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ABSTRACT

In this paper, we study the ergodic convergence properties of the Peaceman-
Rachford (PR) method with semi-proximal terms for solving convex optimiza-
tion problems (COPs). By reformulating the PR method as a degenerate proximal
point method, for the first time we establish the global convergence of the ergodic
sequence generated by the PR method with broadly chosen semi-proximal terms
under the assumption that there exists a Karush—Kuhn-Tucker (KKT) solution
to the COPs. This result represents a significant departure from previous stud-
ies on the non-ergodic convergence of the PR method, which typically requires
strong convexity (or strong monotonicity in the reformulated operator) conditions
that are hardly satisfied for COPs. Moreover, we establish an ergodic iteration
complexity of O(1/k) of the PR method with semi-proximal terms, measured by
the objective error, the feasibility violation, and the KKT residual using the e-
subdifferential. Based on these convergence properties, we introduce the solver
EPR-LP, using the ergodic sequence of the PR method with semi-proximal terms
for solving linear programming (LP) problems. EPR-LP incorporates an adaptive
restart strategy and dynamic penalty parameter updates for efficiency and robust-
ness. Extensive numerical experiments on LP benchmark datasets, executed on a
high-performance GPU, show that our Julia-based solver outperforms the award-
winning solver PDLP at a tolerance level of 1075,

1 INTRODUCTION

In this paper, we focus on solving the following linear programming (LP) problem:

min (¢, z

xeR™ < ’ >
S.t. A1£ZZ = b1
AQZ‘ 2 b2

z e,

(1)

where A; € R™*" Ay € R™2%X" b € R™ by € R™2, and ¢ € R™. The set C is defined as
C:={zxeR" |l <z <u}, with the vectors | € (RU {—o0})” and u € (RU {400})". Let
A = [Ay; Ag] € R™*™ with m = my +mg and b = [by; by] € R™. We assume that A is a non-zero
matrix, which is also occasionally treated as a linear operator. Then, the dual of problem (1)) can be
expressed as:

stt. A%y + 2z =g,

where dp(-) is the indicator function over D := {y = (y1,y2) € R™ x R"*} and 65(-) is the
conjugate of d¢(+). LP is a fundamental optimization subject in applied mathematics, operations
research, and computer science, with a wide range of applications. The interior point methods and
the simplex methods are the standard algorithms used in commercial LP solvers such as Gurobi
(Gurobi Optimization, LLC} [2024) and CPLEX (IBM, [1987), efficiently solving problems with
hundreds to millions of variables and constraints. However, their performance can be inadequate for
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problems with huge dimensions (Lul 2024)). Furthermore, these methods are difficult to parallelize,
limiting their ability to leverage modern GPUs effectively.

Recently, the first-order methods, especially those based on the alternating direction method of
multipliers (ADMM) (O’donoghue et al.l 2016} |Stellato et al., [2020; |Applegate et al.l 2021} [Lin
et al.,|2021; O’ Donoghue} 2021} |Applegate et al.| 2023; Deng et al., 2024} |Lu & Yang| [2024; (Chen
et al.,|2024) have attracted increasing attention for solving large-scale LP problems, due to their low
iteration cost and ease of parallelization. Specifically, let & > 0 be a given penalty parameter. The
augmented Lagrangian function associated with the dual problem (2), for any (y,z,z) € R™ x
R™ x R™, is defined as

LI;P(y,z;a:) =—(b,y) +p(y) + 0&(—2) + (x, A"y + 2z —¢c) + %HA*y +z— CH2.

A preconditioned (semi-proximal) ADMM (pADMM) (Xiao et al., [2018)) for solving LP is then
outlined in Algorithm|I] Consider the case where S; = 0. When p = 1, Algorithm [I]reduces to the
Douglas-Rachford method (Gabay, [1983). When p = 2, it becomes equivalent to the generalized
ADMM (GADMM) induced by the Peaceman-Rachford (PR) method (Eckstein & Bertsekas),[1992;
Lions & Mercier, [1979). For a more detailed comparison of Algorithm [l| with other algorithms,
refer to|Xiao et al.| (2018) and |Sun et al.| (2024).

Algorithm 1 A pADMM method for the LP problem (2))

1: Input: Set the penalty parameter o > 0. Choose p € (0,2]. Let S; : R™ — R™ be a self-
adjoint positive semidefinite linear operator such that S; + AA* is positive definite. Choose an
initial point w® = (y°, 2%, 2°) € D x dom(&5(—-)) x R™.

2: fork=0,1,....,do

3: Step 1. z¥ = argmin {L(LTP (yk, z;xk)};

z€R™

4: Step 2. 7% = 2% + o(A*y" 4+ 2 — ¢);

Step 3. §* = argmin { L (3, 255%) + Z[ly - "3, };
yER™ 2
6: Step 4. w* ! = (1 — p)w” + pat;

Notably, Applegate et al. (Applegate et al.,|2021;/2023)) developed the award-winning solver PDL
which uses a modified version of the primal-dual hybrid gradient (PDHG) method (Zhu & Chan,
2008) as its base algorithm. This modified PDHG is a special case of Algorithm[I]with p = 1 (Esser,
et al.,[2010;|Chambolle & Pock,[2011)). To enhance the modified PDHG’s performance, PDLP incor-
porates several effective techniques, including using the ergodic iterate as a restart point, employing
an adaptive update rule for the penalty parameter o, and implementing a line search strategy. It is
worth noting that, compared to non-ergodic sequences, the ergodic sequence of the semi-proximal
ADMM (sPADMM) (Fazel et al.| 2013)), including the modified PDHG (Esser et al., [2010; |(Cham-
bolle & Pock, 2011), achieves a better O(1/k) iteration complexity with respect to the objective
error and the feasibility violation (Cui et al., 2016). Consequently, the GPU implementation of
PDLP (cuPDLP;jl (Lu & Yang}|2023)) and cuPDLP-c (Lu et al.|2023)) has demonstrated advantages
over commercial LP solvers like Gurobi (Gurobi Optimization, LLC} 2024) and COPT (Ge et al.,
2022), particularly for large-scale LP problems.

More recently, Chen et al. (Chen et al.,[2024) introduced HPR-LP, an implementation of the Halpern
Peaceman-Rachford (HPR) method (Sun et al., 2024) with semi-proximal terms for solving LP
problems. This method integrates the Halpern iteration (Halpern, [1967; [Lieder, 2021)) into the
PR method (Lions & Mercier, |1979; [Eckstein & Bertsekas, |1992) with semi-proximal terms, cor-
responding to Algorithm [I| using p = 2. It achieves an iteration complexity of O(1/k) for the
Karush—Kuhn-Tucker (KKT) residual and the objective error. The Julia implementation of HPR-LP
has demonstrated superior performance compared to PDLP on classical LP benchmark datasets.

A key difference between HPR-LP and PDLP is the choice of p. PDLP uses a conservative p = 1
and adopts a line-search strategy to enhance performance, while HPR-LP employs a more aggressive

'The authors of |Applegate et al.| (2021} 2023) received the Beale-Orchard-Hays Prize for Excellence in
Computational Mathematical Programming at the 25th International Symposium on Mathematical Program-
ming (https://ismp2024.gerad.ca/), held from July 21-26, 2024, in Montréal, Canada.
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p = 2. It is well known that the PR method (p = 2) is faster than the DR method (p = 1) when the
PR method converges (Lions & Mercier, |1979). This difference in p selection motivates our study
of using the ergodic sequence of the PR method with semi-proximal terms to solve LP problems.
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Figure 1: The performance of PR, using ergodic and non-ergodic sequences, in solving the LP
instance “datt256” from Mittelmann’s LP benchmark set. The optimality is evaluated based on the
relative primal-dual infeasibility and the relative duality gap.

