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Abstract. Producing diverse and realistic images with generative mod-
els such as GANs typically requires large scale training with vast amount
of images. GANs trained with limited data can easily memorize few
training samples and display undesirable properties like “stairlike” la-
tent space where interpolation in the latent space yields discontinuous
transitions in the output space. In this work, we consider a challeng-
ing task of pretraining-free few-shot image synthesis, and seek to train
existing generative models with minimal overfitting and mode collapse.
We propose mixup-based distance regularization on the feature space of
both a generator and the counterpart discriminator that encourages the
two players to reason not only about the scarce observed data points
but the relative distances in the feature space they reside. Qualitative
and quantitative evaluation on diverse datasets demonstrates that our
method is generally applicable to existing models to enhance both fidelity
and diversity under few-shot setting. Codes are available3.

. . .

Keywords: Generative Adversarial Networks(GANs), Few-shot Image
Generation, Latent Mixup

1 Introduction

Remarkable features of Generative Adversarial Networks (GANs) such as im-
pressive sample quality and smooth latent interpolation have drawn enormous
attention from the community, but what we have enjoyed with little gratitude
claim their worth in a data-limited regime. As naive training of GANs with
small datasets often fails both in terms of fidelity and diversity, many have
proposed novel approaches specifically designed for few-shot image synthesis.
Among the most successful are those adapting a pretrained source generator to
the target domain [31,34,26] and those seeking generalization to unseen cate-
gories through feature fusion [16,19]. Despite their impressive synthesis quality,
these approaches are often critically constrained in practice as they all require

3 https://github.com/reyllama/mixdl
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Fig. 1: Cross Domain Correspondence [34] adaptation of FFHQ source
generator on various target domains (10-shot). Finding a semantically sim-
ilar source domain is crucial for CDC as large domain gap greatly harms the
transfer performance. We later show that our method outperforms CDC with-
out any source domain pretraining even on the semantically related domains.

semantically related large source domain dataset to pretrain on [34], as illus-
trated in Fig. 1. For some domains like abstract art paintings, medical images
and cartoon illustrations, it is very difficult to collect thousands of samples,
while at the same time, finding an adequate source domain to transfer from
is not straightforward either. To train GANs from scratch with limited data,
several augmentation techniques [55,22] and model architecture [27] have been
proposed. Although these methods have presented promising results on low-shot
benchmarks consisting of hundreds to thousands of training images, they fall
short for few-shot generation where the dataset is even more constrained (e.g.,
n = 10).

GANs trained with small dataset typically display one of the two behaviors:
severe quality degradation [55,22] or near-perfect memorization [13], as visible
from Fig. 2 (left). Hence producing novel samples of reasonable quality is the
ultimate goal of few-shot generative models. We note that memorization differs
from the classic mode collapse problem, as the former is not just lack of diversity,
but the fundamental inability to generate unseen samples.

As directly combatting memorization with as little as 10 training samples
is extremely difficult if not impossible, we choose to tackle a surrogate prob-
lem instead. Our key observation is that strongly overfitted generators are only
capable of producing a limited set of samples, resulting in discontinuous transi-
tions in the image space under latent interpolation. We call this stairlike latent
space phenomenon, which has been pointed out by previous works [36,8] as an
indicator for memorization. Fig. 2 (right) demonstrates that previous methods
designed for diversity preservation [4] or low-shot synthesis [27] all display such
behavior under few-shot setting (n = 10). Therefore, instead of pursuing the
seemingly insurmountable task of suppressing memorization, we directly target
stairlike latent space problem and propose effective distance regularizations to
explicitly smooth the latent space of the generator (G) and the discriminator
(D), which we empirically show is equivalent to fighting memorization in effect.

Our high level idea is to maximally exploit the scarce data points by contin-
uously exploring their semantic mixups [52]. The discriminator overfitted to few
real samples, however, shows overly confident and abrupt decision boundaries,
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Fig. 2: Training GANs with as little as 10 real samples typically results in either
complete collapse or severe memorization (left). Strongly overfitted generators
can only generate a limited set of images, hence displaying stairlike latent inter-
polation (right).

leaving the generator with no choice but to faithfully replicate them in order
to convince the opponent. This results in aforementioned stairlike latent space
for both G and D, rendering smooth semantic mixups impossible. To tackle this
problem, we explore G’s latent space with a randomly sampled interpolation
coefficient c, enforcing relative semantic distances between samples to follow the
mixup ratio. By simultaneously imposing similar regularization on D’s feature
space, we prohibit the discriminator from embedding images to arbitrary loca-
tions for its convenience of memorizing, and guide its feature space to be aligned
by semantic distances. Our objective is inspired by the formulation of [34] that
aims to transfer diversity information from source domain to target domain. We
tailor it for our single domain setting, where no source domain is available to
import diversity from, and show that our method is able to to produce diverse
novel samples with convincing quality even with as little as 10 training images.

We further observe that models trained with our regularizations resist mode
collapse surprisingly well even with no special augmentation. We believe that
our distance regularizations encourage the model to preserve inherent diversity
present in early stages throughout the course of training. Resistance to overfitting
and mode collapse combined opens up doors for sample diversity under rigorous
data constraint, which we demonstrate later with experimental results.

