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Abstract

Effectively predicting molecular interactions has the potential to accelerate molec-
ular dynamics by multiple orders of magnitude and thus revolutionize chemical
simulations. Graph neural networks (GNNs) have recently shown great successes
for this task, overtaking classical methods based on fixed molecular kernels. How-
ever, they still appear very limited from a theoretical perspective, since regular
GNNs cannot distinguish certain types of graphs. In this work we close this gap
between theory and practice. We show that GNNs with directed edge embeddings
and two-hop message passing are indeed universal approximators for predictions
that are invariant to translation, and equivariant to permutation and rotation. We
then leverage these insights and multiple structural improvements to propose the
geometric message passing neural network (GemNet). We demonstrate the benefits
of the proposed changes in multiple ablation studies. GemNet outperforms pre-
vious models on the COLL, MD17, and OC20 datasets by 34 %, 41 %, and 20 %,
respectively, and performs especially well on the most challenging molecules. Our
implementation is available online. 1

1 Introduction

Graph neural networks (GNNs) have shown great promise for predicting the energy and other
quantum mechanical properties of molecules. They can predict these properties orders of magnitudes
faster than methods from quantum chemistry – at comparable accuracy. GNNs can thus enable the
accurate simulation of systems that are orders of magnitude larger. However, they still exhibit severe
theoretical and practical limitations. Regular GNNs are only as powerful as the 1-Weisfeiler Lehman
test of isomorphism and thus cannot distinguish between certain molecules [45, 60]. Moreover, they
require a large number of training samples to achieve good accuracy.

In this work we first resolve the questionable expressiveness of GNNs by proving sufficient conditions
for universality in the case of invariance to translations and rotations and equivariance to permutations;
and then extending this result to rotationally equivariant predictions. Simply using the full geometric
information (e.g. all pairwise atomic distances) in a layer does not ensure universal approximation.
For example, if our model uses a rotationally invariant layer we lose the relative information between
components. Such a model thus cannot distinguish between features that are rotated differently. This
issue is commonly known as the “Picasso problem”: An image model with rotationally invariant
layers cannot detect whether a person’s eyes are rotated correctly. Instead, we need a model that
preserves relative rotational information and is only invariant to global rotations. To prove universality
in the rotationally invariant case we extend a recent universality result based on point cloud models
that use representations of the rotation group SO(3) [18]. We prove that spherical representations
are actually sufficient; full SO(3) representations are not necessary. We then generalize this to
rotationally equivariant predictions by leveraging a recent result on extending invariant to equivariant
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predictions [57]. We then discretize spherical representations by selecting points on the sphere based
on the directions to neighboring atoms. We can connect this model to GNNs by interpreting these
directions as directed edge embeddings. For example, the embedding direction of atom a would be
defined by atom c, resulting in the edge embedding eca. Updating the spherical representation of
atom a based on atom b then corresponds to two-hop message passing between the edges eca and
edb via eba, with atoms c and d defining the embedding directions. This message passing formalism
naturally allows us to obtain the molecule’s full geometrical information (distances, angles, and
dihedral angles), and the direct correspondence proves the model’s universality.

We call this edge-based two-hop message passing scheme geometric message passing, and propose
multiple structural enhancements to improve the practical performance of this formalism. Based on
these changes we develop the highly accurate and sample-efficient geometric message passing neural
network (GemNet). We furthermore show that stabilizing the variance of GemNet’s activations with
predetermined scaling factors yields significant improvements over regular normalization layers.

We investigate the proposed improvements in a range of ablation studies, and show that each of
them significantly reduces the model error. These changes introduce little to no computational
overhead over two-hop message passing. Altogether, GemNet outperforms previous models for force
predictions on COLL by 34 %, on MD17 by 41 %, and on OC20 by 20 % on average. We observe
the largest improvements for the most challenging molecules, which exhibit dynamic, non-planar
geometries. In summary, our contributions are:

• Showing the universality of spherical representations and two-hop message passing with directed
edge embeddings for rotationally equivariant predictions.

• Geometric message passing: Symmetric message passing enhanced by geometric information.
• Incorporating all proposed improvements in the Geometric Message Passing Neural Network

(GemNet), which significantly outperforms previous methods for molecular dynamics prediction.

2 Related work

Machine learning potentials. Research on predicting a molecule’s energy and forces (so-called
machine learning potentials) started with hand-fitted analytical functions and then gradually moved
towards fully learned models. Arguably, classical force fields are their very first instances. They use
analytical functions with coefficients that were hand-tuned based on experimental data. A popular
example for these is the Merck Molecular Force Field (MMFF94) [31]. The next wave of methods
used kernel ridge regression based on fixed, hand-crafted molecular representations [3, 9, 23]. Finally,
modern research mostly focusses on fully end-to-end learnable models based on GNNs [30, 53].
These models can also be combined with molecular features from quantum mechanical calculations
to improve performance [48]. We consider this combination as orthogonal research.

