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ABSTRACT

A well-known limitation of existing molecular generative models is that the gen-
erated molecules highly resemble those in the training set. To generate truly
novel molecules that may have even better properties for de novo drug discovery,
more powerful exploration in the chemical space is necessary. To this end, we
propose Molecular Out-Of-distribution Diffusion (MOOD), a novel score-based dif-
fusion scheme that incorporates out-of-distribution (OOD) control in the generative
stochastic differential equation (SDE) with simple control of a hyperparameter, thus
requires no additional computational costs. Since some novel molecules may be
chemically implausible or may not meet the basic requirements of real-world drugs,
MOOD performs conditional generation by utilizing the gradients from a property
predictor that guides the reverse-time diffusion process to high-scoring regions
according to target properties such as protein-ligand interactions, drug-likeness, and
synthesizability. This allows MOOD to search for novel and meaningful molecules
rather than generating unseen yet trivial ones. We experimentally validate that
MOOD is able to explore the chemical space beyond the training distribution,
generating molecules that outscore ones found with existing methods, and even the
top 0.01% of the original training pool.

1 INTRODUCTION

Finding novel molecules with desired chemical properties is the primary goal of drug discovery.
However, the chemical space is vast, and it is infeasible to examine all possible molecules to find
those satisfying a target molecule profile. Recently, deep molecule generation models that can
automatically generate candidate molecules arose as promising substitutes (Gómez-Bombarelli et al.,
2016; Lim et al., 2018; Schwalbe-Koda & Gómez-Bombarelli, 2019) for conventional experimental
drug discovery approaches via trial-and-error processes with human efforts. However, most existing
molecule generation models have the following two limitations, which limit their practical impact.

First of all, the common pitfall of the models based on distributional learning is that the exploration
is confined to the training distribution, and the generated molecules highly resemble those in the
training set. For example, Walters & Murcko (2020) points out that the top-scoring molecule found
by the model of Zhavoronkov et al. (2019) exhibits “striking similarity” to known active molecules
included in the training set (see Figure 1 (Left; a1, a2)). When designing hit or scaffold molecules
that can be used as templates for further optimization, novel core structures are often required to
overcome major hurdles at later stages or to avoid already patented scaffolds (Schreyer & Blundell,
2012). Therefore, the limited explorability highly limits the models’ applicability to de novo drug
discovery, emphasizing the need for a generation strategy that can generate out-of-distribution (OOD)
molecules with desired properties.

Secondly, there exists a discrepancy between the target chemical properties of the molecule generation
models and those in real-world scenarios. The most common properties utilized by the molecule
generation models are penalized logP and quantitative estimate of drug-likeness (QED) (Jin et al.,
2018; You et al., 2018; Shi et al., 2019; Zang & Wang, 2020; Luo et al., 2021c; Liu et al., 2021).
However, as criticized by Coley (2020), Cieplinski et al. (2020), and Xie et al. (2020), optimization
of these scores may not lead to the discovery of useful drugs. For example, the top-scoring molecule
found in terms of penalized logP in the state-of-the-art model is a trivial long chain of the maximum
number of carbons (Luo et al., 2021c), since penalized logP prefers large molecules.
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Figure 1: (Left) The molecules found by GENTRL (Zhavoronkov et al., 2019) and MOOD, and the most
similar training molecules. Unlike GENTRL, MOOD discovers a novel molecule that is different from any
training molecule with a higher binding affinity than the top 0.01% of the training set. (Right) Illustration of
the reverse-time diffusion process of MOOD. MOOD leverages the OOD-controlled diffusion to extend the
exploration boundary and generates OOD samples in the low-density region while using the property prediction
network to guide the sampling to the high-property region, thereby discovering molecules with desired properties
that lie beyond the training distribution. MOOD-w/o OOD control is the variant of MOOD that only utilizes the
property prediction network without the OOD control.

To overcome such a limitation of conventional property objectives, a few recent works adopted the
docking score, a binding affinity score based on the three-dimensional simulation of a target protein
and a drug candidate (Cieplinski et al., 2020). However, using the docking score as a sole metric is still
insufficient as a reasonable proxy for drug activity, since heavy molecules with high docking scores
are likely to be false positives due to the dependency of the docking score on molecular weights (Pan
et al., 2003). Furthermore, real-world drug discovery involves searching for molecules that meet
multiple requirements, for example, protein-ligand interactions, drug-likeness, and synthesizability.

Unfortunately, the poor explorability of most existing drug discovery methods makes it difficult to
successfully accomplish multi-objective tasks. As the number of chemical requirements increases,
fewer molecules in the training set will satisfy the given constraints, and the optimization problem
will become more difficult when trying to generate molecules that meet all the requirements. Thus, to
generate high-scoring molecules with respect to multiple properties, and further, that are applicable
to the real-world, we need a method to explore the chemical space more effectively.