In sum, our contributions can be summarized as:

– We propose a two-sided distance regularization that encourages learning of
smooth and mode-preserved latent space through controlled latent interpo-
lation.

– We introduce a simple framework for few-shot image generation without a
large source domain dataset that is compatible with existing architectures
and augmentation techniques.
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– We evaluate our approach on a wide range of datasets and demonstrate its
effectiveness in generating diverse samples with convincing quality.

2 Related Works

One-shot image generation In order to create diverse outcomes from a single
image, SinGAN [39] leverages the inherent ambiguity present in downsampled
image. Based on SinGAN, ConSinGAN [18] proposes a technique to control the
trade-off between fidelity and diversity. One-Shot GAN [41] uses a dual-branch
discriminator where each head identifies context and layout, respectively. As
one-shot image generation methods focus on exploiting a single image, they are
not directly applicable to few-shot image generation tasks where the generator
must learn the underlying distribution of a collection of images.
Low-shot image generation Given a limited amount of training data, the
discriminator in conventional GAN can easily overfit. To mitigate this problem,
DiffAugment [55] imposes differentiable data augmentation to both real and fake
samples while ADA [22] devises non-leaking adaptive discriminator augmenta-
tion. FastGAN [27] suggests a skip-layer excitation module and a self-supervised
discriminator, which saves computational cost and stabilizes low-shot training.
GenCo [11] shows impressive results on low-shot image generation task by using
multiple discriminators to alleviate overfitting. Despite their promising perfor-
mances on low-shot benchmarks, these methods often show significant instability
under stricter data constraint, namely in few-shot setting.
Few-shot generation with auxiliary dataset Thus far, the few-shot image
generation task (n ≈ 10) mostly required pretraining on larger dataset with
similar semantics [48,47,54,37] mainly due to its inherent difficulty. A group
of works [16,19,20,3] learns transferable generation ability on seen categories
and seek generalization into unseen categories through fusion-based methods.
FreezeD [31] and EWC [26] further improves transfer learning framework for
GANs. Meanwhile, CDC [34] computes the similarities between samples within
each domain and encourages the corresponding similarity distributions to resem-
ble each other. It aims to directly transfer the structural diversity of the source
domain to the target, yielding impressive performance. In this paper, we modify
the formulation of CDC and propose a novel few-shot generation framework that
does not require any auxiliary data or separate pretraining step.
Generative diversity Mode collapse has been a long standing obstacle in GAN
training. [2,30] introduce divergence metrics that are effective at stabilizing GAN
training while [12,14] tackle this problem by training multiple networks. Another
group of works [28,29,42,50,4] proposes regularization methods to preserve dis-
tances in the generated output space. Unlike these works, we consider the few-
shot setting where the diversity is restricted mainly due to memorization, and
introduce an interpolation-based distance regularization as an effective remedy.
Latent mixup Since [52], mixup methods have been actively explored to enforce
smooth behaviors in between training samples [6,44,5]. In generative models,
[36] emphasizes the importance of smooth latent transition as a counterevidence
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Fig. 3: Overview of ourMixup-based Distance Learning (MixDL). We sam-
ple mixup coefficients from a Dirichlet distribution and generate an anchor point
z0 through interpolation. Then we enforce pairwise similarities between interme-
diate generator activations to follow the interpolation coefficients. Similar regu-
larization is imposed on discriminator’s penultimate activation, which is linearly
projected before similarity calculation. The proposed regularization terms can
be added on top of any traditional adversarial framework.

for memorization, but as state-of-the-art GAN models trained with sufficient
data naturally possess such property [24,8], it has been mainly studied with
autoencoders. [7,35] regularize autoencoders to learn smooth latent space while
[49,38] explore their potential as generative models through interpolation.

3 Approach

We consider the situation where only few train examples (e.g., n = 10) are avail-
able with no semantically similar source domain. Hence, we would like to train
a generative model from scratch, i.e., with no auxiliary dataset or separate pre-
training step, using only a handful of images. Under such challenging constraints,
overfitting greatly restricts a model’s ability to learn data distribution and pro-
duce diverse samples. We identify its byproduct stairlike latent space as the core
obstacle, as it not only indicates memorizing but also prohibits hallucination
through semantic mixup. We observe that both the generator and the discrimi-
nator suffer from the problem with insufficient data, evidenced by discontinuous
latent interpolation and overly confident decision boundary, respectively.

To this end, we propose mixup-based distance learning (MixDL) framework
that guides the two players to form soft latent space and leverage it to generate
diverse samples. We further discover that our proposed regularizers effectively
combat mode collapse, a problem particularly more devastating with a small
dataset, by preserving diversity present in early training stages. As our formula-
tion is inspired by [34], we first introduce their approach in Sec. 3.1, and formally
state our methods in Sec. 3.2 and Sec. 3.3. Our final learning framework and the
corresponding details can be found in Sec. 3.4.
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3.1 Cross-Domain Correspondence

