AA∗,
with λ ≥ λ1(AA∗), as proposed in Esser et al. (2010); Chambolle & Pock (2011); Xu & Wu (2011).
In this case, the updates of ȳr,t are given by: ȳr,t1 = yr,t1 +

1

λ

(
b1
σ

−A1Ry

)
,

ȳr,t2 = ΠRm2
+

(
yr,t2 + 1

λ

(
b2
σ −A2Ry

))
,

where Ry := x̄r,t/σ + (A∗yr,t + z̄r,t − c). Thus, the penalty parameter σr+1 is updated as:

σr+1 =
1√
λ

∥x̄r,τr
a − xr,0∥

∥ȳr,τra − yr,0∥
.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4 NUMERICAL EXPERIMENT

In this section, we evaluate the performance of EPR-LP, EDR-LP, and cuPDLP (Lu & Yang, 2023)
on Mittelmann’s LP benchmark set3 and LP instances relaxed from MIP problems in the MIPLIB
2017 collection (Gleixner et al., 2021). All algorithms are implemented in Julia, with experiments
conducted on an NVIDIA A100-SXM4-80GB GPU running CUDA 12.3. Each solver is terminated
when the relative primal and dual infeasibility errors, as well as the relative duality gap, reach a
tolerance of 10−8, or when the time limit is exceeded. For more details on the experimental setup,
please refer to Appendix F.

4.1 MITTELMANN’S LP BENCHMARK SET

Mittelmann’s LP benchmark set is a standard benchmark for evaluating the numerical performance
of LP solvers. In this experiment, we compare the performance of EPR-LP, EDR-LP, and cuPDLP
on 49 publicly available instances from Mittelmann’s LP benchmark. The performance profiles
(Dolan & Moré, 2002) for solving time on the presolved and unpresolved datasets are shown in
Figures 2a and 2b, respectively. The key observations are summarized as follows:

• Compared to EDR-LP and cuPDLP, EPR-LP is the fastest solver on approximately 80% of
the problems in the presolved dataset and 65% in the unpresolved dataset.

• Among all the algorithms, EPR-LP demonstrates the best success rate, solving the highest
percentage of problems across both the presolved and unpresolved datasets. In particular,
EPR-LP solves about 8% more problems than cuPDLP on the presolved dataset.

• To solve 90% of the problems in the presolved dataset, EPR-LP requires twice the time of
the best solver, while EDR-LP takes four times as long. This difference likely stems from
the ratio of ρ, as suggested by the iteration complexity results in (13) and (14).

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

EPR-LP

EDR-LP

cuPDLP

(a) Solving time with presolve

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

EPR-LP

EDR-LP

cuPDLP

(b) Solving time without presolve

Figure 2: Performance profiles of solving time for 49 instances of Mittelmann’s LP benchmark set
with Gurobi’s presolve (a) and without presolve (b).

4.2 MIP RELAXATIONS

In this experiment, we evaluate the performance of EPR-LP, EDR-LP, and cuPDLP on 380 LP
instances relaxed from MIPLIB 2017 collection (Gleixner et al., 2021), both with and without pre-
solve. Figures 3a and 3b show the performance profiles for solving time on the presolved and
unpresolved datasets, respectively. The key observations are listed below:

• Compared to EDR-LP and cuPDLP, EPR-LP is the fastest solver on approximately 85% of
the problems in the presolved dataset and 80% in the unpresolved dataset.

• EPR-LP demonstrated a slightly higher success rate than cuPDLP on the presolved dataset
and a nearly comparable success rate on the unpresolved dataset.

3https://plato.asu.edu/ftp/lpfeas.html.

9

https://plato.asu.edu/ftp/lpfeas.html

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

EPR-LP

EDR-LP

cuPDLP

(a) Solving time with presolve

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

EPR-LP

EDR-LP

cuPDLP

(b) Solving time without presolve

Figure 3: Performance profiles of solving time for LP instances relaxed from MIP, with Gurobi’s
presolve (a) and without presolve (b).

4.3 SUMMARY OF EXPERIMENTS

The previous numerical experiments show that EPR-LP outperforms both EDR-LP and cuPDLP.
Specifically, EPR-LP achieves the highest success rates across nearly all datasets. Moreover, EPR-
LP emerges as the fastest solver for approximately 65% to 85% of the problems. Since the per-
iteration times of EDR-LP and EPR-LP are nearly the same, EPR-LP’s advantage over EDR-LP
stems from using ρ = 2, leading to fewer iterations. To further underscore EPR-LP’s advantages
over cuPDLP, we present the per-iteration time ratio between these two solvers in Table 1. The me-
dian per-iteration time ratio, ranging from 2.7 to 4.0 across datasets, highlights EPR-LP’s lower iter-
ation cost compared to cuPDLP, likely attributed to cuPDLP’s dependence on a more time-intensive
heuristic line search.

Table 1: Per-iteration time ratio (cuPDLP/EPR-LP) for different datasets with and without presolve.

Dataset Median Mean Standard deviation

Mittelmann’s LP benchmark set without presolve 2.7 3.5 3.0

Mittelmann’s LP benchmark set with presolve 3.2 3.9 4.0

MIP relaxations without presolve 3.9 8.2 14.5

MIP relaxations with presolve 4.0 8.8 15.5

5 CONCLUSION

In this paper, we proved the ergodic convergence of the PR method with semi-proximal terms for
solving convex optimization problems. We established the ergodic iteration complexity of O(1/k)
with respect to the objective error, the feasibility violation, and the KKT residual based on ε-
subdifferential. Building on these results, we developed the solver EPR-LP for solving large-scale
LP problems, which incorporates adaptive restart and penalty parameter updates. Extensive nu-
merical experiments on LP benchmark datasets highlighted the advantages of EPR-LP compared to
PDLP. In the future, it would be interesting to explore combining the ergodic sequence with accel-
eration techniques, such as Halpern’s iteration (Halpern, 1967; Lieder, 2021; Sun et al., 2024), to
design a more efficient algorithm with an iteration complexity better than O(1/k).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Vando A Adona, Max LN Gonçalves, and Jefferson G Melo. Iteration-complexity analysis of a
generalized alternating direction method of multipliers. J. Global Optim., 73:331–348, 2019.

David Applegate, Mateo Dı́az, Oliver Hinder, Haihao Lu, Miles Lubin, Brendan O’Donoghue, and
Warren Schudy. Practical large-scale linear programming using primal-dual hybrid gradient. In
Advances in Neural Information Processing System, volume 34, pp. 20243–20257, 2021.

David Applegate, Oliver Hinder, Haihao Lu, and Miles Lubin. Faster first-order primal-dual methods
for linear programming using restarts and sharpness. Math. Program., 201(1):133–184, 2023.

Jean-Bernard Baillon. Un théorème de type ergodique pour les contractions non linéaires dans un
espace de hilbert. CR Acad. Sci. Paris Sér. AB, 280:1511–1514, 1975.

Heinz H Bauschke and Patrick L Combettes. Convex Analysis and Monotone Operator Theory in
Hilbert Spaces,2nd edn. Springer, New York, 2017.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to
numerical computing. SIAM REV, 59(1):65–98, 2017.

Kristian Bredies, Enis Chenchene, Dirk A Lorenz, and Emanuele Naldi. Degenerate preconditioned
proximal point algorithms. SIAM J. Optim., 32(3):2376–2401, 2022.

Regina S Burachik, Alfredo N Iusem, and Benar Fux Svaiter. Enlargement of monotone operators
with applications to variational inequalities. Set-Valued Analysis, 5:159–180, 1997.

Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. J. Math. Imaging Vision, 40:120–145, 2011.

Kaihuang Chen, Defeng Sun, Yancheng Yuan, Guojun Zhang, and Xinyuan Zhao. HPR-
LP: An implementation of an HPR method for solving linear programming. arXiv preprint
arXiv:2408.12179, 2024.

