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Maverick: Personalized Edge-Assisted Federated Learning with
Contrastive Training

Anonymous Author(s)

Abstract
In an edge-assisted federated learning (FL) system, edge servers
aggregate the local models from the clients within their coverage ar-
eas to produce intermediate models for the production of the global
model. This significantly reduces the communication overhead in-
curred during the FL process. To accelerate model convergence,
FedEdge, the state-of-the-art edge-assisted FL system, trains clients’
models in local federations when they wait for the global model
in each training round. However, our investigation reveals that it
drives the global model towards clients with excessive local train-
ing, causing model drifts that undermine model performance for
other clients. To tackle this problem, this paper presents Maverick,
a new edge-assisted FL system that mitigates model drifts by train-
ing personalized local models for clients through contrastive local
training. It introduces a model-contrastive loss to facilitate person-
alized local federated training by driving clients’ local models away
from the global model and close to their corresponding interme-
diate models. In addition, Maverick includes anomalous models
in contrastive local training as negative samples to accelerate the
convergence of clients’ local models. Extensive experiments are
conducted on three widely-used models trained on three datasets to
comprehensively evaluate the performance of Maverick. Compared
to state-of-the-art edge-assisted FL systems, Maverick accelerates
model convergence by up to 16.2x and improves model accuracy
by up to 12.7%.

Keywords
Edge-assisted federated learning, model drift, contrastive learning

ACM Reference Format:
Anonymous Author(s). 2018. Maverick: Personalized Edge-Assisted Feder-
ated Learning with Contrastive Training. In Proceedings of Make sure to
enter the correct conference title from your rights confirmation emai (Confer-
ence acronym ’XX). ACM, New York, NY, USA, 11 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 Introduction
Edge devices, such as mobile and Web-of-Things (WoT) devices,
account for over half of global Internet traffic and produce vast and
varied data that fuel a wide variety of machine learning (ML) appli-
cations, e.g., recommender systems [62] and social networks [63].
The ML models powering these applications rely on private data
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collected or produced by mobile and WoT devices, leading to sig-
nificant privacy concerns. Federated learning (FL) [43] has recently
attracted significant attention as an effective method for training
ML models in a privacy-preserving manner across edge devices
(often referred to as clients). It enables clients to collectively train a
shared global ML model with the coordination of a cloud server. In
each training round, clients independently train local models on
their data and then transmit local models1 to the cloud server. The
cloud server aggregates these local models into a global model with
a method like FedAvg [43] and then distributes the global model
to clients for the next training round. The iterative process allows
the cloud server to incorporate clients’ knowledge into the global
model while preserving users’ data privacy.

Clients and the cloud server frequently exchange local models,
incurring massive traffic overhead. This issue is further exacerbated
by the increasing size of modern ML models, driven by the need
for higher accuracy. Recently, researchers have started to utilize
the benefits of edge computing to mitigate the traffic overhead
generated by FL systems [17, 39, 54, 60]. Edge computing, a key
5G technology, decentralizes storage and computing resources by
graphically placing edge servers closer to clients, such as regional
data centers and base stations, reducing reliance on the central
cloud. In an edge-assisted FL system, clients transfer local models
to nearby edge servers, which aggregate these models into inter-
mediate models and transfer them to the cloud. The cloud server
aggregates these intermediate models for the production of a global
model and transmits it to clients for the next global training round.
Transmitting only intermediate models to the cloud server, edge-
assisted FL significantly mitigates the traffic overhead [17, 54, 57].

In an edge-assisted FL system, model convergence can be accel-
erated by enabling clients to perform local federated training while
awaiting the global model from the cloud server during each global
training round [54]. As illustrated in Fig. 1, after transmitting the
intermediate model to the cloud server, an edge server starts local
FL by sending the intermediate model to its clients. These clients
continue to train their local models with the coordination of the
edge server until it receives the global model from the cloud server.
Upon receiving the global model, the edge server stops the local
federated training, aggregates the global model with the intermedi-
ate model, and sends the updated intermediate model to its clients
for the next global training round.

Local federated training accelerates model convergence on inde-
pendently and identically distributed (IID) data by allowing clients
to leverage the waiting time for the global model from the cloud
server. This is verified in Fig. 3 and Fig. 4. However, in real-world
FL systems, clients’ data are often non-IID. A straggler client in the
system can easily lead tomodel drifts on non-IID data. Clients in an

1In fact, clients transmit model updates rather than models to the cloud in an FL system.
In this paper, we speak of them interchangeably for ease of exposition.
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Figure 1: Edge-assisted FL with local federated training. Each global
training round consists of four steps: 1○ Client Training, 2○ Edge
Aggregation, 3○ Cloud Aggregation, and 4○ Local Federated Train-
ing.

edge-assisted FL system often vary in terms of computational capa-
bilities, communication bandwidth, and energy resources [1, 44, 55].
As a result, clients’ local models arrive at their corresponding edge
servers at different times. Both edge servers and the cloud server
must wait for all incoming models before they can perform model
aggregation. A straggler client in the system can easily increase
other clients’ waiting time for the global model [5, 7, 48]. These
clients perform more local federated training rounds than others.
Our experimental investigation revealed that this drives the global
model toward these clients and causes a model drift. As demon-
strated in Fig. 5, clients who perform more local federated training
rounds achieve a higher model accuracy at the price of a decreased
model accuracy for other clients. This comes with undesirable con-
sequences. For example, clients with limited resources, knowing
that they will be disadvantaged, may be reluctant to participate in
the FL system.