Directional GNNs. We can also achieve equivariance and invariance to rotations without relying
on group representations. Directional GNNs achieve this by representing directional information
explicitly [54] or in the form of angles [29] and dihedral angles [25, 39]. Our work is focused on this
class of models, proving their universality and proposing an improved variant, GemNet.

Expressiveness of GNNs. A large part of GNN research has been focused on their (limited) ex-
pressiveness. Morris et al. [45], Xu et al. [60] first proved that they are only as expressive as the
Weisfeiler-Lehman test of isomorphism and Garg et al. [27] showed the limitations of basic direc-
tional message passing. Kondor et al. [37], Maron et al. [43], Morris et al. [45, 46] then investigated
higher-order representations to circumvent this issue. Finally, Azizian & Lelarge [2], Maron et al.
[42] showed that so-called folklore GNNs are the most expressive GNNs for a given tensor order.

Equivariant neural networks. Equivariance and invariance have recently emerged as one of the
foundational principles of modern neural networks [13, 15]. This is especially relevant for models in
physics, for which we often know the symmetries a priori. Equivariant models for the SO(3) group
were first investigated in the context of spherical convolutions by Cohen et al. [14], Esteves et al.
[21], Kondor et al. [36]. These methods leverage group representations to achieve full equivariance.
They were then transferred to the context of 3D point clouds and molecules by Anderson et al.
[1], Thomas et al. [56], Weiler et al. [58], and further developed by Batzner et al. [4], Finzi et al.
[24], Fuchs et al. [26]. Importantly, Yarotsky [61] proved the universality of 2D convolutional
networks, and Bogatskiy et al. [5] extended this result to general groups. Maron et al. [44] proved
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universality for models invariant to Sn and equivariant to an additional symmetry. Dym & Maron
[18] combined these results to prove universality for the joined group of translations, rotations, and
permutations. Apart from reflections this is the exact group relevant for general molecules.

3 Universality of spherical representations

GNNs for molecules typically incorporate directional information in one of two ways: Via SO(3)
representations [1, 56] or by using directions in real space [29, 54]. Directions in real space are
associated with the three-dimensional S2 sphere, while the SO(3) group is double covered by the four-
dimensional S3 sphere. Directional representations thus use one degree of freedom less than SO(3)
representations, making them significantly cheaper. And, as we will prove in this section, directional
representations actually provide the same expressivity as SO(3) representations for predictions in R3.
We achieve this by showing that the SO(3)-based tensor field network (TFN) [56] variant used by
Dym & Maron [18] is equivalent to a similar model based on spherical representations, in the case of
rotationally invariant predictions. We then generalize a recent result by Villar et al. [57], which lets
us extend our theorem to the rotationally equivariant case. Afterwards, we relate this universality to
directional GNNs by interpreting them as a discretization of spherical representations.

Preliminaries. We consider a point cloud with n points (atoms), each associated with a position and
a set of rotationally invariant features (e.g. atom types), defined as X ∈ R3×n and Hin ∈ Rh×n.
In this section we define model classes by sets of functions F . As a first step, we are interested in
proving that the set F defining our model is equal to the full set of functions G′ that are invariant
to the group of translations T3 and rotations SO(3), and equivariant to the group of permutations
Sn. We denote the codomain of functions in G′ as Wn

T , where WT is some representation of SO(3).
We denote a vector’s norm by x = ‖x‖2, its direction by x̂ = x/x, and the relative position by
xba = xb − xa. Proofs are deferred to the appendix. Note that this section is not intended as an
introduction to the SO(3) group. For a concise introduction in the context of machine learning see
e.g. Weiler et al. [58, Section 3] or Kondor et al. [36].

Tensor field network. In order to show the equivalence of the TFN to spherical representations, we
first need to define this model. Following Dym & Maron [18], we split the model into two parts:
Embedding functions Ffeat that lifts the input into an equivariant representation, and pooling functions
Fpool that aggregate the results of multiple embedding functions on each point and computes the
model output. The overall model is then defined as the set of functions