To the best of our knowledge, the ergodic convergence of the PR method with semi-proximal terms
(corresponding to Algorithm [T with p = 2) is still unknown. In this paper, we address this gap by
proving, for the first time, the global convergence of the ergodic sequence using the theory of the
degenerate proximal point method (dPPM) (Bredies et al., 2022). This result marks a significant
departure from previous studies on the non-ergodic convergence of the PR method, which typically
relies on strong convexity that is not met in LP (see Figure [T). Moreover, we also investigate the
ergodic iteration complexity of the pADMM in Algorithm [I|in terms of the objective error, the
feasibility violation, and the KKT residual based on e-subdifferential (Rockafellar,|1970). The main
contributions of this paper can be summarized as follows:

» For a more general convex optimization problem (COP), by reformulating the pADMM
with p € (0,2] as a dPPM, we establish the ergodic convergence of the dPPM, thereby
proving the ergodic convergence of the pADMM through this reformulation.

* For solving COP, we establish the ergodic iteration complexity of O(1/k) for the pADMM
with p € (0, 2] in terms of the objective error, the feasibility violation, and the KKT residual
based on e-subdifferential.

* We propose the solver EPR-LP, an implementation of the ergodic sequence of PR method
(corresponding to Algorithm[I|with p = 2) to solve LP problems, incorporating an adaptive
restart strategy and dynamic penalty parameter updates. Extensive numerical experiments
on LP benchmark datasets using a GPU demonstrate the superior performance of the Julia
implementation of EPR-LP compared to PDLP (Lu & Yang, [2023).

The remainder of this paper is structured as follows: Section [2] establishes the ergodic convergence
and iteration complexity of pADMM for solving convex optimization problems. The detailed im-
plementation of EPR-LP is discussed in Section [3] Section [] presents the results of numerical
experiments on LP benchmark datasets. Finally, we conclude the paper in Section[5]

Notation. Let U, W, X, Y, and Z be finite-dimensional real Euclidean spaces, each equipped
with an inner product (-, -) and its corresponding norm || - ||. For any convex function f : X —
(=00, 4+00], we define its effective domain as dom(f) := {x € X : f(z) < oo}, its con-
jugate as f*(z) := sup,ex{(z,2) — f(z)}, z € X, and its proximal mapping as Prox;(z) :=
argmin.ex { f(2) + 1|z — z||?} , 2 € X. Furthermore, consider a closed convex set C' C X. We
define the distance from = € X to C' as dist(z, C') := inf ,c¢ ||z — z||, and we express the Euclidean
projection of x onto C as II¢(z) := argmin{||x — z|| | z € C}. Moreover, for a linear operator
A : X — Y, we denote its adjoint by A* and express its spectral norm as || A|| := sup) <1 | Az]|.
Finally, for any self-adjoint, positive semidefinite linear operator M : X — X, we define the semi-

norm as ||z||pm == /{(z, Mz) for any z € X.
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2 ERGODIC CONVERGENCE PROPERTIES OF THE PADMM

In this section, we study the ergodic convergence properties of the pADMM method, including the
PR method, for solving COP. We begin by reformulating the pADMM method as a dPPM. Next,
we prove the ergodic convergence of the dPPM, thereby establishing the ergodic convergence of
pADMM. Finally, we analyze the ergodic iteration complexity of the pADMM method.

2.1 ERGODIC CONVERGENCE OF PADMM

Consider the following COP:
min - fi(y) + f2(2)

yeY,z€Z 3)
s.t. By + Byz = ¢,

where f1 : Y — (—o00,400] and fo : Z — (—o0,400] are proper closed convex functions,
By Y — X and By : Z — X are given linear operators, and ¢ € X is a given vector. Given a
penalty parameter ¢ > 0, the augmented Lagrangian function for problem is defined, for any
(y,z,2) € Y X Z x X, as
o
Lo(y,z;x) = fi(y) + f2(2) + (2, Biy + Baz —¢) + 5”3111 + Byz — ¢,

The dual of problem (3) is given by

max {—f (=Biz) - f;(=Byz) — (¢, 2)} . €
Letw := (y,z,x) € W := Y x Z x X. The pADMM method (Xiao et al.,[2018) for solving problem
(3) is outlined in Algorithm 2]

Algorithm 2 A pADMM for solving COP (3)

1: Input: Let 77 and 75 be two self-adjoint, positive semidefinite operators on Y and Z, respec-
tively. Select an initial point w® = (y°, 2%, 2°%) € dom(f;) x dom(f2) x X. Set the parameters
o> 0andp € (0,2].

2: for k=0,1,..., do

Step 1. 2% = argnzlin {Lo (v%, 2z 2%) + 3llz — 2F|1%. }s
z€

4: Step 2. z¥ = 2% + o (Byy* + Bez* — ¢);

5: Step 3. 7* :argrgin{Lg (y, 25 2%) + & lly — ¥ 1% )
yeE

6: Step 4. w**! = (1 — p)w* + pw*;

As shown in Rockafellar| (1970, Corollary 28.3.1), a pair (y*, 2*) € Y X Z is an optimal solution
to problem (3)) if and only if there exists z* € X such that (y*, z*, z*) satisfies the following KKT
system:

—Biz* € 0f1(y*), —Bix* € 0fs(z*), Biy"+ Baz* —c=0, 3)
where 0 f; denotes the subdifferential mapping of f; fori = 1, 2. To discuss the ergodic convergence
of pADMM as outlined in Algorithm[2} we make the following assumption:

Assumption 2.1. The KKT system (3) has a nonempty solution set.

Under Assumption solving problem (@) is equivalent to finding w € W such that 0 € Tw,
where the maximal monotone operator 7 is defined as

9f1(y) + Biz
Tw= | 0f2(z)+Bsz |, VYw=(y,z,2)eW. (6)
c— Byy — Bsyz

On the other hand, since f; and f5 are proper closed convex functions, there exist two self-adjoint,
positive semidefinite operators, X7, and X,, such that for all y,§ € dom(f1), ¢ € 0fi(y), and

é € 811 (), the following hold:

) 2 1@+ Gy =i+ sl =ik, ad {6y i) >yl

4
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and for all z, 2 € dom(fs2), ¢ € Of2(z), and ¢ € 0f2(2):

. . a1 . . . .
B2 @)+ 2= 8+ Sl =2, ad (p—gz—2) 2 [z — 23,

To ensure that each step of the pADMM is well-defined, we also make the following assumption:
Assumption 2.2. Both ¥y, + By By + Ti and X5, + B3 By + T are positive definite.

Define the self-adjoint linear operator M : W — W as follows:

oBiBi+Ti 0 B
M = 0 T 0 . (7
B1 0 0'711

According to[Sun et al.| (2024, Proposition 3.2), we have the following equivalence between Algo-
rithm 2] and the dPPM (Bredies et al [2022).

Proposition 2.1. Suppose that Assumption 2.2 holds. Consider the operators T defined in (6)) and
M defined in (7). Then the sequence {wk} generated by the pADMM in Algorithm|2|coincides with

the sequence {wk} generated by the dPPM as follows:
o* = %wk _ (./\/l + T)fl./\/lwk, whtl — (1 B p)wk + ,mf)k (8)

with the same initial point w°® € W. Additionally, M is an admissible preconditionerﬂ such that
(M + T)~Yis Lipschitz continuous.

We now analyze the ergodic convergence of the dPPM for a general maximal monotone operator T
and an admissible preconditioner M, encompassing Algorithm [2] for solving the COP problem (3).
To this end, we define the following two ergodic sequences:

k k
1 1
k t ok —t
:—75 :—75 vk >
W, 3 1t0w, w, A 1t0w, 0, 9)

where the sequences {w'} and {w'} are generated by the dPPM in (8). Note that, for a maximal
monotone operator 7 : W — 2% and € > 0, the e-enlargement of 7 at w (Burachik et al.,|1997) is
defined as

Te(w)={veW: (w—w,v—2v")>—e V(w,v) e gph(T)},

where gph(7) = {(w,v) € W x W | v € Tw}. Using the e-enlargement of 7, we can derive the
following proposition regarding the ergodic convergence properties of the dPPM.

Proposition 2.2. Let T : W — 2% be a maximal monotone operator with T~(0) # (), and let
M be an admissible preconditioner. Then the ergodic sequences {w*} and {w*}, generated by the
dPPM in (B) with p € (0, 2], satisfy the following properties for any k > 0:

(a) @ — bl < s e® — w' e, Vo € T10);

(b)) M(wF —wF) € T (wk), where &% := k%‘_l Zfzo(wt — ¥ wt — wt) pq and

1

0<&eFh< ——
=% =9,k 1)

[w® —w*|3,, Vw* e TH0).

