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Abstract

This paper introduces two novel solutions to the challenge of catastrophic forgetting in
continual learning: Interpretability Guided Continual Learning (IG-CL) and Intrin-
sically Interpretable Neural Network (IN2). These frameworks bring interpretability
into continual learning, systematically managing human-understandable concepts within
neural network models to enhance knowledge retention from previous tasks. Our methods are
designed to enhance interpretability, providing transparency and control over the continual
training process. While our primary focus is to provide a new framework to design continual
learning algorithms based on interpretability instead of improving performance, we observe
that our methods often surpass existing ones: IG-CL employs interpretability tools to guide
neural networks, showing an improvement of up to 1.4% in average incremental accuracy over
existing methods; IN2, inspired by the Concept Bottleneck Model, adeptly adjusts concept
units for both new and existing tasks, reducing average incremental forgetting by up to 9.1%.
Both our frameworks demonstrate superior performance compared to exemplar-free methods,
are competitive with exemplar-based methods, and can further improve their performance by
up to 18% when combined with exemplar-based strategies. Additionally, IG-CL and IN2 are
memory-efficient as they do not require extra memory space for storing data from previous
tasks. These advancements mark a promising new direction in continual learning through
enhanced interpretability1.

1 Introduction

Continual learning is a crucial aspect of machine learning, empowering models to adapt and improve as
they encounter new data over time. This dynamic learning process, however, faces a significant hurdle
known as "catastrophic forgetting." This phenomenon, where a model forgets previously learned information
upon acquiring new knowledge, is largely attributed to the shift in input distribution with changing tasks.
According to van de Ven et al. (2022); De Lange et al. (2021), there are three primary settings in continual
learning: class incremental, task incremental, and domain incremental. Our focus in this paper is on the class
incremental setting, identified as the most challenging setting among three due to its pronounced susceptibility
to catastrophic forgetting, as detailed in van de Ven et al. (2022); Chaudhry et al. (2018); De Lange et al.
(2021).

Current strategies in continual learning fall into the following main categories: Exemplar-free and Exemplar-
based methods. Exemplar-free methods do not rely on data from old tasks, like regularization-based
methods that introduce constraints to preserve old knowledge; architecture-based methods that adapt the
model’s structure for new tasks. On the other hand, Exemplar-based methods, also known as replay-based

1Our code is available at https://github.com/Trustworthy-ML-Lab/concept-driven-continual-learning
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Figure 1: IG-CL’s concept evolution in (a) CIFAR-100 and (b) TinyImageNet. Tasks’ classes are in Appendix
D.3. The results show that existing work perform poorly on preserving the learned concepts hence suffers
from catastrophic forgetting problem, while the proposed IG-CL can preserve the concepts from previous
classes. The values are in Table 5 of Appendix A.1.

methods, involve revisiting previous data. Replay-based methods generally outperform others but require
extra memory for data storage. Despite existing methods show some promise, they still lack in performance
and many of them still have serious catastrophic forgetting problems. This gap highlights the need for more
systematic and understandable approaches in continual learning.

In parallel, there is a growing body of research dedicated to deciphering the role of neurons in neural networks.
Pioneering studies, such as (Bau et al., 2017; 2020; Oikarinen & Weng, 2023; Hernandez et al., 2022; Bai et al.,
2024; Oikarinen & Weng, 2024), have highlighted "concept units" – neurons that closely align with concepts
easily understood by humans. Our research reveals a critical gap in current continual learning algorithms:
While previous continual learning algorithms generally fail to effectively preserve these concept units, our
research reveals the advantage of leveraging interpretability for mitigating catastrophic forgetting. This key
finding, detailed in Figure 1, has shaped our approach to developing new continual learning frameworks.

In this paper, we present two novel frameworks, Interpretability Guided Continual Learning (IG-CL)
and Intrinsically Interpretable Neural Network (IN2), to address the issue of catastrophic forgetting
in continual learning. Unlike existing approaches that lack interpretability, our methods stand out by
incorporating interpretability, enabling systematic management of human-understandable concepts within
the model, which enhances knowledge retention from prior tasks. Our contributions are the following:

• Our first method, IG-CL, uses interpretability tools (Bau et al., 2020; Oikarinen & Weng, 2023) to guide
neural networks in continual learning. IG-CL has proven to be effective in our extensive experiments,
outperforming existing methods by achieving up to 1.4% higher average incremental accuracy.

• Our second method, IN2, is a novel framework based on the Concept Bottleneck Model (CBM) (Koh et al.,
2020; Oikarinen et al., 2023), tailored for continual learning. IN2 is engineered to maintain and adapt
concept units corresponding to both old and new tasks, further reducing average incremental forgetting by
up to 9.1% compared to existing methods. Different from IG-CL, IN2 modifies the model’s architecture
and inherit interpretability from CBM.

• To our best knowledge, IG-CL and IN2 are the first general approach to make the learned knowledge and
the training process transparent and interpretable in the continual learning setting.

Our primary aim is to leverage interpretability to provide transparency and control over retained knowledge
and the training process, addressing gaps in the current literature. IG-CL and IN2 bridge interpretability and
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Table 1: Comparison of our method against existing methods for continual learning.
(I) Scalability (II) Flexibility (III) Interpretability

Method: Only need
one backbone

Without
memory buffers

For any
architecture

Exemplar-free
EWC (Kirkpatrick et al., 2017) Yes Yes Yes No
SI (Zenke et al., 2017) Yes Yes Yes No
LwF (Li & Hoiem, 2017) Yes Yes Yes No
Adam-NSCL (Wang et al., 2021) Yes Yes Yes No
SSRE (Zhu et al., 2022) Yes Yes Yes No
DEN (Yoon et al., 2018) Yes Yes Yes No
ICICLE (Rymarczyk et al., 2023) Yes Yes No △ (part-based prototype)

Exemplar-based
GEM (Lopez-Paz & Ranzato, 2017) Yes No Yes No
MIR (Aljundi et al., 2019) Yes No Yes No
DER (Yan et al., 2021) No No No No

IG-CL (Ours) Yes Yes Yes Yes, text-based concept (more general)
IN2 (Ours) Yes Yes Yes Yes, text-based concept (more general)

continual learning from two perspectives. IG-CL brings interpretability to continual learning by using external
interpretability tools to guide models. On the other hand, IN2 tailor interpretable models like CBM for
continual learning by leveraging their own interpretability. While our focus is on proposing a new framework
to design continual learning algorithms based on interpretability, we observe that our methods often surpass
existing ones. For instance, our approach outperforms exemplar-free methods in average incremental accuracy
and is competitive with exemplar-based methods. When combined with exemplar-based strategies, our
methods enhance their performance by up to 18%. Additionally, our methods are memory-efficient, requiring
no extra memory space for storing data from previous tasks. The benefits of our methods are summarized in
Table 1. Interpretability is key distinguishing feature of our approach compared to existing methods.

2 Background and Related Work

2.1 Continual Learning

To mitigate catastrophic forgetting in continual learning, several methods have been proposed. They can
be categorized into Exemplar-free and Exemplar-based methods. For Exemplar-free methods, it
consists of two streams: regularization-based methods and architecture-based method. The key idea of
regularization-based methods is to add additional terms in the loss function to constrain model parameters
to not change too much from previous tasks (Kirkpatrick et al., 2017; Zenke et al., 2017; Li & Hoiem, 2017;
Jung et al., 2016; Dhar et al., 2019; Castro et al., 2018; Hu et al., 2019; Lee et al., 2019; Aljundi et al., 2018;
Chaudhry et al., 2018; Lee et al., 2017; Schwarz et al., 2018). On the other hand, architecture-based methods
modify the model’s architecture or parameters when learning new tasks, by dynamic expansion or pruning
(Rusu et al., 2016; Yoon et al., 2018; Xu & Zhu, 2018; Yan et al., 2021; Li et al., 2019; Serra et al., 2018;
Wang et al., 2021; Zhu et al., 2022). For Exemplar-based method, it is also known as replay-based methods,
whose spirit is to store previous tasks’ information and train the model with new tasks jointly (Lopez-Paz &
Ranzato, 2017; Rebuffi et al., 2017; Chaudhry et al., 2019; Rolnick et al., 2019; Hou et al., 2019; Wu et al.,
2019; Buzzega et al., 2020; Wang et al., 2022; Guo et al., 2022; Liu et al., 2021; Aljundi et al., 2019). More
details of these methods is in Appendix D.2.

Meanwhile, some works focus on the theoretical aspect of continual learning (Peng et al., 2023; Peng &
Risteski, 2022; Cao et al., 2022; Ruvolo & Eaton, 2013; Pentina & Urner, 2016; Chen et al., 2022; Kim et al.,
2022). However, none of these methods are able to control human-interpretable concepts directly, which
makes them lack interpretability. Indeed, interpretability is one of the main differences between our methods
and existing methods. There are some recent works (Marconato et al., 2023; Rymarczyk et al., 2023) connects
interpretability with continual learning. They focus on part-based prototype concepts or neuro-symbolic
concepts. Our work focuses on text-based concepts instead, which allows more general interpretability.
Meanwhile, they are only suitable for particular model architectures whereas our methods are compatible for
general DNN.
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2.2 Neuron-Level Interpretation and Concept Bottleneck Models

Several works (Bau et al., 2017; 2020; Oikarinen & Weng, 2023; Hernandez et al., 2022; Mu & Andreas,
2020; Bai et al., 2024; Oikarinen & Weng, 2024) provide automated descriptions of the roles of individual
neurons in deep vision models, and do extensive studies for their methods’ interpretability. Typically these
methods generate a description by analyzing what kinds of inputs result in high activations for the given
neuron. For example, Network Dissection (Bau et al., 2020) identifies the concepts of individual neurons
by comparing the neuron’s activation map to concept annotated data. A more recent work CLIP-Dissect
(Oikarinen & Weng, 2023) eliminates the need of concept annotated data by leveraging the Contrastive
Language-Image Pre-training (CLIP) model (Radford et al., 2021) and designing several similarity functions.
Detailed introduction of CLIP-Dissect is in Appendix D.2.2. In this paper, we explore a departure from the
typical emphasis on refining interpretability tools, instead utilizing them to guide continual learning processes.
Our work focuses on the computer vision domain since the interpretability tools in the domain have made
significant progress. It can be applied to other domains like NLP with their interpretability tools like Sajjad
et al. (2022); Lee et al. (2023) potentially in the future.

Concept Bottleneck Model (CBM) (Koh et al., 2020) has a layer called Concept Bottleneck Layer (CBL)
where each neuron corresponds to a human interpretable concept. The idea of CBL is to create an meaningful
concept mapping from black-box representations to a layer that contains a human-interpretable concept set
C, allowing effective intervention and explaining the model predictions. Recent works (Oikarinen et al., 2023;
Yuksekgonul et al., 2023; Srivastava et al., 2024) try to address it since concept annotations is expensive and
hard to collect. Specifically, Label-Free CBM (LF-CBM) (Oikarinen et al., 2023) generates concepts from
task information. Detailed introduction of LF-CBM is in Appendix D.2.2. The concept set C generation
depends on the CBM. For LF-CBM (Oikarinen & Weng, 2023), concept sets are generated by asking large
language models like GPT-3 (Brown et al., 2020) about the concepts related to the classes. For original
CBM (Koh et al., 2020), concept sets has to be predefined and provided in the dataset. The primary focus of
these CBM works is only on single task and does not consider the challenging continual learning setting. In
contrast, our IN2 is tailored for continual learning with a new learning procedure that enables it to learn a
series of tasks, which generalizes CBM-based methods to continual learning.

3 Our first method: IG-CL

Overview. To address catastrophic forgetting, we aim to manage concepts learned by models in an
interpretable manner. We introduce two frameworks: Interpretability Guided Continual Learning
(IG-CL) in this section and Intrinsically Interpretable Neural Network (IN2) in the next section.
IG-CL uses an interpretability tool to steer the learning process, identifying and preserving previously learned
concepts to prevent forgetting. This approach enhances model comprehension and has shown to improve
incremental accuracy by up to 1.4%. Building on this, IN2 incorporates interpretable neurons that are
systematically integrated and controlled, further reducing forgetting by up to 9.1% in our experiments. Figure
2 illustrates the key steps in IG-CL, and the details of each step are described below. IG-CL’s full algorithm
is summarized in Algorithm 1 in Appendix C.2.

3.1 Step 1: Decipher network

Initially, we use a neuron-interpretability tool to decipher the interpretable neurons in the model. Interpretable
neurons are defined as those whose activations correspond closely to human-understandable concepts (e.g.
"red", "stripes", "windy", etc). A model, denoted as θ, consists of a feature extractor {Wl}L

l=1, also known as
a backbone, and a prediction layer WF . Our goal is to preserve the important concepts learned from the
previous tasks. Previous work (Bau et al., 2020) analyzes the concept neurons in each layer, and finds out
that high-level concept neurons emerge in the deep layers. Low-level concepts are basic descriptions like
colors, while high-level concepts are objects or components of the images. The high-level concepts are specific
to the classes in the previous tasks, which needed to be preserved. Therefore, we apply the interpretability
tool on the last layer of the feature extractor WL to decipher the neurons. The discovered interpretable
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Figure 2: IG-CL’s procedure.

neurons are called concept units. Existing neuron interpretability tools (Bau et al., 2017; Oikarinen &
Weng, 2023) are directly applicable to detect the concepts of neurons in our framework.