Ying Cui, Xudong Li, Defeng Sun, and Kim-Chuan Toh. On the convergence properties of a ma-
jorized alternating direction method of multipliers for linearly constrained convex optimization
problems with coupled objective functions. J. Optim. Theory Appl., 169(3):1013–1041, 2016.

Damek Davis and Wotao Yin. Convergence rate analysis of several splitting schemes. In Splitting
Methods in Communication, Imaging, Science, and Engineering, pp. 115–163. Springer, 2016.

Qi Deng, Qing Feng, Wenzhi Gao, Dongdong Ge, Bo Jiang, Yuntian Jiang, Jingsong Liu, Tianhao
Liu, Chenyu Xue, Yinyu Ye, et al. An enhanced alternating direction method of multipliers-based
interior point method for linear and conic optimization. INFORMS J. Comput, 2024.

Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance pro-
files. Math. Program, 91:201–213, 2002.

Jonathan Eckstein and Dimitri P Bertsekas. On the Douglas—Rachford splitting method and the
proximal point algorithm for maximal monotone operators. Math. Program., 55(1):293–318,
1992.

Ernie Esser, Xiaoqun Zhang, and Tony F Chan. A general framework for a class of first order
primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci, 3(4):
1015–1046, 2010.

Maryam Fazel, Ting Kei Pong, Defeng Sun, and Paul Tseng. Hankel matrix rank minimization with
applications to system identification and realization. SIAM J. Matrix Anal. Appl., 34(3):946–977,
2013.

Daniel Gabay. Applications of the method of multipliers to variational inequalities. In Studies in
Mathematics and Its Applications, volume 15, pp. 299–331. Elsevier, 1983.

Dongdong Ge, Qi Huangfu, Zizhuo Wang, Jian Wu, and Yinyu Ye. Cardinal Optimizer (COPT)
User Guide. arXiv preprint arXiv:2208.14314, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. MIPLIB 2017:
data-driven compilation of the 6th mixed-integer programming library. Math. Program. Comput.,
13(3):443–490, 2021.

Gene H Golub and Charles F Van Loan. Matrix Computations. JHU press, 2013.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

Benjamin Halpern. Fixed points of nonexpanding maps. Bull. Am. Math. Soc., 73(6):957–961, 1967.

Deren Han, Defeng Sun, and Liwei Zhang. Linear rate convergence of the alternating direction
method of multipliers for convex composite programming. Math. Oper. Res., 43(2):622–637,
2018.

Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex Analysis and Minimization Algorithms
II: Advanced Theory and Bundle Methods, volume 306. Springer science & business media, 1993.

IBM. IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual, 1987.

Leonid Kantorovich. On the transfer of masses (in Russian). Doklady Akademii Nauk, 37(2):
227–229, 1942.

Felix Lieder. On the convergence rate of the Halpern-iteration. Optim. Lett., 15(2):405–418, 2021.

Tianyi Lin, Shiqian Ma, Yinyu Ye, and Shuzhong Zhang. An ADMM-based interior-point method
for large-scale linear programming. Optim. Methods Softw., 36(2-3):389–424, 2021.

Pierre-Louis Lions and Bertrand Mercier. Splitting algorithms for the sum of two nonlinear opera-
tors. SIAM J. Numer. Anal., 16(6):964–979, 1979.

Haihao Lu. First-order methods for linear programming. arXiv preprint arXiv:2403.14535, 2024.

Haihao Lu and Jinwen Yang. cuPDLP.jl: A GPU implementation of restarted primal-dual hybrid
gradient for linear programming in julia. arXiv preprint arXiv:2311.12180, 2023.

Haihao Lu and Jinwen Yang. Restarted Halpern PDHG for linear programming. arXiv preprint
arXiv:2407.16144, 2024.

Haihao Lu, Jinwen Yang, Haodong Hu, Qi Huangfu, Jinsong Liu, Tianhao Liu, Yinyu Ye, Chuwen
Zhang, and Dongdong Ge. cuPDLP-C: A strengthened implementation of cuPDLP for linear
programming by C language. arXiv preprint arXiv:2312.14832, 2023.

Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale
des Sciences, pp. 666–704, 1781.

Renato DC Monteiro and Chee-Khian Sim. Complexity of the relaxed Peaceman–Rachford splitting
method for the sum of two maximal strongly monotone operators. Computational Optimization
and Applications, 70:763–790, 2018.

Renato DC Monteiro and Benar F Svaiter. Iteration-complexity of block-decomposition algorithms
and the alternating direction method of multipliers. SIAM J. Optim., 23(1):475–507, 2013.

Brendan O’Donoghue. Operator splitting for a homogeneous embedding of the linear complemen-
tarity problem. SIAM J. Optim., 31(3):1999–2023, 2021.

Zdzisław Opial. Weak convergence of the sequence of successive approximations for nonexpansive
mappings. 1967.

Brendan O’donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic optimization via operator
splitting and homogeneous self-dual embedding. J. Optim. Theory Appl., 169:1042–1068, 2016.

Thomas Pock and Antonin Chambolle. Diagonal preconditioning for first order primal-dual al-
gorithms in convex optimization. In 2011 International Conference on Computer Vision, pp.
1762–1769. IEEE, 2011.

12

https://www.gurobi.com
https://www.gurobi.com

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

R Tyrrell Rockafellar. Convex Analysis, volume 18. Princeton University Press, 1970.

Daniel Ruiz. A scaling algorithm to equilibrate both rows and columns norms in matrices. Technical
report, Rutherford Appleton Laboratory, 2001.

Jörn Schrieber, Dominic Schuhmacher, and Carsten Gottschlich. Dotmark–a benchmark for discrete
optimal transport. IEEE Access, 5:271–282, 2016.

Li Shen and Shaohua Pan. Weighted iteration complexity of the sPADMM on the KKT residuals
for convex composite optimization. arXiv preprint arXiv:1611.03167, 2016.

Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. OSQP:
An operator splitting solver for quadratic programs. Math. Program. Comput., 12(4):637–672,
2020.

Defeng Sun, Yancheng Yuan, Guojun Zhang, and Xinyuan Zhao. Accelerating preconditioned
ADMM via degenerate proximal point mappings. arXiv preprint arXiv:2403.18618, 2024.

Yunhai Xiao, Liang Chen, and Donghui Li. A generalized alternating direction method of multipliers
with semi-proximal terms for convex composite conic programming. Math. Program. Comput.,
10:533–555, 2018.

MH Xu and Ting Wu. A class of linearized proximal alternating direction methods. J. Optim. Theory
Appl., 151:321–337, 2011.

Mingqiang Zhu and Tony Chan. An efficient primal-dual hybrid gradient algorithm for total variation
image restoration. UCLA Cam Report, 34(2), 2008.

A PROOFS FOR SECTION 2

A.1 PROOF OF PROPOSITION 2.2

Proof. Since T̂ is M-firmly nonexpansive, as stated in Sun et al. (2024, Proposition 2.3), we obtain

∥∥wk+1 − w∗∥∥2
M ≤

∥∥wk − w∗∥∥2
M − ρ(2− ρ)

∥∥wk − w̄k
∥∥2
M , ∀k ≥ 0, w∗ ∈ T −1(0), (22)

which, together with the iteration scheme (8), implies that

∥w̄k
a − wk

a∥M =

∥∥∥∥∥ 1

k + 1

k∑
t=0

(w̄t − wt)

∥∥∥∥∥
M

=

∥∥∥∥∥ 1

k + 1

k∑
t=0

(wt+1 − wt)

ρ

∥∥∥∥∥
M

=
1

ρ(k + 1)

∥∥(wk+1 − w0)
∥∥
M

≤ 1

ρ(k + 1)

∥∥(wk+1 − w∗)− (w0 − w∗)
∥∥
M

≤ 2

ρ(k + 1)

∥∥(w0 − w∗)
∥∥
M , ∀k ≥ 0, w∗ ∈ T −1(0).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

