
Under review as a conference paper at ICLR 2024

STOCHASTIC SUBGOAL REPRESENTATION FOR HIER-
ARCHICAL REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Goal-conditioned hierarchical reinforcement learning (HRL) promises to make
long-term decision-making feasible by reducing the effective planning horizon
through a latent subgoal space for high-level policies. However, existing methods
employ deterministic subgoal representations, which may hinder the stability and
efficiency of hierarchical policy learning. This paper introduces a Gaussian process
(GP)-based Bayesian approach to learn stochastic subgoal representations. Our
method learns a posterior distribution over the latent subgoal space, utilizing
GPs to account for the stochastic uncertainties in the learned representation, thus
facilitating improved exploration. Moreover, our approach offers an adaptive
memory that integrates long-range subgoal information from prior planning steps.
This enhances representation in novel state regions and bolsters robustness against
environmental stochasticity. In experiments, our approach surpasses state-of-the-art
HRL methods in both deterministic and stochastic settings with dense and sparse
external rewards. Additionally, we demonstrate that our approach allows transfer
of low-level policies across tasks.

1 INTRODUCTION

Tackling complex problems with long-term credit assignment has been one of the major challenges for
reinforcement learning (RL), and hierarchical deep reinforcement learning (HRL) has demonstrated
remarkable capabilities in solving a wide range of temporally extended tasks with sparse rewards, by
enabling control at multiple time scales via a hierarchical structure. Goal-conditioned HRL methods,
in which the higher-level policies periodically set subgoals for lower-level policies and the lower level
is intrinsically rewarded for reaching those subgoals, have long held the promise to be an effective
paradigm in HRL (Dayan & Hinton, 1992; Schmidhuber & Wahnsiedler, 1993; Kulkarni et al., 2016;
Vezhnevets et al., 2017; Nachum et al., 2018; Levy et al., 2019; Zhang et al., 2020; Li et al., 2021;
2022).

The subgoal representation function in goal-conditioned HRL maps the state space to a latent subgoal
space. Learning an appropriate subgoal representation function is critical to the performance and
stability of goal-conditioned HRL. Since the subgoal space corresponds to the high-level action
space, the subgoal representation contributes to the stationarity of the high-level transition functions.
Furthermore, the low-level reward function, i.e., intrinsic rewards, is defined in latent subgoal space
in goal-conditioned HRL, and low-level behaviors can be induced by dynamically changing subgoal
space as well. As such, a proper abstract subgoal space contributes to the stationarity of hierarchical
policy learning.

A wide variety of subgoal representations have been investigated, ranging from directly utilizing the
state space (Levy et al., 2019) or hand-crafted space (Nachum et al., 2018), to end-to-end learning
without explicit objectives (Vezhnevets et al., 2017) or deterministic representations learned by
imposing local constraints (Li et al., 2021). However, none of the existing representations have
explicitly modeled stochasticity and long-range historical latent subgoal information. Previous works,
such as Li et al. (2021), have utilized deterministic subgoal representation functions, which lack the
ability to incorporate exploration or stochastic uncertainty in the subgoal representation. This can
limit the exploration of hierarchical policies, resulting in the agent getting stuck in a local optimum
or converging to a suboptimal policy. Furthermore, when the agent encounters novel state regions, it
may not have enough historical information to determine a suitable subgoal representation. In such
cases, deterministic subgoal representation functions may underfit the learning objective, leading
to an inability to accurately capture the underlying dynamics of the environment in those new state
regions. This, in turn, can result in poor performance and impede the agent’s ability to achieve its
goals. Although the active exploration strategy proposed by Li et al. (2022) aims to mitigate these
issues in Li et al. (2021), the inherent limitations of deterministic mapping and short-term smoothness
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Figure 1: A schematic illustration of the hierar-
chical policy execution. One high-level step cor-
responds to k low-level steps. The negative Eu-
clidean distance in the latent space provides intrin-
sic rewards for the low-level policy.

Figure 2: The representation function consists of
an encoding layer and a latent GP layer. Taking as
input the state s, the encoding layer comprises a
neural network to generate an intermediate latent
space representation f , which will be transformed
by the GP layer to produce the final subgoal repre-
sentation z.

— arising from local constraints — still impede effective exploration and stationarity of training the
hierarchical policy.

To address these limitations, we propose a novel GP based Bayesian approach for learning stochastic
subgoal representations for goal-conditioned HRL (HSSR), which explicitly accounts for the un-
certainties in the state space and allows for stable explorations with enhanced subgoal reachability.
This is achieved by harnessing a nonparametric GP prior on latent subgoal space to learn a posterior
distribution over the subgoal representation. Our approach explores the intrinsic structure in the state
space through learnable kernels. It provides an adaptive memory that fuses subgoal information from
previous planning steps, underpinning representations in novel state regions and offering resilience
against environmental stochasticities. Leveraging the nature of Markov chains, we further present a
lightweight subgoal representation formulation harnessing the state-space form GP, which efficiently
fuses the long-range correlations in latent space from an arbitrary number of previous planning steps
with a constant computational and memory complexity.