A straightforward solution to model drifts is to remove strag-
gler clients from the system [30, 33, 47]. For example, FedCS [47]
selects the best clients based on their computational power and
network conditions for FL. This minimizes the difference in the
number of clients’ local federated training rounds. However, ex-
cluding straggler clients can lead to the loss of valuable knowledge,
potentially causing a reduction in model accuracy. Oort [30] and
PyramidFL [33] optimize client selection based on statistical and
system efficiency to improve model accuracy and accelerate train-
ing. However, they cannot exclude knowledgeable clients with
limited resources. As a result, some clients still perform more local
federated training than others, causing model drifts. In addition,
these methods favor high-performing clients. Clients with limited
resources risk being excluded from the learning system. This is
unfair to them.

This paper introduces Maverick, a new edge-assisted FL system
that aims to mitigate the model drift caused by imbalanced local
training. Maverick trains personalized models for individual clients
through contrastive learning, guiding clients’ local models away
from the global model and close to their corresponding intermediate
models. In addition, clients’ models often differ in their quality, due
to the quality and quantity of their training data [30, 33], as well
as potential threats like data poisoning attacks [2, 23] and model
poisoning attacks [14, 24]. Poor-quality local models (referred to as
anomalous models hereafter) can compromise the quality of inter-
mediate models, as they have different even opposite convergence
directions to the global optima. Inspired by contrastive learning that
negative samples are essential in guiding model training, unlike

existing FL systems [14, 54] that employ defense mechanisms to
exclude anomalous models, Maverick leverages anomalous models
as negative samples, driving the training of clients’ models in the
right direction away these anomalous models. This paper’s key
contributions include:
• To the best of our knowledge, Maverick is the first edge-assisted

FL system that mitigates the model drift issue caused by clients’
imbalanced local training. It alleviates clients’ concerns about
being disadvantaged in the FL system.

• Maverick introduces a personalized model-contrastive loss to
help clients train personalized local models, effectivelymitigating
model drifts in edge-assisted FL systems (§5.1).

• Maverick introduces an anomalous model-contrastive loss in
clients’ local model training, leveraging anomalous models as
negative samples to accelerate model convergence and improve
model accuracy (§5.2).

• Extensive experiments are performed on three widely-used pub-
lic datasets with three ML models. The results show that Mav-
erick outperforms the state-of-the-art edge-assisted FL system,
increasing model accuracy by 5.2%-12.7% and speeding up con-
vergence by 1.4x-16.2x.

2 Background
Edge-assisted FL. In an edge-assisted FL system [39, 54, 60], a
group of clients𝑈 = {𝑢1, . . .} is served by a set of𝑀 edge servers
𝑆 = {𝑠1, . . . , 𝑠𝑀 } and the cloud server 𝐶 . Each edge server 𝑠𝑚 ∈ 𝑆
manages a subset of clients, and each client 𝑢 trains a local model
𝑊𝐿 on its dataset D𝑢 = {(𝑥𝑖 , 𝑦𝑖 )} |D𝑢 |

𝑗=1 . Fig. 1 shows the overview
of an edge-assisted FL system that involves local federated train-
ing. Each global training round goes through 4 steps. 1○ Client
Training: Clients train local models on their data and send them to
their edge servers. 2○ Edge Aggregation: Edge servers aggregate
clients’ local models for the production of intermediate models.
These intermediate models are then transmitted to the cloud for
the production of the global model and distributed to their clients
for local federated training. 3○ Cloud Aggregation: After the cloud
server receives intermediate models from edge servers, it aggre-
gates these models into a global model and then distributes it back
to the edge servers. 4○ Local Federated Training: Clients update
their local models to intermediate models and train local models
on their datasets. Next, clients transfer local models to their edge
servers. If an edge server receives the global model from the cloud
server, it aggregates the global model with its intermediate model
to generate a new intermediate model. Then it sends the updated
intermediate model to its clients for the next global training round.
Otherwise, it sends the intermediate model to clients for the next
local federated training. Steps 3○ and 4○ are performed in parallel.
In each global training round, each set of clients may perform zero
or many rounds of local federated training.

Contrastive Learning. Contrastive learning aims to learn an em-
bedding space that guides similar data points closer while forcing
dissimilar ones farther apart. It achieves this goal by minimizing the
distance between the positive samples and maximizing the distance
between negative samples in that space. For example, when training
an image classification model, a contrastive loss is introduced to
maximize the similarity between differently augmented views of

2
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Figure 2: Illustration ofmodel convergence direction in edge-assisted
FL system under both IID and non-IID data, where edge server 𝑠2
and its clients perform more local federated training.
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(b) LeNet-5 on Fashion-MNIST

Figure 3: Comparison of global model convergence and accuracy
across varying numbers of local federated training in edge-assisted
FL systemunder IID data, where 𝐸 = 5 denotes one of the edge servers
and its clients perform 5 local federated training rounds, while the
other edge server and its clients conduct 2 only local federated train-
ing rounds in each global training round.

the same image [8]:

𝑙𝑖, 𝑗 = − log
exp(𝑠𝑖𝑚(𝑥𝑖 , 𝑥 𝑗 )/𝜏)∑2𝑁

𝑘=1 exp(𝑠𝑖𝑚(𝑥𝑘 , 𝑥𝑖 )/𝜏)
(1)

where 𝑥𝑖 and 𝑥 𝑗 represent two distinct views of the same image,
𝑁 is the number of images, 𝑠𝑖𝑚(, ) denotes the cosine similarity
function, and 𝜏 is a temperature parameter. The loss is calculated by
summing the contrastive loss over all image pairs. Unlike traditional
contrastive learning that compares the representations of different
images, Maverick performs contrastive local training by comparing
different models, i.e., the global model, intermediate models, and
anomalous models.