This concludes the proof of statement (a). Moreover, for any (w′, v′) ∈ gph(T), and by the defini-
tions of wk

a and w̄k
a in (9), we have, for any k ≥ 0,

⟨w̄k
a − w′,M(wk

a − w̄k
a)− v′⟩

= 1
k+1

∑k
t=0⟨w̄t − w′,M(wk

a − w̄k
a)− v′⟩

= 1
k+1

∑k
t=0

(
⟨w̄t − w′,M(wk

a − w̄k
a)−M(wt − w̄t)⟩+ ⟨w̄t − w′,M(wt − w̄t)− v′⟩

)
≥ 1

k+1

∑k
t=0

(
⟨w̄t − w′,M(wk

a − w̄k
a)−M(wt − w̄t)⟩

)
= 1

k+1

∑k
t=0

(
⟨w̄t − w̄k

a ,M(wk
a − w̄k

a)−M(wt − w̄t)⟩+ ⟨w̄k
a − w′,M(wk

a − w̄k
a)−M(wt − w̄t)⟩

)
= 1

k+1

∑k
t=0

(
⟨w̄t − w̄k

a , (w
k
a − w̄k

a)− (wt − w̄t)⟩M
)

= − 1
k+1

∑k
t=0

(
⟨w̄t − w̄k

a , (w
t − w̄t)⟩M

)
= −ε̄ka.

Next, we prove that ε̄ka ≥ 0 for all k ≥ 0 by contradiction. Suppose ε̄ka < 0 for some k ≥ 0. Then,
for any (w′, v′) ∈ gph(T), we have

⟨w̄k
a − w′,M(wk

a − w̄k
a)− v′⟩ > 0,

which, combined with the maximality of T , implies that (w̄k
a ,M(wk

a − w̄k
a)) ∈ gph(T). Taking

(w′, v′) = (w̄k
a ,M(wk

a − w̄k
a)), we obtain 0 ≥ −ε̄ka, which contradicts our assumption. Thus,

ε̄ka ≥ 0 for all k ≥ 0. Next, we establish an upper bound for ε̄ka for any k ≥ 0. Indeed, we have

ε̄ka = 1
k+1

∑k
t=0⟨wt − w̄t, w̄t − w̄k

a⟩M
= 1

k+1

∑k
t=0

(
⟨ 1ρ (w

t − wt+1), wt − 1
ρ (w

t − wt+1)− w̄k
a⟩M

)
= 1

k+1

∑k
t=0

(
− 1

ρ2 ∥wt − wt+1∥2M + 1
2ρ (∥w

t − wt+1∥2M + ∥wt − w̄k
a∥2M − ∥wt+1 − w̄k

a∥2M)
)

≤ 1
k+1

∑k
t=0

(
1
2ρ (∥w

t − w̄k
a∥2M − ∥wt+1 − w̄k

a∥2M)
)

= 1
2ρ(k+1)

(
∥w0 − w̄k

a∥2M − ∥wk+1 − w̄k
a∥2M

)
= 1

2ρ(k+1)

(
−∥w0 − wk+1∥2M − 2⟨wk+1 − w0, w0 − w̄k

a⟩M
)

≤ 1
2ρ(k+1)

(
−∥w0 − wk+1∥2M + 2∥wk+1 − w0∥M∥w0 − w̄k

a∥M
)
.

(23)
Using the convexity of ∥ · ∥M, we can obtain

∥w0 − wk
a∥M = ∥ 1

k + 1

k∑
t=0

(w0 − wt)∥M ≤ 1

k + 1

k∑
t=0

∥w0 − wt∥M ≤ 2∥w0 − w∗∥M.

Combining this with (23), we derive that for any k ≥ 0,

ε̄ka ≤ 1
2ρ(k+1)

(
−∥w0 − wk+1∥2M + 2∥wk+1 − w0∥M∥w0 − w∗∥M

)
≤ 1

2ρ(k+1)∥w
0 − w∗∥2M.

This completes the proof.

A.2 PROOF OF THEOREM 2.1

Proof. Suppose that M = CC∗ is a decomposition of M according to Bredies et al. (2022, Propo-
sition 2.3), where C : U → W. Since (M+ T)−1 is L-Lipschitz continuous and ∥C∗w∥ = ∥w∥M
for every w ∈ H, we have, for all w′ ∈ H and w∗ ∈ T −1(0),

∥T̂ w′ − T̂ w∗∥ =
∥∥(M+ T)−1CC∗w′ − (M+ T)−1CC∗w∗∥∥ ≤ L∥C∥∥w′ − w∗∥M,

which, together with (22), implies that

∥w̄k − w∗∥ = ∥T̂ wk − w∗∥ ≤ L∥C∥∥wk − w∗∥M ≤ L∥C∥∥w0 − w∗∥M.

Thus, both sequences {w̄k} and {w̄k
a} are bounded. According to Proposition 2.2 and the maximal-

ity of T , any cluster point of {w̄k
a} belongs to T −1(0).

To establish the uniqueness of cluster points, we define two shadow sequences as follows:

uk := C∗wk and uk
a :=

1

k + 1

k∑
t=0

ut, ∀k ≥ 0. (24)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Through straightforward calculations, we obtain

uk+1 = F̂ρu
k, ∀k ≥ 0,

where F̂ρ := (1− ρ)I + ρ(C∗(M+ T)−1C) with ρ ∈ (0, 2] is a nonexpansive operator, according
to Sun et al. (2024, Proposition 2.5). By Baillon’s nonlinear ergodic theorem (Baillon, 1975) and
(Bauschke & Combettes, 2017, Example 5.38), the sequence {uk

a} converges to a point in Fix(F̂ρ),
where Fix(F̂ρ) represents the set of fixed points of the nonexpansive operator F̂ρ. Given the equiv-
alence between Fix(F̂ρ) and C∗T −1(0) as stated in Sun et al. (2024, Proposition 2.5), we conclude
that there exists w∗

a ∈ T −1(0) such that

∥uk
a − C∗w∗

a∥ → 0.

Therefore, by the definition of {uk
a} in (24), we have

∥wk
a − w∗

a∥M =

∥∥∥∥∥ 1

k + 1

k∑
t=0

C∗wt − C∗w∗
a

∥∥∥∥∥ = ∥uk
a − C∗w∗

a∥ → 0,

which, together with part (a) of Proposition 2.2, implies that

∥w̄k
a − w∗

a∥2M = ∥w̄k
a − wk

a∥2M + ∥wk
a − w∗

a∥2M + 2⟨w̄k
a − wk

a , w
k − w∗

a⟩M → 0. (25)

Since the sequence {w̄k
a} is bounded, it must have at least one cluster point. Assume a subsequence

{w̄ki
a } converges to w∗. Suppose ∥w∗ − w∗

a∥M > 0. By an Opial-type argument (Opial, 1967,
Lemma 1), we have

lim inf
i→∞

∥w̄ki
a − w∗∥M < lim inf

i→∞
∥w̄ki

a − w∗
a∥M,

which, combined with (25), implies lim inf
i→∞

∥w̄ki
a − w∗∥M < 0, a contradiction to the semi-positive

definiteness of M. Hence, ∥w∗ − w∗
a∥M = 0. It follows that

w∗ = (M+ T)−1Mw∗ = (M+ T)−1Mw∗
a = w∗

a.

Taking any other cluster point w∗∗, we can similarly show that w∗∗ = w∗
a. Therefore, the cluster

point is unique, and the sequence {w̄k
a} converges to w∗

a.

A.3 PROOF OF LEMMA 2.1

Proof. From the optimality conditions of the subproblems in Algorithm 2, we have, for any t ≥ 0,{
f2(z) ≥ f2(z̄

t) + ⟨−B∗
2 x̄

t − T2(z̄t − zt), z − z̄t⟩, ∀z ∈ Z,
f1(y) ≥ f1(ȳ

t) + ⟨−B∗
1(x̄

t + σ(B1ȳ
t +B2z̄

t − c))− T1(ȳt − yt), y − ȳt⟩, ∀y ∈ Y.