We benchmark our method on challenging continuous control tasks in both deterministic and stochas-
tic settings with dense or sparse external rewards. Experimental results empirically demonstrate that
our method is capable of generating stable stochastic subgoal representations which, on the one hand,
contribute to the stationarity in both the high-level state transition and the low-level reward functions
and, on the other hand, facilitates transferable low-level policies between tasks. The advantages
of this first stochastic subgoal representation within HRL manifest as increased sample efficiency,
heightened resilience against stochastic uncertainties, and a marked improvement in asymptotic
performance when benchmarked against leading HRL methods.

2 PRELIMINARIES

The interaction between the agent and environment is generally modeled as a Markov Decision
Process (MDP). Consider a goal-conditioned MDP which is represented by a tuple: MDP =<
S,G,A,P,R, γ >, where S is a state space, G is the subgoal set, A is an action set, P : S×A×S →
[0, 1] is a state transition function, R : S ×A → R is a reward function, and γ ∈ [0, 1) is a discount
factor. We consider an HRL framework with two levels following Nachum et al. (2018) as illustrated
in Fig. 1: the high-level policy πh(g|s) which operates at a coarser layer and generates a high-level
action, i.e., subgoal, and the low-level policy πl(a|s, g) which aims to achieve these subgoals. The
high-level policy maximizes external reward by generating subgoals, i.e., gi ∼ πh(·|si) ∈ G, every k
timesteps when i ≡ 0 (mod k). The low-level policy maximizes intrinsic reward associated with the
subgoals by executing the primitive action.

3 METHOD

In this section, we present our Gaussian Process based stochastic subgoal representation. Firstly, we
introduce a two-level goal-conditioned HRL framework with state-kernel GP prior. Then we present
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GP latent-state batch estimation and training objective, which is followed by a lightweight online
planning scheme.

3.1 FRAMEWORK

We define the subgoal g in the two-level HRL framework introduced by Nachum et al. (2018) in
a low dimensional space abstracted by representation function ϕ(s) : s 7→ Rd. Our method learns
ϕ(s) simultaneously with the hierarchical policy. Specifically, we train the low-level policy πl(a|s, g)
with an intrinsic reward function defined as the negative Euclidean distance in the latent subgoal
space, i.e., rl(si, ai, si+1, gi) = −||ϕ(si+1) − gi||2. The high-level policy is trained to maximize
the extrinsic reward rhi defined as rhi =

∑i+k−1
t=i renv

t , i = 0, 1, 2, · · · , where renv
t is the reward from

the environment. Our framework adopts the off-policy algorithm SAC (Haarnoja et al., 2018) for
each level in the HRL structure, which generalizes the standard RL objective by augmenting it with
an entropy term, i.e., π∗ = argmax

π

∑
t E(st,at)∼ρπ

[r(st, at) + αH(π(·|st))]. None-the-less, it is

important to note that our method is agnostic to the specific HRL framework used. As illustrated
in Fig. 2, the representation function ϕ(s) consists of an encoding layer and a latent GP layer. The
encoding layer comprises a neural network to generate an intermediate latent space representation f
by taking as input the state s, which will be transformed by the GP layer to produce the final subgoal
representation z.

3.2 STOCHASTIC SUBGOAL REPRESENTATION

In order to specify a complete probabilistic model connecting state and subgoal spaces, a prior
distribution for the latent subgoal z has to be defined. To this end, we impose GP priors to all z to
model the stochastic uncertainties in subgoal space. Some of these uncertainties arise directly from
environmental stochasticity, while others may be attributed to the unexplored regions of the state
space. Specifically, we model the intermediate latent space representation f as a noise-corrupted
version of the true latent subgoal space representation z, and the inference can be stated as the
following GP regression model:

zi ∼ GP (0, κ (si, sj)) ,

fi = zi + ϵ, ϵ ∼ N (0, σ),
(1)

where the noise variance σ2 is a learnable parameter of the likelihood model, and κ (si, sj) is a
positive-definite kernel function.

By modeling the uncertainties of subgoal space with GP priors, the mapping from state space to
subgoal space is no longer a deterministic but a stochastic function to account for the full distribution
of subgoal space. GP priors also define a probabilistic prior on the intermediate latent space which
encodes for a priori knowledge that similar states should be mapped to more resembling latent
subgoal representations than those mapped from distinct states. Such prior knowledge could be
encoded by the kernel function, i.e., κ (si, sj), defined over a distance in state space. Our insight is
that the intrinsic structure in the state space could be exploited through learnable kernel function. We
define the prior to be mean square continuous, once differentiable, and stationary in state space for
the latent space processes (Williams & Rasmussen, 2006). Since the latent functions are intended to
model the intrinsic structure of the state space, the latent space is expected to behave in a smooth and
continuous fashion which is satisfied by Matérn kernel (Williams & Rasmussen, 2006),

κ (si, sj) = γ2

(
1 +

√
3D (si, sj)

ℓ

)
exp

(
−
√
3D (si, sj)

ℓ

)
, (2)

This kernel encodes the similarity between two states si and sj in latent subgoal space subject to
the distance function D(·) which is defined as ℓ2-norm. The learnable hyperparameters γ2 and ℓ
characterize the magnitude and length-scale of the processes respectively.