FTFN
K(D),D = {f | f(X,Hin) =

K∑
k=1

f
(k)∗
pool (f

(k)
feat (X,Hin)), f

(k)
pool ∈ F

TFN
pool (D), f

(k)
feat ∈ F

TFN
feat (D)},

(1)

where D ∈ N denotes the function’s maximum polynomial degree, K(D) ∈ N is chosen such
that Theorem 1 is fulfilled (Dym & Maron [18] only prove the existence of this function), and f∗
denotes elementwise application of f on all points. We then define the set FTFN

pool as all rotationally
equivariant linear functions on the SO(3) group, i.e. all SO(3) convolutions [38]. Note that these
are more expressive than the self-interaction layers used originally [56]. The embedding functions
FTFN

feat (D) = {π2 ◦f (2D) ◦ · · · ◦f (1) | f (i) ∈ FTFN
prod } consist of an auxiliary function π2(X,H) = H

and a series of tensor product functions (called convolution by Dym & Maron [18]) FTFN
prod = {f |

f(X,H) = (X, H̃TFN(X,H))}. The intermediate representations are H ∈Wn
feat, where Wfeat is

a representation of SO(3) indexed by the degree l and the order m. For Hin we have l=m=0. The
main update is defined by

H̃TFN(lo)
amo

(X,H) = θH(lo)
amo

+
∑
lf ,mf

∑
li,mi

C
(lo,mo)
(lf ,mf ),(li,mi)

∑
b∈Na

F
(lf )
TFN,mf

(xb − xa)H
(li)
bmi

, (2)

where θ is a (learned) scalar and Na are the neighbors of point a. The Clebsch-Gordan coefficients
C

(lo,mo)
(lf ,mf ),(li,mi)

arise from decomposing the tensor product of two input SO(3) representations (the
filter and input representations) into a sum of output representations. Their exact values are not
relevant for this discussion. We index the output with degree lo and order mo, the learned filter with
lf and mf , and the input with li and mi. F

(l)
TFN,m(x) = R(l)(x)Ylm(x̂) is a rotationally equivariant
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filter, with a (learned) radial part R, which is any polynomial of degree ≤ D, and the real spherical
harmonics Ylm with degree l and order m. The spherical harmonics are the basis for the Fourier
transformation of functions on the sphere, analogously to sine waves for functions on R. We can
prove universality for TFNs by using the universality of polynomial regression and showing that
TFNs can fit any polynomial (see Dym & Maron [18] for details), resulting in:
Theorem 1 (Dym & Maron [18]). Consider the set of functions G mapping R3×n+h×n →Wn

T that
are equivariant to rotations and permutations and invariant to translations. For all n ∈ N,

1. For D ∈ N0, every polynomial p ∈ G of degree D is in FTFN
K(D),D.

2. Every continuous function f ∈ G can be approximated uniformly on compact sets by functions in⋃
D∈N0

FTFN
K(D),D.

Spherical networks. Instead of intermediate SO(3) representations we now switch to spherical
representations, which are functions on the sphere H : S2 → R. We define the set of functions
F sphere
K(D),D analogously to FTFN

K(D),D. However, for F sphere
feat (D) we use

H̃ sphere
a (X,H)(r̂) = θHa(r̂) +

∑
b∈Na

Fsphere(xb − xa, r̂)Hb(r̂), (3)

with the filter function Fsphere(x, r̂) =
∑
l,mR

(l)(x)<[Y
(l)∗
m (x̂)Y

(l)
m (r̂)], using the real part < of the

complex spherical harmonics Y (l)
m . The set of pooling functions for invariant predictions is

F sphere
pool = {f | f(H) = θpool

∫
S2

H(r̂) dr̂}, (4)

with the learnable parameter θpool. We obtain the universality theorem by showing the equivalence
between this model and TFN for rotationally invariant functions. The proof is based on the connection
between spherical harmonics and the Clebsch-Gordan coefficients [51, 3.7.72] (see App. A).
Theorem 2. Consider the set of functions G′ mapping R3×n+h×n → Wn

T that are equivariant to
permutations and invariant to translations and rotations. For all n ∈ N,

1. For D ∈ N0, every polynomial p ∈ G′ of degree D is in F sphere
K(D),D.

2. Every continuous function f ∈ G′ can be approximated uniformly on compact sets by functions in⋃
D∈N0

F sphere
K(D),D.

Next, we extend Theorem 2 to rotationally equivariant functions. We do this by generalizing a recent
result by Villar et al. [57] to obtain (see App. B):
Theorem 3. Let h : Rd×n+h×n → Rd×n be any function that is equivariant to permutations and
rotations and invariant to translations. For all a ∈ [1, n], let the set of relative vectors {xca | c ∈
[1, n]} not span a (d−1)-dimensional space. Then there are n−1 functions f (c) : Rd×n+h×n → Rn
such that

ha(X,H) =

n∑
c=1
c6=a

f (c)a (X,H)xca, (5)

where f (c) is equivariant to permutations, but invariant to rotations and translations.

This theorem lets us extend a rotationally invariant model to an equivariant one, while providing
universality guarantees. Together, Theorem 2 and Theorem 3 (with d = 3) thus show that we can
approximate any rotationally equivariant function using only representations on the S2 sphere. We
thus do not need SO(3) representations, spin-weighted spherical harmonics [22], triplet embeddings,
or complex-valued functions. This result puts theory back in line with practice, where the best results
are currently achieved without relying on these more expensive representations [54].