To this end, we propose a novel de novo drug discovery framework for generating OOD molecules,
that are completely different from those in the training set, but nonetheless satisfy the given constraints.
Specifically, we first propose a score-based generative model for OOD generation, by deriving a novel
OOD-controlled reverse-time diffusion process that can control the amount of deviation from the
data distribution. However, since the naïve OOD generation can yield molecules that are chemically
implausible, difficult to synthesize, and lacking desired properties, we further extend our framework
to perform conditional generation for property optimization. Our Molecular Out-Of-distribution
Diffusion (MOOD) framework utilizes the gradient of a property prediction network to guide the
sampling process to domains that are highly likely to satisfy the given constraints, while leveraging
the proposed OOD control to explore beyond the space of known molecules. MOOD is able to
generate molecules that lie beyond the training distribution without additional computational costs,
unlike existing methods (e.g., RL-based exploration methods).

We experimentally validate the proposed MOOD on the molecule optimization task, on which MOOD
outperforms state-of-the-art molecule generation methods by generating novel molecules with high
docking scores while satisfying QED and synthetic accessibility (SA) conditions, demonstrating its
ability to effectively explore the chemical space and find chemical optima of multiple requirements.
Notably, MOOD discovers a novel molecule (Figure 1 (Left; b1)) with a higher docking score than
the top 0.01% of the training dataset. We summarize our contributions as follows:

• We propose a novel score-based generative model for OOD generation, which overcomes the
limited explorability of previous models by leveraging the novel OOD-controlled reverse-time
diffusion that can control the amount of deviation from the data distribution.

• Since the extended exploration space by the OOD control contains molecules that are chemically
implausible or do not meet the basic requirements of drugs, we propose a novel score-based
generative framework for molecule optimization that leverages the gradients of the property
predictor to confine the generated molecules to a novel yet chemically meaningful space.

• We experimentally demonstrate that our proposed conditional OOD molecule generation frame-
work can generate novel molecules that are drug-like, synthesizable, and have high docking
scores on five protein targets, outperforming existing molecule generation methods, and even
discovering novel molecules that outscore the top molecules in the original dataset.
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2 MOLECULE OPTIMIZATION WITH SCORE-BASED OUT-OF-DISTRIBUTION
GENERATION

In this section, we introduce our Molecular Out-Of-distribution Diffusion (MOOD) framework, which
aims to generate molecules that are novel with respect to the training data distribution and have
desired chemical properties. We present a novel OOD-controlled diffusion process that can explore
beyond the training distribution in Section 2.1. Then, we describe our proposed MOOD based on a
property-guided sampling process with OOD-controlled diffusion in Section 2.2. Related works are
included in Section A.

2.1 SCORE-BASED OUT-OF-DISTRIBUTION GENERATION

Molecular graph representation A molecule can be represented as a molecular graph G =
(X,A) ∈ RN×F ×RN×N := G, where X is the node feature matrix carrying the information of the
atom types described by F -dimensional one-hot encoding, A is the adjacency matrix representing
the bond types, and N denotes the maximum number of heavy atoms (i.e., atoms besides hydrogen)
of a molecule in the dataset. This representation directly uses the bond types (1 for single bonds, 2
for double bonds, and 3 for triple bonds) as elements of A instead of the one-hot encoding.

Score-based graph generation The seminal work of Song et al. (2021b) models the diffusion
from data to noise through a stochastic differential equation (SDE), and learns to reverse the process
from noise to data. However, its naïve extension to graph generation cannot model the complex
dependency between nodes and edges, which is crucial for learning the distribution of graphs. To
address this problem, Jo et al. (2022) proposed Graph Diffusion via the System of SDEs (GDSS),
which models the diffusion of both the node features and the adjacency matrix with a system of SDEs.
Specifically, the forward diffusion for a graph {Gt = (Xt,At)}Tt=0 is defined by an Itô SDE:

dGt = ft(Gt)dt+ gtdw, (1)

with the linear drift coefficient ft(·) : G → G1, the scalar diffusion coefficient gt : G → R, and the
standard Wiener process w. Denoting the marginal distribution under the forward diffusion as pt, the
corresponding reverse diffusion process can be described by the following system of SDEs:{

dXt =
[
f1,t(Xt)− g21,t∇Xt log pt(Xt,At)

]
dt+ g1,tdw̄1

dAt =
[
f2,t(At )− g22,t∇At log pt(Xt,At)

]
dt+ g2,tdw̄2,

(2)

where ft(X,A) = (f1,t(X), f2,t(A)) and gt = (g1,t, g2,t) are the drift and diffusion coefficients,
respectively, w̄1 and w̄2 are the reverse-time standard Wiener processes, and dt is an infinitesimal
negative time step. The score networks sθ1,t and sθ2,t are trained to approximate the partial score
functions ∇Xt

log pt(Xt,At) and ∇At
log pt(Xt,At), respectively, then used to simulate Eq. (2)

backwards in time to jointly generate the node features and the adjacency matrices.

Although GDSS can generate high-quality molecular graphs that follow the data distribution, it is not
free from the explorative limitation of deep generative models described in Section 1. To tackle this
limitation, we introduce a novel score-based OOD generative model.