3.2 Step 2: Freezing the learned knowledge

Figure 3: The illustra-
tion of two freezing sub-
network methods. Red
nodes and lines stand
for trainable unit and
weights.

Second, we want to freeze the concept units in the model to preserve the learned
knowledge. These concept units emerged in the network during learning the
current task t − 1. To prevent catastrophic forgetting, it is desired to preserve
these concept units when learning a new task t. To achieve this, we propose to find
and freeze these task-related neurons when learning the new task t by finding a
sub-network which links all related neurons. In practice, this can be implemented
by using Breadth First Search (BFS) from the concept unit in WL to the input
layer W1. Define two neurons are connected when the weight exceeds threshold τ .
We propose two ways to freeze the subnetworks to preserve the learned knowledge
by different degrees:

• freeze-all Freeze all weights connected to neurons in any concept units’
subnetwork.

• freeze-part Only freeze input weights to all neurons in the subnetworks,
leaving output weights trainable.

We describe Step 2 mathematically in Line 7 - Line 19 of Algorithm 1 in Appendix
C.2.

The freeze-part method leaves the output weights of the neurons in the subnet-
work trainable, which may have a better ability to learn new tasks. For freeze-all
method, it isolates the subnetworks from the rest of the model which is expected
to promote less forgetting. An illustration of these two methods is in Figure 3.
The experiment results in Section 5 show that the freeze-all method forgets less, while the freeze-part
method has better learnability for a longer series of tasks as expected. This step is summarized in Algorithm
1 Line 8-19.

3.3 Step 3: Learning without forgetting

Next, we train the model on a new task t with Eq. (1). Let Dt be the data for task t. We have two goals
when learning task t: regularize (i) the size of subnetworks and (ii) WF . To regularize the size of subnetworks
described in Step 2, we choose p = 2, q = 1 and µ to regularize the number of activated units. Second,
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inspired by the regularization-based methods, we train the model with regularization β = 2 on the WF , which
aims to prevent WF from changing too much. But different from previous regularization-based methods, the
preserved knowledge in our method is interpretable (as they are detected as interpretable concept units in
Step 1, which can be easily understood through the text description e.g. "tree", "bus" in Fig 2).

min
θt
L(θt;Dt) + µ

L∑
l=1
∥W t

l ∥p,q + λ∥W t
F −W t−1

F ∥β (1)

Then, we will repeat Step 1 to 3 for task 2, 3 . . . until the last task T , as illustrated in Figure 2.

3.4 Further Discussion

Interpretability. Unlike previous methods in continual learning, which lack interpretability due to their
inability to clearly identify retained knowledge in a human-understandable manner, IG-CL simplifies the
knowledge preservation process, ensuring clarity and straightforwardness. Notably, IG-CL is designed to be
compatible with existing neuron interpretability tools (Bau et al., 2017; Oikarinen & Weng, 2023), allowing
it to integrate seamlessly with multiple frameworks and enhance the transparency of the learning process.
Nonetheless, the selection of interpretability tools will affect IG-CL. The generalizability of interpretability
tools are the key to guide and improve continual learning. Therefore, it’s crucial that the interpretability
tools we selected to be flexible (e.g. open-vocabulary concepts). Meanwhile, they have to be efficient so
the continual learning process will not be too time-consuming. Based on these criteria, in this work we use
CLIP-Dissect (Oikarinen & Weng, 2023) as the tool to detect neuron concepts.

Ability to Share Concepts Among Tasks. IG-CL is designed to keep and reuse the learned concepts from
old tasks. Experiment in Section 5.3, Appendix A.1 and B.6 study its ability and show that it outperforms
baselines by up to 9% in forward transfer metric.

Efficiency. IG-CL framework is light since it does not need extra memory storage to store previous tasks’
samples. Previous tasks’ knowledge is stored within the model. Experiment on GPU usage in Appendix C.1
shows the efficiency of IG-CL.

4 Our second method: IN2

In the previous Section 3, we introduced IG-CL as a novel interpretable method to identify and manage
concept units in models for reducing catastrophic forgetting, marking it as a pioneering approach in the
regularization-based category. Building on this, we now present the Intrinsically Interpretable Neural
Network (IN2), a new architecture-based method that transforms any neural network into an interpretable
framework designed for continual learning. IN2 uniquely maintains previously learned concept units while
integrating new ones for upcoming tasks, demonstrating a reduction in average incremental forgetting by
up to 9.1% over existing methods according to our experiments. Compared with IG-CL, IN2 does not need
external interpretability tools since CBM provides interpretability. Figure 4 illustrates the procedure of IN2.

4.1 Step 0: Set up CBM

For the first task, the learning procedure is the same as training a Concept Bottleneck Model (CBM) (Koh
et al., 2020) on the first single task. In the continual learning setting, after learning the task t− 1, the CBM
has a concept set Ct−1 and the concept mapping W t−1

c in between the backbone and the prediction layer.
We consider the setting that backbone f(x) is frozen for reduced training cost, but our method also allows
backbone being trained from scratch or finetuned. For task t, we create a task-relevant concept set ct

k from its
class labels k. Creation of the task-relevant concept sets depends on the Concept Bottleneck Model (CBM).
For Label-free CBM (Oikarinen et al., 2023), concept sets are generated by asking GPT-3 about the concepts
related to the classes. For CBM (Koh et al., 2020), concept sets are predefined and provided in the dataset.
In the following paragraphs of IN2’s learning procedure, we consider the case that the model has learned
t− 1 tasks, and it is going to learn a new task t.
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Figure 4: IN2’s procedure.

4.2 Step 1: Concept set expansion

In this step, we expand the concept set based on classes in new task t. Given the concept set from t− 1 tasks
as Ct−1, we form a new concept set Ct by adding all concepts from ct

k and Ct−1. If certain concepts in ct
k

are already present in Ct−1, we still include them nonetheless. This is because identical textual concepts
across different tasks may exhibit distinct attributes, such as variations in color and shape. For example,
concept "ship" might refer to "vessel" or "cargo ship" in different tasks. After the expansion, there are
|Ct| = |Ct−1|+ |ct

k| concepts in Ct. The analysis of duplicate concepts and numbers are in Appendix C.3

4.3 Step 2: Learning the concept mapping

To preserve learned concepts, we keep the weights of the existing concepts from the concept mapping of the
previous task. Given a new concept mapping for learning the task t is W t

c ∈ R|Ct|×d, we first inherit the
concept mapping’s weights from the previous model:

W t
c [i, :] = W t−1

c [i− 1, :] ∀i ∈ {1, 2, ..., |Ct−1|} (2)

where W t
c [i, :] means the i-th row of the W t

c . The second step is to learn W t
c using the procedure of CBM.

Take LF-CBM Oikarinen et al. (2023) as an example. LF-CBM aims to align the concept mapping with
CLIP’s (Radford et al., 2021) representation of the concepts. Therefore, the procedure is to maximize the
similarity between concept mapping’s f t

c(x) = W t
c f(x) and CLIP’s activation matrix. The second step can

be done in two ways:

1. Finetune: We learn W t
c on task t without additional constraints. We only initialize W t

c with old concepts
but these concepts will be changed on the new task.

2. IN2: We freeze the previous concepts’ corresponding mapping in W t
c to prevent them from changing. This

strategy enables us to learn the mapping of new concepts without affecting the previously learned ones.
This strategy makes IN2 light and interpretable. It eliminates the need for additional memory storage for
previous tasks’ samples, and provides transparency regarding the retained knowledge.

4.4 Step 3: Learning the prediction layer

Finally, we aim to learn the prediction layer without forgetting. First, we inherit prediction weights in W t−1
F

to W t
F before the learning process. The idea is similar to Step 2, where |Ct−1| concept output weights in W t

F

inherit the same weights from W t−1
F . Again, the Finetune strategy is to learn W t

F without any constraints.
On the other hand, the IN2 strategy follows the similar idea as IG-CL’s Step 3 to learn the prediction layer
with regularization γ and β = 2. Meanwhile, we control the sparsity of WF by setting α = 1 and λ. Given
the dataset Dt = (X t,Yt), the training goal is to minimize the loss in Eq. (3) where L could be cross-entropy
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loss:

min
θt
L(W t

F ; f t
c(X t),Yt) + λ∥W t

F ∥α + γ∥W t
F −W t−1

F ∥β (3)

4.5 Further Discussion

Interpretability. IN2 is a versatile framework that supports various approaches for constructing CBMs
(Koh et al., 2020; Yuksekgonul et al., 2023; Oikarinen et al., 2023), enhancing interpretability by allowing
analysis of predictions in human-understandable terms, as illustrated in Figure 5. This interpretability also
makes the progression of knowledge acquisition in continual learning transparent, a significant improvement
over previous architecture-based methods (Yoon et al., 2018; Wang et al., 2021), which lack clarity and
interpretability on the knowledge integrated into the extended architecture. Similar to IG-CL, generalizability,
efficiency and accuracy are the selection criteria for CBMs. Because the CBMs for IN2 have to be accurately
applied on different data streams, and be efficient for smooth continual learning processes. Based on these
criteria, in this work we build IN2 upon LF-CBM (Oikarinen et al., 2023).

Ability to Share Concepts Among Tasks. IN2 is designed to keep the learned concepts from old tasks.
Figure 5, Appendix A.2 and B.6 study IN2’s ability, and show that it can improve GEM (Lopez-Paz &
Ranzato, 2017) by up to 7.8% in forward transfer metric when combining with GEM.

5 Experiments

In Section 5.1, we introduce the datasets, evaluation metrics, baselines and other details in the experiment.
In Section 5.2, we compare our methods with existing methods in standard metrics. In Section 5.3, we unveil
the learned knowledge and the training process by leveraging IG-CL and IN2 interpretability. In Section 5.4,
we conduct ablation studies for our methods to analyze the contributions to their superior performance. Due
to page limit, additional experiments and discussions are in Appendix A, B and C. An overview of additional
experiments is provided in the first page of Appendix as Appendix Outline.

5.1 Experiment setup

Dataset. To evaluate our methods, we perform experiments on two datasets: CIFAR-100 (Krizhevsky
et al., 2009) and TinyImageNet (Le & Yang, 2015). Experiments on CIFAR-10 (Krizhevsky et al., 2009) and
CUB-200 (Wah et al., 2011) are discussed in Appendix B and C. We consider T = 5, 10, 20 tasks scenario in
class incremental setting. We use ResNet18 (He et al., 2016) as the experiment model. Experiment, dataset,
result report and hyperparameter selection details are in Appendix D.1.

Evaluation Metrics. Following (Mirzadeh et al., 2022b; Chaudhry et al., 2018), we use the standard
evaluation metrics to evaluate our methods. Define ai,j as model’s accuracy on j-th task after learning i-th
task, i ≥ j. When testing the performance on t-th task, the metrics’ definitions are as follows:

• Average Accuracy: Measures the average model performance At = 1
t

∑t
i=1 at,i

• Average Forgetting: Measures model performance drop on previous tasks Ft =
1

t−1
∑t−1

i=1 max
j∈(1,...,t−1)

(aj,i − at,i)

However, these standard metrics only reflect models’ performance at the final stage. Following recent works
(Zhu et al., 2022; Soutif-Cormerais et al., 2023; Zhou et al., 2023; Caccia et al., 2020; 2022; Koh et al., 2022),
we also evaluate models throughout the stream. Specifically, we also report:

• Average Incremental Accuracy: ĀT = 1
T −1

∑T
t=2 At

• Average Incremental Forgetting: F̄T = 1
T −1

∑T
t=2 Ft

Baselines. We perform experiments on the following continual learning baselines:

8



Published in Transactions on Machine Learning Research (09/2024)

• Finetune: the standard method where models are updated continuously on a series of tasks

• Exemplar-free methods

– (regularization-based) EWC (Kirkpatrick et al., 2017), SI (Zenke et al., 2017), LwF (Li & Hoiem,
2017)

– (architecture-based) Adam-NSCL (Wang et al., 2021), DEN (Yoon et al., 2018) in Appendix
B.5.2, SSRE (Zhu et al., 2022) in Appendix B.5.1, ICICLE (Rymarczyk et al., 2023) in Appendix
B.5.3

• Exemplar-based methods

– GEM (Lopez-Paz & Ranzato, 2017) and MIR (Aljundi et al., 2019)

Notations and Details. For IG-CL, "IG-CL-freeze-x" means IG-CL with implementation freeze-all/ freeze-
part in Step 2. For CBM based methods, "Finetune-CBM" means using Finetune strategy in Step 2 and
Step 3, while "IN2" means using IN2 strategy instead. "IN2-remove" means removing duplicate concepts in
concept set expansion. "-GEM" and "-MIR" means combining our methods with GEM and MIR respectively.
For baseline strategies, we use the implementations from a continual learning library Avalanche (Lomonaco
et al., 2021). We also use Avalanche to implement our methods.