4 From spherical representations to directional message passing

Directional representations. To use spherical representations in a model we first need to find a
tractable description. Instead of using spherical harmonics, we propose to sample the representations
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in specific directions r̂i. If we look at recent models, we see that they implicitly use the directions to
each atom’s neighbors for this purpose, i.e. they embed the edges in the molecule’s graph. These
directions define an equivariant mesh that circumvents the aliasing effects that would arise from
fixed grids [36]. Schütt et al. [54] flexibly define the directional mesh in each layer by aggregating
directions, while Gasteiger et al. [29] and others use a fixed mesh for each atom. We can refine
this mesh of directions e.g. by using more neighbors or by interpolating between directions. The
approximation error of this directional mesh is related to the spherical harmonic expansion via the
mesh norm and the separating distance between directions [33, 34]. Note that depending on the
discretization scheme the resulting mesh might not provide a universal approximation guarantee.

Eq. (3) only defines the relationship for a fixed direction, while models commonly use different
directional meshes for the input and output. To incorporate this we add a convolution with a learned
filter F2, which can only improve the model’s expressiveness. Since the input and output are spherical
functions, the used filter F2 has to be zonal, i.e. it can only depend on one angle. This can be
expressed as [17]

H̃dir
a (X,H)(r̂o) = θHa(r̂o) +

∫
SO(3)

∑
b∈Na

Fsphere(xba,Rn̂)
∑
i∈Rb

Hbiδ(Rn̂− r̂i)F2(R−1r̂o) dR

= θHa(r̂o) +
∑
b∈Na

∑
i∈Rb

Fsphere(xba, r̂i)HbiF2(]r̂or̂i),

(6)

whereRb denotes the directional mesh of atom b with mesh directions denoted by r̂i, and r̂o specifies
the output direction. The integral vanishes due to the Dirac delta δ.

General filters. To see the relationship to GNNs we furthermore need to generalize the filter
Fsphere(xba, r̂i). This filter only depends on the angle ]r̂ix̂ba since it is rotationally invariant:
Lemma 1. Fsphere(Rx,Rr̂) = Fsphere(x, r̂) for any rotation matrix R.

We can therefore substitute Fsphere with a general learnable filter F1 that is parametrized by this
relative angle. Since Fsphere arises as a special case we do not lose expressivity. We thus obtain

H̃gem
a (X,H)(r̂o) = θHa(r̂o) +

∑
b∈Na

∑
i∈Rb

F1(xba,]r̂ix̂ba)F2(]r̂or̂i)Hbi. (7)

We have now arrived at a message passing scheme that has universal approximation guarantees and is
only based on relative directional information. To see the connection to GNNs we interpret these
discretized spherical representations as edge embeddings pointing towards r̂o and r̂i. Eq. (7) then
corresponds to two-hop message passing between the edge embeddings of r̂o and r̂i via the edge
x̂ba. Interestingly, the central learnable part of Eq. (7) is the product of the filters F1(xba,]r̂ix̂ba)
and F2(]r̂or̂i) with the input representation, which is strikingly similar to the Hadamard product
used in modern GNNs [28, 53] – except that these only use one-hop message passing.

5 Geometric message passing

ϕcab ϕabd

mca mdb

(rotate)

θcabd

a b

c d

a,b

c d

Figure 1: Angles used in geo-
metric message passing. The di-
hedral angle θcabd becomes vis-
ible when rotating the molecule
so that atoms a and b lie on top
of each other (right).

Geometric representation. We now develop a specific two-hop
message passing scheme based on Eq. (7). We use embeddings
based on interatomic directions, and embed all atom pairs with
distance xca ≤ cemb. r̂o and r̂i are thus instantiated as the inter-
atomic directions x̂ca and x̂db. We denote directional embeddings
as mca = Ha(x̂ca). Message passing is thus based on quadruplets
of atoms – two atoms are interacting (a and b) and two atoms define
the directions (c and d). We denote the angle between directions by
ϕabd = ]x̂abx̂db. To improve empirical performance we addition-
ally use the dihedral angle θcabd = ]x̂cax̂db ⊥ x̂ba and substitute
]r̂or̂i = ]x̂cax̂db with ϕcab. Fig. 1 illustrates the three angles
ϕcab, ϕabd, and θcabd we use for updating the embedding mca

based on mdb. To ensure that all angles are well-defined we ex-
clude overlapping atom quadruplets, i.e. a 6=b 6=c 6=d. We represent
the relative directional information using spherical Fourier-Bessel
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bases with polynomial radial envelopes to ensure smoothly differentiable predictions, as proposed
by Gasteiger et al. [29]. We split the basis into three parts to incorporate all available geometric
information. Before the envelope, these are:

ẽRBF,n(xdb) =

√
2

cemb

sin( nπcemb
xdb)

xdb
, (8)

ẽCBF,ln(xba, ϕabd) =

√
2

c3intj
2
l+1(zln)

jl(
zln
cint

xba)Yl0(ϕabd), (9)

ẽSBF,lmn(xca, ϕcab, θcabd) =

√
2

c3embj
2
l+1(zln)

jl(
zln
cemb

xca)Ylm(ϕcab, θcabd), (10)

with the interaction cutoff cint, the spherical Bessel functions jl, and the n-th root of the l-order
Bessel function zln. Note that Gasteiger et al. [29] only used the first two parts eRBF and eCBF. These
representations are then transformed using two linear layers to obtain the filter F . In order to maintain
a smoothly differentiable cutoff we cannot use a bias in this transformation. Altogether, the core
geometric message passing scheme is

m̃ca =
∑

b∈N int
a \{c},

d∈N emb
b \{a,c}

(
(WSBF1eSBF(xca, ϕcab, θcabd))

TW((WCBF2WCBF1eCBF(xba, ϕabd))

� (WRBF2WRBF1eRBF(xdb))�mdb)
)
,

(11)

where W denotes a weight matrix, W denotes a weight tensor. The first weight matrix of each repre-
sentation part has a small output dimension. This causes a bottleneck that improves generalization.

Symmetric message passing. Whenever we have a directional embedding mca, we also have the
opposing embedding mac, since both are based on the same cutoff cemb. Whether we associate the
embedding mca or mac with atom a is arbitrary. A more principled approach is to jointly interpret
both embeddings as a representation of the atom pair a and c. In this view, an update to mca should
also influence mac. This would normally require executing the above message passing scheme
twice, once for updating mca based on mdb, and once for updating mac based on mdb. We propose
to circumvent this double execution by calculating the update (Eq. (11)) only once and then using
it for both mca and mac. To preserve the distinction between the two directions and ensure that
mca 6= mac, we transform the two updates using two separate learnable weight matrices. One single
message passing update thus carries information for both embeddings, which is then dissected by the
two weight matrices. In practice, this only requires a simple re-indexing operation that maps the edge
ca to ac.

Efficient bilinear layer. The whole message passing scheme, i.e. basis transformation, neighbor
aggregation, and bilinear layer, only use linear functions. We can therefore freely optimize the order
of summation without changing the result, as proposed by Wu et al. [59] (see App. D for details).
Doing so can provide a faster and more memory-efficient model, reducing memory usage by 50 %
even for Hadamard products. Moreover, since everything is based on efficient matrix products, this
allows us to use the bilinear layer at practically no additional cost compared to a Hadamard product.
Note that this requires using padded matrices instead of the usual gather-scatter operations to prevent
excessively large intermediate results.

6 GemNet: Geometric message passing neural network

GemNet. The geometric message passing neural network (GemNet) is a significantly refined
architecture based on DimeNet++ [28, Hippocratic license 2.1]. GemNet predicts the molecular
energy E and forces F ∈ R3×n based on the atomic positions X ∈ R3×n and the atomic numbers
z ∈ Nn. The architecture is illustrated in Fig. 2. A comprehensive version with low-level layers
and hyperparameters is described in App. F. GemNet was developed on the COLL dataset, but
generalizes to other datasets such as MD17 without architectural changes. Every change we propose
either improves model performance or reduces model complexity. For example, GemNet uses no
biases since we found them to be irrelevant or even detrimental to accuracy. We show the impact
of the most relevant changes via ablation studies in Sec. 7.

Interactions. GemNet incorporates three forms of interactions. The first is geometric message
passing, as described in Sec. 5. The second is a one-hop form of geometric message passing. This
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Figure 2: The GemNet architecture (comprehensive version in App. F). � denotes the layer’s input, ‖
concatenation, and σ a non-linearity. Directional embeddings mca are updated using three forms
of interaction: Two-hop geometric message passing (Q-MP), one-hop geometric message passing
(T-MP), and atom self-interactions. Differences between Q-MP and T-MP are denoted by colors and
dashed lines.

interaction uses a single cutoff c = cemb and passes messages only between directional embeddings
pointing towards the same atom, similarly to DimeNet [29]. This provides both angle-based pair
interactions and atom self-interactions, thanks to the symmetric message passing scheme described
in Sec. 5. The third interaction is a pure atom self-interaction based on atom embeddings. We first
aggregate the directional embeddings of one atom to obtain an atom embedding. We then use this
atom embedding to update all directional embeddings. We found all three interaction forms to be
beneficial, and show this in our ablation studies.