In CDC [34], the authors propose to transfer the relationship learned in a source
domain to a target domain. They define a probability distribution from pairwise
similarities of generated samples in both domains and bind the latter to the
former. Formally, they define distributions as

pl = softmax({sim(Gl
s(z0), G

l
s(zi))}Ni=1) (1)

ql = softmax({sim(Gl
s→t(z0), G

l
s→t(zi))}Ni=1) (2)

where Gl is the generator activation at the lth layer and {zi}N0 are latent vectors.
Note that Gs and Gs→t correspond to source and target domain generator,
respectively, and pl, ql are N -way discrete probability distributions consisting of
N pairwise similarities. Then, along with adversarial objective Ladv, they impose
a KL-divergence-based regularization of the following form:

Ldist = Ez∼pz(z)[DKL(q
l||pl)]. (3)

The benefits of this auxiliary objective are twofold: it prevents distance col-
lapse in the target domain and transfers diversity from the source to target via
one-to-one correspondence. However, as visible from Fig. 1, the synthesis quality
is greatly affected by the semantic distance between source and target. Hence,
we propose MixDL, which modifies CDC for pretraining-free few-shot image syn-
thesis and provides consistent performance gains across different benchmarks.

3.2 Generator Latent Mixup

In [34], the anchor point z0 could be chosen arbitrarily from the prior distribution
pz(z) since they were transferring the rich structural diversity of the source
domain to the target latent space. As this is no longer applicable in our setting,
we propose to resort to diverse combinations of given samples. Hence, preserving
the modes and learning interpolable latent space are our two main desiderata.
To this end, we define our anchor point using Dirichlet distribution as follows:

z0 =

N∑
i=1

cizi, c ∼ Dir(α1, · · · , αN ) (4)

where c ≜ [c1, · · · , cN ]T . Using Eq. (4), the latent space can be navigated in a
quantitatively controlled manner. Defining probability distribution of pairwise
similarities as in [34], we bind it to the interpolation coefficients c instead. The
proposed distance loss is defined as follows:

LG
dist = Ez∼pz(z),c∼Dir(α)[DKL(q

l||p)], (5)

ql = softmax({sim(Gl(z0), G
l(zi))}Ni=1), (6)

p = softmax({ci}Ni=1), (7)
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whereDir(α) denotes the Dirichlet distribution with parameters α = (α1, · · · , αN ).
This efficiently accomplishes our desiderata. Intuitively, unlike naive generators
that gradually converge to few modes, our regularization forces the generated
samples to differ from each other by a controlled amount, making mode collapse
very difficult. At the same time, we constantly explore our latent space with
continuous coefficient vector c, explicitly enforcing smooth latent interpolation.
An anchor point similar to [34] can be obtained with one-hot coefficients c.

3.3 Discriminator Feature Space Alignment

While the generator distance regularization can alleviate mode collapse and
stairlike latent space problem surprisingly well, the root cause of constrained
diversity still remains unresolved, i.e., discriminator overfitting. As long as the
discriminator delivers overconfident gradient signals to the generator based on
few examples it observes, generator outputs will be strongly pulled towards the
small set of observed data. To encourage the discriminator to provide smooth
signals to the generator based on reasoning about continuous semantic distances
rather than simply memorizing the data points, we impose similar regularization
on its feature space. Formally, we define our discriminator D(x) = (d(2)◦d(1))(x)
where d(2)(x) refers to the final FC layer that outputs {real, fake}. When a set
of generated samples {G(zi)}Ni=1 and the interpolated sample G(z0) is provided
to D, we construct an N -way distribution similar to Eq. (6) as

r = softmax({sim(proj(d
(1)
0 ), proj(d

(1)
i ))}Ni=1) (8)

where proj refers to a linear projection layer widely used in self-supervised learn-

ing literature [9,10,15] and d
(1)
j ≜ d(1)(G(zj)). Without the linear projector, we

found the constraint too rigid that it harms overall output quality. We define
our distance regularization for the discriminator as

LD
dist = Ez∼pz(z),c∼Dir(α)[DKL(r||p)]. (9)

This regularization penalizes the discriminator for storing memorized real
samples in arbitrary locations in the feature space and encourages the space
to be aligned with relative semantic distances. Thus it makes memorization
harder while guiding the discriminator to provide smoother and more semanti-
cally meaningful signals to the generator.

3.4 Final Objective

Fig. 3 shows an overall concept of our method. Our final objective takes the
form:

LG = LG
adv + λGLG

dist (10)

LD = LD
adv + λDLD

dist (11)
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where we generally set λG = 1000 and λD = 1.
As our method is largely independent of model architectures, we apply our

method to two existing models, StyleGAN24[24] and FastGAN[27]. We keep
their objective functions as they are and simply add our regularization terms.
For StyleGAN2, we interpolate in W rather than Z, which has been shown to
have better properties such as disentanglement [45,56,1]. Mixup coefficients c is
sampled from a Dirichlet distribution of parameters all equal to one. Patch-level
discrimination [21,34] is applied for mixup images to encourage our generator to
be creative while exploring the latent space.