Remark 2.1. |Monteiro & Sim| (2018) used a non-Euclidean hybrid proximal extragradient frame-
work to obtain a similar result to Proposition 2.2} which could be adapted to analyze the ergodic
iteration complexity of Algorithm2lwith T; = 0, Ta = 0, and p = 2. In contrast, Proposition [2.2)
developed using the dPPM framework, is more general as it only requires M to be positive semidef-
inite. This broader setting allows for the analysis of the ergodic iteration complexity of Algorithm 2]
for positive semidefinite linear operators T, and Ts.

’In Bredies et al.|(2022), an admissible preconditioner for the operator 7 : W — 2% is a linear, bounded,

self-adjoint, and positive semidefinite operator M : W — W such that 7 = (M + T) ™' M is single-valued
and has full domain.
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Theorem 2.1. Let T : W — 2% be a maximal monotone operator with T~1(0) # 0, and let M
be an admissible preconditioner such that (M + T )1 is L-Lipschitz continuous. Then, the ergodic
sequence {w"} generated by the dPPM in (8) with p € (0, 2] converges to a point in T ~1(0).
Remark 2.2. Note that we only assume M to be positive semidefinite in Theorem[2.1) If M is pos-
itive definite, one can directly apply Baillon’s nonlinear ergodic theorem (Baillon, |1975) to obtain
the ergodic convergence.

Consider the ergodic sequence of the pADMM:
1 & 1 &
k k .k tot ot —k k -k —t =t ~t
y%a =TT P ’ ar?arLa) = 71 I ; kZOa
(Y, 2o 24) ,Hl;(y 2at), (g, 2k, xh) ,Hl;(y 2,2
where the sequences {w'} = {(y*, 2, z*)} and {w'} = {(7?, ¢, ')} are generated by the pADMM
in Algorithm 2} The equivalence established in Proposition 2.1] demonstrates that the ergodic con-
vergence of the dPPM in Theorem [2.1] can be leveraged to derive the ergodic convergence of the
pADMM, as stated in the following corollary.
Corollary 2.1. Suppose that Assumptions and hold. Then the ergodic sequence {wF} =
{(g*, 2k, 2z a)} generated by the pADMM in Algorithm|2} converges to the point w* = (y*, z*, x*),
where (y*, 2*) is a solution to problem (3), and x* is a solution to problem (@).

2.2 ERGODIC ITERATION COMPLEXITY OF PADMM

We introduce the concept of the e-subgradient of a convex function f (Rockafellar, [1970):
Definition 2.1. Ler f : X — (—o00, +00] be a proper convex function, and let T € dom(f). Given
€ > 0, the e-subgradient of f at T is defined as

Of(z) ={a* eX* | ("2 —Z) < f(z) — f(Z) +¢& Vr € X}.

Based on the optimality conditions of each subproblem in the pADMM, we derive the following
lemma regarding the ergodic sequence {w"} using the e-subgradient.
Lemma 2.1. Suppose that Assumptlons nand .hold Let {(g*, 2%, 2%} be the sequence gen-

erated by Algorithm @and Let w* = (y*, z*, x*) be a solution to the KKT system ). The following
things hold: for any k > 0,

B3z *7-2(2’ — 2}) € Oz fo(25),
{ ~Bi (@ + o(Bigh + Bazk — ¢) — Ta(gk — o) € 0 Fu(5), (10
where
{ §§:k+12t o =Bsz' — To(2' — 2'), 2" — 2f) > 0, an
b= LS (—Bi@E 4+ o(Bift + BaZ' — o)) — T3 — y), 5" — §F) >0,
and
gs+ &y < gm0 — w3 (12)

Furthermore, to estimate the objective error, we define

h(TasZa) = [L@) + f2(28) = fiy") = fo(), VR >0,
where (y*, 2*) is the limit point of the sequence {(7*, z¥)}. Then the ergodic iteration complexity
of pADMM is established in Theorem [2.2]

Theorem 2.2. Suppose that Assumptions [2.1| and 2.2} . hold. Let {(ya, za, %)} be the ergodic se-
quence generated by Algorithm 2| with p € (() 2). Let w* = (y*, z*,x*) be a solution to the KKT
system (3), and Ry = ||w° — w*[[pm. For all k > 0, the following bound holds:

dist (o et f1(75) + B*-k) + dist (o Oz f2(Z5) + B3xh) + | Bryis + Bazi — cf

(13)
ol||By
< (AZ i + VTl + VT 2R
where £% +sk < mﬂw — w*||34. Moreover,
-1 Ry l2° + o B1y°|”
- < W@k, 2%) < (Ro + 4V ||B
(\/E” |> (]C+].) (ya ) ( 0 \/>H 1Y ||) (k+1) Qp(k—i—l)
(14
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Remark 2.3. For the ergodic iteration complexity about LP, please refer to Appendix [B| The
PADMM with p € (0,2) achieves only a non-ergodic iteration complexity of o(1/\k) with re-
spect to the objective error, feasibility violation, and KKT residual, as established in Appendix[C] A
detailed comparison of the iteration complexities of related algorithms can be found in Appendix|D}

Based on the ergodic complexity results in Theorem[2.2] the optimal choice for p is 2, resulting in an
ergodic PR (EPR) method with semi-proximal terms. In the next section, we apply this EPR method
to solve large-scale LP problems.

3 A PEACEMAN-RACHFORD METHOD USING ERGODIC SEQUENCE FOR
SOLVING LP

In this section, we introduce the solver EPR-LP for large-scale LP problems (Algorithm [3), which
incorporates a restart strategy and adaptive updates of the penalty parameter o into the EPR method
with semi-proximal terms.

Algorithm 3 EPR-LP: A Peaceman-Rachford method using ergodic sequence for the problem

1: Input: Let S; : R™ — R™ be a self-adjoint, positive semidefinite linear operator such that Sy +
AA* is positive definite. Choose an initial point w®? = (y*0 290 299) € D xdom(5%(—)) x
R™.

2: Initialization: Set the outer loop counter r = 0, the total loop counter £ = 0, and the initial
penalty parameter o¢ > 0.

3: repeat
4: initialize the inner loop: set inner loop counter ¢ = 0;
5: repeat
6: Z"! = arg min {LI;E (y™', z 2™ )

ZGR’H
7: =" o (Ay" + 27— o);

_ . et - o

8: 7"t = argmin {LI(;}: (y, 2" 27" + %Hy — gyt ?gl} :

yean
9 wr,t+1 _ 2’LDT’t o wr,t.

L1
10: wyt = ——w"h

¢ Z t+1

=0
11: t=t+1,k=k+1;
12: until one of the restart criteria holds or termination criteria hold
13:  restart the inner loop: 7, = t,w" 10 = @w" ™ |

14: 0,41 = SigmaUpdate(w” ™, w™® S, A), r =7+ 1;
15: until termination criteria hold
16: Output: {w/'}.

Remark 3.1. Ifline 9 in Algorithm is modified to w™'! = @™, the resulting method is referred
to as EDR-LP, which uses the ergodic sequence of the DR method with semi-proximal terms for
solving LP. In the numerical experiments, we compare the performance of EPR-LP and EDR-LP to
evaluate the impact of the parameter p.

3.1 RESTART STRATEGY

The EPR method with semi-proximal terms achieves an ergodic iteration complexity of O(1/k) for
the objective error, the feasibility violation, and the KKT condition, as shown in Theorem This
result, derived from Proposition[2.2] guides the restart criteria using the merit function:

Ry = |w"" —w*|pm, Vr>0,t>0,
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where w* is a solution to the KKT system (3). R, gives the upper bound from Proposition
A natural restart occurs when R, ; < oy R, o, with a3 € (0,1). In practice, if o is too small, the
algorithm may fail to reduce sufficiently, so we also consider the inner loop length and oscillation
in R, ;. These ideas are implemented in PDLP with other merit functions (Applegate et al., 2021}
Lu & Yang, [2023). In addition, since w™ is unknown, we replace R, ; with the following weighted
primal and dual infeasibility:

oy = Jor M ITp (b — A2 + o lle — At — 25|
Consequently, the restart criteria in EPR-LP are defined as follows:
1. Sufficient decay of Er,t:
Ry < onRyo; (15)
2. Necessary decay + no local progress of R,,,t:
ér,t < a2§r,o and ér,t+1 > ér,t; (16)
3. Long inner loop:
t > ask, 17)

where o € (0, a2), ag € (0,1), and a3 € (0,1). In EPR-LP, we set ; = 0.2, ag = 0.6, and
as = 0.2. Once any of the three restart criteria is met, we restart the inner loop for the (r + 1)-th
iteration, set w" 1% = "7, and update 0,4 1.