Exploration with OOD control To expand the exploration space of the diffusion, we propose
a novel OOD-controlled score-based graph generative model that can generate samples outside
in-distribution, where the OOD-ness of the generative process is controlled by the hyperparameter
λ ∈ [0, 1). We approach by sampling from the conditional distribution pt(Gt|yo = λ) where yo

represents the OOD condition, by solving the following conditional reverse-time SDE:

dGt =
[
ft(Gt)− g2t∇Gt

log pt(Gt|yo = λ)
]
dt+ gtdw̄. (3)

The conditional score ∇Gt log pt(Gt|yo = λ) can be decomposed as the sum of the two gradients:

∇Gt log pt(Gt|yo = λ) = ∇Gt log pt(Gt) +∇Gt log pt(yo = λ|Gt), (4)

and since the score function ∇Gt log pt(Gt) can be estimated by the score networks sθ1,t and sθ2,t,
simulating Eq. (3) is possible if the second term is known. In order to access ∇Gt

log pt(yo = λ|Gt),

1t-subscript is used to represent a function of time: Ft(·) := F (·, t) and Mθ,t(·) := Mθ(·, t).
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we exploit the fact that the OOD samples are the ones of low-likelihood with respect to the in-
distribution (Du & Mordatch, 2019; Grathwohl et al., 2020). Specifically, we propose to model the
distribution pt(yo = λ|Gt) to be proportional to the negative exponent of the density pt(Gt)

2:

pt(yo = λ|Gt) ∝ pt(Gt)
−
√
λ (5)

Based on the modeling of Eq. (5), we derive a novel OOD-controlled reverse-time diffusion process
from Eq. (3) as follows (see Section B of the appendix for the derivation):

dGt =
[
ft(Gt)− (1−

√
λ)g2t∇Gt

log pt(Gt)
]
dt+ gtdw̄. (6)

Intuitively, as λ approaches 1, the distribution pt(yo = λ|Gt) modeled by Eq. (5) becomes sharper
since the negative exponent induces larger magnitude for smaller probability values, which amplifies
the effect of the OOD condition. Accordingly, the influence of the score ∇Gt

log pt(Gt) in the drift
coefficient weakens, and the sampling process is guided to the lower density regions.

Looking from the perspective of the reverse-time diffusion process, Eq. (6) induces a marginal
distribution proportional to pt(Gt)

1−
√
λ. Consequently, simulating the OOD-controlled diffusion

process backward in time generates samples from the relatively uniform distribution compared to the
original data distribution, where the dispersion is controlled by λ, and the corresponding samples
are more likely to come from outside the in-distribution. Therefore, the proposed OOD-controlled
diffusion process of Eq. (6) can be used as an OOD generative model that can control the deviation
from the data distribution with the hyperparameter λ. Notably, the OOD control enables us to explore
further from the data distribution without additional computational costs, in contrast to previous
molecule generation methods (Olivecrona et al., 2017; Jeon & Kim, 2020; Yang et al., 2021) that rely
on costly reinforcement learning algorithms for exploration.

Data 𝝀𝝀=0

𝝀𝝀=0.5 𝝀𝝀=0.9

Figure 2: A toy experiment on
the OOD-controlled diffusion.

We empirically demonstrate that the proposed OOD-controlled diffu-
sion process is indeed able to control the OOD-ness of the generated
samples on a simple Gaussian mixture in Figure 2. While the OOD
control with λ = 0 (i.e., GDSS) accurately generates samples from
the data distribution, we can generate a wide scope of OOD samples
by simply increasing the hyperparameter λ.

However, being able to generate OOD molecules does not necessarily
mean that we will be able to discover useful molecules, since they
may be chemically implausible, difficult to synthesize, or have low
affinity to a target protein. Thus, for the OOD generator to be truly
useful, it should conditionally generate molecules that satisfy certain
desired conditions, which we describe in Section 2.2.

2.2 MOLECULE PROPERTY OPTIMIZATION

Property optimization with conditional generation Our goal is to generate novel molecules that
possess desired chemical properties, for example, high binding affinity against a target protein. If
we represent the condition of maximizing certain property as yp, our objective then is to generate
molecules from the conditional distribution pt(Gt|yo = λ,yp), which can be decomposed as follows:

pt(Gt|yo = λ,yp) ∝ pt(Gt) pt(yo = λ|Gt) pt(yp|Gt,yo = λ). (7)

Since pt(yp|Gt,yo = λ) represents the probability that the molecular graph Gt satisfies the property
yp, we propose to model the probability density using the Boltzmann distribution as follows:

pt(yp|Gt,yo = λ) = eαtPϕ(Gt,λ)/Zt, (8)

where αt is the scaling coefficient, Zt is the normalization constant, and Pϕ is the property function
estimated by a property prediction network, which we describe in detail at the end of this section.