4 Experiments

Baselines We mainly apply our method to the state-of-the-art unconditional
GAN model, StyleGAN2 [24]. Data augmentation techniques introduced by [55]
and [22] show promising performance on low-shot image generation task, so we
evaluate them along with ours and refer to them as DA and ADA respectively.
We additionally apply our method to FastGAN [27], which is a light-weight GAN
architecture that allows faster convergence with limited data. Although methods
designed for alleviating mode collapse [4,28,29] are not directly targeted for data-
limited setting, we further adopt these as baselines considering the similarity in
objective formulation. We implement them on StyleGAN2 for better synthesis
quality and fair comparison. Transfer based methods such as EWC [26] and
CDC [34] fundamentally differ from ours as they require a large scale pretraining
and thus are not directly comparable. However, we include CDC [34] since our
method adjusts it for a more general single domain setting.
Datasets For quantitative evaluation, we use Animal-Face Dog [40], Oxford-
flowers [33], FFHQ-babies [23], face sketches [46], Obama and Grumpy Cat [55],
anime face [27] and Pokemon (pokemon.com, [27]). Aforementioned datasets
contain 100 to 8189 samples, so we simulate few-shot setting by randomly sam-
pling 10 images, if not stated otherwise. For qualitative evaluation, we further
experiment on paintings of Amedeo Modigliani [51], landscape drawings [34] and
web-crawled images of Totoro. All the images are 256×256. Additional synthesis
results and information about datasets can be found in the supplementary.
Evaluation MetricsWemeasure Fréchet Inception Distance (FID) [17], sFID [32]
and precision/recall [56] for datasets containing a sufficient number (≥ 100) of
samples along with pairwise Learned Perceptual Image Patch Similarity (LPIPS)
[53]. For simulated few-shot tasks, the FID and sFID are computed against the
full dataset as in [26,34]. We further use LPIPS as a distance metric for demon-
strating interpolation smoothness and mode preservation.

4.1 Qualitative Result

Fig. 4 shows generated samples from 10-shot training. We observe that baseline
methods either collapse to few modes or severely overfit to the training data,

4 https://github.com/rosinality/stylegan2-pytorch
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Fig. 4: 10-shot image generation results. While baseline methods either collapse
or simply replicate the training samples (yellow box), our method actively
encourages the generator to explore semantic mixups of given samples, which
enables synthesis of various unseen samples.

resulting in inability to generate novel samples. Ours is the only method that
produces a variety of convincing samples that are not present in the training set.
Our method combines visual attributes such as hairstyle, beard and glasses in a
natural way, producing distinctive samples under harsh data constraint.

The difference is more distinguished when we take a closer look. In Fig. 5 we
display uncurated sets of generated images along with their nearest neighbor real
images. Samples from DistanceGAN [4] and FastGAN [27] are either defective
or largely identical to the corresponding GT, but our method generates unique
samples with recognizable visual features. We believe this is because our distance
regularization enforces outputs from different latent vectors to differ from each
other, proportionally to the relative distances in the latent space.
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Fig. 5: Uncurated collection of samples sharing the same training image as near-
est neighbor. Images from baselines are largely identical, but those produced by
ours are all different. Numbers in parentheses indicate the dataset size.

Method
Anime Face Animal-Face Dog Oxford Flowers Face Sketches Pokemon

FID ↓ sFID ↓ LPIPS ↑ FID ↓ sFID ↓ LPIPS ↑ FID ↓ sFID ↓ LPIPS ↑ FID ↓ sFID ↓ LPIPS ↑ FID ↓ sFID ↓ LPIPS ↑
FastGAN [27] 123.7 127.9 0.341 103.0 117.4 0.633 182.7 111.2 0.667 76.3 81.8 0.148 123.5 105.7 0.578
StyleGAN2 [23] 166.0 111.4 0.363 177.5 127.7 0.569 177.3 143.0 0.537 94.2 84.4 0.435 257.6 136.5 0.439
StyleGAN2 + DA [55] 162.0 96.8 0.204 136.1 123.5 0.559 187.0 154.4 0.687 43.1 59.9 0.438 280.1 148.9 0.179
StyleGAN2 + ADA [22] 130.2 108.0 0.288 236.5 126.2 0.636 167.8 83.5 0.719 62.8 67.3 0.399 214.3 95.5 0.496

FastGAN + Ours 107.6 98.5 0.478 99.8 111.7 0.625 180.5 75.5 0.657 45.0 58.0 0.416 144.0 118.3 0.584
StyleGAN2 + Ours 73.1 92.8 0.548 96.0 99.9 0.682 136.6 67.6 0.734 39.4 43.3 0.479 117.0 57.7 0.539
StyleGAN2 + DA + Ours 70.2 94.1 0.551 96.4 107.6 0.682 129.9 66.9 0.705 35.6 50.1 0.471 114.3 79.0 0.607
StyleGAN2 + ADA + Ours 75.0 96.5 0.571 94.1 96.6 0.684 127.7 52.5 0.763 39.2 45.7 0.482 155.5 65.7 0.544

StyleGAN2 + CDC† [34] 93.4 107.4 0.469 206.7 110.1 0.545 107.5 99.9 0.518 45.7 46.1 0.428 126.6 79.1 0.342

Table 1: Quantitative results on 10-shot generation task. FID and sFID
are computed against the full dataset and LPIPS is calculated between gener-
ated samples. The best and the second best scores are in bold and underlined.
Although CDC† is not directly comparable as it leverages a pretrained generator
(FFHQ), we include it for the relevancy to our method. Clear performance drops
are observed with increased domain gap (e.g., FFHQ → Dogs).