Summing these from t = 0 to k, and dividing by k + 1, we obtain
f2(z) ≥ 1

k+1

∑k
t=0 f2(z̄

t) + 1
k+1

∑k
t=0⟨−B∗

2 x̄
t − T2(z̄t − zt), z − z̄t⟩, ∀z ∈ Z,

f1(y) ≥ 1
k+1

∑k
t=0 f1(ȳ

t) + 1
k+1

∑k
t=0⟨−B∗

1(x̄
t + σ(B1ȳ

t +B2z̄
t − c))

−T1(ȳt − yt), y − ȳt⟩, ∀y ∈ Y.

By the convexity of f2, we have

f2(z) ≥ f2(z̄
k
a) +

1
k+1

∑k
t=0⟨−B∗

2 x̄
t − T2(z̄t − zt), z − z̄t⟩, ∀z ∈ Z

= f2(z̄
k
a) +

1
k+1

∑k
t=0⟨−B∗

2 x̄
t − T2(z̄t − zt), z − z̄ka⟩ − ε̄kz , ∀z ∈ Z,

where

ε̄kz :=
1

k + 1

k∑
t=0

⟨−B∗
2 x̄

t − T2(z̄t − zt), z̄t − z̄ka⟩

is non-negative by substituting z = z̄ka in the first inequality. Hence, we have

−(B∗
2 x̄

k
a + T2(z̄ka − zka)) =

1

k + 1

k∑
t=0

−(B∗
2 x̄

t + T2(z̄t − zt)) ∈ ∂ε̄kzf2(z̄
k
a), ∀k ≥ 0.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Similarly, we obtain

−B∗
1(x̄

k
a + σ(B1ȳ

k
a +B2z̄

k
a − c))− T1(ȳka − yka) ∈ ∂ε̄kyf1(ȳ

k
a), ∀k ≥ 0,

where

ε̄ky :=
1

k + 1

k∑
t=0

⟨−B∗
1(x̄

t + σ(B1ȳ
t +B2z̄

t − c))− T1(ȳt − yt), ȳt − ȳka⟩ ≥ 0.

Now, we show the upper bound of ε̄kz + ε̄ky . According to definitions of ε̄kz and ε̄ky in (11), we have

ε̄kz + ε̄ky
= 1

k+1

∑k
t=0

(
⟨−B∗

2 x̄
t − T2(z̄t − zt), z̄t − z̄ka⟩+ ⟨−B∗

1(x̄
t + σ(B1ȳ

t +B2z̄
t − c))− T1(ȳt − yt), ȳt − ȳka⟩

)
= 1

k+1

∑k
t=0

(
⟨M(wt − w̄t), w̄t − w̄k

a⟩ − ⟨B∗
1 x̄

t, yt − ȳka⟩ − ⟨B∗
2 x̄

t, zt − z̄ka⟩ − ⟨c−B1ȳ
t −B2z̄

t, x̄t − x̄k
a⟩
)

= 1
k+1

∑k
t=0

(
⟨M(wt − w̄t), w̄t − w̄k

a⟩
)
.

Thus, by the definition of ε̄ka in Proposition 2.2, and using the equivalence between the pADMM
and the dPPM in Proposition 2.1, we can derive

ε̄kz + ε̄ky = ε̄ka ≤ 1

2ρ(k + 1)
∥w0 − w∗∥2M.

This completes the proof.

A.4 PROOF OF THEOREM 2.2

Proof. According to Propositions 2.1 and 2.2, we have

∥w̄k
a − wk

a∥2M ≤ 4R2
0

ρ2(k + 1)2
, ∀k ≥ 0.

By the definition of M in (7), this can be rewritten as

∥ȳka − yka∥2T1
+

1

σ
∥σB1(ȳ

k
a − yka) + (x̄k

a − xk
a)∥2 + ∥z̄ka − zka∥2T2

≤ 4R2
0

ρ2(k + 1)2
, ∀k ≥ 0. (26)

From Step 2 of Algorithm 2, we can deduce that for any k ≥ 0,

∥σB1(ȳ
k
a − yka) + (x̄k

a − xk
a)∥ = ∥σB1(ȳ

k
a − yka) + σ(B1y

k
a +B2z̄

k
a − c)∥

= σ∥B1ȳ
k
a +B2z̄

k
a − c∥,

which, together with (26), yields that

∥B1ȳ
k
a +B2z̄

k
a − c∥ ≤ 2R0√

σρ(k + 1)
, ∀k ≥ 0. (27)

Furthermore, according to the Lemma 2.1, we have for k ≥ 0,{
−B∗

2 x̄
k
a − T2(z̄ka − zka) ∈ ∂ε̄kzf2(z̄

k
a),

−B∗
1(x̄

k
a + σ(B1ȳ

k
a +B2z̄

k
a − c))− T1(ȳka − yka) ∈ ∂ε̄kyf1(ȳ

k
a),

which, together with (26) and (27), implies

dist
(
0, ∂ε̄kzf2(z̄

k
a) +B∗

2 x̄
k
a

)
≤ ∥T2(z̄ka − zka)∥ ≤ ∥

√
T2∥∥(z̄ka − zka)∥T2 ≤ ∥

√
T2∥

2R0

ρ(k + 1)
(28)

and

dist
(
0, ∂ε̄kyf1(ȳ

k
a) +B∗

1 x̄
k
a

)
≤ σ∥B∗

1∥∥(B1ȳ
k
a +B2z̄

k
a − c)∥+ ∥T1(ȳka − yka)∥

≤
(

σ∥B∗
1∥√
σ

+ ∥
√
T1∥
)

2R0

ρ(k+1) .
(29)

Thus, combining (27), (28), (29) and Lemma 2.1, we derive the iteration complexity bound in (13).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We now estimate the ergodic iteration complexity results for the objective error. From the KKT
conditions in (5), we have, for any k ≥ 0,

f1(ȳ
k
a)− f1(y

∗) ≥ ⟨−B∗
1x

∗, ȳka − y∗⟩, f2(z̄
k
a)− f2(z

∗) ≥ ⟨−B∗
2x

∗, z̄ka − z∗⟩.

Thus, it follows from (27) that for all k ≥ 0,

h(ȳka , z̄
k
a) ≥ ⟨B1ȳ

k
a +B2z̄

k
a − c,−x∗⟩

≥ −∥x∗∥∥B1ȳ
k
a +B2z̄

k
a − c∥

≥ − 2R0∥x∗∥√
σρ(k + 1)

.

For the upper bound of the objective error, from Sun et al. (2024, Lemma 3.6), we first have the
following upper bounds:

h(ȳk, z̄k) ≤
〈
σB1(y

∗ − ȳk)− x̄k, (B1ȳ
k +B2z̄

k − c)
〉

+
〈
y∗ − ȳk, T1(ȳk − yk)

〉
+
〈
z∗ − z̄k, T2(z̄k − zk)

〉
.

(30)

Note that from Step 4 of Algorithm 2, we have for any k ≥ 0,〈
y∗ − ȳk, T1(ȳk − yk)

〉
=

〈
y∗ − (yk + yk+1−yk

ρ), T1(y
k+1−yk

ρ)
〉

= 1
2ρ (∥y

k − y∗∥2T1
− ∥yk+1 − y∗∥2T1

) + ρ−2
2ρ2 ∥yk+1 − yk∥2T1

≤ 1
2ρ (∥y

k − y∗∥2T1
− ∥yk+1 − y∗∥2T1

).

(31)

Similarly, we also have〈
z∗ − z̄k, T2(z̄k − zk)

〉
≤ 1

2ρ (∥z
k − z∗∥2T1

− ∥zk+1 − z∗∥2T1
), ∀k ≥ 0. (32)

Additionally, define
∆k := xk + σB1y

k, ∀k ≥ 0.