3 Motivation
In an edge-assisted FL system, clients perform local federated train-
ing when they wait for the global model. This accelerates the con-
vergence of the global model. In each global training round, edge
servers must wait for the last local model before they can perform
model aggregation. However, clients often differ in their comput-
ing capacities and network conditions. The time required for each
client to complete the training and transmission of its local model
varies. As a result, they may perform different numbers of local
federated training rounds in the same global training round. In
particular, straggler clients can significantly amplify the imbalance
in clients’ local federated training. Fig. 2(a) shows the effect of the
number of local federated training rounds on the convergence of
a global model trained on IID data. The edge-assisted FL system
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Figure 4: Comparison of global model convergence and accuracy
with different numbers of edge servers performmore local federated
training in FedEdge under IID data, where 𝑆 = 3 denotes three edge
servers and their clients perform more local federated training (i.e.,
5), while the remaining edge servers and their clients with stragglers
only perform 2 local federated training in each global training round.
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Figure 5: Comparison of global model accuracy on clients’ data in
edge-assisted FL system under non-IID settings. "With" denotes that
the edge servers covering 𝑢7 and 𝑢8 in CINIC-10 and 𝑢9 and 𝑢10 in
Fashion-MNIST perform more local federated training rounds than
other edge servers. "Without" denotes that all edge servers perform
an equal number of local training rounds.

involves two edge servers, 𝑠1 and 𝑠2, each covering 5 clients, and
there is one straggler client within 𝑠1’ coverage. As a result, 𝑠2 and
its clients perform more local federated training rounds than 𝑠1 and
its clients. As a result,𝑊 2

𝐼
accelerates global model convergence.

This indicates that increased local federated training effectively
speeds up global model convergence under IID data. We conducted
another experiment that involves two edge servers, one and its
clients with stragglers performing only 2 local federated training
rounds per global training round, and the other performing a vary-
ing number of local federated training rounds, i.e., 2, 5, 10, 15, and
20, with its clients. Fig. 3 compares the global model convergence
and accuracy. We can see that an increased number of local fed-
erated training rounds from 2 to 20 accelerates the convergence
of the global model and improves its accuracy. In addition, Fig. 4
compares global model convergence and accuracy across 5 edge
servers under IID data. It shows the impact of the number of edge
servers and their clients performing more local federated training
rounds. These results show that local federated training can indeed
accelerate model convergence and improve model accuracy under
IID data.

However, clients’ data are often non-IID in real-world applica-
tions [34, 37, 67]. We found that imbalanced local federated training
results in global model drift under non-IID settings. Fig. 2(b) shows
the effect of local federated training on global model convergence
under non-IID settings, where 𝑠2 and its clients perform more local

3
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federated training rounds than 𝑠1 and its clients. We can see that
the global model aligns closer with𝑊 2

𝐼
than𝑊 1

𝐼
. This demonstrates

that the global model achieves a higher accuracy for clients with
more local federated training rounds. Fig. 5 shows the results of
two experiments that compare the accuracy of the global model,
MobileNetV1 and LeNet-5, on different clients’ data. Both experi-
ments involve 5 edge servers, each covering two clients, and each
client’s data is restricted to a single class to set up a non-IID con-
figuration. Specifically, in Fig. 5(a), 𝑢7 (with label 7) and 𝑢8 (with
label 8) are covered by same edge server, performing more local
federated training rounds than others. Similarly, in Fig.5(b), client
𝑢9 (with label 9) and client 𝑢10 (with label 10) are covered by the
same edge server and perform more local federated training than
other clients. We can see that the global model shows improved
accuracy on 𝑢7, 𝑢8, 𝑢9, and 𝑢10 in their respective experiments. In
addition, the average accuracy achieved across all clients drops
by 1.1% for MobileNetV1 and 5.0% for LeNet-5. The results tell us
that imbalanced local federated training can lead to global model
drift under non-IID settings. When clients update the drifted global
model to their local models, their local models may diverge signifi-
cantly from their local objectives. This divergence can discourage
clients from continuing their participation in the FL system.

4 Maverick Overview
Maverick is a new edge-assisted FL system designed to mitigate
model drifts. Fig. 6 presents an overview of Maverick. In each global
training round, Maverick goes through 6 steps. 1○ Client Train-
ing: Clients train their local models by incorporating supervised
learning loss, personalized model-contrastive loss, and anomalous
model-contrastive loss. 2○ Client Transmission: Clients transmit
local models to their edge servers. 3○ Edge Aggregation: Upon
receiving clients’ local models, each edge server categorizes these
models into two sets: a set of genuine models and a set of anoma-
lous models. Next, it aggregates the genuine models to produce
an intermediate model. 4○ Edge Distribution: Each edge server
distributes its intermediate model and anomalous models to its

clients. 5○ Edge Transmission: Each edge server also transmits
the intermediate model to the cloud server. 6○ Cloud Aggregation
and Distribution: The cloud server aggregates intermediate mod-
els from edge servers for the production of a global model, and
then distributes it back to edge servers. Clients and edge servers
repeatedly perform local federated training through Steps 1○ - 4○
until the edge servers receive a global model from the cloud server.
Upon receiving the global model, each edge server performs Step
3○ to produce an intermediate model and anomalous models. The
intermediate model is then aggregated with the global model to
produce an updated intermediate model. Finally, the edge server
distributes the global model, the intermediate model, and anoma-
lous models to its clients. When clients receive these models, they
start to perform the next global training round.

5 Maverick Training
To tackle the model drift issue caused by imbalanced local feder-
ated training in edge-assisted FL systems, Maverick introduces a
personalized model-contrastive loss to facilitate local training by
guiding clients’ local models towards corresponding intermediate
models while away from the drifted global model (§5.1). To further
accelerate model convergence and improve model accuracy, Mav-
erick incorporates an anomalous model-contrastive loss in clients’
local federated training by driving clients’ local models away from
anomalous models (§5.2).