4.2 Quantitative Evaluation

Tab. 1 shows FID, sFID and LPIPS scores for several low-shot generation meth-
ods [55,22,27] on 10-shot image generation task. We can see that our method
consistently outperforms the baselines, often with significant margins. Moreover,
our regularizations can be applied concurrently to data augmentations to obtain
further performance gains. Note that while StyleGAN2 armed with advanced
data augmentations fails to converge from time to time, our method guarantees
stable convergence to a better optimum across all datasets. Surprisingly, ours
outperforms CDC [34] on all metrics even when the two domains are closely
related, e.g. anime-face and face sketches. For dissimilar domains like pokemon,
CDC tends to sacrifice diversity (i.e., LPIPS) for better fidelity, which never-
theless falls short overall. We present training snapshots in the supplementary.

Additional quantitative comparison with diversity preserving methods is dis-
played in Tab. 2. Although these methods have some similarities with ours,
especially MixDL-G, we can observe steady improvements with MixDL. As the
baselines are simply designed to minimize mode collapse, we believe they are



Few-shot Image Generation with MixDL 11

Method
Anime Face Animal-Face Dog FFHQ-babies

FID ↓ sFID ↓ LPIPS ↑ FID ↓ sFID ↓ LPIPS ↑ FID ↓ sFID ↓ LPIPS ↑
N-Div [28] 175.4 176.4 0.425 150.4 153.6 0.632 177.1 177.1 0.510

MSGAN [29] 138.6 100.5 0.536 165.7 123.0 0.630 165.4 120.1 0.569
DistanceGAN [4] 84.1 93.0 0.543 102.6 114.2 0.678 105.7 102.9 0.640
MixDL (ours) 73.1 92.8 0.548 96.0 99.9 0.682 83.4 73.9 0.643

Table 2: Quantitative comparison with diversity preservation methods on 10-shot
image generation task. MixDL is equivalent to StyleGAN2+Ours.

Dataset Obama Cat Flowers Obama Cat
Shot 100 100 100 10 10

LPIPS 0.615 0.613 0.795 0.598 0.598
StyleGAN2 63.1 43.3 192.2 174.7 76.4

+ DA 46.9 27.1 91.6 66.8 45.6
+ Ours 58.4 26.6 82.0 62.7 41.1

+ DA + Ours 45.4 26.5 64.0 57.9 39.3

Table 3: FID compariosn on low-shot bench-

marks. LPIPS measures in-domain diversity.

Method
Obama Cat

Prec. Rec. Prec. Rec.
StyleGAN2 0.47 0.07 0.15 0.12
+MixDL 0.52 0.32 0.86 0.50
FastGAN 0.90 0.36 0.90 0.43
+MixDL 0.91 0.47 0.91 0.50

Table 4: Precision and recall metrics
on 100-shot benchmarks.

relatively prone to memorization, which is a far devastating issue in few-shot
setting.

While pretraining-free 10-shot image synthesis task has not been studied
much, several works [27,55] have previously explored generative modeling with
as little as 100 samples. We present quantitative evaluations on popular low-shot
benchmarks in Table 3. We observe that our method consistently improves the
baseline, and the margin is larger for more challenging tasks, i.e., dataset with
greater diversity or fewer training samples. We discuss experiments on these
benchmarks in depth in Sec. 5. Tab. 4 shows precision and recall [25] for these
benchmarks, where MixDL boosts scores especially in terms of diversity.

4.3 Ablation Study

We further evaluate the effects of the proposed regularizations, MixDL-G (gen-
erator) and MixDL-D (discriminator), through ablation under different settings.
In Tab. 5, we observe that in general, our regularizations both contribute to
better quality and diversity, while in some special cases, only adding MixDL-G
leads to better FID score. We conjecture that aligning discriminator’s feature
vectors with the interpolation coefficients can impose overly strict constraint for
some datasets. We nonetheless observe consistent improvements on diversity.

Fig. 6 shows the evaluation across different subset sizes. Since FFHQ-babies
and Oxford-flowers contain more than 2,000 and 8,000 images respectively, we
randomly sample subsets of size 10, 100 and 1,000. We can see that the per-
formance of StyleGAN2 steadily improves with more training samples, but it
consistently benefits from MixDL. Hence, we believe that with limited data in
general, our method can be broadly used to improve model performance. Lastly
in Tab. 6, the effect of using different Dirichlet concentration parameters and
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MixDL Dog (10-shot) Babies (100-shot) Flowers (100-shot)
G D FID ↓ LPIPS ↑ FID ↓ LPIPS ↑ FID ↓ LPIPS ↑

177.5 0.569 131.0 0.574 192.2 0.747
✓ 118.4 0.649 83.4 0.638 94.1 0.775

✓ 95.4 0.673 71.7 0.638 84.0 0.780
✓ ✓ 96.0 0.682 63.4 0.647 82.0 0.782

Table 5: Ablation on MixDL-G and
MixDL-D. Two regularizations combined
generally yields the best performances.

Distribution Dirichlet Gaussian Uniform

Parameter α = 0.1 α = 1 α = 10 standard -

FID (↓) 76.4 73.1 80.8 76.0 74.8

LPIPS (↑) 0.536 0.548 0.532 0.548 0.546

Table 6: Mixup coefficient sampling
distribution ablation. We adopt α = 1
for simplicity.