The inference problem in Eq. 1 can be solved for an unordered set of states, and the posterior mean
and covariance are given by Williams & Rasmussen (2006):

E[Z | S,F] = C
(
C+ σ2I

)−1
F,

V[Z | S,F] = diag
(
C−C

(
C+ σ2I

)−1
C
)
,

(3)

where Z = (z1 z2 · · · zN ) are the set of subgoal representations, F = (f1 f2 · · · fN ) are the set
of intermediate latent representations from encoding layer, and Ci,j = κ (si, sj) represents the
covariance matrix. The true latent space representation, i.e., the subgoal representation, z can be
restored by taking the posterior mean of the GP.
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3.3 LEARNING OBJECTIVE

In order to learn the hyperparameters of our stochastic subgoal representation, i.e., σ2, γ2 and ℓ, we
propose a learning objective as follows:

L =
∆1

f

∆k
f

log(1 + exp(∆1
z −∆k

z)), (4)

where ∆1
f ∝ ||fi − fi+1||, ∆k

f ∝ ||fi − fi+k||, ∆1
z ∝ ||zi − zi+1|| and ∆k

z ∝ ||zi − zi+k||. The
logarithmic term in our proposed objective is designed to minimize the distance between low-level
state transitions (∆1

z) in the latent subgoal space, while maximizing the distance for high-level state
transitions (∆k

z). We employ the softplus function (Dugas et al., 2000) over the hinge loss for two
main reasons. Firstly, it eliminates the need for a margin hyperparameter, thus simplifying the
optimization process. Secondly, the softplus function provides continuous gradients, as opposed to
the discontinuous gradients around margin planes seen in the hinge loss, facilitating finer adjustments
within the subgoal space Z. Furthermore, to enhance feature discrimination and the interaction
between F and Z, we use the ratio ∆1

f

∆k
f

as a relative distance measure in F for the auxiliary loss.
This approach promotes closer intermediate latent representations for low-level state transitions with
smaller ratios and greater separation for high-level transitions with larger ratios, focusing on the
relative ratio rather than the absolute difference.

This objective is specifically designed for modeling the stochasticity of subgoal space (ratio term)
while facilitating smooth and yet discriminative subgoal representation learning in GP latent space
(logarithm term). Rather than learning a deterministic mapping from state space to subgoal space,
our stochastic approach explicitly represents subgoals at a finite number of support points, i.e.,
S = {si, si+1, si+k}, and let the GPs generalize to the entire space through the kernel function with
learned hyperparameters.

3.4 EFFICIENT ONLINE SUBGOAL GENERATION

During learning, we proposed a batch solution for HRL with latent GP subgoals that considers all
the interconnected states in the trajectory. However, the inference involves matrix inversion of the
covariance matrix C which grows with the number of states in the trajectory. Consequently, the
inference complexity scales cubically with the number of states in the trajectory. During online HRL
planning, the subgoal representation corresponding to states in the low-level trajectory follows a natu-
ral ordering, and thus our model can be relaxed to a direct graph, i.e., Markov chain. This formulation
can be solved exactly without approximations by state-space form GP (Sarkka & Hartikainen, 2012;
Sarkka et al., 2013) with a constant memory and computational complexity per state.

Specifically, the GP prior for latent subgoals can be transformed into a dynamical model for state-
space GP inference, based on the hyperparameters γ2, ℓ and σ2 learned from training. The initial
latent subgoal representation is estimated corresponding to Matérn covariance function, i.e., z0 ∼
N (µ0,Σ0) where µ0 = 0 and Σ0 = diag

(
γ2, 3γ2/ℓ

)
. As derived in Sarkka et al. (2013), an

evolution operator which has the behavior of the Matérn kernel is defined:

Ψi = exp

[(
0 1

−3/ℓ2 −2
√
3/ℓ

)
∆Si

]
, (5)

where the state difference ∆Si = D(si, si−1) is the distance between consecutive states. Then the
subgoal representation is predicted by zi|f1:i−1 ∼ N (µ̃i, Σ̃i), where the mean and covariance are
propagated as:

µ̃i = Ψiµi−1, (6)

Σ̃i = ΨiΣi−1Ψ
⊤
i +Ωi, (7)

where Ωi = Σ0 − ΨiΣ0Ψ
⊤
i . The posterior mean and covariance is conditioned on the current

intermediate latent representation fi:

µi = µ̃i + ki(f
⊤
i − h⊤µ̃i), (8)

Σi = Σ̃i − kih
⊤Σ̃i, (9)

where ki = Σ̃ih/
(
h⊤Σ̃ih+ σ2

)
and the observation model h = (1 0)

⊤. The derivation of the
above recursive update for the posterior mean and covariance for a new state si can be found in the
appendix. We note its resemblance to the Kalman Filter updates.
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HSSR HESS LESSON HRAC TD3
Dense 0.90±0.04 0.86±0.01 0.81±0.04 0.76±0.06 0.00±0.00

Ant Maze Sparse 0.93±0.05 0.84±0.01 0.77±0.10 0.83±0.06 0.00±0.00
Dense /w image 0.83±0.06 0.78±0.05 0.73±0.05 0.00±0.00 0.00±0.00
Sparse /w image 0.79±0.07 0.67±0.12 0.71±0.05 0.00±0.00 0.00±0.00
Dense 0.93±0.01 0.80±0.04 0.71±0.02 0.01±0.00 0.00±0.00