Here we discuss T = 5 experiment results in {ĀT , F̄T }. For different metrics {AT , FT }, please see Appendix
B.3; for experiment results of {T = 10, 20}, please see Appendix B.4. The comparisons with SSRE (Zhu
et al., 2022), DEN (Yoon et al., 2018) and ICICLE (Rymarczyk et al., 2023) are in Appendix B.5. We were
not able to compare with DER (Yan et al., 2021) as their official code is incomplete. Due to scalability
and efficiency, we use CLIP-Dissect (Oikarinen & Weng, 2023) as the interpretability tool for IG-CL, and
LF-CBM (Oikarinen et al., 2023) for CBMs in IN2. Memory usage experiment is in Appendix C.1.

Table 2: Accuracy comparison for IG-CL. ↑ means larger values are better, while ↓ means smaller values
are better. Underline means the strongest baseline, and boldface means the best number. In the Ours
Improvement rows, +/- measures our best number minus the strongest baseline, and the value is in blue if
our improvement is statistically significant. Our methods outperform the baselines on both ĀT and F̄T .

CIFAR-100, 5T TinyImagenet, 5T

ĀT ↑ F̄T ↓ ĀT ↑ F̄T ↓
Exemplar-free baselines

Finetune 20.47 ± 0.67 63.02 ± 0.45 16.82 ± 2.18 49.80 ± 0.57
EWC 20.97 ± 0.55 62.56 ± 0.29 16.19 ± 2.65 48.42 ± 0.39
SI 17.75 ± 1.37 59.31 ± 1.93 13.07 ± 2.57 44.71 ± 2.28
LwF 12.74 ± 2.15 63.66 ± 2.40 16.09 ± 3.25 49.43 ± 1.26
Adam-NSCL 17.45 ± 2.35 59.54 ± 3.04 17.90 ± 2.57 44.98 ± 0.74

Ours
IG-CL-freeze-all 22.37 ± 1.20 58.75 ± 0.26 18.19 ± 0.76 43.39 ± 0.92
IG-CL-freeze-part 21.73 ± 0.79 60.51 ± 0.35 18.08 ± 0.56 46.00 ± 0.66

Ours Improvement +1.40 +0.56 +1.37 +1.32
Exemplar-based baselines

GEM 23.02 ± 1.65 60.63 ± 4.12 11.29 ± 2.62 41.30 ± 1.67
Ours

IG-CL-freeze-all-GEM 28.18 ± 2.36 42.61 ± 2.12 12.49 ± 1.87 37.78 ± 1.04
IG-CL-freeze-part-GEM 25.62 ± 2.08 52.39 ± 3.24 12.06 ± 1.58 42.67 ± 2.79

Ours Improvement +5.16 +18.02 +1.20 +3.52
Exemplar-based baselines

MIR 27.26 ± 0.93 53.02 ± 2.84 17.81 ± 0.82 44.60 ± 2.43
Ours

IG-CL-freeze-all-MIR 27.04 ± 1.08 51.66 ± 3.11 19.95 ± 2.41 43.08 ± 0.95
IG-CL-freeze-part-MIR 27.59 ± 0.62 52.77 ± 2.75 20.02 ± 2.58 43.87 ± 2.25

Ours Improvement +0.33 +1.36 +2.21 +1.52
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5.2 Quantitative Results

5.2.1 Comparison results for IG-CL

For IG-CL, the accuracy comparisons with existing works are in Table 2. Compared with the Exemplar-free
methods, our method outperforms existing works by up to 1.4% in ĀT and up to 1.3% in F̄T . Most of
the time IG-CL performs better using freeze-all than with freeze-part. Meanwhile, the performance is
comparable to or even better than Exemplar-based methods in some benchmarks. When combining IG-CL
with Exemplar-based methods, both freeze-all and freeze-part tend to improve Exemplar-based method to
achieve higher ĀT by up to 5.1% and lower F̄T by up to 18.0%. The experiment results show that IG-CL can
make models more effective and forget less, either standalone or combining with other methods. Considering
the experiment results of 10-task and 20-task scenario in Appendix B.4, we observe that freeze-part has better
performance when task number is bigger. Overall, the freeze-all approach is suitable for a limited number of
tasks and emphasizes preserving learned knowledge, while the freeze-part approach is more appropriate for
scenarios involving a large number of tasks.

Table 3: Accuracy comparison for IN2. All models are pre-trained on the Place365 dataset (Zhou et al., 2017).
↑ means larger values are better, while ↓ means smaller values are better. Underline means the strongest
baseline, and boldface means the best number. In the Ours Improvement rows, +/- measures our best
number minus the strongest baseline, and the value is in blue if our improvement is statistically significant.
Our methods clearly outperform the baselines on both ĀT and F̄T .

CIFAR-100, 5T TinyImagenet, 5T

ĀT ↑ F̄T ↓ ĀT ↑ F̄T ↓
Exemplar-free baselines

Finetune 22.68 ± 0.88 75.69 ± 2.25 20.50 ± 0.45 66.52 ± 2.10
EWC 22.20 ± 1.56 74.93 ± 2.34 19.68 ± 1.82 65.26 ± 2.54
SI 22.70 ± 1.20 74.44 ± 2.45 18.87 ± 1.71 62.44 ± 0.68
LwF 24.20 ± 2.29 74.41 ± 3.33 20.48 ± 2.36 64.17 ± 3.08
Adam-NSCL 23.37 ± 2.14 53.87 ± 3.19 20.17 ± 2.04 58.28 ± 3.02

Ours
Finetune-CBM 24.99 ± 0.79 59.29 ± 1.40 21.13 ± 1.66 61.57 ± 1.42
IN2-remove 23.21 ± 0.77 52.41 ± 1.37 20.10 ± 0.43 52.95 ± 1.05
IN2 24.25 ± 0.86 47.62 ± 1.52 21.30 ± 1.55 49.11 ± 1.74

Ours Improvement +0.79 +6.25 +0.80 +9.17
Exemplar-based baselines

GEM 24.27 ± 1.57 74.28 ± 2.54 10.54 ± 0.73 41.49 ± 1.62
Ours

IN2-GEM 25.41 ± 2.06 66.91 ± 2.16 12.14 ± 0.53 38.23 ± 0.42
Ours Improvement +1.14 +7.37 +1.60 +3.26
Exemplar-based baselines

MIR 24.32 ± 2.09 61.22 ± 1.69 11.58 ± 2.08 44.17 ± 2.06
Ours

IN2-MIR 31.03 ± 2.23 60.39 ± 1.06 14.86 ± 1.10 46.24 ± 2.81
Ours Improvement +6.71 +0.83 +3.28 -2.07

5.2.2 Comparison results for IN2

Table 3 compares the results of IN2 and baselines. It can be seen that our Finetune-CBM already outperforms
existing exemplar-free methods in balanced average accuracy ĀT with often better balanced average forgetting
F̄T , which indicates the impact of CBM in continual learning. Notably, our IN2 even has better performance
on both metrics by up to 0.8% in ĀT and 9.1% in F̄T . Additionally, combining IN2 with exemplar-based
methods can further yields more improved performance for the exemplar-based methods by up to 6.7% in ĀT

and 7.3% in F̄T . However, the trade-off between interpretability and accuracy causes a minor performance
drop for MIR. CBM transforms a neural network’s architecture into a more interpretable one, which causes a
slight decrease in accuracy as LF-CBM (Oikarinen et al., 2023) and Post-hoc CBM (Yuksekgonul et al., 2023)
shows. However, IN2 increases interpretability significantly compared with the previous continual learning
methods. When remove duplicate concepts in concept set expansion, both ĀT and F̄T are worse than original
IN2, but still better than the baselines in F̄T with similar ĀT . Since the same text concepts can represent
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different visual concepts, as demonstrated in Appendix C.3, adding duplicate concepts help IN2 achieves
better performance.

Remark. Our methods, IG-CL and IN2, introduce interpretability to continual learning for the first time.
While often achieving superior performance on two standard metrics compared to baselines, it’s important
to emphasize that our primary goal extends beyond mere performance enhancement. Our approach may
sometimes yield accuracy comparable to or slightly worse than existing methods in 5-task scenario and
different settings in Appendix B, yet it stands out by significantly boosting interpretability. This innovation
marks a pivotal step in making continual learning not just more effective, but also more understandable.

5.3 Discussion on Concept Evolution

In this section, we visualize the learned concept to give more insights on the proposed IG-CL and IN2.

IG-CL. For IG-CL, we study the evolution of the concepts represented by neurons as we train across different
tasks. We analyze the case which we group similar classes into the same task, so we can recognize which task
a concept belongs to easier. For CIFAR-100 and TinyImagenet, the class distributions are in appendix D.3.
We try to maximize the diversity between tasks, which makes tasks share less concepts and become more
challenging in continuous learning regime. First, we use CLIP-Dissect (Oikarinen & Weng, 2023) to analyse
how many units are still detecting the same concept after learning a new task. The results are in Figure 1
and Table 4. The values are in Table 5 in Appendix A.1. Compared with existing methods, our method
has better ability to retain knowledge of concepts, with by up to 62.5% improvement in the preserved ratio
as Table 5 shows. We also do a case study to understand how well our method preserves the concept units
from the previous tasks. Table 4 shows results for some example neurons. Some concepts are preserved after
learning unrelated new tasks, which gives us insight on how our method helps avoid catastrophic forgetting.
As Table 2 shows, IG-CL outperforms baselines by up to 1.3% in forgetting metric F̄T .

Table 4: Concept evolution for IG-CL in freeze-all implementation. We analyse the concept evolution in the
layer 4 of ResNet18. The blue concept means the concept is related to the current task, while the green
concept means it is unrelated. "x" stands for non-interpretable units. The results show that IG-CL can
preserve the concepts from previous classes.

TinyImagenet, 5T
task 1 task 2 task 3 task 4 task 5

Classes Big objects Human-made
small objects

Big animals
& Natural scenes

Small animals
& Sea animals

Food & Clothes
& Others

Unit 85 x Kitchen Kitchen Kitchen Kitchen
Unit 123 x Bedroom Bedroom Bedroom Bedroom
Unit 129 Bus Bus Bus Bus Bus

CIFAR-100, 5T
task 1 task 2 task 3 task 4 task 5

Classes Small animals
& Sea animals

Natural scenes
& Plants Big animals Big objects Others

Unit 307 x Kitchen Kitchen x x
Unit 310 x x x Highway Highway

IN2. For IN2, we also studied the evolution of concepts across different tasks. Figure 5 shows an example
for CIFAR-100 under 5-tasks scenario, with more results in Appendix A.2. As discussed in the previous
section that though our Fine-tune CBM results is already better than many Exemplary-free baselines, our
IN2 is even better than Fine-tune CBM, especially on F̄T , with up to 12.4% improvement. This can be seen
in Figure 5 that IN2 is much better at retaining and using knowledge of concepts learned from previous
tasks, which is the key to help to combat against catastrophic forgetting. As Table 3 shows, IN2 outperforms
baselines by up to 9.1% in forgetting metric F̄T .
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(a) Finetune-CBM

(b) IN2

Figure 5: Final weight visualization for random classes in (a) Finetune-CBM and (b) IN2 trained on CIFAR-
100 under 5-tasks scenario. For class "caterpillar"from task 1, we show its significant weight (> 0.16) after
training on task 1 and task 2. Concepts generated from the caterpillar class itself are colored blue, and other
concepts from task 1 are colored gray. The class distribution is in Table 38. We can see IN2 keeps a similar
final layer while Finetune-CBM loses most significant weights.

5.4 Ablation Studies

To understand the contributions of IG-CL and IN2’s continual learning abilities, we do ablation studies in
Appendix B.1 to analysis each part of the methods. The experiment results show that utilizing all steps
in Section 3 and Section 4 leads to best performances in continual learning. For IG-CL, freezing concept
subnetworks improves ĀT by up to 3.1% and 4.8% in F̄T , and regularizing WF improves ĀT by up to 3.6%
and 7.3% in F̄T . For IN2, regularizing WF improves ĀT by up to 6.2% and 2.5% in F̄T .