Using Eq. (5) and Eq. (8), we propose a novel conditional reverse-time diffusion process for generating
OOD molecules that satisfy specific constraints as follows:

dGt =
[
ft(Gt)− (1−

√
λ)g2t∇Gt

log pt(Gt)− αtg
2
t∇Gt

Pϕ(Gt, λ)
]
dt+ gtdw̄, (9)

2We empirically found that using
√
λ instead of λ yields well-scaled results as the value of λ changes.
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which we refer to as Molecular Out-Of-distribution Diffusion (MOOD). Figure 1 (Right) illus-
trates the generation process of MOOD, where the additional gradients

√
λg2t∇Gt log pt(Gt) and

−αtg
2
t∇GtPϕ(Gt, λ) of Eq. (9), that are not in the unconditional process of Eq. (2), can be under-

stood as the guidance that drive the sampling process to the low-density regions and the high-property
regions, respectively. However, Eq. (9) cannot be directly used as a generative model since it does
not model the node-edge relationships (Jo et al., 2022), and thus we utilize the equivalent diffusion
process through the system of reverse-time SDEs as follows:dXt =

[
f1,t(Xt)− (1−

√
λ)g21,t sθ1,t(Xt,At)− α1,tg

2
1,t∇XtPϕ(Xt,At, λ)

]
dt+ g1,tdw̄1

dAt =
[
f2,t(At )− (1−

√
λ)g22,t sθ2,t(Xt,At)− α2,tg

2
2,t∇AtPϕ(Xt,At, λ)

]
dt+ g2,tdw̄2 .

(10)

To balance the effect of the OOD control and the property gradient, we propose to automatically set
α1,t and α2,t throughout the diffusion according to a predefined ratio between the magnitudes of the
partial scores and the property gradients as follows:

α1,t = r1,t
∥sθ1,t(Gt)∥

∥∇Xt
Pϕ(Gt, λ)∥

, α2,t = r2,t
∥sθ2,t(Gt)∥

∥∇At
Pϕ(Gt, λ)∥

, (11)

where r1,t and r2,t are the time-dependent magnitude ratios and ∥ · ∥ is the entry-wise matrix norm.

Property prediction network To approximate the property function of the desired property, we
train a property prediction network Pϕ to estimate the property of a given molecule Gt. Since
chemical properties are entirely determined by molecules, Pϕ can predict the target property without
λ, and we utilize the architecture of the discriminator network of De Cao & Kipf (2018) as follows:

Pϕ(Gt) := MLPs(tanh(H ′)) for H ′ = MLPs
([
{Hj}Lj=0

])
⊙ MLPt

([
{Hj}Lj=0

])
, (12)

where Hi+1 = tanh(GNN(Hi,At)) with a graph convolutional network (GCN) (Kipf & Welling,
2017) as the GNN and H0 = Xt, L is the number of the GNN operations, MLPs and MLPt are the
multilayer perceptrons (MLPs) with sigmoid and tanh activation functions, respectively, ⊙ is the
element-wise multiplication, and [·] is the concatenation operation.

3 EXPERIMENTS

We first validate the efficacy of our OOD-controlled diffusion process on a novel molecule generation
task in Section 3.1, then demonstrate the effectiveness of MOOD on property optimization tasks in
Section 3.2. We further conduct an ablation study to verify the effectiveness of MOOD’s individual
components in Section 3.3.

3.1 NOVEL MOLECULE GENERATION

Experimental setup To verify that our proposed OOD-controlled diffusion scheme can control the
OOD-ness of the generated samples and enhance the explorability, we first conduct an experiment on
an unconstrained novel molecule generation task. We generate 3,000 molecules without incorporating
the property network (i.e., Eq. (6)), varying the hyperparameter λ for OOD control. We measure
the OOD-ness of the generated molecules with respect to the training dataset, ZINC250k (Irwin
et al., 2012), using the following metrics. Fréchet ChemNet Distance (FCD) (Preuer et al., 2018) is
the distance between the training and generated set of molecules based on the activations from the
penultimate layer of a ChemNet. Neighborhood subgraph pairwise distance kernel maximum
mean discrepancy (NSPDK MMD) (Costa & De Grave, 2010) is the MMD between the test set and
the generated set. Novelty (Jin et al., 2020b; Xie et al., 2020) is the fraction of valid molecules that
have a similarity less than 0.4 with the nearest neighbor in the training set.

Results We visualize the distribution of the generated molecules via two-dimensional uniform man-
ifold approximation and projection (UMAP) (McInnes & Healy, 2018) in Figure 3 (Left). We observe
that the proposed OOD-controlled diffusion scheme not only enables to generate OOD molecules, but
also allows the deviation from the training dataset to be controllable with the hyperparameter λ. As
the value of λ increases, the sampling space deviates more from the training distribution. We further
quantitatively measure the OOD-ness of the generated molecules in Figure 3 (Right). Similarly,
as λ increases, FCD and NSPDK MMD increase, which shows that the distribution of generated
molecules becomes more different from the training distribution in the view of biochemical activity
and molecular graph structures. Notably, larger λ increases novelty as well, indicating that each
generated molecule is indeed comprised of chemically distinct substructures from the seen molecules.
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Figure 3: (Left) UMAP visualization of the ZINC250k dataset and the generated molecules by the proposed
OOD-controlled diffusion process. Each point represents a molecule based on the activation of the ChemNet
layer. (Right) Evaluation results of the molecules generated by the OOD-controlled diffusion. We report
FCD, NSPDK MMD, and novelty of the generated molecules with various values of the hyperparameter λ.