Ant Push Sparse 0.91±0.01 0.77±0.05 0.71±0.02 0.08±0.03 0.00±0.00
Dense /w image 0.84±0.05 0.70±0.03 0.24±0.01 0.01±0.01 0.00±0.00
Sparse /w image 0.87±0.03 0.73±0.06 0.67±0.03 0.00±0.00 0.00±0.00
Dense 0.69±0.03 0.54±0.01 0.49±0.03 0.11±0.09 0.00±0.00

Ant Fall Sparse 0.79±0.01 0.29±0.05 0.54±0.02 0.24±0.07 0.00±0.00
Dense /w image 0.66±0.01 0.54±0.07 0.19±0.02 0.28±0.10 0.00±0.00
Sparse /w image 0.74±0.04 0.30±0.02 0.32±0.01 0.00±0.00 0.00±0.00
Dense 0.93±0.02 0.80±0.01 0.76±0.03 0.65±0.03 0.00±0.00

Ant FourRooms Sparse 0.89±0.04 0.82±0.08 0.77±0.01 0.76±0.01 0.00±0.00
Dense /w image 0.61±0.02 0.42±0.06 0.34±0.04 0.00±0.00 0.00±0.00
Sparse /w image 0.57±0.03 0.42±0.07 0.21±0.01 0.00±0.00 0.00±0.00

Table 1: Final performance of the policy obtained after 10M steps of training, averaged over 10 randomly seeded
trials with standard error. Comparisons are to HESS (Li et al., 2022) LESSON (Li et al., 2021), HRAC (Zhang
et al., 2020), and “flat” RL TD3 (Fujimoto et al., 2018). We can observe the overall superior performance of our
method in stochastic environments, with dense or sparse external rewards and with or without top-down image
observations.

Note that the posterior latent subgoal representation zi|f1:i ∼ N (µi,Σi) is conditioned on all state
till the current time step and thus is able to encode longer-term memory of high-level actions.

4 RELATED WORK

Goal-conditioned HRL (Vezhnevets et al., 2017; Nachum et al., 2018; Levy et al., 2019; Zhang et al.,
2020; Wang et al., 2020; Li et al., 2021) where the high-level policy periodically generates subgoals
to a low-level policy whilst the low-level policy learns how to efficiently reach these subgoals,
has demonstrated great potentials in tackling temporally extended problems. A proper subgoal
representation is crucial to goal-conditioned HRL since it defines the high-level action space and thus
contributes to the stationarity of the high-level transition functions. Moreover, low-level behaviors
can also be induced by dynamically changing subgoal space where the low-level reward function is
defined. Hand-crafted space, e.g., predefining a subset of the state space as the subgoal space, has
been adopted (Nachum et al., 2018; Zhang et al., 2020). However, this approach requires domain
knowledge and is limited to certain tasks. Using the whole state space has been investigated in Levy
et al. (2019), which is unscalable to tasks with high-dimensional observations. Péré et al. (2018);
Nasiriany et al. (2019); Nair & Finn (2020) have utilized variational autoencoder (VAE) (Kingma &
Welling, 2014) to compress high-dimensional observations in an unsupervised way, which, however,
is unable to encode the states of hierarchical temporal scales in HRL. Vezhnevets et al. (2017) and
Dilokthanakul et al. (2019) have developed implicit subgoal representations by learning in end-to-end
manner jointly with hierarchical policies. Sukhbaatar et al. (2018) developed a pre-training approach
to learning subgoal representations via self-play. Nachum et al. (2019) introduced the NOR approach
by learning subgoal representations bounding the sub-optimality of hierarchical policies. Li et al.
(2021) developed a slowness objective for learning a deterministic subgoal representation function.
Nevertheless, the existing methods have only proposed deterministic subgoal representations which
may hinder effective explorations. Adopting the deterministic subgoal representation of Li et al.
(2021), Li et al. (2022) developed an active exploration strategy to enhance the high-level exploration,
by designing measures of novelty and potential for subgoals.

Gaussian processes, which encode flexible priors over functions, are a probabilistic machine learning
paradigm (Williams & Rasmussen, 2006). GPs have been used in other latent variable modeling
tasks in RL. In Engel et al. (2003), the use of GPs for solving the RL problem of value estimation
was first introduced. Then Kuss & Rasmussen (2003) used GPs to model the system dynamics
and the value function. Deisenroth et al. (2013) has also developed a GP based transition model
of a model-based learning system which explicitly incorporates model uncertainty into long-term
planning and controller learning to reduce the effects of model errors. Levine et al. (2011) proposed
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Figure 3: Learning curves of our method and baselines in stochastic environments, with dense or sparse external
rewards and with or without top-down image observations. Each curve and its shaded region represent the
average success rate and 95% confidence interval respectively, averaged over 10 independent trials. We find that
our method performs well across all tasks. It is worth noting that our method learns both rapidly and stably; on
complex navigation tasks, it normally requires only less than three million environment steps to achieve good
performance.

an algorithm for inverse reinforcement learning that represents nonlinear reward functions with GPs,
which was able to recover both a reward function and the hyperparameters of a kernel function that
describes the structure of the reward.