6 Conclusion

In this work, we introduced two novel interpretable continual learning frameworks: IG-CL and IN2. The
main goal of our research is to integrate interpretability into continual learning, enhancing transparency and
control throughout the learning process. Although our primary focus is not on performance enhancement,
our findings demonstrate that IG-CL and IN2 frequently outperform existing methods. Specifically, these
frameworks improve upon previous continual learning methods by up to 1.4% in average incremental accuracy,
and up to 9.1% in average incremental forgetting. Furthermore, they effectively preserve learned knowledge
without the need for storing past data. The clear and interpretable nature of IG-CL and IN2 sets a strong
foundation for future advancements in the field of continual learning.
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Broader Impacts

Our methods make black-box continual learning process become interpretable, which is beneficial to models’
performance. However, the improvement of mitigating forgetting by controlling concepts in models might
have some potential negative impact in terms of privacy. For example, if an adversary only has access to
model checkpoints but not model’s training data, they can analyse the concept units in the model. This will
give the attacker some information about how the model was trained, and may allow them to extract some
private information from the models without access to training data.
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A Interpretability Analysis

A.1 IG-CL’s Concept Evolution

Figure 1 and Table 4 show the IG-CL’s concept evolution when grouping similar classes together. The analysis
is in Section 5.3. Meanwhile, we visualize the classification head’s weight for IG-CL in Figure 6. IG-CL can
preserve classes’ related concepts contribution to prediction. Compared with IN2 that analyzed in Figure 5,
IG-CL’s perserved concepts are more general and less task-specific since IG-CL can not control the emergence
and types of related concepts.

Besides grouping similar classes into the same task, we also analyse the cases where class labels are distributed
randomly. Following the same procedure as in section 5.3, we analyse how many units are still detecting the
same concept after learning a new task. The average results for three datasets are in Table 6. Similar to
Table 5, our methods outperform existing methods to retain knowledge of concepts learned from previous
tasks. In general the concepts are more stable in random class distribution since different tasks might share
more overlapped concepts.

Table 5: The ratio of units that still detect the same concepts they detected in the last task. Tasks’ classes
are in Appendix D.3. Underline means the strongest baseline, and boldface means the best number. Our
methods outperform existing exemplar-free methods for preserving concepts, and are even better than
exemplar-based methods without replaying buffer.

Method CIFAR100, 5T TinyImagenet, 5T
Task 2 Task 3 Task 4 Task 5 Task 2 Task 3 Task 4 Task 5

Exemplar-free baselines
Finetune 0 0 0 0 0 0 0 0.086
EWC 0 0 0 0 0 0.030 0.037 0
SI 0 0 0 0 0.028 0.191 0.200 0.250
LwF 0.019 0.011 0.176 0 0.114 0.191 0.393 0.365

Exemplar-based baselines
GEM 0 0.125 0.076 0.153 0 0 0 0
MIR 0 0 0 0.250 0.028 0 0 0

Ours
IG-CL-freeze-all (no replay) 0.500 0.500 0.571 0.700 0.739 0.771 0.812 0.812
IG-CL-freeze-part (no replay) 0.125 0.133 0.727 0.695 0.515 0.488 0.544 0.666

Table 6: The ratio of units which still detect the same concepts they detected in the last task for CIFAR-10
and CIFAR-100. Class labels are distributed randomly, and the results are average over three runs. Underline
means the strongest baseline, and boldface means the best number. Our methods outperform the existing
works for preserving learned concepts.

Method CIFAR10, 5T CIFAR100, 5T TinyImagenet, 5T
Task 2 Task 3 Task 4 Task 5 Task 2 Task 3 Task 4 Task 5 Task 2 Task 3 Task 4 Task 5

Exemplar-free baselines
Finetune 0 0 0 0 0.020 0.005 0.010 0 0 0.010 0 0.030
EWC 0 0 0 0 0.065 0.010 0 0 0.030 0.015 0 0.010
SI 0 0 0 0 0 0 0 0 0.011 0 0 0
LwF 0 0 0 0 0.020 0.030 0 0 0.015 0 0 0

Exemplar-based baselines
GEM 0 0.031 0 0 0.138 0.043 0.006 0.023 0 0.041 0.012 0.029
MIR 0 0 0 0 0.028 0 0.050 0.052 0 0 0 0

Ours
IG-CL-freeze-all 0.052 0.500 0.111 0.200 0.578 0.636 0.782 0.741 0.724 0.833 0.741 0.812
IG-CL-freeze-part 0.023 0.450 0.090 0.150 0.210 0.466 0.687 0.869 0.586 0.739 0.666 0.821
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(a) caterpillar

(b) snake

Figure 6: Final weight visualization for random classes in IG-CL on CIFAR-100 under 5-tasks scenario. For
class "caterpillar" from task 1, we show its significant weight (> 0.05) after training on task 1 and task 2. For
class "snake" from task 3, we show its significant weight after training on task 3 and task 4. Concepts related
to caterpillar, and preserved from task 1 to task 2 are marked in blue. Same for concepts related to snake
and preserved from task 3 to task 4. The class distribution is in Table 38. We can see IG-CL has ability to
preserve related concepts’ appearance and contribution.

20



Published in Transactions on Machine Learning Research (09/2024)

A.2 Discussion of Concept Evolution for IN2

In this section, we study the evolution of the concepts represented by neurons and final layer weights as we
train IN2 across different tasks under 5-tasks scenario. We analyse a classes’ final layer weights after learning
its task, and after learning a new task. We visualize the final layer weights of Finetune-CBM and IN2 by
Sankey diagrams, only including weights with absolute value greater than predefined threshold. Negative
weights are reported as "NOT {concept}". The visualization for random classes in CIFAR-100 are in the
main text Figure 5. The visualizations for random classes in other two datasets are in Figure 7 8. Compared
with Finetune-CBM, we can see IN2 is much better at retaining and using knowledge of concepts learned
from previous tasks. This helps explain why IN2 performs better in FT and F̄T .

(a) Finetune-CBM

(b) IN2

Figure 7: Final weight visualization for random classes in (a) Finetune-CBM and (b) IN2 trained on CIFAR-10
under 5-tasks scenario. For class "truck" from task 4, we show its significant weight (> 0.15) after training on
task 4 and task 5. Concepts generated from the truck class itself are colored blue, and other concepts from
task 4 are colored gray. Concepts from task 5 are colored green. The class distribution is in Table 36. We
can see both models change significantly, but IN2 keeps more concepts from original task.
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(a) Finetune-CBM

(b) IN2

Figure 8: Final weight visualization for a random class in (a) Finetune-CBM and (b) IN2 trained on
TinyImageNet under 5-tasks scenario. For class "stopwatch" from task 2, we show its significant weight
(> 0.05) after training on task 2 and task 3. Concepts generated from the stopwatch class itself are colored
blue, and other concepts from task 2 are colored gray. The class distribution is in Table 40. We can see IN2
weights stay almost identical, while Finetune-CBM changes a lot.
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B Additional Experiments

B.1 Ablation Study

Besides comparing the results with existing methods, we perform ablation study to analyze the impact of
the key components in our methods. In Table 7, we compare IG-CL with (i) not freezing subnetwork in
step 3, which is denoted as "IG-CL w/o freeze", and (ii) not regularizing parameter WF in step 4, which is
denoted as "IG-CL-freeze-all w/o reg" or "IG-CL-freeze-part w/o reg". The experiment results show that
combining two of them results in less forgetting and better average accuracy. We believe it’s because they are
necessary to each other. If the concept units’ subnetworks are not frozen, the concepts might change and the
regularization term may not work. On the other hand, if the WF changes when learning new tasks, then the
concept units learned from previous tasks may not contribute to the final prediction.

For IN2, we do a similar ablation study with (i) not freezing previously learned concepts when learning
CBL in step 2, which is denoted as "IN2 w/o freeze", and (ii) not regularizing parameter WF in step 3,
which is denoted as "IN2 w/o reg". The result Table 8 shows a similar result. In conclusion, these ablation
studies demonstrate the importance of both freezing subnetworks and regularizing the WF to achieving
better performance and mitigating forgetting.

Table 7: Experiment results of IG-CL’s ablation study. "IG-CL w/o freeze": not freezing subnetwork.
"IG-CL-freeze-all w/o reg" and "IG-CL-freeze-part w/o reg": not regularizing parameter WF . ↑ means larger
values are better, while ↓ means smaller values are better. Preserving two components turns out have the
best performances.

CIFAR-10, 5T CIFAR-100, 5T TinyImagenet, 5T

ĀT ↑ F̄T ↓ ĀT ↑ F̄T ↓ ĀT ↑ F̄T ↓
IG-CL w/o freeze 29.77 ± 0.12 94.76 ± 1.48 19.27 ± 2.53 60.23 ± 6.53 15.51 ± 2.14 48.26 ± 4.57
IG-CL-freeze-all w/o reg 30.13 ± 0.62 95.50 ± 1.27 19.32 ± 2.02 59.77 ± 4.99 14.56 ± 2.37 50.69 ± 3.88
IG-CL-freeze-part w/o reg 30.17 ± 0.58 95.50 ± 1.27 21.21 ± 1.65 62.04 ± 4.58 15.07 ± 2.50 51.28 ± 4.22
IG-CL-freeze-all 31.55 ± 0.13 92.69 ± 0.81 22.37 ± 1.20 58.75 ± 0.26 18.19 ± 0.76 43.39 ± 0.92
IG-CL-freeze-part 30.55 ± 0.84 94.47 ± 1.12 21.73 ± 0.79 60.51 ± 0.35 18.08 ± 0.56 46.00 ± 0.66

Table 8: Experiment results of IN2’s ablation study. "IN2 w/o freeze": not freezing previous concepts. "IN2
w/o reg": not regularizing parameter WF . Preserving both has the best performance.

CIFAR-10, 5T CIFAR-100, 5T TinyImagenet, 5T

ĀT ↑ F̄T ↓ ĀT ↑ F̄T ↓ ĀT ↑ F̄T ↓
IN2 w/o freeze 29.78 ± 2.45 87.76 ± 1.07 18.01 ± 3.42 49.50 ± 2.58 17.30 ± 2.89 51.64 ± 4.00
IN2 w/o reg 28.75 ± 1.62 91.10 ± 2.20 20.42 ± 2.68 58.72 ± 1.04 19.76 ± 2.26 62.24 ± 2.85
IN2 32.25 ± 0.76 88.58 ± 0.30 24.25 ± 0.86 47.62 ± 1.52 21.30 ± 1.55 49.11 ± 1.74

B.2 Ablation on IN2 Sparsity

In this section we experimented with some modifications to WF in our CBM and report their results. In our
main results for IN2 and Finetune-CBM, we used a dense final layer WF instead of the sparse final layer
used by (Oikarinen et al., 2023) as we found that to have best performance, and we are less focused on
interpretable final decisions. Below we compare the results for CBM between dense WF , and sparse WF (-S).
For the sparse WF , we used λ = 10−6 in Eq. 3. The experiment results are in Table 9. We found that dense
WF had the best performance in most cases.

Table 9: Experiment results of CBM based methods on 3 datasets. "S": sparse WF . Dense WF results in
best performance in average.

CIFAR-10,5T CIFAR-100, 5T TinyImageNet, 5T

ĀT ↑ F̄T ↓ ĀT ↑ F̄T ↓ ĀT ↑ F̄T ↓
Finetune-CBM 30.39 ± 0.67 93.09 ± 2.22 24.99 ± 0.79 59.29 ± 1.40 21.13 ± 1.66 61.57 ± 1.42
IN2 32.25 ± 0.76 88.58 ± 0.30 24.25 ± 0.86 47.62 ± 1.52 21.30 ± 1.55 49.11 ± 1.74
Finetune-CBM-S 28.84 ± 1.35 91.74 ± 2.22 20.23 ± 2.79 58.29 ± 3.12 19.50 ± 2.33 61.57 ± 2.87
IN2-S 30.11 ± 3.04 87.58 ± 0.30 19.20 ± 3.77 46.62 ± 2.52 19.50 ± 3.03 46.11 ± 3.48
IN2-GEM 36.37 ± 1.74 44.72 ± 2.71 25.41 ± 2.06 66.91 ± 2.16 12.14 ± 0.53 38.23 ± 0.42
IN2-GEM-S 36.32 ± 2.90 45.28 ± 4.17 25.40 ± 4.13 65.21 ± 3.28 5.32 ± 1.06 39.23 ± 0.85
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B.3 More 5 task Results

In Table 10 and 11, we report AT and FT for CIFAR-100 and TinyImageNet, and also experiment results for
CIFAR-10 in 4 metrics.

Table 10: Accuracy comparison for IG-CL. ↑ means larger values are better, while ↓ means smaller values
are better. Underline means the strongest baseline, and boldface means the best number. In the Ours
Improvement rows, +/- measures our best number minus the strongest baseline, and the value is in blue if
our improvement is statistically significant.