3.2 UPDATE RULE FOR ¢

Motivated by the update rule for o based on the iteration complexity of pADMM proposed in (Chen
et al.[ (2024), we update o,y at the (r + 1)-th restart for any » > 0 by solving the following
optimization problem:

r+1,0 _w*Hi/t’ (18)
where Hw —w* H  Tepresents the upper bound of the complexity results in Proposition at

the (7 + 1)-th outer loop. A smaller upper bound is expected to lead to a smaller residual ||w” 1! —

wl Tt o for any ¢ > 0. Specializing M in (7) to Algorithm we derive the following:

r+1,0 *
—w

Or41 = argmin ||w
o
r+1,0

2
[

Or41 = argmin Hw
ag

a7 +10 — 2+ 12 (19)
VO = A O — )
Since computing [|z" 1Y — z*[| and [|y" 10 —y* |5 + |A*(y" 1Y — y*)||? is not implementable,
we approximate these terms in EPR-LP using:

Ay =z = and A= [l -yl AT Gy @0)

respectively. Consequently, we update o, as follows:
Ay
=== 21
Or41 Ay ( )
Because the approximations A, and A, may deviate significantly from their true values, we im-
plement some safeguards for the o update rule. For more details, see Appendix [E] Furthermore,
to ensure that the EPR-LP method has an explicit update formula for 4™ for solving general LP

problems, we select

S1 =M, — AA",
with A > A1 (AA*), as proposed in [Esser et al.|(2010);/Chambolle & Pock! (2011);Xu & Wu[(2011).
In this case, the updates of 3™ are given by:
r e L (1
yl,t:yl,t_i_X ;—A1Ry ,
gt =Tgma (43" + 5 (% — A2Ry))
where R, := "' /o + (A*y"™" + 2! — ¢). Thus, the penalty parameter o, is updated as:
1 |lzg™ — a0

g ==
T A e =y
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4 NUMERICAL EXPERIMENT

In this section, we evaluate the performance of EPR-LP, EDR-LP, and cuPDLP (Lu & Yang, [2023)
on Mittelmann’s LP benchmark setE| and LP instances relaxed from MIP problems in the MIPLIB
2017 collection (Gleixner et al., 2021). All algorithms are implemented in Julia, with experiments
conducted on an NVIDIA A100-SXM4-80GB GPU running CUDA 12.3. Each solver is terminated
when the relative primal and dual infeasibility errors, as well as the relative duality gap, reach a
tolerance of 10~8, or when the time limit is exceeded. For more details on the experimental setup,
please refer to Appendix[F

4.1 MITTELMANN’S LP BENCHMARK SET

Mittelmann’s LP benchmark set is a standard benchmark for evaluating the numerical performance
of LP solvers. In this experiment, we compare the performance of EPR-LP, EDR-LP, and cuPDLP
on 49 publicly available instances from Mittelmann’s LP benchmark. The performance profiles
(Dolan & Morél 2002) for solving time on the presolved and unpresolved datasets are shown in
Figures 2a]and [2b] respectively. The key observations are summarized as follows:

* Compared to EDR-LP and cuPDLP, EPR-LP is the fastest solver on approximately 80% of
the problems in the presolved dataset and 65% in the unpresolved dataset.

* Among all the algorithms, EPR-LP demonstrates the best success rate, solving the highest
percentage of problems across both the presolved and unpresolved datasets. In particular,
EPR-LP solves about 8% more problems than cuPDLP on the presolved dataset.

* To solve 90% of the problems in the presolved dataset, EPR-LP requires twice the time of
the best solver, while EDR-LP takes four times as long. This difference likely stems from
the ratio of p, as suggested by the iteration complexity results in (I3) and (T4).

g
<
Q
2
o
3
=]
203 203
S =§=EPR-LP 5 =¢=EPR-LP
£ 02¢ =@=EDR-LP a 022 =@=EDR-LP
0.1 u cuPDLP 0.1 cuPDLP
o = o< . . —
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
At most log,(z) times of the best At most log,(z) times of the best
(a) Solving time with presolve (b) Solving time without presolve

Figure 2: Performance profiles of solving time for 49 instances of Mittelmann’s LP benchmark set
with Gurobi’s presolve (a) and without presolve (b).

4.2 MIP RELAXATIONS

In this experiment, we evaluate the performance of EPR-LP, EDR-LP, and cuPDLP on 380 LP
instances relaxed from MIPLIB 2017 collection (Gleixner et al.| 2021}, both with and without pre-
solve. Figures [3a] and [3b] show the performance profiles for solving time on the presolved and
unpresolved datasets, respectively. The key observations are listed below:

* Compared to EDR-LP and cuPDLP, EPR-LP is the fastest solver on approximately 85% of
the problems in the presolved dataset and 80% in the unpresolved dataset.

* EPR-LP demonstrated a slightly higher success rate than cuPDLP on the presolved dataset
and a nearly comparable success rate on the unpresolved dataset.

3https://plato.asu.edu/ftp/Ipfeas.html,


https://plato.asu.edu/ftp/lpfeas.html
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Figure 3: Performance profiles of solving time for LP instances relaxed from MIP, with Gurobi’s
presolve (a) and without presolve (b).

4.3 SUMMARY OF EXPERIMENTS

The previous numerical experiments show that EPR-LP outperforms both EDR-LP and cuPDLP.
Specifically, EPR-LP achieves the highest success rates across nearly all datasets. Moreover, EPR-
LP emerges as the fastest solver for approximately 65% to 85% of the problems. Since the per-
iteration times of EDR-LP and EPR-LP are nearly the same, EPR-LP’s advantage over EDR-LP
stems from using p = 2, leading to fewer iterations. To further underscore EPR-LP’s advantages
over cuPDLP, we present the per-iteration time ratio between these two solvers in Table[I] The me-
dian per-iteration time ratio, ranging from 2.7 to 4.0 across datasets, highlights EPR-LP’s lower iter-
ation cost compared to cuPDLP, likely attributed to cuPDLP’s dependence on a more time-intensive
heuristic line search.

Table 1: Per-iteration time ratio (cuPDLP/EPR-LP) for different datasets with and without presolve.

Dataset Median Mean Standard deviation
Mittelmann’s LP benchmark set without presolve 2.7 35 3.0
Mittelmann’s LP benchmark set with presolve 32 3.9 4.0
MIP relaxations without presolve 39 8.2 14.5
MIP relaxations with presolve 4.0 8.8 15.5

5 CONCLUSION

In this paper, we proved the ergodic convergence of the PR method with semi-proximal terms for
solving convex optimization problems. We established the ergodic iteration complexity of O(1/k)
with respect to the objective error, the feasibility violation, and the KKT residual based on e-
subdifferential. Building on these results, we developed the solver EPR-LP for solving large-scale
LP problems, which incorporates adaptive restart and penalty parameter updates. Extensive nu-
merical experiments on LP benchmark datasets highlighted the advantages of EPR-LP compared to
PDLP. In the future, it would be interesting to explore combining the ergodic sequence with accel-
eration techniques, such as Halpern’s iteration (Halpern, [1967} [Lieder, 2021} |Sun et al., [2024)), to
design a more efficient algorithm with an iteration complexity better than O(1/k).