5 EXPERIMENTS

We evaluate our method in challenging environments with dense and sparse external rewards which
require a combination of locomotion and object manipulation to demonstrate the effectiveness and
transferability of our learned stochastic subgoal representations. We compare our methods against
standard RL and prior HRL methods. We also perform ablative studies to understand the importance of
various components. Our experiments are designed to answer the following questions: (1) Can HSSR
outperform state-of-the-art HRL methods in terms of stability, sample efficiency, and asymptotic
performance? (2) Can the stochastic subgoal representation enhance robustness against environmental
stochasticity? (3) Can HSSR induce reachable subgoals to mitigate the non-stationarity issue of
off-policy training in HRL? (4) How do various design choices influence empirical evaluation?
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(a) HSSR

(b) HESS

(c) LESSON

Figure 4: Subgoal representation learning process in the challenging stochastic Ant Fall task with sparse reward.
Each figure contains the agent trajectory (from red to blue) in the representation space and the x, y space
(top-left), as well as the subgoals (blue stars) in the latent space. HSSR consistently learns stable subgoal
representations over training, compared to HESS and LESSON - from 5M steps until the end, there is no
significant change in the latent space. The subgoals of HSSR in the latent space align with low-level trajectories,
ensuring stable high-level transitions and low-level reward functions. In contrast, HESS and LESSON exhibit
poor subgoal reachability. HESS uses the counts across dramatically changing representation as novelty measure
which misleads the exploration and generates unreachable subgoals. Both LESSON and HESS struggle to learn
stable deterministic representations imposing local constraint in the presence of environmental stochasticity. In
HSSR, distances in the latent space correlate with global transition counts, ensuring a representative distance
between the start and goal of the maze. This global perspective helps to mitigate the local optima observed in
HESS and LESSON, which arise from the local constraints applied during the training of deterministic subgoal
representations.

5.1 ENVIRONMENTS

We evaluate on standard MuJoCo (Todorov et al., 2012) tasks widely adopted in the HRL community
which include Ant Maze, Ant Push, Ant Fall and Ant FourRooms, as well as four variants with
low-resolution image observations. To evaluate the benefits of the proposed stochastic subgoal
representation, we make these tasks more challenging in the following ways: (1) Environmental
stochasticity: we enhance the robustness assessment of HSSR by introducing Gaussian noise with
standard deviation σ = 0.1 to the (x, y) position of the agent at each step, following the precedent
set by recent works such as HIGL (?) and HRAC (Zhang et al., 2020). The results from deterministic
environments are detailed in the appendix. (2) Definition of “success”: we tighten the success
criterion to being within an ℓ2 distance of 1.5 from the goal, compared to a distance of 5 in Nachum
et al. (2018) and Zhang et al. (2020). (3) External rewards: unlike the exclusive use of dense external
rewards in Nachum et al. (2018), Zhang et al. (2020), and Li et al. (2021), we also test settings with
sparse external rewards, where a successful goal reach yields a reward of 1, and all other outcomes
yield 0. (4) Random start/goal: Contrary to Li et al. (2022), where the agent has fixed start and target
positions, our tasks feature randomly selected start and target locations during training. All methods
undergo evaluation and comparison under the uniform task settings, ensuring a fair assessment 1.

1Further details, including environment specifics, source code, and parameter settings for experiment
reproduction, are provided in the appendix.
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Figure 5: Ablation study comparing two baselines: HSSR-A omits our proposed learning objective and stochastic
subgoal representation, while HSSR-B enhances HSSR-A by incorporating the proposed stochastic subgoal
formulation and learning using an contrastive learning objective similar to that in Li et al. (2021).
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Figure 6: (Left) HSSR, HESS and LESSON on various levels of environmental stochasticities. (Middle) HSSR
for various time window sizes of the state set from Eq. (3), used in batch estimation of model hyperparameters.
All curves have been smoothed equally for visual clarity in the first two figures. (Right) Transfer learning for the
task Ant Fall (Image) → Ant Push (Image). The transferred subgoal representation and low-level policy enable
superior sample efficiency and enhanced asymptotic performance.

5.2 COMPARATIVE ANALYSIS

We conduct experiments comparing to the following state-of-the-art baseline methods2: (1) LESSON
(Li et al., 2021): a HRL algorithm that learns the deterministic subgoal representation. (2) HESS (Li
et al., 2022): a HRL algorithm which introduces an active exploration strategy to LESSON (Li et al.,
2021). (3) HRAC (Zhang et al., 2020): a HRL algorithm which uses a pre-defined subgoal space. (4)
TD3 (Fujimoto et al., 2018): a flat RL algorithm to validate the need for hierarchical policies.