CIFAR-10, 5T CIFAR-10, 5T CIFAR-100, 5T TinyImagenet, 5T

ĀT ↑ F̄T ↓ AT ↑ FT ↓ AT ↑ FT ↓ AT ↑ FT ↓
Exemplar-free baselines

Finetune 27.46 ± 0.89 95.86 ± 1.28 15.89 ± 0.76 78.54 ± 0.87 16.48 ± 2.63 56.65 ± 3.24 13.20 ± 2.23 43.50 ± 0.45
EWC 30.05 ± 0.79 94.13 ± 2.26 18.72 ± 1.92 75.66 ± 3.01 15.79 ± 1.58 55.79 ± 3.87 13.07 ± 3.55 43.04 ± 2.41
SI 29.64 ± 0.35 94.21 ± 1.66 18.96 ± 1.83 74.19 ± 1.48 13.30 ± 2.62 50.59 ± 3.50 10.51 ± 3.01 39.19 ± 3.91
LwF 30.16 ± 0.23 94.94 ± 1.33 19.01 ± 0.49 75.00 ± 0.91 17.92 ± 0.10 56.85 ± 2.54 13.47 ± 1.48 43.75 ± 1.15
Adam-NSCL 30.23 ± 1.02 94.82 ± 0.53 20.60 ± 0.71 76.82 ± 1.72 17.70 ± 0.85 72.35 ± 1.25 14.15 ± 2.19 62.71 ± 2.93

Ours
IG-CL-freeze-all 31.55 ± 0.13 92.69 ± 0.81 21.14 ± 1.90 70.68 ± 1.72 14.66 ± 1.81 51.17 ± 2.48 11.20 ± 0.48 37.85 ± 0.83
IG-CL-freeze-part 30.55 ± 0.84 94.47 ± 1.12 20.71 ± 2.29 71.42 ± 2.38 15.17 ± 3.47 52.99 ± 2.85 11.34 ± 3.67 38.53 ± 0.69

Ours Improvement +1.32 +1.44 +0.54 +3.51 -2.75 -0.58 -2.81 +1.34
Exemplar-based baselines

GEM 34.59 ± 0.05 90.00 ± 3.80 22.51 ± 0.22 73.50 ± 3.61 19.07 ± 0.62 52.87 ± 2.74 11.12 ± 1.79 37.58 ± 1.15
Ours

IG-CL-freeze-all-GEM 35.60 ± 0.62 94.93 ± 0.66 24.66 ± 1.63 68.96 ± 0.55 25.68 ± 1.72 36.83 ± 0.26 9.89 ± 2.56 33.45 ± 3.05
IG-CL-freeze-part-GEM 37.00 ± 0.96 92.22 ± 2.00 23.22 ± 1.48 72.18 ± 2.73 23.70 ± 3.84 43.73 ± 3.81 10.91 ± 2.26 36.37 ± 2.35

Ours Improvement +2.41 -2.22 +2.15 +4.54 +6.61 +16.04 -0.21 +4.13
Exemplar-based baselines

MIR 28.97 ± 2.34 89.80 ± 0.99 28.18 ± 1.73 47.71 ± 1.82 9.75 ± 3.39 43.09 ± 0.68 10.91 ± 3.89 38.42 ± 1.57
Ours

IG-CL-freeze-all-MIR 30.23 ± 1.54 91.04 ± 2.57 33.16 ± 3.82 42.00 ± 2.92 14.49 ± 0.05 43.82 ± 0.12 12.29 ± 0.60 38.42 ± 1.78
IG-CL-freeze-part-MIR 30.75 ± 1.37 91.07 ± 2.04 34.88 ± 1.48 42.11 ± 2.11 14.57 ± 2.99 44.41 ± 1.38 12.47 ± 1.02 38.50 ± 3.76

Ours Improvement +1.78 -1.24 +6.70 +5.71 +4.82 -0.73 +1.56 0.00

Table 11: Accuracy comparison for IN2. All models are pre-trained on the Place365 dataset (Zhou et al.,
2017). ↑ means larger values are better, while ↓ means smaller values are better. Underline means the
strongest baseline, and boldface means the best number. In the Ours Improvement rows, +/- measures
our best number minus the strongest baseline, and the value is in blue if our improvement is statistically
significant.

CIFAR-10, 5T CIFAR-10, 5T CIFAR-100, 5T TinyImagenet, 5T

ĀT ↑ F̄T ↓ AT ↑ FT ↓ AT ↑ FT ↓ AT ↑ FT ↓
Exemplar-free baselines

Finetune 29.13 ± 0.28 97.78 ± 0.78 17.99 ± 2.26 79.66 ± 0.72 17.65 ± 2.55 64.94 ± 2.15 15.34 ± 3.83 54.81 ± 0.71
EWC 30.79 ± 0.21 97.92 ± 0.78 19.00 ± 1.87 76.92 ± 0.77 17.44 ± 3.98 64.43 ± 1.84 15.07 ± 2.23 54.77 ± 0.54
SI 30.25 ± 0.72 96.55 ± 1.70 19.31 ± 0.62 74.78 ± 1.55 17.12 ± 3.89 63.11 ± 1.03 14.47 ± 1.02 53.69 ± 1.32
LwF 30.76 ± 0.31 97.75 ± 0.84 19.11 ± 0.44 76.56 ± 1.12 19.98 ± 0.64 63.79 ± 2.65 17.08 ± 1.50 55.40 ± 1.85
Adam-NSCL 30.78 ± 0.82 96.82 ± 2.35 21.60 ± 0.48 77.73 ± 0.86 16.23 ± 3.39 66.26 ± 3.18 13.44 ± 1.70 58.86 ± 0.70

Ours
Finetune-CBM 30.39 ± 0.67 93.09 ± 2.22 21.14 ± 0.83 69.47 ± 1.29 16.43 ± 2.82 55.76 ± 3.55 14.91 ± 0.65 51.39 ± 3.78
IN2 32.25 ± 0.76 88.58 ± 0.30 22.16 ± 1.73 67.92 ± 0.72 16.37 ± 3.82 45.71 ± 2.55 15.68 ± 1.84 39.40 ± 2.86

Ours Improvement +1.46 +7.97 +0.56 +6.86 -3.55 +17.40 -1.40 +14.29
Exemplar-based baselines

GEM 36.27 ± 1.86 69.38 ± 2.88 24.11 ± 1.74 59.84 ± 1.27 20.67 ± 1.75 63.49 ± 3.15 5.64 ± 0.38 37.52 ± 0.02
Ours

IN2-GEM 36.37 ± 1.74 44.72 ± 2.71 28.93 ± 2.09 61.86 ± 2.73 23.64 ± 3.82 58.54 ± 3.75 5.37 ± 1.67 29.06 ± 3.74
Ours Improvement +0.10 +24.66 +4.82 -2.02 +2.97 -4.95 -0.27 +8.46
Exemplar-based baselines

MIR 33.20 ± 2.92 75.51 ± 1.94 33.99 ± 2.00 48.50 ± 2.32 8.33 ± 0.64 46.33 ± 2.06 2.97 ± 3.69 32.09 ± 0.53
Ours

IN2-MIR 36.61 ± 1.77 70.45 ± 1.89 33.94 ± 1.25 38.93 ± 1.74 13.81 ± 1.94 54.76 ± 1.59 5.07 ± 3.66 34.75 ± 1.54
Ours Improvement +3.41 +5.06 -0.05 +9.57 +5.48 -8.43 +2.10 -2.66
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B.4 10, 20 tasks Experiment Results

Table 12 reports comparison for IG-CL under 10-tasks scenario for CIFAR-100 and TinyImagenet. Compared
with exemplar-free baselines, IG-CL generally forgets less as FT and F̄T shown. However, IG-CL sometimes
is worse in AT and ĀT , which is the limitation of our methods. We view this as the future works to be
improved, since this paper’s goal is to retain intepretable concepts in models. Nevertheless, IG-CL generally
improves exemplar-based baselines when combined with them, which is same as 5-tasks scenario.

Table 13 reports comparison for IN2 under 10-tasks scenario for CIFAR-100 and TinyImagenet. Similar
to IG-CL, IN2 performs well in forgetting metrics FT and F̄T , but performs worse in AT and ĀT when
comparing with exemplar-free baselines. We believes this is partially because LF-CBM’s training procedure
is different than standard end-to-end training. As LF-CBM Oikarinen et al. (2023) paper shown, LF-CBM’s
classification accuracy is usually worse than standard model’s. Again, we view this as future works to be
improved. Besides, IN2 still can improve exemplar-based baselines when combine with them.

Table 14 and 15 report comparison for IG-CL and IN2 under 20-tasks scenario in CIFAR-100 respectively.
Similar to 10-tasks scenario, our methods can improve exemplar-based baselines when combine with them,
while the comparison with exemplar-free methods is still under the same trend.

We observe that both of our proposed methods can improve exemplar-based methods when combined with
them. When compared with exemplar-free methods, our methods forget less while slightly worse than the
strongest baselines in terms of ĀT . Nonetheless, we would like to highlight that our work is the first to bridge
continual learning and neuron interpretability with competitive results, which opens up a new and promising
direction to transform continual learning from a black-box process to more transparent.

Table 12: Accuracy comparison for IG-CL in 10 tasks scenario. ↑ means larger values are better, while ↓
means smaller values are better. Underline means the strongest baseline, and boldface means the best
number. In the Ours Improvement rows, +/- measures our best number minus the strongest baseline, and
the value is in blue if our improvement is statistically significant.

CIFAR-100, 10T TinyImagenet, 10T

AT ↑ FT ↓ ĀT ↑ F̄T ↓ AT ↑ FT ↓ ĀT ↑ F̄T ↓
Exemplar-free baselines

Finetune 6.49 ± 1.23 65.31 ± 1.32 13.87 ± 0.83 64.20 ± 1.52 5.15 ± 2.13 49.07 ± 0.57 10.23 ± 1.35 45.83 ± 0.21
EWC 6.71 ± 0.63 65.32 ± 1.12 13.88 ± 0.45 63.90 ± 0.94 5.48 ± 2.35 47.42 ± 1.47 10.11 ± 2.12 45.19 ± 1.29
SI 6.74 ± 1.17 66.07 ± 1.91 14.01 ± 1.37 64.39 ± 1.33 5.39 ± 1.57 44.68 ± 1.40 10.33 ± 1.32 46.21 ± 1.36
LwF 7.85 ± 2.21 64.13 ± 2.19 15.02 ± 2.85 62.66 ± 1.25 5.95 ± 2.35 52.17 ± 1.26 10.82 ± 2.35 45.57 ± 1.36
Adam-NSCL 7.95 ± 2.77 62.54 ± 1.89 13.69 ± 2.15 61.54 ± 2.40 6.63 ± 2.23 49.43 ± 1.45 10.63 ± 1.33 49.43 ± 1.45

Ours
IG-CL-freeze-all 6.99 ± 1.20 62.23 ± 0.36 13.81 ± 1.45 62.79 ± 1.70 5.76 ± 2.67 48.89 ± 2.17 11.24 ± 0.34 49.39 ± 1.92
IG-CL-freeze-part 6.97 ± 1.26 64.03 ± 1.32 13.71 ± 1.36 63.28 ± 1.04 5.86 ± 0.56 49.99 ± 2.16 11.25 ± 1.28 45.00 ± 1.20

Ours Improvement -0.96 +0.31 -1.21 -1.74 -0.77 -4.21 +0.43 +0.19
Exemplar-based baselines

GEM 8.25 ± 1.07 60.31 ± 4.25 15.71 ± 1.35 58.77 ± 2.42 6.00 ± 2.34 47.13 ± 1.25 10.74 ± 2.62 47.68 ± 1.67
Ours

IG-CL-freeze-all-GEM 15.61 ± 1.02 52.01 ± 1.34 29.83 ± 2.15 52.43 ± 2.36 3.03 ± 3.05 22.39 ± 3.91 7.75 ± 2.90 34.75 ± 2.37
IG-CL-freeze-part-GEM 7.65 ± 1.85 60.12 ± 1.37 14.84 ± 1.39 54.12 ± 2.73 2.97 ± 2.34 24.91 ± 2.02 5.52 ± 2.40 30.44 ± 2.59

Ours Improvement +7.36 +8.30 +14.12 +6.34 -2.97 +24.74 -2.99 +17.24
Exemplar-based baselines

MIR 4.64 ± 0.37 59.37 ± 1.96 12.61 ± 1.02 60.51 ± 1.72 4.54 ± 0.82 46.19 ± 2.43 10.11 ± 1.34 46.19 ± 2.17
Ours

IG-CL-freeze-all-MIR 5.43 ± 1.54 52.22 ± 1.65 12.86 ± 1.08 56.19 ± 2.30 5.09 ± 3.21 41.34 ± 1.28 9.97 ± 2.41 43.21 ± 1.32
IG-CL-freeze-part-MIR 5.42 ± 1.34 52.34 ± 1.37 12.89 ± 0.62 56.72 ± 1.84 5.17 ± 2.58 42.87 ± 0.99 9.99 ± 1.23 43.23 ± 1.41

Ours Improvement +0.79 +7.15 +0.28 +4.32 +0.63 +4.85 -0.12 +2.98
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Table 13: Accuracy comparison for IN2 in 10 tasks scenario. All models are pre-trained on the Place365
dataset (Zhou et al., 2017). ↑ means larger values are better, while ↓ means smaller values are better.
Underline means the strongest baseline, and boldface means the best number. In the Ours Improvement
rows, +/- measures our best number minus the strongest baseline, and the value is in blue if our improvement
is statistically significant.