10
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A PROOFS FOR SECTION 2

A.1 PROOF OF PROPOSITION[2.2]

Proof. Since T is M-firmly nonexpansive, as stated in[Sun et al.| (2024} Proposition 2.3), we obtain

w1 — o * i/l —p(2—p) ||w* — wkHiA , Vk>0,w*eT H0), (22

2
MﬁHwk—w

which, together with the iteration scheme (B]) implies that

|@f — wfl|am =

k
1
- Z(u—)t _ wt)
k+1 &
k

M
B 1 (w“‘l—wt)‘
k+1t:0 P ™
N S P S
- p(kJrl) H(w w )HM
1 k+1 ) k) 0, *
< g 1@ mwh) = @ e
2 0 _ * * —1
< 7p(k‘—|—l) ||(w w )HM, Vk > 0,w* € T~(0).
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This concludes the proof of statement (a). Moreover, for any (w’,v’) € gph(7), and by the defini-
tions of w* and w¥ in (9), we have, for any k > 0,

(wg — w', M(wg — wg) = ')

= Do —w, M(wk — k) — ')

= L3 (@ —w', M(wh - @F) — M(w' — @) + (5" — w', M(w' — @) — ')

> 5 o (@0 = w', M(wf — @f) = M(w' — "))

= 2 T, (@ =, M(wk — wF) — M(wt — wt)) + (wF — w', M(w} — 0k) — M(w' - o*)))
= T, (@ —wf, (wh —wk) — (w' —@*)) m)

=~ Yo (@' — 0l (' — 0 )

= —Ea.

Next, we prove that &8 > 0 for all £ > 0 by contradiction. Suppose ¥ < 0 for some k > 0. Then,
for any (w’,v") € gph(T ), we have

(@ —w', M(wk —@k) — ") >0,
which, combined with the maximality of 7, implies that (w®, M(w* — w¥)) € gph(T). Taking
(w',v") = (wk, M(wF — @*)), we obtain 0 > —&*, which contradicts our assumption. Thus,

a’

g% > 0 for all k > 0. Next, we establish an upper bound for % for any k > 0. Indeed, we have

_ k _ _ _
6 = 1 oW — @' @' — W)
k _
= b Do (Bt = w ), wh = Lt - with) — k) u)
k _ _
= i o (— ot — Wt o (= w3, + ot — @k )3 -ttt - akl13,))
k _ _
< i oo (It — k)3, - ottt — @k]3)
= gty (10— w1 — 1 = k) k
2p(k+1) (—llw® = wk+ 131 — 2<wk+ —w?w — wa>Mk)
< 2p(k+1) (_Hwo —w +1||3\4 + 2[fw* ! — w [ w® — waHM) .
(23)
Using the convexity of || - || o1, we can obtain
k k
= whlag = D oW’ —whlm < —— Dl = w'ae < 20w — w*||age
¢ k+1= T k+1 4 -
Combining this with (23], we derive that for any k > 0,
£ < gy (e — w3+ 2t — O — w0 ae)
1
< g’ — vl
This completes the proof. O

A.2 PROOF OF THEOREM 2]

Proof. Suppose that M = CC* is a decomposition of M according to Bredies et al.| (2022, Propo-
sition 2.3), where C : U — W. Since (M + 7)~! is L-Lipschitz continuous and [[C*w|| = ||w]|| pm
for every w € H, we have, for all w’ € H and w* € T1(0),

[Tw — Tw*|| = [|[(M+T)~tcC*w’ — (M + T)~eCw*|| < L|C[||w" — w*|| am,
which, together with (22), implies that
[@* — w*|| = | Tw* — w|| < LlIC|l|w* —w* a1 < LIC|[[w® — w*|| ar.
Thus, both sequences {w"*} and {w*} are bounded. According to Proposition and the maximal-
ity of 7, any cluster point of {w*} belongs to 7~1(0).
To establish the uniqueness of cluster points, we define two shadow sequences as follows:

k
1
k x k k t
=C d :_75 Vk > 0. 24
U w” and u, 3 1t:0u, > 24)
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Through straightforward calculations, we obtain
= FauP, vk >0,

where ]?p = (1—p)Z + p(C*(M + T)~1C) with p € (0,2] is a nonexpansive operator, according
to [Sun et al.| (2024} Proposition 2.5). By Baillon’s nonlinear ergodic theorem (Baillon, [1975) and
(Bauschke & Combettes, [2017, Example 5.38), the sequence {u*} converges to a point in le(]-" ),
where le(}' ) represents the set of fixed points of the nonexpansive operator ]-' Given the equiv-

alence between Fix(F, ,») and C*T —1(0) as stated in|Sun et al. (2024, Proposition 2.5), we conclude
that there exists w’ € 71(0) such that

uf —C*w?| — 0.
Therefore, by the definition of {u*} in (24), we have

k
1 * ot
mtiocw C’U}

which, together with part (a) of Proposition[2.2] implies that

lwg = willam = = [lug — C*wy ] =0,

@k — wil|3g = [0k — wk |3 + wh — wi |3 + 2(w) — wl, w* — wi) s — 0. (25)

Since the sequence {w"} is bounded, it must have at least one cluster point. Assume a subsequence
{w*} converges to w*. Suppose [|w* — wi|r¢ > 0. By an Opial-type argument (Opial, 1967,
Lemma 1), we have

lim inf[|@ — w*||pm < liminf |05 — w}]| m,

i—00 i—>00
which, combined with (23), implies lim inf||@w¥: — w*|| ;4 < 0, a contradiction to the semi-positive
71— 00

definiteness of M. Hence, ||jw* — w||a = 0. It follows that

=M+T) "Muw* = (M+T) "Muw: =w?.
Taking any other cluster point w**, we can similarly show that w** = w}. Therefore, the cluster

point is unique, and the sequence {w"} converges to w. O

A.3 PROOF OF LEMMA 2.1

Proof. From the optimality conditions of the subproblems in Algorithm 2} we have, for any ¢ > 0,

{ fa(2) = fa(2') + (=B32" — To(z" *Z) z—%), Vel )
fily) = @)+ (-Bi (@ + o(Biy' + B22' —¢)) = i@ —y'),y —¥'), VyeY.

Summing these from ¢ = 0 to k, and dividing by k£ + 1, we obtain
k - _
f2(z) 2 %Hzt:ofﬂ )+k+1 Zt 0< 2*7" _E(Zt_zt)ﬂz_zt>v Vz € Z,

Al) > 55 S AT + i1 o (= Bi (3 + o(B1gt + B2zt — c))
-y -y, y—79"), VyeY.

By the convexity of f», we have

f2(2) = fa(z3) + k+1 Zt o{=B37' —Ta(z' = 2"),2 = 2'), V2 € Z
- f2(Z )+ k+1 Zt 0< B;i't _7—2(2t - Zt)vz - Z§> _EI;, Vz €L,

where i
Z —Bizt — To(3t - 2,7t — 28
=0

is non-negative by substituting z = z¥ in the first inequality. Hence, we have

k
—(B3zk 4 T (zk — 2k Z B:c—i—ng—z))e@kfg( kY, Yk > 0.
t=0
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Similarly, we obtain
—Bi(z} + o(Biyh + Baz, — ) = Ti(fs — yu) € 0= f1(Fh), Vk >0,

where
k
5’§:= Z —Bi (' +o(Biy' + B2z' — ) = Ti(y' —v"), 5" — ¥) > 0.
t=0

Now, we show the upper bound of &% + &¥. According to definitions of &% and &) in (TT), we have

k * 2 > > = * (4 . > - = -
T o ((=B37' = Ta(z" = 21), 2 = 25) + (=B (z' + o(B1y" + BaZ' — ¢)) = Ti(§" — v"), 4" — U))
. —(Biz'y' —yh) — (B33, 2" — 2F) — (¢ — Buy' — Ba2', &' — Z}))

|
Tl" =
)
—~
—

Thus, by the definition of &% in Proposition and using the equivalence between the pADMM
and the dPPM in Proposition 2.1} we can derive

1
2p(k+1)
This completes the proof. O

hter=er < [ w® — w*[|34-

A.4 PROOF OF THEOREM [2.2]

Proof. According to Propositions[2.1]and [2.2] we have

4R?
o —wk%, < —2—, VEk>0.
||wa wa”./\/l = pg(k+ 1)27 =
By the definition of M in (]Z[), this can be rewritten as
15 = 13, + o Ba(ah — ) + (@ = gD + 124 = 23, < 8 k=0, (6)
a allTy P 1\Ja a a a a GE—pQ(k+1)2’ =
From Step 2 of Algorithm[2] we can deduce that for any k& > 0,
loB1(Gg —yi) + (@5 —25)| = loB1(Gs — yk) + o(Biys + B2z — 0|
= O—HBlgs + 3225 - CH?
which, together with (26), yields that
2R,
Big* 4+ BozF — || < ——2— Vk > 0. 27
H 1Yq 2%q || = \/Ep(k+1) - ( )
Furthermore, according to the Lemma 2.1} we have for k& > 0,
Bizk —7'2(2 -z )Gakfz( ky,
B*( +o(Bigy + B2z — ) = Ti(Gh — ys) € 9z f1(55),
which, together with (26) and (27), implies
dist (0, 9z« f2(z4) + B37y) < | Ta(z; — 20)| < IV ElI(Z = 2zl < IV Tl ——= k+1) (28)
and

dist (0,024 f1(58) + Biak) < ol Bil|(Buyh + Bazh — o)l + I Ta(5k — )l
c||By
< (L 4 ) S2es.
Thus, combining 27), 28), 29) and Lemma[2.1] we derive the iteration complexity bound in (I3).