3.2 PROPERTY OPTIMIZATION

Experimental setup The goal of the property optimization task is to generate novel molecules that
are of high binding affinity, drug-like, and synthesizable. To reflect these constraints, we accordingly
construct the property function Pobj as follows:

Pobj(Gt) = D̂S(Gt)× QED(Gt)× ŜA(Gt) ∈ [0, 1], (13)

where D̂S is the normalized docking score (DS), QED is the drug-likeness, and ŜA is the normalized
synthetic accessibility (SA). We train the property network Pϕ to predict the property value Pobj of
the molecules in the ZINC250k dataset. Previously used metrics for evaluating docking-optimized
molecules, such as hit ratio or the average of the top 5% DS (Yang et al., 2021) are insufficient for
de novo drug discovery, as they do not consider whether the generated molecules are novel or not.
Therefore, we evaluate 3,000 generated molecules with the following metrics. Novel hit ratio (%) is
the fraction of unique hit molecules that have the maximum Tanimoto similarity less than 0.4 with
the training molecules. Here, hit molecules are defined as the molecules that satisfy the following
constraints: DS < (the median DS of the known active molecules), QED > 0.5, and SA < 5. Novel
top 5% docking score is the average DS of the top 5% unique molecules that satisfy the constraints
QED > 0.5 and SA < 5 and have the maximum similarity less than 0.4 with the training molecules.
Note that these metrics jointly evaluate novelty and multiple properties, thereby more suitable for
real-world scenarios. We use five protein targets, parp1, fa7, 5ht1b, braf, and jak2.

Baselines REINVENT (Olivecrona et al., 2017) is an RL model that utilizes a prior sequence
model. JTVAE (Jin et al., 2018) is a VAE-based model that utilizes the junction tree molecular
representation and Bayesian optimization. GraphAF (Shi et al., 2019) and GraphDF (Luo et al.,
2021c) are flow-based models that utilize continuous and discrete latent variables, respectively.
HierVAE (Jin et al., 2020a) is a VAE-based model that utilizes hierarchical molecular representation
and active learning. FREED (Yang et al., 2021) is a fragment-based RL model that utilizes prioritized
experience replay (PER) (Schaul et al., 2015) for exploration, and FREED-QS is our modification
of FREED that uses Pobj of Eq. (13) as its reward function. LIMO (Eckmann et al., 2022) is a
VAE-based model with an inceptionism-like technique. We also compare with GDSS (Jo et al., 2022),
MOOD-w/o property predictor, MOOD that only utilizes the OOD exploration without the property
prediction network by setting r1,t = r2,t = 0, and MOOD-w/o OOD control, MOOD that only
utilizes the property prediction network without the OOD exploration by setting λ = 0. We provide
the results of additional baselines in Section D.2.

Results As shown in Table 1 and Table 2, our proposed MOOD significantly outperforms all the
baselines for most of the target proteins, and shows competitive results on fa7 with FREED and
FREED-QS. The performance gap shown in the novel hit ratio and the novel top 5% DS indicates
that MOOD is superior in discovering novel molecules that are drug-like, synthesizable, and have
high binding affinity, and the gap increases under the harsher novelty condition as shown in Table 6
and Table 7. Notably, MOOD consistently outperforms MOOD-w/o OOD control for all the target
proteins, and MOOD-w/o property predictor also consistently outperforms GDSS even without the
aid of property gradient, demonstrating that the proposed exploration via OOD generation is highly
effective in finding novel chemical optima of multiple constraints. We further provide the results of
novelty, diversity, uniqueness, hit ratio, and top 5% DS in Table 8, Table 9, Table 10, Table 11, and
Table 12, respectively. As shown in these tables, the OOD control utilized in MOOD largely enhances
novelty compared to MOOD-w/o OOD control while maintaining near-perfect uniqueness. Moreover,
the improved exploration over MOOD-w/o OOD control also aids MOOD in terms of hit ratio and
top 5% DS, as MOOD can discover molecules with better properties outside the data distribution.
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Table 1: Novel hit ratio (%) results. The results are the means and the standard deviations of 5 runs. The best
performance and comparable results (p > 0.05) are highlighted in bold.

Method
Target protein

parp1 fa7 5ht1b braf jak2
REINVENT (Olivecrona et al., 2017) 0.480 (± 0.344) 0.213 (± 0.081) 2.453 (± 0.561) 0.127 (± 0.088) 0.613 (± 0.167)
JTVAE (Jin et al., 2018) 0.856 (± 0.211) 0.289 (± 0.016) 4.656 (± 1.406) 0.144 (± 0.068) 0.815 (± 0.044)
GraphAF (Shi et al., 2019) 0.689 (± 0.166) 0.011 (± 0.016) 3.178 (± 0.393) 0.956 (± 0.319) 0.767 (± 0.098)
HierVAE (Jin et al., 2020a) 0.553 (± 0.214) 0.007 (± 0.013) 0.507 (± 0.278) 0.207 (± 0.220) 0.227 (± 0.127)
GraphDF (Luo et al., 2021c) 0.044 (± 0.031) 0.000 (± 0.000) 0.000 (± 0.000) 0.011 (± 0.016) 0.011 (± 0.016)
FREED (Yang et al., 2021) 3.627 (± 0.961) 1.107 (± 0.209) 10.187 (± 3.306) 2.067 (± 0.626) 4.520 (± 0.673)
FREED-QS 4.627 (± 0.727) 1.332 (± 0.113) 16.767 (± 0.897) 2.940 (± 0.359) 5.800 (± 0.295)
LIMO (Eckmann et al., 2022) 0.455 (± 0.057) 0.044 (± 0.016) 1.189 (± 0.181) 0.278 (± 0.134) 0.689 (± 0.319)
GDSS (Jo et al., 2022) 1.933 (± 0.208) 0.368 (± 0.103) 4.667 (± 0.306) 0.167 (± 0.134) 1.167 (± 0.281)