From Step 4 of Algorithm 2, we can derive that〈
σB1(y

∗ − ȳk)− x̄k, (B1ȳ
k +B2z̄

k − c)
〉

=
〈
σB1y

∗, (B1ȳ
k +B2z̄

k − c)
〉
−
〈
x̄k + σB1ȳ

k, (B1ȳ
k +B2z̄

k − c)
〉

=
〈
σB1y

∗, (B1ȳ
k +B2z̄

k − c)
〉
−
〈
∆k + ∆k+1−∆k

ρ , ∆k+1−∆k

ρ

〉
=

〈
σB1y

∗, (B1ȳ
k +B2z̄

k − c)
〉
− 1

2ρ (∥∆k+1∥2 − ∥∆k∥2) + ρ−2
2ρ2 ∥∆k+1∥2

≤
〈
σB1y

∗, (B1ȳ
k +B2z̄

k − c)
〉
− 1

2ρ (∥∆k+1∥2 − ∥∆k∥2), ∀k ≥ 0.

(33)

Thus, combing with (30), (31), (32), and (33), we conclude that for all k ≥ 0,

h(ȳk, z̄k) ≤ 1
2ρ (∥y

k − y∗∥2T1
− ∥yk+1 − y∗∥2T1

) + 1
2ρ (∥z

k − z∗∥2T1
− ∥zk+1 − z∗∥2T1

)

+
〈
σB1y

∗, (B1ȳ
k +B2z̄

k − c)
〉
− 1

2ρ (∥∆k+1∥2 − ∥∆k∥2).

It follows from the convexity of h and (27) that for any k ≥ 0,

h(ȳka , z̄
k
a) ≤ 1

k+1

∑k
t=0 h(ȳ

t, z̄t)

≤ 1
2ρ(k+1)

(
∥y0 − y∗∥2T1

+ ∥z0 − z∗∥2T2

)
+
〈
σB1y

∗, (B1ȳ
k
a +B2z̄

k
a − c)

〉
+ 1

2ρ(k+1)∥∆0∥2

≤ R2
0

2ρ(k+1) +
√
σ∥B1y

∗∥ 2R0

ρ(k+1) +
1

2ρ(k+1)∥x
0 + σB1y

0∥2.

This completes the proof.

B THE ERGODIC ITERATION COMPLEXITY OF PADMM FOR SOLVING LP

In this section, without loss of generality, we consider the LP problem without inequality constraints
(i.e., m2 = 0). Inequality constraints can be easily converted into equality constraints by introducing
slack variables. The KKT system of the LP problem (2) is

0 ∈ Ax∗ − b, 0 ∈ z∗ + ∂δC (x∗) , A∗y∗ + z∗ − c = 0. (34)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Let f1(y) = ⟨b, y⟩, f2(z) = δ∗C(−z), B1 = A∗, B2 = In, T1 = σ(λ1(AA∗)Im − AA∗), T2 = 0.
Then, for LP we define

MLP =

 σλ1(AA∗)Im 0 A∗

0 0 0
A 0 σ−1In

 ,

and
hLP (ȳka , z̄

k
a) := ⟨b, yka⟩+ δ∗C(−zka)− (⟨b, y∗⟩+ δ∗C(−z∗)), ∀k ≥ 0,

where (y∗, z∗) is a solution to the problem (2). Thus, the ergodic complexity of pADMM for solving
the LP problem (2) is presented in the following corollary.

Corollary B.1. Suppose the solution set to the KKT system (34) is nonempty. Let {(ȳka , z̄ka , x̄k
a)} be

the ergodic sequence generated by Algorithm 2 with T1 = σ(λ1(AA∗)Im −AA∗), T2 = 0, and ρ ∈
(0, 2]. Let w∗ = (y∗, z∗, x∗) be a solution to the KKT system (34), and define R0 = ∥w0−w∗∥MLP .
For all k ≥ 0, the following ergodic iteration complexity bound holds: ∥Ax̄k

a − b∥+ ∥A∗ȳka + z̄ka − c∥ ≤

(
2σ
√
λ1(AA∗) + 1√

σ

)
2R0

ρ(k + 1)
,

−z̄ka ∈ ∂ε̄kz δC(x̄
k
a),

where ∂ε̄kz δC(x̄
k
a) = {z ∈ Rn | ⟨z, x′ − x̄k

a⟩ ≤ ε̄kz , ∀x′ ∈ C} and ε̄kz ≤ 1
2ρ(k+1)R

2
0. Moreover,(

− 1√
σ
∥x∗∥

)
2R0

ρ(k + 1)
≤ h(ȳka , z̄

k
a) ≤

(
R0 + 4

√
σ∥A∗y∗∥

) R0

2ρ(k + 1)
+

∥x0 + σA∗y0∥2

2ρ(k + 1)
.

Proof. Furthermore, since f1(y) = ⟨b, y⟩ for any y ∈ Rm, it follows from (Hiriart-Urruty &
Lemaréchal, 1993, Proposition 1.3.1) that, for any ε ≥ 0,

∂εf1(y) = b. (35)

On the other hand, from (10) and T2 = 0, we have

x̄k
a ∈ ∂ε̄kz δ

∗
C(−z̄ka),

which, by (Hiriart-Urruty & Lemaréchal, 1993, Proposition 1.2.1), is equivalent to

−z̄ka ∈ ∂ε̄kz δC(x̄
k
a). (36)

Combing (35),(36), and Theorem 2.2, we complete the proof.

C THE NON-ERGODIC ITERATION COMPLEXITY OF THE PADMM

To establish the non-ergodic iteration complexity of the pADMM, we first establish the non-ergodic
iteration complexity of the dPPM.

Proposition C.1. Assume that T −1(0) is nonempty and ρ ∈ (0, 2), then the sequences {wk} and
{w̄k} generated by the dPPM scheme (8) satisfy∥∥wk − w̄k

∥∥2
M ≤ 1

ρ(2− ρ)(k + 1)

∥∥w0 − w∗∥∥2
M , ∀k ≥ 0, w∗ ∈ T −1(0).

Furthermore, ∥wt − w̄t∥2M = o(1/(k + 1)) as k → ∞.

Proof. Since T̂ is M-firmly nonexpansive in Sun et al. (2024, Proposition 2.3), we can obtain∥∥wk+1 − w∗∥∥2
M ≤

∥∥wk − w∗∥∥2
M − ρ(2− ρ)

∥∥wk − w̄k
∥∥2
M , ∀k ≥ 0, w∗ ∈ T −1(0). (37)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Summing this inequality from 0 to k, we have
k∑

t=0

ρ(2− ρ)∥wt − w̄t∥2M ≤ ∥w0 − w∗∥2M − ∥wk+1 − w∗∥2M ≤ ∥w0 − w∗∥2M, (38)

which implies that ∥wt − w̄t∥2M = o(1/(k + 1)) as k → ∞. Now, we claim that the sequence
{∥wt − w̄t∥M} is monotonically nonincreasing. Indeed,

∥wt+1 − w̄t+1∥2M
= ∥(wt+1 − w̄t+1)− (wt − w̄t)∥2M + ∥(wt − w̄t)∥2M

+2⟨(wt+1 − w̄t+1)− (wt − w̄t), (wt − w̄t)⟩M
= ∥(wt+1 − w̄t+1)− (wt − w̄t)∥2M + ∥(wt − w̄t)∥2M

− 2
ρ ⟨(w

t+1 − w̄t+1)− (wt − w̄t), (wt+1 − wt)⟩M.

(39)

Since
⟨(wt+1 − w̄t+1)− (wt − w̄t), (wt+1 − wt)⟩M

= ⟨(wt+1 − w̄t+1)− (wt − w̄t), (wt+1 − w̄t+1)− (wt − w̄t)⟩M
+⟨(wt+1 − w̄t+1)− (wt − w̄t), w̄t+1 − w̄t⟩M

= ∥(wt+1 − w̄t+1)− (wt − w̄t)∥2M + ⟨(wt+1 − w̄t+1)− (wt − w̄t), w̄t+1 − w̄t⟩M,

we can obtain from (39) that

∥wt+1 − w̄t+1∥2M
= ∥wt − w̄t∥2M − 2−ρ

ρ ∥(wt+1 − w̄t+1)− (wt − w̄t)∥2M
− 2

ρ ⟨(w
t+1 − w̄t+1)− (wt − w̄t), w̄t+1 − w̄t⟩M.