(a) FID scores for different dataset sizes. (b) LPIPS for different dataset sizes.

Fig. 6: Shot ablation results. Red indicates FFHQ-babies and blue represents
flowers. Our method consistently improves both metrics with limited data.

sampling distribution for mixup is illustrated. We find that setting α = 1 yields
the best performance, so we uniformly use this throughout the experiments.

4.4 Latent Space Smoothness

Smooth latent space interpolation is an important property of generative models
that disproves overfitting and allows synthesis of novel data samples. As our pro-
posed method focuses on diversity through latent smoothing, we quantitatively
evaluate this using a variant of Perceptual Path Length (PPL) proposed by [23].

PPL was originally introduced as a measure of latent space disentangle-
ment under the assumption that a more disentangled latent space would show
smoother interpolation behavior [23]. As we wish to directly quantify latent space
smoothness, we slightly modify the metric by taking 10 subintervals between any
two latent vectors and measure their perceptual distances. Tab. 7 reports the
subinterval mean, standard deviation, and the mean for the full path (End).
Note that as PPL is a quadratic measure, the sum of subinterval means can be
smaller than the endpoint mean. All four models show similar endpoint mean,
suggesting that the overall total perceptual distance is consistent, while ours
displays the lowest PPL standard deviation. As low PPL variance across subin-
tervals is a direct sign of perceptually uniform latent transitions, we can verify
the effectiveness of our method in smoothing the latent space. Similar insight can
be found from Fig. 7 where the baselines display stairlike latent transition while
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Fig. 7: Latent space interpolation result. Ours shows smooth transitions
with high quality while others show defective or abrupt transitions.

Dataset Landscape Totoro

Metric Mean Std. End Mean Std. End

StyleGAN2 21.91 12.66 60.90 16.43 15.39 56.53
DistanceGAN 23.07 21.53 70.71 16.76 14.82 61.50
FastGAN 15.49 15.00 67.75 10.03 12.14 54.16
MixDL 12.82 4.19 64.28 11.75 6.44 56.83

Table 7: Perceptual Path Length uniformity. We generate 5000 latent in-
terpolation paths and subdivide each into 10 subintervals to compute perceptual
distances. Standard deviation (std) is computed across the subintervals, indicat-
ing perceptual uniformity of latent transition.

ours shows smooth semantic interpolation. More details on PPL computation
can be found in the supplementary materials.

4.5 Preserving Diversity

As opposed to [34] that preserves diversity in the source domain, our method can
be interpreted as preserving the diversity inherently present in the early stages
throughout the course of training, by constantly exploring the latent space and
enforcing relative similarity/difference between samples. To validate our hypoth-
esis, we keep track of pairwise LPIPS of generated samples and the number of
modes in the early iterations. Fig. 8 shows the result, where the number of modes
is represented by the number of unique training samples (real images) that are
the nearest neighbor to any of the generated images. In Fig. 8a, we can see that
vanilla StyleGAN2 and our method show similar LPIPS in the beginning, but the
baseline quickly loses diversity as opposed to ours that maintain relatively high
level of diversity throughout the training. Fig. 8b delivers similar implication
that FastGAN trained with our method better preserves modes, thus diversity,
compared to the baseline.

Combined with latent space smoothness explained in Sec. 4.4, generators
equipped with MixDL learn rich mode-preserving latent space with smooth in-
terpolable landscape. This naturally allows generative diversity particularly ap-
preciated under the constraint of extremely limited data.
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(a) LPIPS in early iterations. (b) Number of unique NN training samples.

Fig. 8: Analysis on sample diversity. (a) shows that our method produces samples
with greater diversity. (b) indicates the number of unique training samples that
are nearest neighbor to any of the generated samples. We generate 500 samples
for the analysis. Since we train our model with 10 samples, the upper bound is
10. Training snapshots are available in the supplementary materials.

5 Discussion

The trade-off between fidelity and diversity in GANs has been noted by many [8,23].
Truncation trick, a technique widely used in generative models, essentially de-
notes that diversity can be traded for fidelity. In few-shot generation task, it is
very straightforward to obtain near-perfect fidelity at the expense of diversity as
one can simply overfit the model, while generating diverse unseen data points
is very challenging. This implies that with only a handful of data, the diversity
should be credited no less than the fidelity.

However, we believe that the widely used low-shot benchmarks, e.g., 100-shot
Obama and Grumpy Cat, inherently favor faithful reconstruction over audacious
exploration. The main limitations we find in these datasets are twofold: (i) the
intra-diversity is too limited as they contain photos of a single person or object,
evidenced by low LPIPS in Tab. 3 and (ii) FID is computed based on the 100
samples that were used for training. We acknowledge that (ii) is a common
practice in generative models, but the problem with these benchmarks is that the
number of samples is too limited, making it possible for some models to simply
memorize a large portion of them. These two combined results in benchmarks
that allow relatively easy replication and reward it generously at the same time.
In other words, we believe that a model’s capacity to explore continuous image
manifold and be creative can potentially backfire in these benchmarks.