MOOD-w/o property predictor (ours) 2.127 (± 0.216) 0.447 (± 0.091) 7.900 (± 0.455) 0.520 (± 0.117) 2.293 (± 0.223)
MOOD-w/o OOD control (ours) 3.400 (± 0.117) 0.433 (± 0.063) 11.873 (± 0.521) 2.207 (± 0.165) 3.953 (± 0.383)
MOOD (ours) 7.017 (± 0.428) 0.733 (± 0.141) 18.673 (± 0.423) 5.240 (± 0.285) 9.200 (± 0.524)

Table 2: Novel top 5% docking score (kcal/mol) results. The results are the means and the standard deviations
of 5 runs. The best performance and comparable results (p > 0.05) are highlighted in bold.

Method
Target protein

parp1 fa7 5ht1b braf jak2
REINVENT (Olivecrona et al., 2017) -8.702 (± 0.523) -7.205 (± 0.264) -8.770 (± 0.316) -8.392 (± 0.400) -8.165 (± 0.277)
JTVAE (Jin et al., 2018) -9.482 (± 0.132) -7.683 (± 0.048) -9.382 (± 0.332) -9.079 (± 0.069) -8.885 (± 0.026)
GraphAF (Shi et al., 2019) -9.327 (± 0.030) -7.084 (± 0.025) -9.113 (± 0.126) -9.896 (± 0.226) -8.267 (± 0.101)
HierVAE (Jin et al., 2020a) -9.487 (± 0.278) -6.812 (± 0.274) -8.081 (± 0.252) -8.978 (± 0.525) -8.285 (± 0.370)
GraphDF (Luo et al., 2021c) -6.823 (± 0.134) -6.072 (± 0.081) -7.090 (± 0.100) -6.852 (± 0.318) -6.759 (± 0.111)
FREED (Yang et al., 2021) -10.427 (± 0.177) -8.297 (± 0.094) -10.425 (± 0.331) -10.325 (± 0.164) -9.624 (± 0.102)
FREED-QS -10.579 (± 0.104) -8.378 (± 0.044) -10.714 (± 0.183) -10.561 (± 0.080) -9.735 (± 0.022)
LIMO (Eckmann et al., 2022) -8.984 (± 0.223) -6.764 (± 0.142) -8.422 (± 0.063) -9.046 (± 0.316) -8.435 (± 0.273)
GDSS (Jo et al., 2022) -9.967 (± 0.028) -7.775 (± 0.039) -9.459 (± 0.101) -9.224 (± 0.068) -8.926 (± 0.089)

MOOD-w/o property predictor (ours) -10.086 (± 0.038) -7.932 (± 0.054) -9.838 (± 0.083) -9.634 (± 0.052) -9.247 (± 0.041)
MOOD-w/o OOD control (ours) -10.409 (± 0.030) -7.947 (± 0.034) -10.487 (± 0.069) -10.421 (± 0.050) -9.575 (± 0.075)
MOOD (ours) -10.865 (± 0.113) -8.160 (± 0.071) -11.145 (± 0.042) -11.063 (± 0.034) -10.147 (± 0.060)
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(a) (b) (c) (d)

ZINC250k

Figure 4: (Left) UMAP visualization of the molecules from ZINC250k and the generated samples with parp1
as the target protein. See Figure 5 for the symbols depicted in (c) and (d). (Right) Distributional distances of
the generated molecules measured by FCD and NSPDK MMD with respect to ZINC250k.
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Figure 5: Generated hit molecules with parp1 as the target protein and the corresponding ZINC250k
molecules of the highest similarity. The similarity and docking score (kcal/mol) are provided at the bottom of
each generated hit. The molecules with symbols are the ones marked in Figure 4 (c) and (d).

Explorability We visualize the distribution of the generated molecules via UMAP in Figure 4
(Left). As shown in the figure, MOOD exhibits superior explorability beyond the training distribution
compared to the baselines. While the generated molecules of REINVENT and FREED-QS lie close
to the ZINC250k molecules, most of the generated molecules of MOOD lie beyond the training
distribution. Note that MOOD-w/o OOD control generates some molecules that deviate from the
training distribution by the effect of the property gradient in its diffusion, yet the fraction is smaller
than those of MOOD due to the lack of the OOD constraint. We further measure the distributional
distance of the generated molecules from ZINC250k via FCD and NSPDK MMD in Figure 4 (Right),
verifying that MOOD is able to generate novel molecules that are significantly different from those
of the training dataset.

Generated molecules We visualize the generated molecules of MOOD and the baselines in Figure 5
and Figure 8 of Section D.3. As shown in the figures and also in Table 8 of Section D.2, the molecules
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generated by the baselines possess duplicated substructures with the ZINC250k molecules due to the
limited explorability and accordingly have high maximum Tanimoto similarity and low novelty. This
limits their application to de novo drug discovery. In contrast, the generated molecules of MOOD
exhibit low similarity with the ZINC250k molecules, while having high binding affinity. As shown in
Figure 4, the molecule found by MOOD in Figure 5 is indeed an OOD sample, that lies outside the
training distribution, unlike the one found by MOOD-w/o OOD control.