(40)

By using the monotonicity of T , we have

⟨(wt+1 − w̄t+1)− (wt − w̄t), w̄t+1 − w̄t⟩M ≥ 0.

Hence,
∥wt+1 − w̄t+1∥2M ≤ ∥wt − w̄t∥2M,

which together with (38) implies

∥wk − w̄k∥2M ≤ 1

ρ(2− ρ)(k + 1)
∥w0 − w∗∥2M, ∀k ≥ 0.

This completes the proof.

To analyze the iteration complexity of Algorithm 2, we begin by considering the residual mapping
associated with the KKT system (5), as introduced in Han et al. (2018):

R(w) =

(
y − Proxf1(y −B∗

1x)
z − Proxf2(z −B∗

2x)
c−B1y −B2z

)
, ∀w = (y, z, x) ∈ W. (41)

It is clear that w∗ = (y∗, z∗, x∗) satisfies the KKT system (5) if and only if R(w∗) = 0. Now, we
are ready to present the non-ergodic iteration complexity for Algorithm 2.
Theorem C.1. Suppose that Assumptions 2.1 and 2.2 hold. Let {(ȳk, z̄k, x̄k)} be the sequence
generated by Algorithm 2 with ρ ∈ (0, 2), and let w∗ = (y∗, z∗, x∗) be the limit point of the
sequence {(ȳk, z̄k, x̄k)} and R0 = ∥w0 − w∗∥M. For all k ≥ 0, we have the following iteration
complexity bounds:

∥R(w̄k)∥ ≤
(
σ∥B∗

1∥+ 1√
σ

+ ∥
√

T2∥+ ∥
√
T1∥
)

R0√
ρ(2− ρ)(k + 1)

(42)

and (
−1√
σ
∥x∗∥

)
R0√

ρ(2−ρ)(k+1)
≤ h(ȳk, z̄k) ≤

(
3R0 +

1√
σ
∥x∗∥

)
R0√

ρ(2−ρ)(k+1)
.

Furthermore, as k → ∞,

∥R(w̄k)∥ ≤
(
σ∥B∗

1∥+ 1√
σ

+ ∥
√

T2∥+ ∥
√
T1∥
)
o(

1√
k + 1

),

and |h(ȳk, z̄k)| = o(1√
k+1

).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof. We first estimate the convergence rate of R(w̄k) for any k ≥ 0. According to Proposition
C.1, we have ∥∥wk − w̄k

∥∥2
M ≤ R2

0

ρ(2− ρ)(k + 1)
, ∀k ≥ 0.

By the definition of M in (7), this can be rewritten as

∥ȳk − yk∥2T1
+

1

σ
∥σB1(ȳ

k − yk)+ (x̄k −xk)∥2+ ∥z̄k − zk∥2T2
≤ R2

0

ρ(2− ρ)(k + 1)
,∀k ≥ 0. (43)

Due to Step 2 in Algorithm 2, we can deduce that for any k ≥ 0,

∥σB1(ȳ
k − yk) + (x̄k − xk)∥ = ∥σB1(ȳ

k − yk) + σ(B1y
k +B2z̄

k − c)∥
= σ∥B1ȳ

k +B2z̄
k − c∥,

which together with (43) yields that

∥B1ȳ
k +B2z̄

k − c∥ ≤ R0√
σρ(2− ρ)(k + 1)

, ∀k ≥ 0. (44)

Moreover, from the optimality conditions of the subproblems in Algorithm 2, we have for any k ≥ 0,{
z̄k = Proxf2(z̄

k −B∗
2 x̄

k − T2(z̄k − zk)),
ȳk = Proxf1(ȳ

k −B∗
1(x̄

k + σ(B1ȳ
k +B2z̄

k − c))− T1(ȳk − yk)),
(45)

which together with (43) yields that for any k ≥ 0,

∥z̄k − Proxf2(z̄
k −B∗

2 x̄
k)∥

= ∥Proxf2(z̄k −B∗
2 x̄

k − T2(z̄k − zk))− Proxf2(z̄
k −B∗

2 x̄
k)∥

≤ ∥T2(z̄k − zk)∥
≤ ∥

√
T2∥∥z̄k − zk∥T2

≤ ∥
√
T2∥ R0√

ρ(2−ρ)(k+1)
.

(46)

Similarly, from (43), (44), and (45), we also have for any k ≥ 0,

∥ȳk − Proxf1(ȳ
k −B∗

1 x̄
k)∥

≤ ∥B∗
1σ(B1ȳ

k +B2z̄
k − c) + T1(ȳk − yk)∥

≤ σ∥B∗
1∥∥B1ȳ

k +B2z̄
k − c∥+ ∥T1(ȳk − yk)∥

≤ (
√
σ∥B∗

1∥+ ∥
√
T1∥) R0√

ρ(2−ρ)(k+1)
.

(47)

Therefore, by (44), (46), and (47), we can obtain that for any k ≥ 0,

∥R(w̄k)∥ ≤
√(

1
σ + ∥

√
T2∥2 + (

√
σ∥B∗

1∥+ ∥
√
T1∥)2

)
R0√

ρ(2−ρ)(k+1)

≤
(

σ∥B∗
1∥+1√
σ

+ ∥
√
T2∥+ ∥

√
T1∥
)

R0√
ρ(2−ρ)(k+1)

.
(48)

Now, we estimate the complexity result concerning the objective error. For the lower bound of the
objective error, from Sun et al. (2024, Lemma 3.6) and (44), we have for all k ≥ 0,

h(ȳk, z̄k) ≥ ⟨B1ȳ
k +B2z̄

k − c,−x∗⟩
≥ −∥x∗∥∥B1ȳ

k +B2z̄
k − c∥

≥ − R0∥x∗∥√
σρ(2− ρ)(k + 1)

.

On the other hand, from the (22), we can obtain

∥wk+1 − w∗∥M ≤ ∥wk − w∗∥M ≤ ... ≤ R0, ∀k ≥ 0.

It follows from the M-nonexpansiveness of T̂ by Sun et al. (2024, Proposition 2.3) that

∥w̄k − w∗∥M = ∥T̂ wk − w∗∥M ≤ ∥wk − w∗∥M ≤ R0, ∀k ≥ 0,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

which implies

∥ȳk − y∗∥2T1
+

1

σ
∥σB1(ȳ

k − y∗) + (x̄k − x∗)∥2 + ∥z̄k − z∗∥2T2
≤ R2

0, ∀k ≥ 0.

This inequality together with (30), (43), and (44) yields that for all k ≥ 0,

h(ȳk, z̄k) ≤ (∥σB1(ȳ
k − y∗) + (x̄k − x∗)∥+ ∥x∗∥)∥B1ȳ

k +B2z̄
k − c∥

+∥y∗ − ȳk∥T1∥ȳk − yk∥T1 + ∥z∗ − z̄k∥T2∥z̄k − zk∥T2

≤ (
√
σR0 + ∥x∗∥) R0√

σρ(2−ρ)(k+1)
+

2R2
0√

ρ(2−ρ)(k+1)

=
(
3R0 +

1√
σ
∥x∗∥

)
R0√

ρ(2−ρ)(k+1)
.

We now establish the complexity results as k → ∞. According to Proposition C.1, we have

∥∥wk − w̄k
∥∥2
M = o

(
1

k + 1

)
.