To address these limitations, in Tab. 3 we extend the benchmark with three
additional datasets: 100-shot Oxford-flowers, 10-shot Obama and Grumpy Cat.
The first one challenges the model with greater diversity while the last two evalu-
ate its capacity to learn distribution in a generalizable manner, as the FID is still
computed against the full 100 images. As our method mainly aims for modeling
diversity, we observe marginal performance gains in the traditional benchmarks.
However on the extended benchmarks, our proposed method shows significant
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contributions, confirming that it excels at learning diversity even under chal-
lenging situations.

6 Conclusion

We propose MixDL, a set of distance regularizations that can be directly added
on top of existing models for few-shot image generation. Unlike previous works,
MixDL enables high-quality synthesis of novel images with as few as 5 to 10
training samples, even without any source domain pretraining. Thorough evalu-
ations on diverse benchmarks consistently demonstrate the effectiveness of our
framework. We hope our work facilitates future research on data efficient genera-
tive modeling, which we believe has great upside in both academics and practical
applications.



Supplementary Materials

A Implementation Details

StyleGAN2 We adopt the standard StyleGAN2 architecture1 for 256 × 256
resolution images, with 8 fully connected layers in the mapping network. We
keep the hyperparameters such as the learning rate, regularization weights and
frequency, untouched, and only add our proposed MixDL.
DiffAug We essentially follow the official configuration2 for low-shot generation,
including the two-layer mapping network and three data augmentation methods.
We have also tried with a standard 8 FC layer mapping network and observed
significant drops in the overall performance as shown in Tab. S1.

FC layers Obama (100-shot) Grumpy Cat (100-shot)

2 46.87 26.52
8 71.13 38.42

Table S1: FID for DiffAug with varying number of FC layers

FastGAN We use the official FastGAN implementation3 for 256× 256 images.
As FastGAN doesn’t have a separate mapping network, we interpolate in Z
space.
Diversity Preservation Methods Baselines such as Normalized Diversifica-
tion (N-Div) [28], Mode Seeking GAN (MSGAN) [29] and DistanceGAN [4]
propose distance preserving objective to combat mode collapse. We train these
models with StyleGAN2 architecture for better synthesis quality and fair com-
parison.
MixDL For MixDL, we alternate between the normal adversarial training step
and the interpolation/regularization step. In the former we go through normal
image-level discrimination and in the latter, we apply patch-level discrimina-
tion on the mixup samples and compute losses for MixDL-G and MixDL-D. For
patch discrimination, we largely adopt the implementation of Cross-domain Cor-
respondence (CDC)4. Our linear projection layer for the discriminator operates
on 512 dimension.
Percpetual Path Length For PPL computation, we mainly follow the imple-
mentation in StyleGAN2. The difference is that we subdivide a latent interpo-
lation path into 10 subintervals and compute the perceptual distance for each

1 https://github.com/rosinality/stylegan2-pytorch
2 https://github.com/mit-han-lab/data-efficient-gans
3 https://github.com/odegeasslbc/FastGAN-pytorch
4 https://github.com/utkarshojha/few-shot-gan-adaptation



Few-shot Image Generation with MixDL 17

line segment. Since the original PPL computation divides the perceptual dis-
tance by the squared step size, we divide each subinterval length by 0.12. For
clear demonstration, we divide the endpoint mean by 0.12 as well. Note that the
overall procedure is equivalent to calculating LPIPS multiplied by the factor of
100. The standard deviation is computed across the subintervals, and averaged
for the interpolation paths.
Number of Modes We generate 500 samples and compute their perceptual
distances to the 10 training samples. We record the index for the real sample
with the smallest perceptual distance and report the unique count. It is visually
apparent from Fig. S1 that our method boosts mode diversity.

B Datasets

We present the datasets used in our work along with their size.

Animal-Face
Dog

Oxford Flowers FFHQ Babies Sketches Obama
Grumpy

Cat

10 10, 100, 1000, 8192 10, 100, 1000, 2479 5, 10 10, 100 10, 100

Pokemon Amedeo Modigliani Anime Face Landscape Totoro

10 10 10 10 5

Table S2: Number of shots used in each dataset. Names of datasets are pre-
sented in the first and third rows and their corresponding number of shots
used in this paper are described in the second and fourth rows.

C Additional Evaluations with CDC [34]

We provide evaluation results for CDC [34] on two popular low shot benchmarks,
Obama and Cat (Tab. S3). To simulate few-shot setting, we randomly sample
10 images from each dataset.. Since CDC is pretrained on FFHQ, the domain
gap is relatively small, especially for Obama dataset. Nevertheless, we observe
superior performances with MixDL.

Obama (10-shot) Cat (10-shot)

Model FID(↓) LPIPS(↑) Prec.(↑) Rec.(↑) FID(↓) LPIPS(↑) Prec.(↑) Rec.(↑)
CDC 75.0 0.490 0.47 0.07 45.3 0.451 0.52 0.10
MixDL 62.7 0.601 0.53 0.09 41.1 0.590 0.78 0.11

Table S3: FID, precision and recall are computed against the full dataset (with
100 images) while LPIPS is computed among the generated samples.
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D Additional Baseline Comparisons

We present quantitative evaluation results with concurrent competitive base-
lines [43,11] in combination to different data augmentations in Tab. S4. We
observe consistent benefits from MixDL.