CIFAR-100, 10T TinyImagenet, 10T

AT ↑ FT ↓ ĀT ↑ F̄T ↓ AT ↑ FT ↓ ĀT ↑ F̄T ↓
Exemplar-free baselines

Finetune 8.09 ± 1.82 80.43 ± 1.42 17.34 ± 1.87 81.23 ± 2.30 4.61 ± 0.18 66.40 ± 3.42 14.62 ± 0.58 70.70 ± 1.56
EWC 7.59 ± 1.32 80.99 ± 1.28 17.23 ± 0.96 81.08 ± 2.34 5.62 ± 2.38 67.27 ± 1.30 14.88 ± 1.28 71.25 ± 1.38
SI 8.54 ± 1.29 81.43 ± 1.83 17.53 ± 0.65 81.60 ± 2.45 7.90 ± 1.40 71.59 ± 0.82 15.65 ± 1.19 72.33 ± 2.08
LwF 13.83 ± 1.26 77.21 ± 1.53 24.99 ± 2.29 71.19 ± 3.33 10.40 ± 2.35 71.40 ± 1.59 20.42 ± 1.86 66.78 ± 3.95
Adam-NSCL 14.29 ± 1.19 69.75 ± 3.15 23.19 ± 1.38 76.24 ± 1.29 9.74 ± 2.23 66.87 ± 1.45 18.63 ± 2.45 69.97 ± 1.24

Ours
Finetune-CBM 7.31 ± 0.82 68.88 ± 1.40 14.91 ± 1.28 66.72 ± 2.73 7.18 ± 1.26 65.76 ± 1.42 14.41 ± 1.89 64.64 ± 3.02
IN2 7.34 ± 1.68 37.90 ± 1.59 14.98 ± 1.09 61.96 ± 1.73 7.37 ± 2.54 56.80 ± 1.27 14.98 ± 2.93 60.02 ± 3.09

Ours Improvement -6.95 +31.85 -10.01 +9.23 -3.03 +9.60 -5.44 +6.76
Exemplar-based baselines

GEM 11.47 ± 1.32 66.44 ± 3.14 22.21 ± 1.20 70.54 ± 2.32 4.12 ± 1.79 54.29 ± 1.62 13.44 ± 1.33 63.58 ± 1.11
Ours

IN2-GEM 8.68 ± 2.41 53.13 ± 3.71 22.46 ± 1.15 59.36 ± 2.33 6.20 ± 3.07 47.95 ± 1.48 14.96 ± 3.48 57.94 ± 1.26
Ours Improvement -2.79 +13.31 +0.25 +11.18 +2.08 +6.34 +1.52 +5.64
Exemplar-based baselines

MIR 3.24 ± 2.09 58.77 ± 1.69 14.19 ± 2.21 73.32 ± 0.93 3.37 ± 0.84 58.83 ± 2.06 9.40 ± 3.29 59.29 ± 4.20
Ours

IN2-MIR 8.38 ± 1.35 71.02 ± 2.06 16.65 ± 2.23 70.49 ± 1.90 7.13 ± 2.15 60.98 ± 2.38 14.07 ± 2.31 61.14 ± 2.36
Ours Improvement +5.14 +12.25 +2.46 +2.83 +3.76 -2.15 +4.67 -1.85

Table 14: Accuracy comparison for IG-CL in 20 tasks
scenario. ↑ means larger values are better, while ↓
means smaller values are better. Underline means the
strongest baseline, and boldface means the best num-
ber. In the Ours Improvement rows, +/- measures
our best number minus the strongest baseline, and
the value is in blue if our improvement is statistically
significant.

CIFAR-100, 20T

AT ↑ FT ↓ ĀT ↑ F̄T ↓
Exemplar-free baselines

Finetune 3.80 ± 2.26 69.05 ± 2.23 9.72 ± 3.54 70.25 ± 0.88
EWC 3.56 ± 0.16 68.67 ± 0.71 9.72 ± 2.72 70.11 ± 3.29
SI 3.92 ± 2.37 76.58 ± 3.77 10.61 ± 1.65 76.19 ± 0.00
LwF 4.14 ± 2.12 77.06 ± 1.48 10.54 ± 3.72 75.25 ± 2.74
Adam-NSCL 10.59 ± 0.99 67.32 ± 3.52 19.45 ± 2.85 68.21 ± 2.80

Ours
IG-CL-freeze-all 3.35 ± 1.13 63.12 ± 3.02 8.82 ± 2.43 65.21 ± 2.34
IG-CL-freeze-part 3.79 ± 2.52 72.40 ± 3.61 9.99 ± 2.24 72.52 ± 1.42

Ours Improvement -6.80 +4.20 -9.46 +3.00
Exemplar-based baselines

GEM 14.90 ± 3.79 70.56 ± 3.06 24.88 ± 3.34 66.55 ± 0.44
Ours

IG-CL-freeze-all-GEM 20.72 ± 0.88 35.48 ± 2.14 27.73 ± 2.84 66.51 ± 1.72
IG-CL-freeze-part-GEM 17.40 ± 3.74 63.10 ± 2.51 24.18 ± 2.34 68.03 ± 2.30

Ours Improvement +5.82 +35.08 +2.85 +0.04
Exemplar-based baselines

MIR 11.32 ± 2.07 45.31 ± 0.08 17.49 ± 3.68 57.71 ± 2.67
Ours

IG-CL-freeze-all-MIR 12.75 ± 0.68 39.36 ± 2.46 17.17 ± 2.60 41.74 ± 0.31
IG-CL-freeze-part-MIR 13.03 ± 1.71 52.47 ± 0.30 18.02 ± 3.30 53.93 ± 3.61

Ours Improvement +1.71 +5.95 +0.53 +15.97

Table 15: Accuracy comparison for IN2 in 20 tasks
scenario. All models are pre-trained on the Place365
dataset (Zhou et al., 2017). ↑ means larger values
are better, while ↓ means smaller values are better.
Underline means the strongest baseline, and bold-
face means the best number. In the Ours Improve-
ment rows, +/- measures our best number minus
the strongest baseline, and the value is in blue if our
improvement is statistically significant.

CIFAR-100, 20T

AT ↑ FT ↓ ĀT ↑ F̄T ↓
Exemplar-free baselines

Finetune 4.03 ± 0.60 71.17 ± 0.86 10.35 ± 1.38 77.07 ± 3.09
EWC 3.92 ± 3.23 73.90 ± 2.41 10.65 ± 1.20 78.75 ± 3.67
SI 3.73 ± 0.45 78.96 ± 0.36 11.21 ± 2.85 82.57 ± 3.67
LwF 5.23 ± 3.18 85.31 ± 2.62 13.32 ± 3.94 85.45 ± 3.49
Adam-NSCL 10.93 ± 1.33 69.52 ± 0.54 17.96 ± 0.74 87.83 ± 2.50

Ours
Finetune-CBM 4.05 ± 3.87 77.40 ± 3.48 10.67 ± 0.05 74.86 ± 3.00
IN2 4.04 ± 2.87 66.55 ± 3.23 11.48 ± 1.18 73.06 ± 0.29

Ours Improvement -6.88 +2.97 -6.48 +4.01
Exemplar-based baselines

GEM 12.59 ± 2.84 58.33 ± 2.69 22.94 ± 0.34 67.12 ± 2.08
Ours

IN2-GEM 12.87 ± 2.37 61.74 ± 3.69 25.62 ± 2.83 68.64 ± 0.53
Improvement +0.28 -3.41 +2.68 -1.52
Exemplar-based baselines

MIR 11.01 ± 1.01 29.39 ± 2.81 16.68 ± 0.41 51.33 ± 1.35
Ours

IN2-MIR 12.53 ± 0.08 36.31 ± 1.58 19.55 ± 1.90 55.79 ± 1.79
Ours Improvement +1.52 -6.92 +2.87 -4.46
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B.5 Comparison with More baselines

In this section, we do individual comparisons with SSRE (Zhu et al., 2022), DEN (Yoon et al., 2018) and
ICICLE (Rymarczyk et al., 2023).

B.5.1 Comparison with SSRE

We compare our methods with SSRE (Zhu et al., 2022). Since we can not access the pre-training details
described in SSRE paper, we compare our IG-CL with SSRE that is trained from scratch. Besides metrics
described in Section 5.1, we also measure Learning Accuracy (FT = 1

T

∑T
i=1 ai,i) (Mirzadeh et al., 2022b;

Riemer et al., 2019; Yin et al., 2021; Mirzadeh et al., 2022a) to understand model’s ability to learn new tasks.
Experiment results are in Table 16. IG-CL forgets more as the performace in FT is worse. However, it has
much better learning ability as LT shown.

Table 16: Comparison between IG-CL and SSRE Zhu et al. (2022) in CIFAR-10 and CIFAR-100. ↑ means
larger values are better, while ↓ means smaller values are better. Even though IG-CL forgets more, it has
better learning ability.

CIFAR-10, 5T CIFAR-100, 5T CIFAR-100, 10T CIFAR-100, 20T TinyImagenet, 5T TinyImagenet, 10T
AT ↑ FT ↓ LT ↑ AT ↑ FT ↓ LT ↑ AT ↑ FT ↓ LT ↑ AT ↑ FT ↓ LT ↑ AT ↑ FT ↓ LT ↑ AT ↑ FT ↓ LT ↑

SSRE 28.44 15.96 36.18 31.55 7.97 32.73 17.72 7.46 11.29 8.94 6.73 4.51 13.76 6.06 13.59 11.44 7.33 15.83
IG-CL-freezed-all 21.14 70.68 93.29 16.66 51.17 63.22 6.99 62.23 64.25 3.35 63.12 66.46 13.20 37.85 47.92 5.76 48.89 49.81

B.5.2 Comparison with DEN

We compare our methods with DEN (Yoon et al., 2018) in the CIFAR-10 and CIFAR-100 dataset. We combine
a pretrained model with a 2-layer DEN, and compare it with Finetune-CBM and IN2. The experiment results
are in Table 17. IN2 and Finetune-CBM outperform DEN by up to 20.01% and 18.15% in ĀT respectively.

B.5.3 Comparison with ICICLE

We compare IN2 with ICICLE (Rymarczyk et al., 2023) in the CUB200 (Wah et al., 2011) dataset. CUB200
is a bird species classification dataset that has 200 classes with 5994 training examples and 5794 testing
examples. The experiment results are in Table 18. Our method outperforms ICICLE by 31.68% in F̄T .

Table 17: Comparison between DEN (Yoon et al.,
2018) and our methods, in the 5-task scenario of
CIFAR-10 and CIFAR-100. The experiment results
shows that our methods outperform DEN in ĀT by
large margins.

CIFAR-10, 5T CIFAR-100, 5T

ĀT ↑ F̄T ↓ ĀT ↑ F̄T ↓
DEN 12.24 19.20 9.18 10.50
Finetune-CBM (Ours) 30.39 93.09 24.99 59.29
IN2 (Ours) 32.25 88.58 24.25 47.62

Table 18: Comparison between IN2 and ICICLE (Ry-
marczyk et al., 2023) and other baselines in CUB200
5-task scenario. IN2 outperform ICICLE in both
ĀT and F̄T .

CUB200, 5T

ĀT ↑ F̄T ↓
Exemplar-free baselines

Finetune 10.16 60.73
EWC 11.02 62.43
LwF 12.50 64.50
Adam-NSCL 13.27 40.73
ICICLE 11.40 53.66

Ours
IN2 9.42 21.98
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B.6 Forward Transfer Metric

We use Forward Transfer Metric (FWT) Lopez-Paz & Ranzato (2017) to measure our methods’ ability to reuse
old knowledge on new tasks. We did experiments on CUB200, 5 tasks scenario since CUB200 shares several
concepts among classes. Table 19 and 20 show that our methods have better abilities to share knowledge
from old tasks to new tasks compared with baselines.

Table 19: Forward Transfer (FWT) Metric compari-
son for IG-CL. Our methods outperform the baselines
on FWT by large margins.

CUB200, 5T
FWT ↑

Exemplar-free baselines
Finetune 0.76
EWC 3.83
SI 13.50
LwF 10.20
Adam-NSCL 21.04

Ours
IG-CL-freeze-all 28.79
IG-CL-freeze-part 30.07

Exemplar-based baselines
GEM 1.35

Ours
IG-CL-freeze-all-GEM 26.76
IG-CL-freeze-part-GEM 26.68

Exemplar-based baselines
MIR -12.44

Ours
IG-CL-freeze-all-MIR 6.89
IG-CL-freeze-part-MIR 8.22

Table 20: Forward Transfer (FWT) Metric compari-
son for IN2. Our methods outperform the baselines
on FWT by large margins.