(29)

16



Under review as a conference paper at ICLR 2025

We now estimate the ergodic iteration complexity results for the objective error. From the KKT
conditions in (3), we have, for any k > 0,

AR = ") > (=Biz*, g —y*),  fo(2h) — fa(2*) > (—=Bja*, 2k — 2*).
Thus, it follows from (27) that for all k£ > 0,
WG, za) > (Biys + Bazlh — ¢, —a*)

> —la*(|| B1gq + B27zg — |
o 2Rl
~ Vop(k+1)

For the upper bound of the objective error, from [Sun et al.| (2024, Lemma 3.6), we first have the
following upper bounds:

M) S (OBl — 1)~ 3, (B 4 B - )

= BT — ) + (27 — 25 Ta(EF — ). (30)
Note that from Step 4 of Algorithm@ we have for any k£ > 0,
(v = 9" (7" T ")
(o)
(y* =y 115 = Iy —y ||2 ) PR 5

k+1

L
¥
2p

IA

(y* =15 = lly" =y IITI)

Similarly, we also have
(77 =2 Ta(2* = 2M) < 5,12 = 2117, = 12571 = 2*]1%), vk >0 (32)

Additionally, define
Ay :=zF +oBy*, Vk>0.
From Step 4 of Algorithm 2] we can derive that
éaBl(y* —y*) = zF, (B1g* + Boz" — ¢))
oB1y*, (B1j* + Boz" — ¢)) — (2% + o B1i", (B1j* + B2z" — ¢))
= (oBy*, (B1y* + Bez* —¢)) — <A 4 Bri—fe A’““‘A"> 33)
)

P ’ P
= (oBy*, (B1j* + B27* — ¢)) — 55 (|| Ak l? — | Akl?) + pg;z
< (0B (Big” + Baz* — o)) — o (| AP = | Akl?), Yk >0.

Thus, combing with (30), (1)), (32)), and (33)), we conclude that for all k£ > 0,

h(gh,z%) < gp(||y —y* 7 = Iy —y*||fr1) a5 (l25 — 2% (1% = ll25+ — 2*]I%;)
+ (0B, (B17" + B2z" — ¢)) — 5, (| A | ~A]2).
It follows from the convexity of & and that for any k£ > 0,
h(gs,z5) < k+1 oo h(@' 2) ) .
< 2p(k+1) (s y 15 + 1120 = 2¥11%;) + (o Buy*, (Bigg + B2z — ¢)) + 20 k+1) | Aoll?

\ /\

sy + VG Buy 2 + s lla® + o By

This completes the proof. O

B THE ERGODIC ITERATION COMPLEXITY OF PADMM FOR SOLVING LP

In this section, without loss of generality, we consider the LP problem without inequality constraints
(i.e., mo = 0). Inequality constraints can be easily converted into equality constraints by introducing
slack variables. The KKT system of the LP problem (2) is

0€ Ax* —b, 0€z"+00c(z*), Ay 4+z2"—c=0. (34)
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Let f1(y) = (b,y), f2(2) = 05(—2), By = A*, By = I,,, Ti = o(M(AA*)],,, — AA*), T2 = 0.
Then, for LP we define

oA (AANI, 0  A*
MEP = 0 0 0 ,
A 0 oI,

and

WP (e, 2) = (0,ys) + 06 (=25) = (b.y") +66(=2")), Yk >0,
where (y*, z*) is a solution to the problem (2). Thus, the ergodic complexity of pADMM for solving
the LP problem (2)) is presented in the following corollary.

Corollary B.1. Suppose the solution set to the KKT system (34) is nonempty. Let {(y*, 2%, 7%} be
the ergodic sequence generated by AlgorithmRlwith T, = o (A (AA*)I,,, — AA*), T, =0, and p €
(0,2]. Letw* = (y*, z*, x*) be a solution to the KKT system (B4)), and define Ry = ||w® —w* || pqp.
Forall k > 0, the following ergodic iteration complexity bound holds:

_ _ _ 20' )\1(AA*) —+ 1 2R0
AzF — b AgF 428 — ¢l <
Ak = bl + 475 + 24 c||_< v et

_25 € 85’; 60(‘%5)’

where 85—:;5(;(57 y={z€R"| (2,2 —zF) <&k Va' € C}and " < R2. Moreover,

2p(k+1)
1 Ro |29 + oA 0 ||?

—— < h(y,,z, Ry+4 A*y* +

(- lel) sris < k) < (R + avalA™y°l) s + 1T

Proof. Furthermore, since f1(y) = (b,y) for any y € R™, it follows from (Hiriart-Urruty &
Lemaréchall, [1993], Proposition 1.3.1) that, for any & > 0,

O fi(y) = b. (35)

On the other hand, from @ and 72 = 0, we have
z; € 85558(*55%
which, by (Hiriart-Urruty & Lemaréchall,[1993] Proposition 1.2.1), is equivalent to
—z) € 0z1.0¢(Zh). (36)

Combing (33),(36), and Theorem 2.2] we complete the proof.

C THE NON-ERGODIC ITERATION COMPLEXITY OF THE PADMM

To establish the non-ergodic iteration complexity of the pADMM, we first establish the non-ergodic
iteration complexity of the dPPM.

Proposition C.1. Assume that T—1(0) is nonempty and p € (0,2), then the sequences {w"*} and
{wk} generated by the dPPM scheme () satisfy

ke 1
e

w' — '3, = o(1/(k+ 1)) as k — oo.

2
M

0 _ ,*

w Yk > 0,w* € T1(0).

|w" — w

Furthermore,

Proof. Since T is M-firmly nonexpansive in 2024 Proposition 2.3), we can obtain

[+t — Vk > 0,w* € T-40). (37)

—p(2—=0p Hw —w

-
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Summing this inequality from O to k, we have
k
Yo o2 = p)llw’ =3y < o’ = w3y — I = w0 < o 0" G8)
t=0
which implies that ||w’ — @[3, = o(1/(k + 1)) as k — oo. Now, we claim that the sequence
{||w" — @*|| a4} is monotonically nonincreasing. Indeed,
||wt+1 _wtt2

+2((w' — @'t — (w' — @), (w' — ")) pm (39)
= [[(w't — @) — (w' — @[3, + [[(w" —@")||3,
—2{(w = @) — (w' = @), (W = wh))

Since
SR Sl S ARt
= (T —w —(w
F(wtt — @t
= (™t =@ — (
we can obtain from (39) that
”wt—i-l _ w2t+1||,2/\2/l_ ) 1 )
= fw' = @[3 — =A™ — @' — (W' — @', (40)
_%<(wt+1 _ ,u—}t-q—l) _ (wt _ @t),qf)t+1 _ U—}t>M'

wt = @) + (= @) — (@), 8 — @,

By using the monotonicity of 7, we have
<(wt+1 o mtJrl) o (”th o wt), wt+1 o wt>/\/l > 0.

Hence,

™ — @R <l — "3

which together with (38)) implies

lw" —w* |34 < lw® = w* |34, Yk > 0.