Stabilizing activation variance. The variance of activations in a model is usually stabilized using
normalization methods, which has various positive effects on training [16, 41, 52]. However, they
also have multiple undesirable side effects, especially in the context of molecular regression. Batch
normalization introduces correlations between separate molecules and atoms. Layer normalization
forces all activation scales to be constant, while atomic interactions actually cover a large range of
scales – directly bonding atoms have a substantially stronger interaction than atoms at a long range.
To circumvent these issues, we stabilize GemNet’s variance by introducing constant scaling factors,
as suggested by Brock et al. [6]. We found that the activation variance is primarily impacted by
four components: Skip connections, non-linearities, message aggregation, and Hadamard/bilinear
layers. The two summands in a skip connection y = x+ f(x) have no covariance at initialization
due to random weight matrices. We can thus remove its impact by scaling the output by 1/

√
2. We

remove the non-linearity’s impact by scaling its output with a gain of γ = 1/0.6 for SiLU, similarly
to [35]. Note that we do not center SiLU’s output but instead choose a slightly lower γ to account for
mean shift. Additionally, we standardize the weight matrices to have exactly zero mean and 1/fan-in
variance. The sum aggregation and Hadamard/bilinear layers have a more complex impact on the
variance, which we cannot determine a priori (see App. E for details). We therefore estimate the
variance after these layers based on random batches of data. We then rescale their output accordingly
to obtain roughly the variance of the layer input at initialization. These simple empirical scaling
factors are sufficient to keep the activation variance roughly constant (see Fig. 3). We found that
other measures such as adaptive gradient clipping [7], scaled weight standardization [6], or weighting
the residual block with zero at initialization [16] are not beneficial for model accuracy.
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Table 1: MAE on COLL, in meV/Å
and meV. GemNet is 34 % more ac-
curate for forces. The higher energy
error is due to its lower loss weight.

Forces Energy
SchNet 172 198
DimeNet++ 40 47
GemNet-Q 26.4 53
GemNet-T 31.6 60
GemNet-dQ 38.1 60
GemNet-dT 43.1 55

Table 2: Force MAE for MD17@CCSD in meV/Å. GemNet
outperforms previous methods by 44 % on average.

sGDML NequIP GemNet-Q GemNet-T
Aspirin 33.0 14.7 10.4 10.3
Benzene 1.7 0.8 0.7 0.7
Ethanol 15.2 9.4 3.1 3.1
Malonaldehyde 16.0 16.0 6.0 5.9
Toluene 9.1 4.4 2.5 2.7

GemNet-Q and GemNet-T. Geometric message passing is comparatively expensive since it is based
on quadruplets of atoms. Its runtime thus scales with O(nkintk

2
emb), where kint is the number of

interacting neighbors, and kemb is the number of embedded directions. For this reason we investigate
two message passing models in our experiments – one with two-hop geometric message passing
(GemNet-Q) and one using only the two cheaper forms of interaction (GemNet-T). Their complexities
are O(nkintk

2
emb) and O(nk2emb), respectively. Note that GemNet-T is thus a direct ablation of the

two-hop message passing scheme implied by our theoretical results.

Direct force predictions. GemNet predicts forces by calculating Fa = −∂E/∂xa via backpropa-
gation. This form of calculation guarantees a conservative force field, which is important for the
stability of simulations. However, by using Eq. (5) we can also directly predict forces and other vector
quantities. This essentially means predicting a magnitude for each directional embedding and then
summing up over the vectors defined by this magnitude and the embedding’s associated direction,
similarly to Park et al. [47]. We denote this variant as GemNet-dQ and GemNet-dT. Interestingly,
GemNet is thus able to generate rotationally equivariant predictions despite only using invariant
representations. Direct predictions substantially accelerate the model, especially for training. For
most datasets, the resulting accuracy is on par with most previous models, but significantly worse
than GemNet’s accuracy via backpropagation. However, this is not true for OC20, where we found
GemNet-dT to converge faster and perform on par with GemNet-T.

Limitations. GemNet is focused on one specific, important task: Predictions for molecular simula-
tions. We do not make any statements regarding its performance beyond this scope. The GemNet
architecture might seem more complex than some previous models, due to its larger variety of interac-
tions and blocks. However, its number of parameters and training or inference time is actually on par
with previous models. Two-hop message passing introduces significant computational overhead. We
mitigate this effect with a down-projection layer and additionally introduce the ablated GemNet-T
model. This model performs surprisingly well on MD17, but not on COLL. This suggests that
one-hop message passing is expressive enough for some practical use cases, but two-hop message
passing gives an advantage for the more challenging task of fitting multiple molecules at once.