CUB200, 5T
FWT ↑

Exemplar-free baselines
Finetune 1.43
EWC 6.88
SI 11.67
LwF 10.36
Adam-NSCL 17.63

Ours
Finetune-CBM 16.71
IN2 12.66

Exemplar-based baselines
GEM 19.98

Ours
IN2-GEM 27.78

Exemplar-based baselines
MIR 3.20

Ours
IG-CL-freeze-all-MIR 9.84

B.7 Experiment results on ImageNet-10

We conduct experiments on large scale dataset ImageNet-10, and the results are in Table 21 and 22. The
experiment results are still under the same trend as other datasets: Our methods outperform other exemplar-
free methods by up to 0.87% in ĀT and up to 5.77% in F̄T . Meanwhile, can improve exemplar-based methods
by combining them by up to 1.83% in ĀT and up to 2.87% in F̄T

Table 21: Experiment results on ImageNet-10 in the
5-task scenario.

ĀT ↑ F̄T ↓
Finetune 23.33 ± 0.75 81.20 ± 1.10
EWC 24.14 ± 0.69 78.46 ± 1.32
IG-CL-freeze-all (Ours) 25.01 ± 0.51 77.20 ± 0.95
GEM 31.34 ± 0.82 61.71 ± 0.82
IG-CL-freeze-all-GEM (Ours) 33.17 ± 0.50 59.65 ± 1.29

Table 22: Experiment results on ImageNet-10 in
the 5-task scenario, the backbones are pretrained on
Place365 dataset.

ĀT ↑ F̄T ↓
Finetune 23.83 ± 0.93 81.92 ± 1.38
EWC 25.40 ± 0.39 78.98 ± 1.51
IN2 (Ours) 26.12 ± 0.84 73.21 ± 1.73
GEM 32.66 ± 0.85 60.27 ± 1.32
IN2-GEM (Ours) 34.37 ± 0.43 57.40 ± 0.99
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B.8 Impact from the order of tasks

To understand the impact from the order of tasks, we conducted experiments on CIFAR-100 using the class
distribution outlined in Table 38, where similar classes are grouped into the same task. We then swapped the
order of task 1 and task 2 and compared the results with the original task order. The continual learning
performance for IG-CL is in Table 23, and IN2 is in Table 24. In both task orders, our methods consistently
preserve learned knowledge effectively. IG-CL and IN2 outperform other exemplar-free methods by up to
0.14% in ĀT and up to 26.39% in F̄T . Additionally, they improve upon exemplar-based methods by up to
1.45% in ĀT and up to 11% in F̄T . These results demonstrate that our methods are robust to changes in
task order. Meanwhile, it shows that our methods don’t have constant performances in ĀT when changing
class distribution and task order, yet it boosts interpretability a lot.

We also analyze the concept evolution of two methods like Section 5.3. For IG-CL, the concept evolution
analysis is in Table 25. Same as the original order that analyzed in Table 4, IG-CL can preserve concepts even
after learning a unrelated task. For IN2, the analysis is in Figure 9. Same as the original order that analyzed
in Figure 5, IN2 can preserve concepts while finetune CBM loss all of the significant weights. Overall, the
concept evolution analysis show that our methods can preserved learned concepts regardless of the task order.

Table 23: Continual learning performance on CIFAR-100 5-task scenario. Original order is the class
distribution in Table 38, and Swap order exchanges the task 1 and task 2 of it. IG-CL has better F̄T and
similar or better ĀT .

Original order Swap order

ĀT ↑ F̄T ↓ ĀT ↑ F̄T ↓
Naive 12.83 45.01 12.50 47.94
SI 13.10 41.10 12.87 47.03
LwF 14.47 41.83 14.36 47.00
IG-CL-freeze-all 13.93 36.85 13.63 43.36
IG-CL-freeze-part 14.61 39.19 13.33 46.29
GEM 16.57 40.31 16.01 45.92
IG-CL-freeze-all-GEM 17.23 29.31 16.43 40.41
IG-CL-freeze-part-GEM 15.88 34.54 15.08 41.91

Table 24: Continual learning performance on CIFAR-100 5-task scenario. Original order is the class
distribution in Table 38, and Swap order exchanges the task 1 and task 2 of it. IN2 has better F̄T and similar
or better ĀT .

Original order Swap order

ĀT ↑ F̄T ↓ ĀT ↑ F̄T ↓
Naive 14.64 56.16 14.27 59.95
SI 15.20 55.98 15.58 59.12
LwF 18.32 55.26 18.74 52.13
finetune_cbm 13.95 37.51 11.41 42.29
IN2 15.34 28.87 16.23 33.32
GEM 17.02 55.35 20.61 53.22
IN2-GEM 18.15 48.50 22.06 52.71

29



Published in Transactions on Machine Learning Research (09/2024)

Table 25: Concept evolution for IG-CL in freeze-all implementation, testing on class distribution 38 but
swap task 1 and task 2. We analyse the concept evolution in the layer 4 of ResNet18. The blue concept
means the concept is related to the current task, while the green concept means it is unrelated. "x" stands for
non-interpretable units. The results show that IG-CL can preserve the concepts from previous classes.

CIFAR-100, 5T
task 1 task 2 task 3 task 4 task 5

Classes Natural scenes
& Plants

Small animals
& Sea animals Big animals Big objects Others

Unit 275 landscapes landscapes landscapes x x
Unit 140 x x zebra zebra x

(a) Finetune-CBM

(b) IN2

Figure 9: Final weight visualization for random classes in (a) Finetune-CBM and (b) IN2 trained on CIFAR-
100 under 5-tasks scenario. The class distribution is in Table 38 but swap task 1 and task 2. For class "maple
tree" from task 1, we show its significant weight (> 0.16) after training on task 1 and task 2. Concepts
generated from the maple tree class itself are colored blue, and other concepts from task 1 are colored gray.
We can see IN2 keeps a similar final layer while Finetune-CBM loses most significant weights.
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C Further Analysis and Details

C.1 Computational efficiency

Table 26 shows the maximum GPU usage of Finetune, EWC, GEM and our methods on CIFAR-10 under
5-tasks scenario. Even integrated with the interpretable tool CLIP-Dissect (Oikarinen & Weng, 2023), IG-CL’s
maximum GPU usage is still lower than EWC and GEM. Meanwhile, IN2’s memory usage is efficient even
though the CBL layer increases when learning new tasks. The experiment results show our methods are
efficient.

Table 26: Maximum GPU usage comparison for our methods, under CIFAR-10 5-tasks scenario. IG-CL’s
maximum GPU usage is smaller than EWC and GEM, which shows IG-CL’s computational efficiency. IN2 is
more efficient than existing methods.

Method Finetune EWC GEM IG-CL-freeze-all/ IG-CL-freeze-part IN2
Max GPU usage (GB) 5.51 5.65 5.68 5.61 4.00

C.2 Interpretability Guided Continual Learning Algorithm

The algorithm 1 summarizes the procedure of Interpretability Guided Continual Learning.

Algorithm 1 IG-CL: Freeze the subnetworks of the concept units
Require: Dataset D; regularization coefficient µ; connection threshold τ ; regularization factor λ; Neural

network parameters θ
1: for t←1,...,T do
2: if t is 1 then
3: Train θ1 on Dt by solving min

θ1
L(θ1;D1) + µ

∑L
l=1 ∥W1

l ∥2,1

4: else
5: Train θt on Dt by solving Eq. 1
6: ConceptUnit ← CLIP-Dissect(W t)
7: Prev-active ← ConceptUnit
8: for layer l← L,...,1 do ▷ Find the subnetwork of the concept units
9: for Unit ul ← 1,...,Ul do

10: if Prev-active[ul] is True then ▷ ul is in subnetwork
11: for Unit ul−1 ←1,...,Ul−1 do
12: if ∥Wt

ul,ul−1
∥1 > τ then ▷ weight exceeds threshold

13: Active[ul−1]← True
14: if Using freeze-all then
15: ∀ Prev-active[ul] is True, Freeze Wt

ul,:
16: ∀ Active[ul−1] is True, Freeze Wt

:,ul−1
17: else if Using freeze-part then
18: ∀ Prev-active[ul] is True, Freeze Wt

ul,:

19: Prev-active ← Active
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C.3 Details of IG-CL and IN2

In this section, we study the technical details of the IG-CL and IN2. ImageNet-10 is the 10-class subset
of ImageNet (Russakovsky et al., 2015). For IG-CL, Figure 10 shows the subnetwork sizes in different
datasets. Generally, a more complicated dataset has a bigger subnetwork, but the size is adjustable by tuning
hyperparameters.

Figure 10: The subnetwork sizes in the last residual block after learning two tasks in the 5-task scenario. A
more complicated dataset will have bigger subnetworks.

For IN2, Table 29 and 30 show the number of concepts added per tasks. Overall, larger and more complicated
datasets have more concepts. Around 10% of concepts are the same during the concept set expansion 4.2.
Table 27 shows some example concepts that are related to different classes. Table 28 shows some complex
concepts in IN2 from different datasets.

Concept Related Classes
ship vessel, cargo ship
a leaf apple, rose
a small body baby, fish
animal wolf, fish, beetle
vehicle bicycle, train, streetcar

Table 27: Some concepts that generated from the different classes in IN2.

Dataset Complex concepts
CIFAR-10 a flatbed for carrying cargo; four round, black tires; long hind legs for jumping
CIFAR-100 a tractor trailer; a soft, round head; a crew of astronauts
TinyImageNet a second hand or digital timer; a seat that is low to the ground; a double-reed mouthpiece

Table 28: Some complex concepts that generated from the different datasets in IN2.

We build IN2 based on LF-CBM Oikarinen et al. (2023). Therefore, we would like to discuss two properties
related to LF-CBM. First, following LF-CBM’s procedure, we use CLIP to calculate the activation matrix P
as described in Section 2.2. We can replace CLIP with other vision language aligned (VL-aligned) models
as long as they have a text encoder and an image encoder to calculate matrix P . One future work will be
replacing CLIP with other suitable VL-aligned models.
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Second, using GPT-3 to general concept sets is firstly proposed from an earlier work LF-CBM, which has
many concurrent and follow-up works that use language models to create concept bottleneck layers (Yang
et al., 2023b; Yan et al., 2023). Introducing additional information is widely exploited when designing CBM
(Yuksekgonul et al., 2023; Zhou et al., 2018; Losch et al., 2019), and is reasonable task-relevant information
that we can leverage. Meanwhile, using additional information to enhance a model’s performance is common
in other fields as well (Hu et al., 2021; Yang et al., 2023a). Even though LF-CBM has a potential leakage
problem when using addtional text information, our method is still under the setting of continual learning.
This is because during the training phase, the information for each class only appears in one task. One future
work is to handle the potential leaking of CBM.

Table 29: Average concepts added per task in the 5-task scenario.
CIFAR-10 CIFAR-100 CUB200 ImageNet-10 TinyImageNet

Number of Concept 37.4 133.1 276.6 35.6 301.8

Table 30: Average concepts added per task in the 10-task scenario.
CIFAR-100 TinyImageNet

Number of Concept 154.6 284.3

D Others

D.1 Experiment Setup and Details

D.1.1 Training and computing details

All models are trained on single NVIDIA V100s (32 GB SMX2). The hyperparameters used for our methods
are in Table 31. We tune the hyperparameters for best performance in ĀT . The hyperparameters tuning
results are in Table 32, 33, 34 and 35. The hyperparameter selection of λ in Eq. (3) is discussed in Appendix
B.2. The tuning process ensures that our methods are fairly compared to other baselines by optimizing their
performance under the same conditions. When combine IG-CL or IN2 with GEM (Lopez-Paz & Ranzato,
2017) or MIR (Aljundi et al., 2019), we use the memory buffer size: 150 samples per task. Meanwhile, we
experiment GEM and MIR with the same memory buffer size for fair comparisons. We split each dataset by
3 different random seeds, and run each class distribution for 3 times. The code and full training details will
be released to public upon acceptance.

Table 31: Hyperparameters for our methods.

µ in Eq. (1) 10−6

λ in Eq. (1) 0.4
λ in Eq. (3) 0
γ in Eq. (3) 0.4
τ in IG-CL’s Step 2 0.15

D.1.2 Dataset details and result report

CIFAR-10/ CIFAR-100 and TinyImageNet are standard image classification benchmarks. Both CIFAR-10
and CIFAR-100 have 50k training examples and 10000 testing examples with 10 classes and 100 classes
respectively. TinyImageNet has 200 classes with 500 training examples and 50 testing examples per class.
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Table 32: IG-CL’s performance in different µ of Eq.
(1) under CIFAR-100 5-task scenario. The λ of Eq.
(1) is set to 0.4 and connection threshold τ is set to
0.15 during the experiments.

ĀT

µ = 10−5 20.65
µ = 10−6 22.37
µ = 10−7 20.19

Table 33: IG-CL’s performance in different λ of Eq.
(1) under CIFAR-100 5-task scenario.. The µ of Eq.
(1) is set to 10−6 and connection threshold τ is set
to 0.15 during the experiments.

ĀT

λ = 0.1 19.28
λ = 0.4 22.37
λ = 4 17.17

Table 34: IN2’s performance in different γ of Eq. (3)
under CIFAR-100 5-task scenario. The λ of Eq. (1)
is set to 0.4 and connection threshold τ is set to 0.15
during the experiments.