5.1 Personalized Model-Contrastive Training
Existing edge-assisted FL systems like FedEdge [54] drive the global
model toward clients with more local federated training, caus-
ing model drifts that undermine the model performance on other
clients’ data. Recently, contrastive learning [8] has gained promi-
nence as a method for training ML models using unlabeled data. Its
key concept is to minimize the distance between positive samples
while maximizing the distance from negative samples. Moon [34]
was the first to utilize contrastive learning in FL, with the goal of
improving global model performance on non-IID data. Moon tries
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Figure 7: Comparison in model convergence and accuracy between
pure FedEdge [54] and FedEdge combined with Moon [34].

to move client models closer to the global model and away from
their previous versions, guiding the global model toward the global
optimum.

At the first glance, Moon seems capable of mitigating the global
model drifts by aligning local models with the global model. Fig. 7
compares the convergence and accuracy of clients’ models on their
data between FedEdge and FedEdge combined with Moon. The
results show that Moon actually slows down the convergence and
decreases the accuracy of the model trained with FedEdge. For
example, Fig.7(b) shows that FedEdge manages to converge the
LeNet-5 model [31] to 77.1% accuracy on Fashion-MNIST [61] with
36 training rounds, while FedEdge combined with Moon requires
194 rounds to reach the same accuracy. Moreover, FedEdge achieves
a final accuracy of 81.82%, while FedEdge combined with Moon
only makes 77.1%. The reason is that Moon forces clients’ local
models to align with the drifted global model. This exacerbates the
model drift issue.

Maverick addresses this issue by aligning clients’ local models
to their corresponding intermediate models rather than the global
model. Specifically, when training their local models, clients regard
the intermediate models transmitted from edge servers as positive
samples and the global model as a negative sample. In this way,
Maverick drives their local models to align with the intermediate
models and away from the global model.

During a local federated training round, client 𝑢 receives the
global model 𝑊𝐺 and the intermediate model 𝑊𝐼 from its edge
server. For each input 𝑥 , client 𝑢 extracts its representation 𝑧𝐺 =

𝑅𝑊𝐺
(𝑥), 𝑧𝐼 = 𝑅𝑊𝐼

(𝑥) and 𝑧𝐿 = 𝑅𝑊𝐿
(𝑥) from𝑊𝐺 ,𝑊𝐼 and𝑊𝐿 , re-

spectively. Maverick’s objective is to minimize the distance between
𝑧𝐿 and 𝑧𝐼 while maximizing the distance between 𝑧𝐿 and 𝑧𝐺 with a
personalized model-contrastive loss:

𝑙𝑝 = − log exp(𝑠𝑖𝑚(𝑧𝐿, 𝑧𝐼 )/𝜏)
exp(𝑠𝑖𝑚(𝑧𝐿, 𝑧𝐼 )/𝜏) + exp(𝑠𝑖𝑚(𝑧𝐿, 𝑧𝐺 )/𝜏)

(2)

where 𝜏 is a temperature parameter, and 𝑠𝑖𝑚(, ) is the cosine simi-
larity function.

5.2 Anomalous Model-Contrastive Training
In an edge-assisted FL system, the quality of clients’ local models
can vary significantly due to factors such as the size and quality
of their training data. These models negatively impact the con-
vergence and accuracy of the intermediate models [12, 25, 54]. In
addition, adversarial clients may transmit poisoned models to edge
servers, aiming to compromise the training process [14, 52, 59].
Recently, many methods have been proposed to detect and filter
anomalous models in FL systems before the cloud server and edge

servers aggregate models [3, 13, 16, 28, 54]. In contrastive learning,
negative samples are essential in guiding model training [4, 8, 9] by
driving the model towards positive samples and away from negative
samples. In FL, anomalous models usually aim to deviate the global
model away from the global optimum. Thus, anomalous models
also provide valuable information for guiding model convergence in
edge-assisted FL systems.Maverick introduces an anomalousmodel-
contrastive loss during local federated training, where anomalous
models are regarded as negative samples. Since model detection is
not the focus of this paper, Maverick leverages existing detection
methods [3, 14, 54] to distinguish between anomalous models and
genuine models.

In Maverick, when an edge server receives local models from
its clients, it categorizes these models into a set of genuine models
and a set of anomalous models with Adaptive-Krum [54]. Then,
it transmits the anomalous models to its clients. When a client 𝑢
receives these anomalous models, denoted by 𝑨, it can perform
contrastive learning to train its local model. Specifically, 𝑢 runs
every input 𝑥 through each of these anomalous models, to obtain
the representations of 𝑥 : 𝑧𝐴 = 𝑅𝑊𝐴

(𝑥), where𝑊𝐴 ∈ 𝑨. Maverick
tries to minimize the distance between 𝑧𝐿 and 𝑧𝐼 while maximizing
the distance between 𝑧𝐿 and all 𝑧𝐴 . Unlike personalized model-
contrastive training (§5.1), which only utilizes a single negative
sample (i.e.,𝑊𝐺 ), Maverick incorporates multiple negative sam-
ples, specifically the anomalous models from 𝑨. A straightforward
approach is to calculate the anomalous model-contrastive loss to
average the contrastive loss between𝑊𝐿 and all anomalous models:

𝑙𝑎 = −
∑︁
𝑨

1
|𝑨| log

(
exp(sim(𝑧𝐿, 𝑧𝐼 )/𝜏)

exp(sim(𝑧𝐿, 𝑧𝐼 )/𝜏) + exp(sim(𝑧𝐿, 𝑧𝐴)/𝜏)

)
(3)

Anomalous Model-Contrastive Loss. Eq. 3 assumes that anoma-
lous models have the same effect on model convergence. In fact,
anomalous models deviate from the global optimum to varying
degrees. Their impacts on model convergence are different. Maver-
ick introduces an anomalous model-contrastive loss based on the
distances between each anomalous model and all genuine models.
As shown in Eq. 4, 𝑑𝐴 represents the distance between𝑊𝐴 and all
genuine models, 𝑑𝑇 =

∑
𝑨 𝑑𝐴 denotes the total distance between all

anomalous models and all genuine models. In this way, anomalous
models further from genuine models contribute more significantly
to ensuring the correct model convergence direction.