1
p2—p)(k+1)
This completes the proof. O

To analyze the iteration complexity of Algorithm 2] we begin by considering the residual mapping
associated with the KKT system @) as introduced in |Han et al.| (2018)):
y — Proxy, (y — Biz)
z —Proxy,(z — Bsz) |, Yw=(y,z,z) €W. 41)
c¢— By — Byz
It is clear that w* = (y*, z*, 2*) satisfies the KKT system (3) if and only if R(w*) = 0. Now, we
are ready to present the non-ergodic iteration complexity for Algorithm 2]

Theorem C.1. Suppose that Assumptions and hold. Let {(y*,z*,z%)} be the sequence
generated by Algorithm [2| with p € (0,2), and let w* = (y*,z*,2*) be the limit point of the

R(w) =

sequence {(y*, 28, 7%)} and Ry = ||w® — w*||pm. For all k > 0, we have the following iteration
complexity bounds:
_ ol| Bl +1 Ry
IR(@")] < ( + VTl + VT 42)
Vo p2—p)(k+1)
and

o) e < < (s ) e
(ﬁ”x ”) e = M < 3R+ el el

Furthermore, as k — oo,

Reat)l < (LS 4 VT VAT of ).

and |h(g*, 24| = o( ).
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Proof. We first estimate the convergence rate of R(w") for any k > 0. According to Proposition

[C1] we have

P < g,
o2 p)(k+1)

By the definition of M in , this can be rewritten as

e —

k_ kY12 4 |5k _ k|2 R3
—a")7 412" = 27, <

— 0 Wk >0. (43
S CEDICESY @

_ 1 _ _
17" =" 117 + ~llo B —y*) + (@
Due to Step 2 in Algorithm 2] we can deduce that for any & > 0,

loBi(g* —y*) + (ZF — 2™ = lloBi(§* — y*) + o(Biy" + Baz" — o]
= 0||B1y* + B22" — ¢,

which together with {3)) yields that

Ry
- vk > 0. 44
: CH*\/apr p)(k+1) = 9

Moreover, from the optimality conditions of the subproblems in Algorithm[2] we have for any k£ > 0,
= Proxy, (2* — B3zk — To(zF — %)),
= Proxy, (7% — Bf (z* + o(B1g* + B22" — ¢)) — Ti (7" — y¥)),
which together with (#3)) yields that for any k& > 0,
125 — Proxy, (2% - B*”“)Il
||PI‘OXf2 (zF — B3z* — To(zF — 2%)) — Proxy, (2 — B3z"))||
IT2(z" — )1l (46)
VT2 - ¥l
/ Q
VTl Vp(2—p)(k+1)’
Similarly, from @3), @4), and [@3), we also have for any & > 0,
15 = Proxy, (" — Bya")|
|Bio(Big" + Baz* — ) +Ta(5" — ") .
ol Billl Big"* + Byz* — e + ITi(5* — )] @7
(Voll B[l + H\/Tlll)\/j

2—p)(k+1)

| B1g* + Byz*

(45)

INININ I

INININ

Therefore, by @4), (46), and (7)), we can obtain that for any k& > 0,

IR@ < /(G +IVEI+ (VB + VT s
< (A 4 T+ VT S

(48)
(2=p) (k+1)

Now, we estimate the complexity result concerning the objective error. For the lower bound of the
objective error, from |Sun et al.| (2024, Lemma 3.6) and @), we have for all &k > 0,

h(g*, 2%) > (B17" 4+ Byz* — ¢, —z*)
— [l | B1g* + B27* — |
Rollw |
= Vo —p)kt1)
On the other hand, from the (]2_7[), we can obtain

v

V

|wk Tt — w*|ap < 0k —w|pm < ... < Ry, VE>0.
It follows from the M-nonexpansiveness of T by Sun et al.| (2024, Proposition 2.3) that

J* — w e = [Tt —w* g < 0 — 'l < Ro, V>0,
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which implies

_ 1 _ _ _
g — 1% + gllaBl(y’“ —y" )+ @ —a)|P+ |27 — 2|5, <R, Vk>0.

This inequality together with (30), (@3)), and {@4) yields that for all & > 0,

h(y*, 2% < (lloBi(3* Y )+($ —z7)|| + [l |]\C)||B1yk +Bzz —
+Hly* =7 llg* -y ||7'1+HZ = 2| n )2 = 27

< (Voo + ") + 28

(2- p)<k+1> Vo2—p) (k1)

o 1 g% Ry
- (3R0 + 75l ”> AEERICTEN

We now establish the complexity results as k — co. According to Proposition[C.1] we have

k12 1
ot =0 = (55

Following a similar approach as in the previous proof, we obtain

e < (LB T+ v o (2= ).

and

) =0 =).

This completes the proof. O

D COMPARISON OF THE ITERATION COMPLEXITY

In addition to the pADMM in Algorithm [2} another widely used variant of the semi-proximal
ADMM for solving COPs, as introduced by [Fazel et al.| (2013)), is presented in Algorithm@

Algorithm 4 A semi-proximal ADMM (sPADMM) for solving COP (3)

1: Input: Let 77 and 75 be two self-adjoint, positive semidefinite operators on Y and Z, respec-
tively. Select an initial point (y°, 2%, 2%) € dom(f1) x dom(f2) x X. Set the parameters o > 0
and 7 € (0, 155,

2: fork=0,1,..., do

Step 1. y*+! = argmin { Lo (y, 25 2%) + 3lly = 4"l17; )+
ye

w

4: Step 2. 2F*! = arg Hzlin {Lo (y*+1, z;2%) + 52 — 2¥(1%. )
zE

5: Step 3. 2Ft1 = 2F + 70(BiyFt + By2F 1 —¢);

Unlike Algorithm ] the pADMM in Algorithm [2] can be reformulated as a dPPM, facilitating the
analysis of its ergodic convergence properties. We summarize some iteration complexity results of
these two algorithms in Table [2]
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Table 2: The iteration complexity result of pADMM/sPADMM

Feasibility ~ Objective KKT

Paper Algorithm  Proximal terms p T Type
violation error residual
Davis & Yin 42016] GADMM T7;=0,=0 (0,2) 1 o(1/Vk)  o(1/VE) - non-ergodic
orized _
Cui et al.|(2016 (majorized) Ti=0,Ta=0 1 0,25)  o(1/vVE) - o(1/vEk) non-ergodic
sPADMM
Ours pADMM T =0,72=0 (0,2) 1 o(1/Vk)  o(1/VE) o(1/vVEk) non-ergodic
Monteiro & Svaiter|(2013 ADMM T1=0,72=0 1 1 O(1/k) - O-(1/k)®  ergodic
Davis & Yin|(2016 GADMM T =0,72=0 (0,2] 1 O(1/k) O(1/k) - ergodic
orized ]
Cui et al. /(2016 (majorized) - o m=0 1 (0,155) 01k O(/K) ; ergodic
sPADMM
Adona et al.|(2019 GADMM  T7; =0,72 =0 (0,2] 1 O(1/k) - O.(1/k) ergodic
Shen & Pan|(2016 SPADMM T -0, 5=0 1 (0,%%55)  O(1/k) - 0-(1/k)  ergodic
Ours pADMM T = 0,72 =0 (0,2] 1 O(1/k) O(1/k)  O-(1/k) ergodic

2 771 = 0 denotes that 77 is positive semi-definite.
® O,(1/k) of the KKT residual: an O(1/k) iteration complexity of the KKT residual based on e subdifferntial in (T3].

Remark D.1. Note that pADMM with T = 0, To = 0, and p = 2 is equivalent to GADMM.
In comparison to the results of |Davis & Yin (2016), our work not only establishes both ergodic
and non-ergodic iteration complexities for the KKT residual—an aspect not addressed in
(2016)—but also extends the analysis to incorporate general Ty and Ts. This generalization is
particularly important, as suitable choices of Ty and Ty can simplify the solution of subproblems in
solving key convex optimization problems, such as general LP. Furthermore, the GADMM algorithm
with semi-proximal terms studied in (Adona et al.| |2019) differs from pADMM due to the way the
proximal terms are incorporated.

To further discuss the relationship between the KKT residual based on e-subdifferential in (I3) and
the KKT residual defined in @T)), we first present the following lemma to highlight the difference
between O, f(-) and Prox;(-) for a proper closed convex function f.