Table 1 shows the final performance of the trained policy. Our method significantly outperforms all
compared baselines. Fig. 3 displays the learning curves of our method and baselines across all tasks,
with the results for dense external rewards provided in the appendix. Our method out-performs all
baselines in terms of stability, sample efficiency and asymptotic performance. The advantage of the
stochastic subgoal representation is more pronounced in the challenging Ant Fall and Ant FourRooms
tasks. Ant Fall requires both task and motion planning, while Ant FourRooms uses a larger scale
maze. Thus both tasks demand learning subgoal representation for unexplored areas. In the tasks
with image input, the benefit of stochastic subgoal representation of our method is more substantial,
since learning the subgoal representation in a higher dimensional state space is more challenging
and creates non-stationarities for deterministic subgoal representations in LESSON. The active
exploration method introduced by HESS provides advantages in enhancing the generalization of
deterministic subgoal representations in unexplored states (e.g., Ant FourRooms with images) which
is optimized for tasks with a fixed start and goal. However, its novelty measure, which combines
counts in dynamically changing representation spaces, can potentially mislead exploration (as seen
in Ant Fall), especially when the goal is random. The results show a clear advantage of learned
subgoal representations (HSSR, LESSON and HESS) compared to pre-defined (HRAC) subgoal
spaces. Finally, the flat RL algorithm TD3 does not learn in the complex environments used in the
experiments which further validates the need for hierarchical policies.

Fig. 4 illustrates the state embeddings learned at various training stages for the challenging Ant Fall
task with sparse external rewards. This allows for an intuitive comparison of subgoal representations
acquired by HSSR, HESS, and LESSON. Notably, HSSR demonstrates stable evolution of subgoal
representations throughout training, in contrast to HESS and LESSON. There are two in-depth

2We use the official implementations https://github.com/SiyuanLee/LESSON, https://github.com/SiyuanLee/
HESS/, https://github.com/trzhang0116/HRAC and https://github.com/sfujim/TD3.
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observations: (1) The subgoals in the latent spaces that HSSR learns are both reachable and largely
align with the low-level trajectories. This suggests that a stable subgoal representation enhances the
stationarity of the high-level transitions and the low-level reward functions, providing strong learning
signal even at the early stage of training. On the other hand, HESS and LESSON exhibit unstable
embeddings and frequently shift distant subgoals. (2) In HSSR, the Euclidean distances in the latent
space roughly correspond to the total number of transitions. More precisely, considering the number
of transitions necessary for the agent to navigate between them, the start and goal positions in the
maze should be distinctly separated in the latent space. However, due to the local constraints applied
to the deterministic subgoal representations in both HESS and LESSON, the start and goal locations
remain closely associated in the latent space. Consequently, many intermediate embeddings become
stuck in local optima because they lack the global constraint present in HSSR. We underscore that
our stochastic representation learns the hyperparameters for the kernel function through finite number
of support states, and then generalize to the entire space with a posterior distribution over the subgoal
latent space.

5.3 ABLATIVE ANALYSIS

We conduct several ablation studies to analyze the design choices in our method. Initially, we compare
our method, HSSR, with two baselines. HSSR-BL-A omits our proposed learning objective and
stochastic subgoal representation. In contrast, HSSR-BL-B builds upon HSSR-BL-A by incorporating
the proposed stochastic subgoal formulation and employing a contrastive learning objective akin to
that used in Li et al. (2021). Fig. 5 shows the learning curves of various baselines. HSSR-BL-B
exhibits much higher asymptotic performance than HSSR-BL-A but slightly lower performance than
HSSR. This empirically demonstrates the effectiveness of our stochastic subgoal representation and
learning objective respectively.

We evaluate the robustness of HSSR against various environmental stochasticities and compare
its performance with the deterministic subgoal representation approach LESSON, as well as with
HESS. As illustrated in Fig. 6 (Left), HSSR consistently outperforms both HESS and LESSON
with increasing levels of Gaussian noise, specifically at σ values from the set (0, 0.1, 0.15). Notably,
HSSR demonstrates significantly smaller degradation in performance and lower variance in outcomes
as environmental stochasticity increases, compared to the observed results in HESS and LESSON.

We investigate the time window size of the set of states in Eq. (3) which are used to learn the model
hyperparameters in batch estimation. As shown in Fig. 6 (Middle), increasing the time window size
T gives better performance at early training steps (106 ∼ 7× 106) and eventually achieves similar
performance as small time windows in larger training steps (7× 106 ∼ 107). Our insight is that a
larger time window gives more stable model hyperparameters with less training steps, which in turn
induces sample-efficient stationarity of the policies due to stable subgoal representations. We report
all other results based on time window T = 3 without loss of generality.

5.4 TRANSFERABILITY ANALYSIS

The generality of our GP based subgoal representation learning framework underpins transferable
subgoal space as well as the low-level policy between different tasks of the same agent. To empirically
experiment its transferability, the subgoal representation network, i.e., encoding layer and latent GP
layer, and low-level policy network are initialized in a target task with the weights learned in a source
task, with the rest of the network randomly initialized. Two pairs of source and target tasks, i.e., Ant
Fall → Ant Push and Ant Fall (Image) → Ant Push (Image), are experimented. The learning curves
on those two tasks are shown in Fig. 6 (Right), and we can observe that with the transferred subgoal
representation and low-level policy the agent is more sample efficient and able to achieve higher
performance.