Following a similar approach as in the previous proof, we obtain

∥R(w̄k)∥ ≤
(
σ∥B∗

1∥+ 1√
σ

+ ∥
√
T2∥+ ∥

√
T1∥
)
o

(
1√
k + 1

)
,

and

|h(ȳk, z̄k)| = o

(
1√
k + 1

)
.

This completes the proof.

D COMPARISON OF THE ITERATION COMPLEXITY

In addition to the pADMM in Algorithm 2, another widely used variant of the semi-proximal
ADMM for solving COPs, as introduced by Fazel et al. (2013), is presented in Algorithm 4.

Algorithm 4 A semi-proximal ADMM (sPADMM) for solving COP (3)

1: Input: Let T1 and T2 be two self-adjoint, positive semidefinite operators on Y and Z, respec-
tively. Select an initial point (y0, z0, x0) ∈ dom(f1)× dom(f2)×X. Set the parameters σ > 0

and τ ∈ (0, 1+
√
5

2).
2: for k = 0, 1, ..., do
3: Step 1. yk+1 = argmin

y∈Y

{
Lσ

(
y, zk;xk

)
+ 1

2∥y − yk∥2T1

}
;

4: Step 2. zk+1 = argmin
z∈Z

{
Lσ

(
yk+1, z;xk

)
+ 1

2∥z − zk∥2T2

}
;

5: Step 3. xk+1 = xk + τσ(B1y
k+1 +B2z

k+1 − c);

Unlike Algorithm 4, the pADMM in Algorithm 2 can be reformulated as a dPPM, facilitating the
analysis of its ergodic convergence properties. We summarize some iteration complexity results of
these two algorithms in Table 2.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 2: The iteration complexity result of pADMM/sPADMM

Paper Algorithm Proximal terms ρ τ
Feasibility

violation

Objective

error

KKT

residual
Type

Davis & Yin (2016) GADMM T1 = 0, T2 = 0 (0, 2) 1 o(1/
√
k) o(1/

√
k) - non-ergodic

Cui et al. (2016)
(majorized)

sPADMM
T1 ⪰ 0, T2 ⪰ 0a 1 (0, 1+

√
5

2) o(1/
√
k) - o(1/

√
k) non-ergodic

Ours pADMM T1 ⪰ 0, T2 ⪰ 0 (0, 2) 1 o(1/
√
k) o(1/

√
k) o(1/

√
k) non-ergodic

Monteiro & Svaiter (2013) ADMM T1 = 0, T2 = 0 1 1 O(1/k) - Oε(1/k)
b ergodic

Davis & Yin (2016) GADMM T1 = 0, T2 = 0 (0, 2] 1 O(1/k) O(1/k) - ergodic

Cui et al. (2016)
(majorized)

sPADMM
T1 ⪰ 0, T2 ⪰ 0 1 (0, 1+

√
5

2) O(1/k) O(1/k) - ergodic

Adona et al. (2019) GADMM T1 ⪰ 0, T2 ⪰ 0 (0, 2] 1 O(1/k) - Oε(1/k) ergodic

Shen & Pan (2016) sPADMM T1 ⪰ 0, T2 ⪰ 0 1 (0, 1+
√
5

2) O(1/k) - Oε(1/k) ergodic

Ours pADMM T1 ⪰ 0, T2 ⪰ 0 (0, 2] 1 O(1/k) O(1/k) Oε(1/k) ergodic
a T1 ⪰ 0 denotes that T1 is positive semi-definite.
b Oε(1/k) of the KKT residual: an O(1/k) iteration complexity of the KKT residual based on ε subdifferntial in (13).

Remark D.1. Note that pADMM with T1 = 0, T2 = 0, and ρ = 2 is equivalent to GADMM.
In comparison to the results of Davis & Yin (2016), our work not only establishes both ergodic
and non-ergodic iteration complexities for the KKT residual—an aspect not addressed in Davis &
Yin (2016)—but also extends the analysis to incorporate general T1 and T2. This generalization is
particularly important, as suitable choices of T1 and T2 can simplify the solution of subproblems in
solving key convex optimization problems, such as general LP. Furthermore, the GADMM algorithm
with semi-proximal terms studied in (Adona et al., 2019) differs from pADMM due to the way the
proximal terms are incorporated.

To further discuss the relationship between the KKT residual based on ε-subdifferential in (13) and
the KKT residual defined in (41), we first present the following lemma to highlight the difference
between ∂εf(·) and Proxf (·) for a proper closed convex function f .

Lemma D.1. Let f : X → (−∞,+∞] be a proper closed convex function, and let x̄ ∈ dom(f).
Given ε ≥ 0, if v ∈ ∂εf(x̄), then

∥x̄− Proxf (x̄+ v)∥2 ≤ ε. (49)

Proof. For notational convenience, denote Proxf (x̄ + v) by x̃. According to the definition of
Proxf (x̄+ v), we have

0 ∈ ∂f(x̃) + (x̃− (x̄+ v)),

which implies
f(x) ≥ f(x̃) + ⟨x̄+ v − x̃, x− x̃⟩,∀x ∈ X.

It follows that
f(x̄) ≥ f(x̃) + ⟨x̄+ v − x̃, x̄− x̃⟩,

= f(x̃) + ∥x̄− x̃∥2 + ⟨v, x̄− x̃⟩. (50)

In addition, according to assumption that v ∈ ∂εf(x̄), we have

f(x̃) ≥ f(x̄) + ⟨v, x̃− x̄⟩ − ε. (51)

Summing (50) and (51), we have
∥x̃− x̄∥2 ≤ ε.

This completes the proof.

Remark D.2. The following strongly convex quadratic function demonstrates that the inequality in
Lemma D.1 is tight up to a constant factor of 2:

f(x) :=
1

2
⟨x, x⟩+ ⟨b, x⟩,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

where b ∈ Rn. As shown in Hiriart-Urruty & Lemaréchal (1993, Example 1.2.2), it follows that

∂εf(x) =

{
x+ b+ u :

1

2
⟨u, u⟩ ≤ ε

}
.

Consider x̄ ∈ dom(f). For any ε ≥ 0, we take the ε-subgradient v of f(·) at x̄ as follows:

v = x̄+ b+ u,

where 1
2∥u∥

2 = ε. Through direct calculation, we obtain

∥x̄− Proxf (x̄+ v)∥2 = ∥x̄− x̄− u

2
∥2 =

1

4
∥u∥2 =

1

2
ε.

This demonstrates that the inequality in (49) is tight, up to the constant factor of 2.

Now, we are ready to give the iteration complexity of the ergodic sequence {w̄k
a} generated by

Algorithm 2 in the following theorem.

Theorem D.1. Suppose that Assumptions 2.1 and 2.2 hold. Let {(ȳka , z̄ka , x̄k
a)} be the sequence

generated by Algorithm 2 with ρ ∈ (0, 2]. Let w∗ = (y∗, z∗, x∗) be a solution to the KKT system
(5), and R0 = ∥w0 − w∗∥M. For all k ≥ 0, we have the following iteration complexity bound:

∥R(w̄k
a)∥ ≤ 2R0√

2ρ(k + 1)
+

(
σ∥B∗

1∥+ 1√
σ

+ ∥
√
T2∥+ ∥

√
T1∥
)

2R0

ρ(k + 1)
. (52)

Proof. According to the Lemma 2.1, we have for k ≥ 0,{
−B∗

2 x̄
k
a − T2(z̄ka − zka) ∈ ∂ε̄kzf2(z̄

k
a),

−B∗
1(x̄

k
a + σ(B1ȳ

k
a +B2z̄

k
a − c))− T1(ȳka − yka) ∈ ∂ε̄kyf1(ȳ

k
a),

which together with Lemma D.1 implies that{
∥z̄ka − Proxf2(z̄

k
a −B∗

2 x̄
k
a − T2(z̄ka − zka))∥2 ≤ ε̄kz ,

∥ȳka − Proxf1(ȳ
k
a −B∗

1(x̄
k
a + σ(B1ȳ

k
a +B2z̄

k
a − c))− T1(ȳka − yka)∥2 ≤ ε̄ky .