DS: -13.5 / Sim: 0.278

DS: -12.8 / Sim: 0.314

MOOD ZINC250k

DS: -13.0

DS: -12.4

Figure 6: Novel hit molecules
found by MOOD and the top
0.01% ZINC250k molecules.

Discovery with MOOD To validate that MOOD can find novel
chemical optima that lie beyond the training distribution with even
better chemical properties, we visualize the hit molecules found by
MOOD that have higher binding affinity to parp1 than those of the
top 0.01% of ZINC250k in Figure 6. Note that the molecules also
have low similarity with the molecules of ZINC250k. This result
suggests the applicability and efficacy of MOOD in real-world de
novo drug discovery.

Comparison with 3D molecule generation methods We additionally compare MOOD with the
methods of a recently emerging area, namely, three-dimensional (3D) molecule generation. The
model of Luo et al. (2021a) and Pocket2Mol (Peng et al., 2022) are autoregressive models that
generate molecules of high binding affinity by utilizing 3D information of the binding site of the
target protein. As shown in Table 13 of Section D.2, MOOD largely outperforms the baselines even
without the spatial information of the binding pocket, again confirming that MOOD is highly practical
and has great potential in solving real-world drug discovery problems.

3.3 ABLATION STUDY

Effects of the OOD control and property gradient To examine the effect of the proposed OOD
control and property gradient, we compare MOOD-w/o property predictor, MOOD-w/o OOD control,
and MOOD with GDSS. As shown in Table 1, Table 2, and Table 13, using both the OOD generation
scheme and the guidance from the property predictor is essential for finding better chemical optima.
Specifically, the superior generation result of MOOD over MOOD-w/o property predictor and
MOOD-w/o OOD control over GDSS demonstrate the effectiveness of the property gradient, while
the superiority of MOOD over MOOD-w/o OOD control and MOOD-w/o property predictor over
GDSS demonstrate the effectiveness of the OOD control.

Training on the low-property subset To further validate the explorability of the proposed MOOD,
we evaluate the generated molecules of L-MOOD-w/o OOD control and L-MOOD, which are
respectively MOOD-w/o OOD control and MOOD trained on the lower half subset of ZINC250k
in terms of Pobj (Eq. (13)). We show the distribution of the top 5% DS of the molecules that
satisfy QED > 0.5 and SA < 5 in Figure 7. We observe that both L-MOOD-w/o OOD control and
L-MOOD yield higher top 5% DS compared to their training set, demonstrating the effectiveness
of the proposed conditional diffusion process with the property prediction network. Furthermore,
unlike L-MOOD-w/o OOD control, L-MOOD is able to generate molecules with higher top 5% DS
compared to the original ZINC250k dataset, even though L-MOOD has never seen the higher half
molecules of ZINC250k. This shows that exploring beyond the known chemical space with MOOD
is not only beneficial for novel molecule discovery, but also for property optimization since the novel
molecules may better satisfy the given properties.

4 CONCLUSION

To tackle the limited explorability of previous molecule generation models, we proposed Molecular
Out-Of-distribution Diffusion (MOOD), a new score-based generative model for generating novel
molecules with desired properties outside the training distribution. MOOD leverages a OOD-
controlled reverse-time diffusion process that can control the OOD-ness of the generated samples
without any additional costs. MOOD further incorporates a conditional score-based diffusion scheme
to optimize molecules for target chemical properties. We validated MOOD on the multi-objective
property optimization tasks, on which ours outperforms existing methods with superior explorability.
Further, our method generated novel molecules that are largely different from any of the existing
molecules in the training set, showing its potential as a promising means of de novo drug discovery.
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A RELATED WORK

Score-based generative models Score-based generative models learn to reverse the perturbation
process from data to noise in order to generate samples (Song & Ermon, 2019; Ho et al., 2020; Song
et al., 2021b). Recently, score-based generative models have arisen as promising methods for graph
generation (Niu et al., 2020; Jo et al., 2022), molecular conformation generation (Shi et al., 2021; Xu
et al., 2022; Luo et al., 2021b) and 3D molecule generation (Hoogeboom et al., 2022). Yet, applying
score-based models for targeted de novo drug discovery poses a unique challenge: finding novel
molecules that satisfy specific constraints in the vast chemical space. To the best of our knowledge,
we are the first to propose a score-based generative framework for molecule optimization.

Conditional score-based models Recently, score-based generative models have been applied to
image inpainting (Song et al., 2021b), super-resolution (Choi et al., 2021; Li et al., 2022; Saharia
et al., 2021), MRI reconstruction (Chung & Ye, 2021; Jalal et al., 2021; Song et al., 2021a) and image
translation (Meng et al., 2021; Sasaki et al., 2021). However, directly adapting these schemes to
molecule optimization is challenging, due to the complex dependency between nodes and edges which
decides the validity and properties of molecules. We introduce conditional reverse-time diffusion for
controlled OOD generation, while using a property predictor to guide the sampling process, which
together steers the generation to the intersection of low-density and high-property regions.