6 CONCLUSION

This paper proposes a novel Gaussian process based stochastic subgoal representation learning
method for HRL. Rather than learning a deterministic mapping, as is done in existing approaches,
our probabilistic model learns the posterior probability over the subgoal latent space. Thus our
approach remains stable in unexplored state spaces leading to stationarity in both the high-level
transitions and low-level reward function. We propose a new learning objective to jointly learn the
model hyperparameters and hierarchical policies in an end-to-end framework. Experiments show that
the proposed stochastic subgoal representation improves the sample efficiency, robustness against
stochastic uncertainties and asymptotic performance. We also demonstrate that the learned stochastic
subgoal representation enables transferable low-level policies between tasks.
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A APPENDIX

A.1 ALGORITHM

We provide Algorithm 1 to show the training procedure of HSSR. Some details of subgoal latent
space formulation z are omitted for brevity, which refers to Eq. (3). We provide the source code at
https://anonymous.4open.science/r/HSSR-9EA6/.

Algorithm 1: HSSR

Data: High-level policy πh
θh

, low-level policy πl
θl

, encoding layer f(·), non-parametric latent GP
layer with learnable hyperparameters (σ2, γ2 and ℓ), GP update frequency m, higher-level
action frequency k, number of training steps N , replay buffer D.

for n = 1 to N do
Apply policies πl

θl
and πh

θh
, collect experience (st, gt, at, rt, st+1, gt+1)

Compute intrinsic reward rl(st, at, st+1, gt) = −||ϕ(st+1)− gt||2
Update replay buffer D
Update low-level policy πl

θl
and encoding layer f(·) with experience from replay buffer D

every timestep with Eq. (4)
Update high-level policy πh

θh
with experience from replay buffer D every k timesteps

Update latent layer hyperparameter with a batch of state transitions from replay buffer D
every m timesteps with Eq. (4)
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A.2 ONLINE INFERENCE

The Gaussian process inference problem we formulated in the batch scheme can be rewritten in the
form

z ∼ GP (0, κ (s, s′))

f = H z(s) + ϵ, ϵ ∼ N (0, σ),
(10)

where the linear operator H selects the training set inputs among the latent subgoal space values
H z(s) = (z(s1), ..., z(sN)). This problem can be seen as an infinite-dimensional version of the
Bayesian linear regression problem:

z ∼ N (0,K)

f = H z(s) + ϵ
(11)

where z is a vector with Gaussian prior N (0,K) and H is constructed to select those elements of
the vector z that can be actually observed (Sarkka & Hartikainen, 2012) .

This linear model can be extended such that the vector is allowed to change in time according to a
linear stochastic differential equation (SDE) model and a new vector of measurements is obtained at
times ti for i = 1, ..., T (Särkkä & Solin, 2019):

∂z(t)
∂t = A z(t) + Lw(t)

fi = H z(ti) + ϵi,
(12)

where i = 1, ...T , A, L and H are given matrices, ϵi is a vector of Gaussian measurements noises,
and w(t) is a vector of white noise processes. The problem of estimating z(t) given the measurements
can be solved using the classical Kalman filter and Rauch-Tung-Striebel (RTS) smoother. Assuming
z(t0) = N (µ0,Σ0), evolution operator Ψi, and Ωi = Σ0 − ΨiΣ0Ψ

⊤
i , the filtering solution is

recursively given by the following Kalman filter (Sarkka et al., 2013):

- Prediction step:
µ̃i = Ψi−1µi−1,

Σ̃i = Ψi−1Σi−1Ψ
⊤
i−1 +Ωi

- Update step:
vi = yi −Hiµ̃i,

Si = HiΣ̃iH
⊤
i + σ2,

Ki = Σ̃iH
⊤
i S

−1
i

µi = µ̃i +Kivi,

Σi = Σ̃i −KiSiK
⊤
i

The subgoal representation during online planning can be formulated as spatio-temporal Gaussian
process regression problem with models of the form

z(s, t) ∼ GP
(
0, κ

(
s, t; s, t

′
))

fi = Hiz(s, ti) + ϵi.
(13)

By representing the temporal correlation as a stochastic differential equation kind of model and the
spatial dimension as an additional vector element index, it is equivalent to the infinite-dimensional
state space model (Sarkka & Hartikainen, 2012) as counterpart of model Eq. 12:

∂z(s,t)
∂t = A z(s, t) + Lw(s, t)

fi = Hi z(s, ti) + ϵi,
(14)

where the latent state z(s, t) at time t consists of the whole function s 7→ z(s, t), A is a s×s matrix of
linear operators operating on s, L ∈ Rs×q, Hi ∈ Rd×s are given matrices, fi ∈ Rd, ϵi ∼ N (0,Σi),
and w(s, t) ∈ Rq is a Wiener process with a given diffusion matrix Qc ∈ Rq×q . This formulation is
an infinite-dimensional Markovian type of model, where the problem of estimating z(s, t) given the
measurements can be similarly solved using the above Kalman filter resulting in the prediction and
update steps in paper.
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A.3 ENVIRONMENTS

1. Ant Maze A ‘⊃’-shaped maze of size 12×12 for a quadruped-Ant to solve a navigation
task. The ant needs to reach a goal position starting from a random position in a maze with
dense rewards. It has a continuous state space including the current position and velocity, the
current time step t, and the goal location. During training, a random position is generated as
the goal for each episode, and at each time step the agent receives a dense or sparse reward
according to its negative Euclidean distance from the goal position. The success is defined
as being within an Euclidean distance of 1.5 from the goal. At evaluation stage, the goal
position is set to (0, 8). Each episode ends at 500 time steps.