ĀT

γ = 0.1 22.91
γ = 0.4 24.99
γ = 4 18.26

Table 35: IG-CL’s performance in different connec-
tion threshold τ under CIFAR-100 5-task scenario..
The µ and λ of Eq. (1) is set to 10−6 and 0.4 re-
spectively during the experiments.

ĀT

τ = 0.125 19.24
τ = 0.15 22.37
τ = 0.2 17.61

In experiment results, we perform the independent t-test. We calculate the p-value with confidence interval
95% when comparing our best performance and the strongest baseline. The improvement is mark in blue if
the p-value is less than 0.05.

D.2 Extended Previous Works Introduction

In the following sections, we provide detailed introductions to previous continual learning methods, and the
details of interpretability tools and models.

D.2.1 Previous Continual Learning Methods

The representative method in regularization-based methods category (i) is Elastic Weight Consolidation
(Kirkpatrick et al., 2017). Elastic Weight Consolidation (EWC) is a regularized-based method. The
loss function in this strategy L(θt) = LCE(θt) + λ

2
∑

i F t
i (θt

i − θt−1
i )2 has a quadratic penalty term which is

related to the difference between the parameters of the old task and the new task. Meanwhile, this penalty
term is proportional to the diagonal of the Fisher information matrix F. λ is a hyperparameter, and θt, θt−1

stand for model parameters before and after training on a new task t respectively. Similarly, Zenke et al.
(2017) adds a quadratic penalty term in the loss function, while estimating the importance of parameters
during training. Li & Hoiem (2017) trains models with a knowledge distillation loss for old tasks and a
regularization loss to outperform joint training.

The classic method in architecture-based methods category (ii) is Adam-NSCL (Wang et al., 2021). For
each task, it learns model parameters in the null space of all previous tasks, which is based on Adam. The
approximate null space is obtained by using singular value decomposition to the uncentered covariance matrix
of input representations of all previous tasks. Yoon et al. (2018) expands and prunes the neural network’s
architecture when learning new tasks.

The classic method in replay-based methods category (iii) is Gradient Episodic Memory (Lopez-Paz &
Ranzato, 2017). Gradient Episodic Memory (GEM) is a replay-based method. It stores a subset of the
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observed examples from previous tasks, which is described as episodic memory. When training on new tasks,
it regularizes the projection of the estimated gradient descent g on the gradient descent of episodic memory
gk. The optimization goal is formalized as ⟨g, gk⟩ ≥ 0,∀k < t when training on the task t. This regularization
prevents the loss of episodic memory from increasing. (Rebuffi et al., 2017) stores a subset of samples for
each class and uses the nearest-mean classifier on the data representation space.

D.2.2 Detailed introduction to interpretability tools and models

CLIP-Dissect (Oikarinen & Weng, 2023) use the Contrastive Language-Image Pre-training (CLIP) model
(Radford et al., 2021) to decipher the neurons in target model. CLIP is composed of an image encoder EI

and a text encoder ET . Given a probing dataset Dprobe = {xi}N
i=1, xi ∈ Rd, and a set of concepts {c}M

j=1,
the first step is to generate the representation by the encoders. The results are Ii = EI(xi), Ii ∈ RI0 and
Cj = ET (cj), Cj ∈ RT0 . Next, they compute concept-activation matrix P ∈ RN×M where Pi,j = Ii ·Cj ∈ R.
Third, neuron k’s activation map is defined as Ak(xi) for input image xi. The mean of activation map is
described as g(Ak(xi)) ∈ R and the activation vector is qk = [g(Ak(x1)), ..., g(Ak(xN ))]T ∈ RN . Finally, the
concept label of neuron k is cn where n is calculated from the Eq. (4)

n = argmaxmsim(cm, qk; P ) (4)

where sim is similarity function.

Label-Free Concept Bottleneck Model (LF-CBM) (Oikarinen et al., 2023) transforms neural networks into
an interpretable CBM without labeled concept data. The procedure in LF-CBM is as follows: First, it uses
GPT-3 (Brown et al., 2020) to generate a set C of text concepts important for the task based on class labels,
which is then filtered to improve quality. Second, LF-CBM learns a CBL where each neuron corresponds
to one of these concepts, by aligning the neurons with CLIP’s(Radford et al., 2021) representation of the
concepts. Given M concepts generated from the previous step, the CBL is a linear transformation of the
pretrained NN backbone f(x), expressed as Wc ∈ d0 × |C|. Here d0 is the output dimension of f(x). Wc is
learned to maximize the similarity between CBL’s output fc(x) = Wcf(x) and CLIP’s activation matrix P .
This incentivizes the k-th neuron to have an activation pattern similar to CLIP with the k-th concept. We
denote k-th neuron’s, activation pattern as q⊤

k = [fc,k(x1), ..., fc,k(xN )]⊤. Wc is then optimized by minimizing
the following objective:

∑M
i=1−

q̄3
i ·P̄ 3

:,i

∥q̄3
i

∥2∥P̄ 3
:,i

∥2
where q̄ means the vector is normalized to have mean 0 and

standard derivation 1. Finally, LF-CBM learns a sparse linear prediction layer with weight WF and bias bF .
The optimization goal is in Eq. (5):

min
W t

f
,bt

f

∥WF fc(Xtrain) + bF − y∥2
2 + λRα(WF ) (5)

where Rα = 0.5(1− α)∥WF ∥2
2 + α∥WF ∥1.
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D.3 Class Distribution

Table 36: Classes distribution of CIFAR-10 separated by random seed 3456.
Task 1 automobile, dog
Task 2 deer, horse
Task 3 bird, frog
Task 4 ship, truck
Task 5 airplane, cat

Table 37: Classes distribution of CIFAR-100 separated by random seed 3456.

Task 1 bear, bee, butterfly, camel, caterpillar, chair, elephant, forest, hamster, lion,
motorcycle, otter, plates, sea, shark, shrew, spider, tank, train, willow

Task 2 beaver, bowls, boy, bridge, castle, cockroach, couch, dinosaur, house, keyboard,
lawn mower, mushrooms, pears, pickup truck, poppies, possum, ray, skyscraper, wardrobe, whale

Task 3 beetle, cloud, crocodile, lamp, leopard, lizard, palm, pine, porcupine, snail,
streetcar, sweet peppers, table, telephone, television, tiger, tulips, turtle, woman, worm

Task 4 baby, bed, bicycle, bottles, cans, chimpanzee, crab, lobster, man, maple,
mouse, oak, orchids, plain, road, rocket, roses, skunk, squirrel, trout

Task 5 apples, aquarium fish, bus, cattle, clock, cups, dolphin, flatfish, fox,
girl, kangaroo, mountain, oranges, rabbit, raccoon, seal, snake, sunflowers, tractor, wolf

Table 38: Classes distribution of CIFAR-100 separated by grouping similar classes together.

Task 1 beaver, dolphin, otter, seal, whale, aquarium fish, flatfish, ray, shark, trout,
bee, beetle, butterfly, caterpillar, cockroach, crab, lobster, snail, spider, worm

Task 2 maple, oak, palm, pine, willow, orchids, poppies, roses, sunflowers, tulips,
apples, mushrooms, oranges, pears, sweet peppers, cloud, forest, mountain, plain, sea

Task 3 hamster, mouse, rabbit, shrew, squirrel, fox, porcupine, possum, raccoon, skunk,
crocodile, dinosaur, lizard, snake, turtle, bear, leopard, lion, tiger, wolf

Task 4 bicycle, bus, motorcycle, pickup truck, train, lawn mower, rocket, streetcar, tank, tractor,
bed, chair, couch, table, wardrobe, bridge, castle, house, road, skyscraper

Task 5 baby, boy, girl, man, woman, camel, cattle, chimpanzee, elephant, kangaroo,
bottles, bowls, cans, cups, plates, clock, keyboard, lamp, telephone, television
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Table 39: Classes distribution of TinyImageNet separated by random seed 3456.

Task 1

Persian cat, clIff, plunger, German shepherd, teddy, American lobster, hourglass, seashore,
dumbbell, ice cream, nail, convertible, orangutan, coral reef, go-kart, king penguin,

sulphur butterfly, lesser panda, kimono, comic book, cockroach, projectile, lakeside, chimpanzee,
bannister, bucket, gondola, koala, lIfeboat, teapot, police van, pill bottle,

hog, crane, cash machine, mushroom, water tower, black stork, ice lolly, scorpion

Task 2

sewing machine, lemon, barn, Yorkshire terrier, stopwatch, lawn mower, thatch, pizza,
barbershop, organ, computer keyboard, bighorn, cardigan, baboon, snail, syringe,

spider web, Labrador retriever, pretzel, pomegranate, tarantula, pop bottle, trilobite, poncho,
remote control, European fire salamander, altar, obelisk, binoculars, CD player, ladybug, miniskirt,

cannon, wok, potter’s wheel, cougar, chest, sunglasses, water jug, picket fence

Task 3

rugby ball, steel arch bridge, refrigerator, espresso, dining table, monarch, brown bear, confectionery,
beach wagon, scoreboard, flagpole, potpie, brass, bow tie, brain coral, backpack,

chain, bison, pole, beer bottle, grasshopper, tailed frog, lion, torch,
abacus, magnetic compass, standard poodle, goose, bullet train, African elephant, gazelle, triumphal arch,

iPod, beacon, jinrikisha, fly, dugong, suspension bridge, ox, wooden spoon

Task 4

Egyptian cat, volleyball, rocking chair, bullfrog, apron, swimming trunks, fountain, bikini,
school bus, plate, guinea pig, oboe, maypole, goldfish, orange, drumstick,

centipede, mashed potato, viaduct, military unIform, banana, sock, bathtub, guacamole,
walking stick, pay-phone, alp, lampshade, bell pepper, meat loaf, tabby, tractor,
sombrero, gasmask, frying pan, spiny lobster, jellyfish, sandal, vestment, snorkel

Task 5

reel, basketball, parking meter, black widow, umbrella, trolleybus, Arabian camel, space heater,
American alligator, albatross, sea cucumber, sea slug, clIff dwelling, boa constrictor, mantis, freight car,

Chihuahua, fur coat, beaker, moving van, barrel, acorn, caulIflower, birdhouse,
academic gown, golden retriever, neck brace, candle, desk, bee, dam, punching bag,

butcher shop, slug, dragonfly, limousine, sports car, turnstile, Christmas stocking, broom

Table 40: Classes distribution of TinyImageNet separated by by grouping similar classes together.

Task 1

school bus, maypole, projectile, freight car, pay-phone, moving van, bullet train, birdhouse,
tractor, triumphal arch, cannon, police van, crane, cash machine, jinrikisha, water tower,

limousine, sports car, suspension bridge, turnstile, picket fence, refrigerator, barn, lawn mower,
barbershop, beach wagon, scoreboard, flagpole, trolleybus, convertible, go-kart, viaduct,

pole, bathtub, altar, obelisk, bannister, gondola, lIfeboat, bucket

Task 2

reel, volleyball, rocking chair, basketball, plunger, parking meter, dining table, umbrella,
oboe, hourglass, computer keyboard, space heater, backpack, pop bottle, beer bottle, remote control,

lampshade, torch, abacus, barrel, CD player, teapot, candle, desk,
frying pan, iPod, wok, potter’s wheel, pill bottle, snorkel, sunglasses, water jug,

broom, wooden spoon, rugby ball, sewing machine, stopwatch, plate, teddy, drumstick

Task 3

Egyptian cat, bullfrog, German shepherd, brown bear, guinea pig, Arabian camel, baboon, Labrador retriever,
king penguin, lesser panda, chimpanzee, tabby, goose, koala, gazelle, golden retriever,

hog, cougar, black stork, ox, Persian cat, Yorkshire terrier, bighorn, orangutan,
American alligator, bison, boa constrictor, Chihuahua, lion, standard poodle, African elephant, cliff,

seashore, lakeside, alp, dam, steel arch bridge, fountain, clIff dwelling, magnetic compass

Task 4

monarch, snail, albatross, spider web, sulphur butterfly, tarantula, cockroach, mantis,
European fire salamander, ladybug, bee, slug, dragonfly, fly, scorpion, black widow,

centipede, grasshopper, tailed frog, goldfish, coral reef, sea cucumber, spiny lobster, jellyfish,
American lobster, brain coral, sea slug, trilobite, lemon, banana, guacamole, mushroom,
thatch, orange, mashed potato, pomegranate, bell pepper, acorn, cauliflower, binoculars

Task 5

cardigan, sock, fur coat, academic gown, miniskirt, neck brace, sombrero, gasmask,
punching bag, sandal, Christmas stocking, apron, swimming trunks, bikini, bow tie, military uniform,

kimono, poncho, espresso, pizza, organ, potpie, ice cream, nail,
pretzel, beacon, butcher shop, vestment, chest, dugong, ice lolly, confectionery,
brass, comic book, meat loaf, dumbbell, syringe, chain, walking stick, beaker
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