Societal impacts. Accelerating molecular simulations can have positive effects in a wide range of
applications in physics and chemistry. At the same time, however, this can be used for malicious
purposes such as developing chemical agents or weapons. To the best of our knowledge, this work
does not promote these use cases more than regular chemistry research does. To somewhat mitigate
negative effects we will publish our source code under the Hippocratic license [19].

7 Experiments

Experimental setup. We evaluate our model on four molecular dynamics datasets. COLL [28,
CC-BY 4.0] consists of configurations taken from molecular collisions of different small organic
molecules. MD17 [9] consists of configurations of multiple separate, thermalized molecules, consid-
ering only one molecule at a time. MD17@CCSD [10] uses the same setup, but calculates the forces
using the more accurate and expensive CCSD or CCSD(T) method. The open catalyst (OC20) dataset
[8, CC-BY 4.0] consists of energy relaxation trajectories of solid catalysts with adsorbate molecules.
This dataset is split into three tasks: (1) Structure to energy and forces (S2EF), which is the same task
as used by the COLL and MD17 datasets, (2) initial structure to relaxed structure (IS2RS), where
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Table 3: Force MAE for MD17 in meV/Å. GemNet outperforms all previous methods by a wide
margin, on average by 41 %.

Kernel methods GNNs GemNet
sGDML FCHL19 DimeNet SphereNet NequIP PaiNN GemNet-Q GemNet-T

Aspirin 29.5 20.7 21.6 18.6 15.1 14.7 9.4 9.5
Benzene[9] - - 8.1 7.7 8.1 - 6.3 6.3
Benzene[10] 2.6 - - - 2.3 - 1.5 1.4
Ethanol 14.3 5.9 10.0 9.0 9.0 9.7 3.8 3.7
Malonaldehyde 17.8 10.6 16.6 14.7 14.6 14.9 6.9 6.7
Naphthalene 4.8 6.5 9.3 7.7 4.2 3.3 2.2 2.4
Salicylic acid 12.1 9.6 16.2 15.6 10.3 8.5 5.4 5.5
Toluene 6.1 8.8 9.4 6.7 4.4 4.1 2.6 2.6
Uracil 10.4 4.6 13.1 11.6 7.5 6.0 4.5 4.2

Table 4: Results for the three tasks of the open catalyst dataset (OC20), averaged across its four test
sets. GemNet outperforms all previous methods in all measures, on average by 20 %.
*DimeNet++-large uses separate models for energy and force prediction for IS2RE.

S2EF IS2RS IS2RE
Energy MAE Force MAE Force cos AFbT ADwT Energy MAE

meV ↓ meV/Å ↓ ↑ % ↑ % ↑ meV ↓
ForceNet-large - 31.2 0.520 12.7 49.6 -
DimeNet++-large* - 31.3 0.544 21.8 51.7 559.1
SpinConv 336.3 29.7 0.539 16.7 53.6 434.3
GemNet-dT 292.4 24.2 0.616 27.6 58.7 399.7

an energy optimization is carried out based on the model’s predictions and we measure how close
the final structure is to the true relaxed structure (average distance within threshold, ADwT) and
whether the final forces are close to zero (average forces below threshold, AFbT), and (3) initial
structure to relaxed energy (IS2RE), where we predict the energy of the relaxed structure, based
on an energy optimization starting at the initial structure. All presented OC20 models are trained
on the S2EF data. Following the setup of Batzner et al. [4], we use 1000 training and validation
configurations for MD17, and 950 training and 50 validation configurations for MD17@CCSD. We
focus on force predictions and use a high force loss weight since they determine the accuracy of
molecular simulations. We measure the mean absolute error (MAE), averaged over all samples,
atoms, and components. We compare with the results reported by several state-of-the-art models:
sGDML [10], FCHL19 [12], SchNet [53], DimeNet [29], DimeNet++ [28], SphereNet [39], NequIP
[4], PaiNN [54], ForceNet [32], and SpinConv [55]. For further details see App. G.

Results. Tables 1 to 4 show that GemNet-T and GemNet-Q consistently perform best on all molecular
dynamics datasets investigated – and by a large margin. This is true both in comparison to previous
GNNs and for kernel methods – despite the latter typically being more sample efficient. The
improvements are largest for chain-like molecules, such as ethanol and malonaldehyde. These
molecules are the most challenging since they exhibit a wide range of movement. GemNet even
performs better than some previous models that were trained with 50x more training samples. For
example, it performs better than SchNet with 50 000 training samples on six out of eight MD17
molecules (see Table 9). Interestingly, the two-hop message passing scheme implied by our theoretical
results (GemNet-Q) yields significant improvements on COLL, but performs approximately on par
with the ablated GemNet-T on MD17. To investigate this disagreement we trained GemNet on a
combined dataset of all MD17 molecules. Table 13 shows that GemNet-Q again performs better than
GemNet-T in this setting. These results suggest that regular MD17 is too simple to show the benefits
of two-hop message passing. It seems to be particularly important in more difficult settings that cover
a large variety of configurations and molecules.