𝑙𝑎 = −
∑︁
𝑨

𝑑𝐴

𝑑𝑇
log

(
exp(sim(𝑧𝐿, 𝑧𝐼 )/𝜏)

exp(sim(𝑧𝐿, 𝑧𝐼 )/𝜏) + exp(sim(𝑧𝐿, 𝑧𝐴)/𝜏)

)
(4)

Top-𝑘 SelectionMechanism.During anomalousmodel-contrastive
training, clients receive anomalous models from edge servers and
compute the contrastive loss. We found that including too many
anomalous models in local training does not yield further improve-
ments in model convergence. Therefore, Maverick leverages a top-𝑘
selection mechanism, choosing the anomalous models that con-
tribute the most effectively to local federated training. An edge
server first categorizes local models into a set of anomalous mod-
els and a set of genuine models. Next, it computes a distance 𝑑𝐴
between each anomalous model and all genuine models. Finally,
it selects the 𝑘 anomalous models with the largest distances for
transmission to the clients.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

5.3 Overall Training
In addition to contrastive learning losses, Maverick also includes
the supervised learning loss below in clients’ model training:

𝑙𝑠𝑢𝑝 =
1
|D𝑘 |

|D𝑘 |∑︁
𝑖=1

𝑙 (𝑊𝐿 ;𝑥𝑖 , 𝑦𝑖 ) (5)

Combining this loss with the personalized model-contrastive loss
(Eq. 2) and the anomalous model-contrastive loss (Eq. 4), the total
training loss for clients’ local models is computed as follows:

𝑙 = 𝑙𝑠𝑢𝑝 + 𝜇𝑝 · 𝑙𝑝 + 𝜇𝑎 · 𝑙𝑎 (6)

where 𝜇𝑝 and 𝜇𝑎 are the hyper-parameters for controlling the con-
tributions of personalized model-contrastive loss and anomalous
model-contrastive loss, respectively. Maverick’s extra computation
and communication overheads are discussed in Appendix A.1. Its
pseudocode can be found in Appendix A.2.

6 Evaluation
6.1 Experimental Setup
Environment. Maverick is performed in an edge-assisted FL sys-
tem comprised of five physical machines acting as edge servers
within a private data center, and 50 clients are distributed across
these servers. The cloud server is hosted on an Amazon c5.2xlarge
EC2 instance. The round-trip times (RTTs) between the cloud and
clients vary from 150 to 300 milliseconds, while the RTTs between
edge servers and clients vary from 10 and 40 milliseconds, closely
aligning with typical latencies observed in commercial 5G networks.
Models and Datasets. We train the LeNet-5 model [31] the on
Fashion-MNIST dataset [61], the ResNet-34 model [21] on the
CIFAR-10 dataset [29], and the MobileNetV1 model [22] on the
CINIC-10 dataset [11]. These models and datasets have been widely
used in FL studies for their mobile-friendliness [49, 64, 66, 68]. They
are implemented with Python v3.6.2 and Torch v1.10.2 and trained
with Stochastic Gradient Descent2. We set the learning rate, mo-
mentum, and weight_decay are 0.01, 0.9, and 5𝑒−4, respectively.
Baselines. Maverick is compared against the following representa-
tive baselines.
• HybridFL [60]. HybridFL is a traditional edge-assisted FL system.

In this setup, clients send local models to edge servers, which
aggregate the local models into intermediate models. Next, these
intermediate models are transferred to the cloud server, then
these models are further aggregated to form a global model for
the next training round.

• FedProx [35]. The FedProx system follows the same training
process as FedEdge and imposes a proximal term to drive clients’
local models to align with the global model.

• FedPVR [32]. FedPVR is a state-of-the-art personalized FL sys-
tem. In the FedPVR system, when training local models, clients
share the general layers only and retain the classification layers
to enable model personalization.

• Moon [34]. This FL system was introduced in Section §5.1. It
drives clients’ local models to align with the global model, similar
to FedProx, but with a contrastive learning loss.

2The source code is available at Maverick
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Figure 8: Model convergence and accuracy across various methods,
where LetNet-5, ResNet-34 and MobileNetV1 are trained on Fashion-
MNIST, CIFAR-10 and CINIC-10.

• FedEdge [54]. As the state-of-the-art edge-assisted FL system,
FedEdge follows a similar process as HybridFL and incorporates
local federated training to improve model convergence, as de-
tailed in Section §2.

6.2 Overall Comparison
Top-1 Accuracy. Table 1 presents a comparison of Maverick’s
top-1 accuracy and baselines across three models on three datasets
where FedProx, FedRep, and Moon also incorporate local feder-
ated training. The key observations are as follows: 1) Compared
to HybridFL, other systems all achieve a higher top-1 accuracy,
indicating that local federated training can indeed improve model
convergence. 2) FedEdge outperforms FedProx andMoon. For exam-
ple, on CIFAR-10 with MobileNetV1, FedEdge achieves an accuracy
advantage of 18.8% and 1.2% over FedProx and Moon, respectively.
This is attributed to the fact that FedProx and Moon drive clients’
local models to align with the drifted global model. 3) FedPVR
achieves accuracy improvements over FedEdge by 0.6%, 1.6%, and
4.0% across all models. This demonstrates that maintaining person-
alized classifiers locally mitigates model drifts, but only modestly.
4) Among all six systems, Maverick achieves the highest model
accuracy, highlighting its effectiveness in mitigating model drifts in
edge-assisted federated learning. Compared to FedEdge, the state
of the art, Maverick achieves an accuracy advantage of 5.2%, 7.5%,
and 12.7% across all models.