(53)

It follows that for any k ≥ 0,

∥z̄ka − Proxf2(z̄
k
a −B∗

2 x̄
k
a)∥

≤ ∥z̄ka − Proxf2(z̄
k
a −B∗

2 x̄
k
a − T2(z̄ka − zka))∥

+∥Proxf2(z̄ka −B∗
2 x̄

k
a − T2(z̄ka − zka))− Proxf2(z̄

k
a −B∗

2 x̄
k
a)∥

≤
√
ε̄kz + ∥T2(z̄ka − zka)∥.

(54)

Hence, from (12) and (26), we can obtain

∥z̄ka − Proxf2(z̄
k
a −B∗

2 x̄
k
a)∥ ≤ R0√

2ρ(k+1)
+ ∥

√
T2∥ 2R0

ρ(k+1) . (55)

Similarly, from (12), (26), (27), and (53), we also have for any k ≥ 0,

∥ȳka − Proxf1(ȳ
k
a −B∗

1 x̄
k
a)∥

≤
√
ε̄ky + ∥B∗

1σ(B1ȳ
k
a +B2z̄

k
a − c) + T1(ȳka − yka)∥

≤
√
ε̄ky + σ∥B∗

1∥∥B1ȳ
k
a +B2z̄

k
a − c∥+ ∥T1(ȳka − yka)∥

≤ R0√
2ρ(k+1)

+ (
√
σ∥B∗

1∥+ ∥
√
T1∥) 2R0

ρ(k+1) .

(56)

Therefore, by (27), (55), and (56), we can obtain that for any k ≥ 0,

∥R(w̄k
a)∥ ≤ 2R0√

2ρ(k+1)
+ (1√

σ
+

√
σ∥B∗

1∥+ ∥
√
T1∥+ ∥

√
T2∥) 2R0

ρ(k+1)

≤ 2R0√
2ρ(k+1)

+
(

σ∥B∗
1∥+1√
σ

+ ∥
√
T2∥+ ∥

√
T1∥
)

2R0

ρ(k+1) .
(57)

This completes the proof.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E UPDATE RULE FOR σ WITH SAFEGUARDS

Since the approximations ∆x and ∆y may significantly deviate from their true values, we update σ
using formula (21) only when the following conditions are met; otherwise, we reset σ to 1:

1. ∆x and ∆y are within the range:

∆x,∆y ∈ (10−16, 1012); (58)

2. The ratio of relative primal and dual infeasibility errors is within acceptable bounds:
errord
errorp

∈ (10−8, 108), (59)

where

errorp :=
∥ΠD(b−Ax̄r,τr

a)∥
1 + ∥b∥

and errord :=
∥c−A∗ȳr,τra − z̄r,τra ∥

1 + ∥c∥
.

In summary, the update rule for σ is presented in Algorithm 5.

Algorithm 5 SigmaUpdate

1: Input: (w̄r,τr , wr,0,S1, A).
2: Calculate ∆x and ∆y defined in (20);
3: if conditions (58) and (59) are satisfied then

4: σr+1 =
∆x

∆y
;

5: else
6: σr+1 = 1;

7: Output: σr+1.

F EXPERIMENTAL SETUP

Benchmark datasets. Our benchmark datasets include Mittelmann’s LP benchmark set and LP
relaxations of instances from the MIPLIB 2017 collection. We test the algorithms on 49 publicly
available instances from Mittelmann’s LP benchmark. From the MIPLIB 2017 collection, we select
383 instances following the criteria in Lu & Yang (2023). Of these, two are reported as unbounded,
and one is solved by Gurobi’s presolve (Gurobi Optimization, LLC, 2024), leaving 380 instances
for testing.

Software and computing environment. EPR-LP and EDR-LP are implemented in Julia (Bezanson
et al., 2017). For a fair comparison, the infeasibility detection of cuPDLP (Lu & Yang, 2023) is
disabled. All algorithms are tested on an NVIDIA A100-SXM4-80GB GPU with CUDA 12.3.

Presolve and preconditioning. We compare all algorithms across all datasets, both with and with-
out presolve (using Gurobi 11.0.3, academic license). Before running EPR-LP and EDR-LP, all
problems are preconditioned for numerical stability, involving 10 steps of Ruiz scaling (Ruiz, 2001),
followed by bidiagonal preconditioning as described in Pock & Chambolle (2011) with α = 1. Fi-
nally, the vectors b and c are normalized by ∥b∥+1 and ∥c∥+1, respectively. cuPDLP (Lu & Yang,
2023) uses its default settings.

Initialization and parameter setting. The initial points of EPR-LP and EDR-LP are the origin.
We set the penalty parameter σ0 = 1. After preconditioning, we estimate λ1(AA∗) by the power
method (Golub & Van Loan, 2013).

Termination criteria. We check the stopping criteria for the sequence {w̄r,t
a } for EPR-LP and

EDR-LP. The feasibilities x̄r,t
a ∈ C and ȳr,ta ∈ D are satisfied for any r ≥ 0, and t ≥ 1. We

terminate the algorithms when the following stopping criteria (used in Applegate et al. (2021); Lu
& Yang (2023); Lu et al. (2023)) are satisfied for the tolerance ε ∈ (0,∞):

|⟨b, y⟩ − δ∗C(−z)− ⟨c, x⟩| ≤ ε (1 + |⟨b, y⟩ − δ∗C(−z)|+ |⟨c, x⟩|) ,
∥ΠD(b−Ax)∥ ≤ ε (1 + ∥b∥) ,
∥c−A∗y − z∥ ≤ ε (1 + ∥c∥) .

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

We test all algorithms with ε = 10−8 for all the datasets.

Time limit. We set a time limit of 15,000 seconds for Mittelmann’s benchmark dataset. For the LP
relaxations of MIP problems, the time limit is 3,600 seconds if the number of nonzero elements in
A is less than 10 million; otherwise, the limit is 18,000 seconds.

G SUPPLEMENTARY EXPERIMENTS

G.1 SPARSITY OF THE SOLUTION

In this subsection, we use the optimal transport (OT) problem (Monge, 1781; Kantorovich, 1942)
as an example to demonstrate that EPR-LP, combined with a restart strategy, effectively preserves
the sparsity of the solution. For the experiment, we calculate the optimal transport mapping be-
tween two 64x64 pixel images selected from the shape category in the DOTmark dataset (Schrieber
et al., 2016). The sparsity of the variable x is shown in Figure 4. It can be observed that, with
the restart strategy, EPR-LP quickly maintains the sparsity of x similar to the nonergodic version.
Consequently, the sparsity has little effect on the computational efficiency of EPR-LP.

0 2000 4000 6000 8000 10000
0

0.01

0.02

0.03

0.04

EPR-LP

nonergodic-pADMM

(a) Sparsity

Algorithm Iterations Time (s)
Nonergodic pADMM 8,529,300 19,514.3

EPR-LP 220,050 514.9

(b) Iteration number and time

Figure 4: (a) The sparsity of x. (b) Comparison of iteration count and runtime between nonergodic
pADMM (ρ = 1.6) and EPR-LP with a tolerance of 10−8.

25

	Introduction
	Ergodic convergence properties of the pADMM
	Ergodic convergence of pADMM
	Ergodic iteration complexity of pADMM

	A Peaceman-Rachford method using ergodic sequence for solving LP
	Restart strategy
	Update rule for

	Numerical experiment
	Mittelmann’s LP benchmark set
	MIP relaxations
	Summary of Experiments

	Conclusion
	Proofs for Section 2
	Proof of Proposition 2.2
	Proof of Theorem 2.1
	Proof of Lemma 2.1
	Proof of Theorem 2.2

	The ergodic iteration complexity of pADMM for solving LP
	The non-ergodic iteration complexity of the pADMM
	Comparison of the iteration complexity
	Update rule for with safeguards
	Experimental setup
	Supplementary experiments
	Sparsity of the solution