Lemma D.1. Let [ : X — (—00,400] be a proper closed convex function, and let & € dom(f).
Givene > 0, ifv € 0-f(Z), then

|Z — Prox;(z +v)||* < e. (49)

Proof. For notational convenience, denote Prox;(Z + v) by Z. According to the definition of
Prox¢(z + v), we have
0e€df(@)+ (x— (T+v)),
which implies
flz)> f@)+{x+v—2,2—72),Ve e X

It follows that

f@ >f@+{E+v—x,z—71), (50)

=f@) + [z -2 + (v, 7 - 7).
In addition, according to assumption that v € 9. f(Z), we have
f(@) = f(@)+ (v, —T) —e. (51)
Summing (30) and (51)), we have
17— z|* <e.

This completes the proof. O

Remark D.2. The following strongly convex quadratic function demonstrates that the inequality in
Lemma(D:|is tight up to a constant factor of 2:

f(z) = %(x,x) + (b, x),
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where b € R™. As shown in|Hiriart-Urruty & Lemaréchal (1993, Example 1.2.2), it follows that

O f(z) = {x+b+u:;<u,u> Ss}.

Consider T € dom(f). For any € > 0, we take the e-subgradient v of f(-) at T as follows:
v==T+b+u,

where % |ul|> = e. Through direct calculation, we obtain
|7 = Prox;(z +v)|* = |7 — 7 — 5 [|* = |lul® = le
2 4 2
This demonstrates that the inequality in [@9) is tight, up to the constant factor of 2.

Now, we are ready to give the iteration complexity of the ergodic sequence {w"} generated by
Algorithm 2]in the following theorem.

Theorem D.1. Suppose that Assumptions and 2.2 hold. Let {(y*, 2%, z%)} be the sequence
generated by Algorithm 2| with p € (0,2]. Let w* = (y*,z*,2*) be a solutlon to the KKT system
@), and Ry = |w® — w*[| pm. For all k > 0, we have the following iteration complexity bound:

_ 2Ro o||Bi|| +1
R(wk)| < + < + VTl + VT 52)
Rl < 2t s (BB VR IV ity
Proof. According to the Lemma[2.1] we have for k > 0,
B3z *7‘2(2 -z )63 £ f2(Z),
B*( +0(Bigy + BaZg — ) — Ti(q — ys) € Oex f1(5),
which together with Lemma[D:T]implies that
H,Eg - PI’Osz(Es - Békjj]; - 7-2(25 - Zg))HQ < él,:’ (53)
155 — Proxy, (7ia — BY (T4 + o(Bigy + Bz — ) — Tu(fa — va)lI” < &,
It follows that for any k > 0,
125 — Proxy, (25 — B3Zg)|
< 2k = Prop(aF - Biak — Tk - ) 5
+||Pf0Xf2(’ — B3z — Ta(2y — zy)) — Proxy, (2§ — B3zp)|
< VEEH T2z - )]
Hence, from (12) and (26)), we can obtain
|zk — Proxy, (zk || < 7%2 D + H\/Tz”p(k_s_n (55)
Similarly, from (T2), 26), (Z7), and (33), we also have for any k > 0,
1575 — Proxy, (75 — Bizg)l|
< /& T IIBio(Bigs + Bazy — o) + Ta(ys — va)l
56
<\ oIBNIBTE + Bak ol + T - ) o
< W + (VollBil + ||v7-1|‘)p(2k1101)'
Therefore, by 27), (53), and (56), we can obtain that for any k& > 0,
IR(@H)I < % (J5 + Vol Bil + VTl + IVT2 1) sty -
2R ol By H+1
< R+ (R L VT IV
This completes the proof. O
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E UPDATE RULE FOR ¢ WITH SAFEGUARDS

Since the approximations A, and A, may significantly deviate from their true values, we update o
using formula (1)) only when the following conditions are met; otherwise, we reset o to 1:

1. A, and A, are within the range:

Ay, Ay € (10710,10"2); (58)
2. The ratio of relative primal and dual infeasibility errors is within acceptable bounds:
CITOTd (108, 108), (59)
errorp

where
_ [Hp(b = Azy™)||

le— A"z — 2|
error, :—
' T+ ol

L+ [le]

and errory :=

In summary, the update rule for o is presented in Algorithm 5]

Algorithm 5 SigmaUpdate

Input: (@™, w"°, Sy, A).

Calculate A, and A, defined in (20);

if conditions (38) and (39) are satisfied then
A

ag = z.
’I"+1_A77
Yy

else
Ory1 =15
Output: o, .

N R R

F EXPERIMENTAL SETUP

Benchmark datasets. Our benchmark datasets include Mittelmann’s LP benchmark set and LP
relaxations of instances from the MIPLIB 2017 collection. We test the algorithms on 49 publicly
available instances from Mittelmann’s LP benchmark. From the MIPLIB 2017 collection, we select
383 instances following the criteria in|Lu & Yang|(2023)). Of these, two are reported as unbounded,
and one is solved by Gurobi’s presolve (Gurobi Optimization, LLC| [2024), leaving 380 instances
for testing.

Software and computing environment. EPR-LP and EDR-LP are implemented in Julia (Bezanson
et al., |2017). For a fair comparison, the infeasibility detection of cuPDLP (Lu & Yang, [2023)) is
disabled. All algorithms are tested on an NVIDIA A100-SXM4-80GB GPU with CUDA 12.3.

Presolve and preconditioning. We compare all algorithms across all datasets, both with and with-
out presolve (using Gurobi 11.0.3, academic license). Before running EPR-LP and EDR-LP, all
problems are preconditioned for numerical stability, involving 10 steps of Ruiz scaling (Ruiz, 2001},
followed by bidiagonal preconditioning as described in [Pock & Chambolle| (2011)) with o« = 1. Fi-
nally, the vectors b and ¢ are normalized by ||b|| + 1 and ||c|| + 1, respectively. cuPDLP (Lu & Yang}
2023)) uses its default settings.

Initialization and parameter setting. The initial points of EPR-LP and EDR-LP are the origin.
We set the penalty parameter oy = 1. After preconditioning, we estimate \;(AA*) by the power
method (Golub & Van Loanl, [2013)).

Termination criteria. We check the stopping criteria for the sequence {w”} for EPR-LP and
EDR-LP. The feasibilities z;' € C and y'* € D are satisfied for any r > 0, and ¢ > 1. We
terminate the algorithms when the following stopping criteria (used in |Applegate et al.| (2021); |Lu
& Yang|(2023)); Lu et al.| (2023))) are satisfied for the tolerance ¢ € (0, 00):

[(b,y) = dc(=2) = {e;x)| < e (1 + [(b,y) = do(=2)| + [{e, 2)])
Mp(b— Az)[ <e(1+b]),
le— A%y —z[| <e(1+]cl).
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We test all algorithms with e = 1073 for all the datasets.

Time limit. We set a time limit of 15,000 seconds for Mittelmann’s benchmark dataset. For the LP
relaxations of MIP problems, the time limit is 3,600 seconds if the number of nonzero elements in
A is less than 10 million; otherwise, the limit is 18,000 seconds.

G SUPPLEMENTARY EXPERIMENTS

G.1 SPARSITY OF THE SOLUTION

In this subsection, we use the optimal transport (OT) problem (Mongel [1781} [Kantorovich| [1942)
as an example to demonstrate that EPR-LP, combined with a restart strategy, effectively preserves
the sparsity of the solution. For the experiment, we calculate the optimal transport mapping be-
tween two 64x64 pixel images selected from the shape category in the DOTmark dataset
[2016). The sparsity of the variable « is shown in Figure ] It can be observed that, with
the restart strategy, EPR-LP quickly maintains the sparsity of = similar to the nonergodic version.
Consequently, the sparsity has little effect on the computational efficiency of EPR-LP.

0.04 1

=—=EPR-LP
== nonergodic-pADMM

0.03
% Algorithm Iterations  Time (s)
y 002 Nonergodic pADMM 8,529,300 19,514.3
- EPR-LP 220,050 5149

(b) Iteration number and time

0 ,
0 2000 4000 6000 8000 10000
iter

(a) Sparsity

Figure 4: (a) The sparsity of z. (b) Comparison of iteration count and runtime between nonergodic
pADMM (p = 1.6) and EPR-LP with a tolerance of 10~5.
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