Model Convergence. Fig. 8 illustrates the convergence of the
models trained in different systems, where LeNet-5, ResNet-34 and
MobileNetV1 are trained on Fashion-MNIST, CIFAR-10, and CINIC-
10, respectively. The results clearly demonstrate that Maverick
achieves the greatest speedups in model convergence and as well
as the highest accuracy. This observation aligns with the results
presented in Table 1.

Training Speedup.Table 2 presents the training speedups achieved
by Maverick over FedEdge across three datasets, ranging from 1.4x
to 16.2x. Notably, on the CINIC-10 dataset, Maverick achieves a
14.9x speedup with the ResNet-34 model and a 16.2x speedup with
the MobileNetV1 model. This underscores the significant impact of
model drift on FedEdge’s performance and highlights Maverick’s
superior ability to mitigate this issue.

6.3 In-Depth Evaluation
This section assesses Maverick’s performance in various edge-
assisted FL scenarios through a series of in-depth experiments.
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Table 1: Full comparison of top-1 accuracy.

Model Dataset Baseline
HybridFL FedProx FedPVR Moon FedEdge Maverick

LeNet-5 Fashion-MNIST 0.743 0.795 0.813 0.771 0.807 0.859

ResNet-34 CIFAR-10 0.393 0.456 0.628 0.440 0.610 0.707
CINIC-10 0.449 0.452 0.669 0.432 0.656 0.709

MobileNetV1 CIFAR-10 0.369 0.383 0.582 0.559 0.571 0.649
CINIC-10 0.392 0.427 0.578 0.354 0.508 0.684

Table 2: Maverick’s speedup gains over FedEdge.

Model Dataset
Target

Accuracy
Speedup over

FedEdge

LeNet-5 Fashion-MNIST 0.813 4.1×

ResNet-34
CIFAR-10 0.628 8.8×

CINIC-10 0.669 14.9×

MobileNetV1
CIFAR-10 0.571 1.4×

CINIC-10 0.508 16.2×
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Figure 9: Top-1 accuracy with different combinations of 𝜇𝑝 and 𝜇𝑎 :
a) LetNet-5 on Fashion-MNIST; b) ResNet-34 on CIFAR-10; c) Mo-
bileNetV1 on CINIC-10.

Impact of 𝜇𝑝 and 𝜇𝑎 . Maverick includes two hyperparameters,
𝜇𝑝 and 𝜇𝑎 , to adjust the contributions of personalized and anoma-
lous model-contrastive losses, respectively, to clients’ local model
training. To evaluate their impacts on the performance of Maveric,
we tune their values within {0.01, 0.1, 1, 10} and Fig. 9 shows the
results. The optimal 𝜇𝑝 and 𝜇𝑎 of Maverick for LeNet-5, ResNet-34,
and MobileNetV1 are {10, 1}, {1, 0.1}, and {10, 0.1}, respectively.

Impact of Anomalous Model-Contrastive Loss (𝑙𝑎). To demon-
strate the effect of the anomalous model-contrastive loss (§5.2), this
experiment compares the model convergence and model accuracy
when Maverick weights anomalous models differently and equally
when clients train their local models. There are 5 edge servers in the
system, each covering 10 clients. Under each edge server’s coverage,
3 of the 10 clients have poor model quality implemented with model
poison attacks [14]. Fig. 10 shows the results. Compared to weighs
anomalous equally, Maverick weights anomalous models differently
takes 62.8%, 79.7%, and 89.6% less time to converge the LeNet-5
model, the ResNet-34 model, and the MobileNetV1 model to 84.1%,
69.3%, and 64.9%, respectively. In addition, Maverick achieves an
accuracy improvement of 1.1%, 1.4%, and 3.7%, respectively, for
LetNet-5, ResNet-34, and MobileNetV1, when it weighs anoma-
lous differently. This validates the discussion in Section §5.2 about
anomalous models vs. genuine models, i.e., anomalous models more
distanced from genuine models contribute more significantly to
ensuring the correct model convergence direction.
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Figure 10: Model convergence and accuracy when Maverick weighs
anomalous models differently and equally: a) LetNet-5 on Fashion-
MNIST; b) ResNet-34 on CIFAR-10; c) MobileNetV1 on CINIC-10.
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Figure 11: Model accuracy with varying numbers of anomalous mod-
els included in the anomalous model-contrastive training: a) LetNet-
5 on Fashion-MNIST; b) ResNet-34 on CIFAR-10; c) MobileNetV1 on
CINIC-10.