Computational aspects. GemNet-Q is roughly two times slower than GemNet-T (see Table 14).
Thanks to the efficient aggregation, GemNet with bilinear layers is as fast as with regular Hadamard
products. Efficient aggregation also reduces the memory usage for regular Hadamard products by
around 50 % (from 4.1GB to 2.2GB for a batch of 32 Toluene molecules). Note that GemNet has not
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been optimized for runtime and can likely be accelerated substantially. GemNet-Q uses 2.2M and
GemNet-T 1.9M parameters, which is comparable to previous models such as DimeNet++, which
uses 1.9M parameters. See App. I for further details.

Direct force prediction. Directly predicting the forces accelerates training by four times on average
and inference by 1.6 times on average in our experiments (see Table 14), while reducing memory
consumption by roughly a factor of two. While using direct predictions instead of backpropagation
increases the MAE by 44 % on COLL and by 48 % on MD17 (see Tables 1 and 7), they actually
perform better on the S2EF task on OC20. This is likely due to OC20 being orders of magnitude
larger than COLL and MD17. Whether to use direct predictions thus depends on the dataset and the
application’s computational requirements.

Table 5: Ablation studies on COLL. Force MAE in
meV/Å after 500 000 training steps. All proposed
components yield significant improvements.

Model Forces
without symmetric message passing 28.5
Hadamard product instead of bilinear layer 29.3
without atom embedding updates 28.3
without one-hop message passing 31.3
without two-hop message passing 32.4
without scaling factors 29.1
use layer norm instead (without centering) 33.3
with bias 27.2
GemNet-Q 27.0

Ablation studies. We investigate the pro-
posed architectural improvements on COLL
in Table 5. The proposed symmetric message
passing scheme yields significant accuracy im-
provements, as does using a bilinear layers in-
stead of a Hadamard product. We also see that
removing any of the three interaction forms
described in Sec. 6 increases the error, show-
ing that this combination is indeed beneficial.
The proposed scaling factors also yield de-
cent improvements, while regular layer nor-
malization actually increases the error. Two-
hop message passing yields the largest single
improvement. Table 10 shows that our archi-
tectural improvements yield similar benefits
for DimeNet++. Overall, the error improve-
ments are quite evenly distributed. This suggests that GemNet’s improved performance is not due to
one single change, but rather due to the full range of improvements proposed in this work.

8 Conclusion

In this work we proved the universality for GNNs using directional embeddings. We proposed
geometric message passing based on these insights, and improved this scheme with symmetric
message passing and efficient bilinear layers. We incorporated these improvements in the GemNet
architecture, which substantially improves the error on various molecular dynamics datasets. We
showed that all of the proposed enhancements yield significant performance improvements. Most of
our proposed improvements are of independent interest for other molecular GNNs.
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help optimization? In NeurIPS, 2018.

[53] Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre Tkatchenko,
and Klaus-Robert Müller. SchNet: A continuous-filter convolutional neural network for modeling quantum
interactions. In NeurIPS, 2017.

[54] Kristof T. Schütt, Oliver T. Unke, and Michael Gastegger. Equivariant message passing for the prediction
of tensorial properties and molecular spectra. In ICML, 2021.

[55] Muhammed Shuaibi, Adeesh Kolluru, Abhishek Das, Aditya Grover, Anuroop Sriram, Zachary Ulissi,
and C. Lawrence Zitnick. Rotation Invariant Graph Neural Networks using Spin Convolutions. arXiv,
2106.09575, 2021.

[56] Nathaniel Thomas, Tess Smidt, Steven M. Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
Tensor Field Networks: Rotation- and Translation-Equivariant Neural Networks for 3D Point Clouds.
arXiv, 1802.08219, 2018.

[57] Soledad Villar, David W. Hogg, Kate Storey-Fisher, Weichi Yao, and Ben Blum-Smith. Scalars are
universal: Equivariant machine learning, structured like classical physics. In NeurIPS, 2021.

[58] Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco Cohen. 3D Steerable CNNs:
Learning Rotationally Equivariant Features in Volumetric Data. In NeurIPS, 2018.

[59] Wenxuan Wu, Zhongang Qi, and Li Fuxin. PointConv: Deep Convolutional Networks on 3D Point Clouds.
In CVPR, 2019.

[60] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural Networks?
In ICLR, 2019.

[61] Dmitry Yarotsky. Universal Approximations of Invariant Maps by Neural Networks. Constructive
Approximation, 2021.

13