2. Ant Push: A challenging task that requires both task and motion planning. The agent needs
to move to the left then move up and push the block to the right in order to reach the target.

3. Ant Fall: This task extends the navigation to three dimensions. The agent starts on a
platform of height 4 with the target located across a chasm that it cannot cross by itself. The
agent needs to push the block into the chasm and walk on top of it before navigating to the
target.

4. Ant FourRooms: This Task requires the agent to navigate from one room to another to
reach the exogenous goal. In this task, a larger (18 × 18) maze structure is used.

5. Variants: Another Ant Maze of size 24× 24 with the same definition of “success” is used
(labeled ‘Large’). A variant (labeled ‘Image’) with low-resolution image observations for
each of the above task is adopted; the observation is formed by zeroing out the x, and y
coordinates and appending a 5×5×3 top-down view of the environment, as described in
Nachum et al. (2019); Li et al. (2021). Another variant with environmental stochasticity is
also adopted - Gaussian noise with standard deviation σ = 0.1 to the (x, y) position of the
ant robot at every step is added.

A.4 IMPLEMENTATION

A.4.1 TRAINING AND EVALUATION PARAMETERS

• Learning rate of latent GP 1e− 5

• Latent GP update frequency 100

• Batch GP scheme time window size 3

• Subgoal dimension of size 2

• Learning rate 0.0002 for actor/critic of both levels

• Interval of high-level actions k = 50

• Target network smoothing coefficient 0.005

• Reward scaling 0.1 for both levels

• Discount factor γ = 0.99 for both levels

• Learning rate for encoding layer 0.0001

• Hierarchical policies are evaluated every 25000 timesteps by averaging over 10 randomly
seeded trials

A.4.2 NETWORK ARCHITECTURES

We employ a two-layer hierarchical policy network similar to Levy et al. (2019); Li et al. (2021)
which adopts SAC (Haarnoja et al., 2018) for each level in the HRL structure. Specifically, we adopt
two networks each comprising three fully-connected layers (hidden layer dimension 256) with ReLU
nonlinearities as the actor and critic networks of both low-level and high-level SAC networks. The
output of the actor networks of both levels is activated using the tanh function and scaled according to
the size of the environments. The encoding layer f(·) is parameterized by an MLP with one hidden
layer of dimension 100 using ReLU activations. Adam optimizer is used for all networks.

A.4.3 HARDWARE

All of the experiments were processed using a single GPU (Tesla V100) and 8 CPU cores (Intel Xeon
Gold 6278C @ 2.60GHz) with 64 GB RAM.
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Ant Maze
Ant Maze
(Large)

Ant Push Ant Fall

HSSR 0.96±0.00 0.93±0.03 0.90±0.01 0.74±0.02
LESSON 0.89±0.06 0.74±0.15 0.74±0.02 0.54±0.03
HRAC 0.90±0.03 0.83±0.03 0.01±0.00 0.45±0.08
HIRO 0.71±0.02 0.57±0.05 0.00±0.00 0.13±0.07
ORACLE 0.64±0.11 0.56±0.09 0.70±0.05 0.28±0.09
TD3 0.00±0.00 0.00±0.00 0.01±0.00 0.00±0.00

Table 2: Final performance of the policy obtained after 5M steps of training in deterministic environments,
averaged over 10 randomly seeded trials with standard error. Comparisons are to LESSON (Li et al., 2021),
HRAC (Zhang et al., 2020), HIRO (Nachum et al., 2018), HRL with oracle subgoal space Oracle, and flat RL
TD3 (Fujimoto et al., 2018). We can observe the overall superior performance of our method, which is consistent
with the evaluation results in stochastic environments.
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Figure 7: Learning curves of our method and baselines in stochastic environments with dense external rewards.

A.5 ADDITIONAL EXPERIMENTS

We show the learning curves of our method and baselines in stochastic environments with dense
external rewards in Fig. 7, and its quantitative evaluation results can be found in Table 1.

Additionally, we evaluate on deterministic Ant Maze, Ant Push and Ant Fall, as well as a ‘large’ Ant
Maze of size 24× 24, with dense external reward. These experiments are conducted in comparison
to LESSON (Li et al., 2021), HRAC (Zhang et al., 2020) and TD3 (Fujimoto et al., 2018), as well as
the following two baseline methods:

1. Oracle: HRL with the oracle subgoal space, i.e., x, y coordinates of the agent, in navigation
tasks.

2. HIRO (Nachum et al., 2018): an off-policy goal-conditioned HRL algorithm using a
pre-defined subgoal space.
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(a) (b)

(c) (d)

Figure 8: Learning curves of our method and baselines in deterministic environments with dense external
rewards.

Note, all methods are evaluated and compared using the same settings of tasks. Table 2 shows
the comparative results on deterministic environments, and Fig. 8 shows the learning curves of all
baselines.
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