Impact of Number of Anomalous Models (𝑘). This experiment
evaluates Maverick in model accuracy with varying numbers of
anomalous models included in the anomalous model-contrastive
training (§5.2). Fig. 11 presents the results, where 𝑘 anomalous
models are selected based on their distance from genuine mod-
els. The results indicate an improvement in model accuracy as the
initial increase in 𝑘 includes more anomalous models in clients’
contrastive local training because Maverick can fuse diverse knowl-
edge from both genuine models and anomalous models into clients’
contrastive local training. However, as 𝑘 exceeds a certain threshold
(e.g., 3 for LeNet-5, 2 for ResNet-34, and 3 for MobileNetV1), Mav-
erick obtains no more significant accuracy gains. Thus, to optimize
accuracy gains with minimal communication overhead, Maverick
can include a small number of anomalous models, 3 in most cases,
in clients’ contrastive local training.
Impact of Number of Local Federated Training (𝐸). This exper-
iment compares model convergence and accuracy under Maverick
with different numbers of local federated training rounds across
three datasets. There are 5 edge servers in the FL system, each
covering 10 clients. The number of local federated training varies
from 2 to 20, performed by one edge server and its corresponding
clients. As shown in Fig 12(c), when 𝐸 = 20, Maverick converges
to an accuracy of 71.5%, while the accuracy is 69.3%, 69.9% with
𝐸 = 2, 10. Compared to the results in Section §3, FedEdge expe-
riences accuracy degradation with an increase in local training.
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Figure 12: Model convergence and accuracy under Maverick with
varying numbers of local federated training. Here, 𝐸 = 10 indicates
that one of the edge servers and its clients perform 10 local federated
training within a single global round, while the others perform 2
local federated training rounds: a) LetNet-5 on Fashion-MNIST; b)
ResNet-34 on CIFAR-10; c) MobileNetV1 on CINIC-10.

In contrast, Maverick effectively mitigates the model drift issue
inherent in FedEdge.

6.4 Ablation Study
Maverick includes personalized and anomalous model-contrastive
loss during contrastive training. To assess the impact of the two com-
ponents, ablation studies are conducted to evaluate each module
under Maverick. Table 3 presents the model convergence accuracy
with different model-contrastive losses: only personalized loss, only
anomalous loss, and Maverick (including both losses). Compared
to only personalized loss and anomalous loss, Maverick obtains
an accuracy improvement, ranging from 0.8% to 3.7%. This result
validates the effectiveness of both modules working in tandem. The
ablation study demonstrates that all components are essential for
effectively training clients’ local models. Fig. 13 also illustrates the
model convergence with different contrastive losses, showing that
Maverick achieves the greatest speedup than only personalized loss
and anomalous loss.
Table 3: Ablation study of Maverick’s top-1 accuracy with differ-
ent contrastive losses on three datasets, where Pers., Anom., and
Maverick denote the use of only personalized contrastive loss, only
anomalous contrastive loss, and both losses, respectively.

Model Dataset Pers. Anom. Maverick

LeNet-5 Fashion-MNIST 0.849 0.831 0.859

ResNet34
CIFAR-10 0.699 0.685 0.707

CINIC-10 0.693 0.676 0.709

MobileNetV1
CIFAR-10 0.633 0.628 0.649

CINIC-10 0.636 0.612 0.684

7 Related Work
Federated Learning. FL is an ML framework aimed at address-
ing privacy issues inherent in conventional cloud-based ML sys-
tems [54]. Clients in FL collaboratively aggregate a global model
by exchanging local models, without exposing their private train-
ing data. FedAvg [43] is the pioneering aggregation method that
averages clients’ local models to produce a global model. Recently,
a large amount of FL work has encompassed diverse aspects of
FL, such as model convergence optimization [27, 36, 66], commu-
nication overhead reduction [41, 51], defense mechanisms to com-
bat the poisoning attacks [14, 19, 26], privacy preservation for
clients [50, 58], and model personalization [10, 20, 32, 53].
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Figure 13: Model convergence with different contrastive losses across
three datasets, i.e., only personalized loss (Pers.), only anomalous
loss (Anom.), and both losses combined (Maverick): a) LetNet-5
on Fashion-MNIST; b) ResNet-34 on CIFAR-10; c) MobileNetV1 on
CINIC-10.

Edge-assisted Federated Learning. Traffic overhead is a signif-
icant challenge in FL due to the frequent model update transmis-
sions between clients and the cloud server. Recently, edge comput-
ing starts to demonstrate its potential in supporting ML applica-
tions [46]. It enables edge-assisted FL systems that involve not only
clients and the cloud but also edge servers [42]. In such a system,
edge servers generate intermediate models by aggregating local
models, and then transfer these models to the cloud server. The
backhaul network traffic can be reduced immensely. Many stud-
ies have attempted to advance edge-assisted FL systems. Lim et
al. [38] introduce a resource allocation mechanism where clients
are treated as data owners, encouraging edge servers’ participation.
Wu et al. [60] propose HybridFL to improve training performance
by selecting reliable clients. Feng et al. [15] investigate strategies for
reducing the overheads during training associated with the trans-
mission and aggregation of model parameters. Wang et al. [54]
propose FedEdge to accelerate model training through performing
local federated training (§2).
Contrastive Learning. Recently, self-supervised learning [40, 45,
65] focuses on learning effective data representations from un-
labeled data. Among existing works, contrastive learning [8, 9]
methods have attained state-of-the-art results in learning visual
representations. It is employed by Maverick to mitigate model drifts
in the edge-assisted FL system. Recently, Moon [34] pioneered the
integration of contrastive learning into federated learning. Unlike
traditional contrastive learning, Moon compares the representa-
tions learned by different models to accommodate clients’ non-IID
data.