Dataset Anime-face Dog Flower Baby
Metric FID LPIPS FID LPIPS FID LPIPS FID LPIPS

LeCam + DA 286.7 0.130 129.7 0.593 189.2 0.688 127.7 0.588
GenCo + DA 222.4 0.082 147.2 0.565 186.1 0.702 119.3 0.605
MixDL + DA 70.2 0.551 96.4 0.682 129.9 0.705 - -
LeCam + ADA 111.6 0.405 239.0 0.378 191.0 0.659 178.3 0.451
GenCo + ADA 93.7 0.450 112.4 0.652 194.0 0.673 103.8 0.570
MixDL + ADA 75.0 0.571 94.1 0.684 127.7 0.763 - -
MixDL (no aug.) 73.1 0.548 96.0 0.682 136.6 0.734 83.4 0.643

Table S4: Comparison with additional baselines. MixDL consistently outper-
forms others even without advanced augmentations.

E Training Snapshots

We provide training snapshots for FastGAN and StyleGAN2 for visual demon-
stration of diversity and interpolation smoothness. Fig. S1 clearly shows that as
opposed to vanilla FastGAN that rapidly loses diversity and converges to few
prototypes, MixDL successfully alleviates this. Fig. S2 displays interpolation
snapshots for StyleGAN2. In early training iterations, it does show relatively
smooth latent transition, but the sample quality is very unsatisfactory. As the
training proceeds, the sample quality improves as the model overfits, but conse-
quently the interpolation smoothness is quickly lost. This describes the classic
dilemma in few-shot generative modeling. In contrast, Fig. S3 shows that as
MixDL is effective at maintaining latent space smoothness, it provides a sweet
spot where reasonable sample quality and smooth latent transition coexist. Note
that models with MixDL do inevitably overfit in the end, but we can find rea-
sonable stopping point that produces diverse unseen samples with satisfactory
visual quality.

F Additional Generated Samples

We present latent interpolation results in Fig. S4 and Fig. S5. Fig. S4 shows
that MixDL yields smoother latent interpolation compared to baseline methods
that show typical stairlike latent space. Fig. S5 reaffirms this observation on
various datasets. We note that images of Japanese animation character Totoro
were crawled from the web, and 5 real samples were used. Additional synthesis
results from face paintings of Amedeo Modigliani and illustrations of Totoro are
displayed in Fig. S6 and Fig. S7, respectively.
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G Sample Images from Low-shot Benchmarks

In Fig. S8, we present samples from Obama and Grumpy Cat datasets. As they
contain images of a single character, the intra-diversity is inherently very limited,
which is also demonstrated by the LPIPS measure in Tab. 3 of the main paper.

H Naive Application of GAN adaptation

We display results from naive application of CDC. Since it is very difficult to
find a semantically similar source domain for datasets like Pokemon, we naively
leverage the source generator trained on FFHQ. As the source and the target
are semantically different, the adaptation does not yield satisfactory outcomes as
expected. We can observe the dilemma here as well that in the early iterations,
the face shape learned in the source domain is clearly visible while in later
stages, the face shape is no longer visible but the model collapses altogether. As
CDC preserves distances in the target domain through the correspondence to
the source domain, it is not applicable to domains that lack an adequate source
dataset to transfer from. MixDL, on the other hand, improves upon CDC in
that it enables training generative models with minimal overfitting and mode
collapse, without leveraging source domain pretraining. Quantitative evaluations
further support the claim as in Tab. 1 of the main paper.
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Fig. S1: Training snapshots for FastGAN and FastGAN+MixDL in early itera-
tions. As opposed to the base FastGAN that rapidly loses diversity, our regular-
izations help preserve the modes throughout the course of training. Numbers in
the left indicate training iterations.
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Fig. S2: Interpolation snapshots for StyleGAN2. Numbers in the left indicate
training iterations.
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Fig. S3: Interpolation snapshots for StyleGAN2+MixDL.

Fig. S4: Interpolation examples. Baselines clearly display stairlike latent transi-
tion while ours shows smooth interpolation.
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Fig. S5: More interpolation examples from MixDL. Numbers in the parentheses
represent the number of training samples used for each dataset.

Fig. S6: Samples from face paintings of Amedeo Modigliani. While the baselines
simply replicate the given images, ours produces diverse unseen face images.
Ours represents samples from StyleGAN2+MixDL.

Fig. S7: MixDL generation result from 5-shot training on Totoro. Although there
are only 5 training samples, it combines visual features in a natural way to
produce diverse novel samples.
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Fig. S8: Random samples from low-shot benchmark datasets, Obama and
Grumpy Cat. Since they contain photos of a single character, the intra-diversity
is inherently constrained, rendering these benchmarks inappropriate to evaluate
generative diversity.

Fig. S9: Naive application of CDC from FFHQ to Pokemon. As the authors have
pointed out, the adaptation performance degrades when the two domains are
semantically different, but it is not straightforward to find a transferable source
domain for datasets like Pokemon. We observe clear human face shapes in the
early stages (left) and mode collapse in later stages (right) where the face shape
is no longer visible.
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