8 Conclusion and Future Work
Edge-assisted federated learning (FL) systems are subject to model
drifts under non-IID settings caused by imbalanced local federated
training. To address this issue, this paper presented Maverick, a
novel edge-assisted FL system that trains personalized local models
for clients through contrastive local training. To further accelerate
model convergence and accuracy, Maverick incorporates anoma-
lous model-contrastive training into clients’ contrastive local train-
ing, leveraging anomalous models as negative samples. Compared
to state-of-the-art systems, Maverick demonstrates superior ad-
vantages in both model convergence and model accuracy. In the
future, we will study model heterogeneity in edge-assisted FL and
its impact on Maverick.
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A Appendix
A.1 Discussion
Computational Overhead. In Maverick, personalized and anoma-
lous model-contrastive learning introduces additional computa-
tional overhead. For a given input 𝑥 , clients need to compute its
representations with the global model𝑊𝐺 , the intermediate model
𝑊𝐼 , and anomalous models 𝑊𝐴 ∈ 𝑨. Compared to local model
training, this representation calculation process only requires for-
ward propagation. In addition, during contrastive local training,
clients only need to compute the representation of𝑊𝐺 once for
each global training round and the representation of𝑊𝐼 and𝑊𝐴

once for each local federated training round. In each local feder-
ated training round, clients usually conduct multiple local training
epochs [43, 54, 56]. Thus, compared with the training overhead, the
computational overhead incurred by model representation calcula-
tion is not significant.

Fig. 14 illustrates the numerical results. This experiment shows
the ratios of extra and overall computational time on clients, where
clients only conduct a single local training epoch during each local
federated training round. As shown in Fig. 14, it is evident that
even with a single local training epoch, the extra computation cost
is negligible, averaging at only 0.39%.
Storage Overhead.Maverick also introduces additional storage
overhead due to the inclusion of model parameters for𝑊𝐺 ,𝑊𝐼 ,
and𝑊𝐴 , as well as 𝑧𝐺 , 𝑧𝐼 , and 𝑧𝐴 . In ML model training, the main
components of storage overhead include training data, model pa-
rameters, intermediate computation activations, optimizer states,
and checkpoints. It is well known that storing activations of all
intermediate layers for backpropagation consumes the majority
of memory resources [6, 18]. From Fig. 14, we can see that even
with a single local training epoch, the extra storage cost incurred
by Maverick is negligible, averaging at only 0.68%.
CommunicationOverhead. InMaverick, personalized and anoma-
lous model-contrastive learning introduces extra communication
overhead because edge servers need to transmit extra models, i.e.,
the global model, and anomalous models to their clients. To avoid
excessive communication overhead, Maverick employs a top-𝑘 se-
lection mechanism to cap a maximum of 𝑘 anomalous models for
transmission to each client (§5.2).
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Figure 14: The ratios of extra and overall computation time and
storage costs in a single local epoch, where LeNet-5 [31] is trained
Fashion-MNIST [61], ResNet-34 [21] is trained on CIFAR-10 [29] and
MobileNetV1 [22] is trained on CINIC-10 [11] dataset.

A.2 Pseudocode

Algorithm 1: Training process of Maverick

/* clients train local models based on three losses, i.e.,

𝑙𝑠𝑢𝑝, 𝑙𝑝, and 𝑙𝑎, */

1 Function ClientTraining()
2 For each epoch 𝑖 = 1, 2, ...
3 For each (𝑥,𝑦) ∈ 𝑫𝑢

/* calculate supervised loss */

4 ℓ𝑠𝑢𝑝 ← 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠 (𝐹𝑊𝐿
(𝑥), 𝑦)

5 𝑧𝐿 ← 𝑅𝑊𝐿
(𝑥)

6 𝑧𝐼 ← 𝑅𝑊𝐼
(𝑥)

7 For each 𝐴 ∈ 𝑨
8 𝑧𝐴 ← 𝑅𝑊𝐴

(𝑥)
/* calculate personalized model-contrastive loss */

9 ℓ𝑝 ← − log exp(sim(𝑧𝐿,𝑧𝐼 )/𝜏 )
exp(sim(𝑧𝐿,𝑧𝐼 )/𝜏 )+exp(sim(𝑧𝐿,𝑧𝐺 )/𝜏 )

/* calculate anomalous model-contrastive loss */

10 ℓ𝑎 ←
−∑𝑨

𝑑𝐴
𝑑𝑇

log exp(𝑠𝑖𝑚 (𝑧𝐿,𝑧𝐼 )/𝜏 )
exp(𝑠𝑖𝑚 (𝑧𝐿,𝑧𝐼 )/𝜏 )+exp(𝑠𝑖𝑚 (𝑧𝐿,𝑧𝐴 )/𝜏 )

11 ℓ ← ℓ𝑠𝑢𝑝 + 𝜇𝑝 ℓ𝑝 + 𝜇𝑎ℓ𝑎
12 𝑊𝐿 ←𝑊𝐿 − 𝜂∇ℓ

13 Send𝑊𝐿 to its edge server
/* edge server aggregates local models to produce intermediate

models */

14 Function EdgeAggregation()
15 For each 𝑢 = 1, 2, ...
16 𝑊𝐿 ← ClientTraining(𝑊 𝑡−1

𝐺
,𝑊𝐼 ,𝑨)

17 categorize local models into anomalous ones (𝑨) and
genuine ones (𝑮)

18 If receive new𝑊 𝑡
𝐺
then

19 𝑊𝐼 =
1
2𝑊𝐼 + 1

2𝑊
𝑡
𝐺

20 Send𝑊𝐼 to the cloud server
21 Send𝑊 𝑡

𝐺
to clients

22 Else
23 𝑊𝐼 =

∑
𝑢∈𝑮

1
|𝑮 |𝑊𝐿

24 Send𝑊𝐼 and 𝑨 to clients.
/* cloud server aggregates intermediate models to produce

global model */

25 Function CloudAggregation()
26 For each 𝑡 = 0, 1, ...,𝑇 − 1
27 For each𝑚 = 1, 2, ..., 𝑀 in parallel
28 𝑊𝑚

𝐼
← EdgeAggregation()

29 𝑊𝐺 ←
∑𝑀
𝑚=1

1
𝑀
𝑊𝑚

𝐼

30 send𝑊𝐺 to edge servers
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