Note that recently, Sehwag et al. (2022) introduced a conditional score-based model for a generation
of images from low-density regions, by modifying the sampling process using a discriminative model
to steer the generative process to the low-density region. However, it is clearly different from our
proposed OOD control scheme described in Section 2.1, as it 1) requires an additionally trained model
to sample from the low-density region, and moreover, 2) cannot control the amount of deviation of
the generated samples from the in-distribution.

Molecule generation models Existing methods for generating molecular graphs of desired
properties include models based on variational autoencoders (VAEs) (Gómez-Bombarelli et al.,
2018; Jin et al., 2018; Liu et al., 2018; Eckmann et al., 2022), generative adversarial networks
(GANs) (Lima Guimaraes et al., 2017; De Cao & Kipf, 2018), genetic algorithms (Jensen, 2019),
and flow-based models (Shi et al., 2019; Zang & Wang, 2020; Luo et al., 2021c). A score-based
graph generation model for unconditional molecule generation has been proposed recently (Jo
et al., 2022). A common shortcoming of existing works that are based on distributional learning
or fragment vocabularies is the limited exploration in the chemical space beyond the known data
distribution, as they focus on interpolating the learned distribution or reassembling substructures of
known molecules. Among the few works that consider docking score, Yang et al. (2021) proposed an
exploration-promoting RL objective to discover novel molecules. However, exploration of the agent
is computationally expensive, and the method is inherently limited by the fragment vocabulary which
are the subgraphs of the seen molecules. Contrarily, our framework can generate novel molecules with
desired properties outside the distribution of the training set, without requiring high computational
costs or a fragment vocabulary.

B DERIVING THE OOD-CONTROLLED DIFFUSION PROCESS

Using Eq. (5) to model pt(yo = λ|Gt) to be proportional to the negative exponent of the density
pt(Gt), we can derive the following reverse-time SDE from Eq. (3):

dGt =
[
ft(Gt)− g2t∇Gt

log pt(Gt|yo = λ)
]
dt+ gtdw̄ (14)

=
[
ft(Gt)− (1−

√
λ)g2t∇Gt

log pt(Gt)
]
dt+ gtdw̄, (15)

which corresponds to the proposed OOD-controlled diffusion process in Eq. (6) of the main paper.

13



Published at the MLDD workshop, ICLR 2023

C EXPERIMENTAL DETAILS

C.1 TOY EXPERIMENT

Following Jo et al. (2022), we utilize a bivariate Gaussian mixture as the data distribution of the toy
experiment in Section 2.1 as follows:

pdata(x) = N (x | µ1,Σ1) +N (x | µ2,Σ2), (16)

where the mean and variance are given as follows:

µ1 =

(
0.5
0.5

)
, µ2 =

(
−0.5
−0.5

)
,

Σ1 = Σ2 = 0.12
(
1.0 0.9
0.9 1.0

)
.

We set the number of linear layers as 20 with residual paths, the hidden dimension as 512, the type of
SDEs as VPSDE with βmin = 0.01 and βmax = 0.05, the number of training epochs as 5000, the
batch size as 2048, and use an Adam optimizer (Kingma & Ba, 2014). We generate 213 samples in
Figure 2 with a PC sampler of a signal-to-noise ratio (SNR) of 0.05 and a scale coefficient of 0.8.

C.2 UMAP VISUALIZATION

To produce the UMAP visualization of the generated molecules in Figure 4, we first randomly
select 5,000 molecules from the ZINC250k dataset and 3,000 molecules from REINVENT, FREED-
QS, MOOD-w/o OOD control, and MOOD which are generated against the target protein parp1,
respectively. ChemNet (Preuer et al., 2018) activations are computed from the molecules and then
together visualized by the UMAP library (McInnes & Healy, 2018).

C.3 NOVEL MOLECULE GENERATION

Measuring the novelty We measure the novelty of the generated molecules as the fraction of valid
molecules with similarity less than 0.4 compared to the nearest neighbor GSNN in the training dataset,
which can be formally written as follows:

1

n

∑
G∈M

1{sim(G,GSNN) < 0.4}, (17)

where M is the set of n valid molecules, and sim(G,G′) is the pairwise Tanimoto similarity over
Morgan fingerprints of radius 2 and 1024 bits.

Implementation details Following Jo et al. (2022), each molecule is preprocessed into a graph
of X ∈ {0, 1}N×F and A ∈ {0, 1, 2, 3}N×N , where N is the maximum number of atoms in a
molecule of the dataset, and F is the number of possible atom types. The elements of A indicate the
bond types (single, double, or triple). All molecules are preprocessed to their kekulized form and all
hydrogens are removed by the RDKit (Landrum et al., 2016) library. We utilize the valency correction
proposed by Zang & Wang (2020). We use the pretrained score networks sθ1 and sθ2 from Jo et al.
(2022)3, which are trained on the ZINC250k (Irwin et al., 2012) dataset with the same train/test split
used by Kusner et al. (2017). Following the original paper, we use VP and VE SDEs for the diffusion
of node and adjacency matrices, respectively, and set the SNR and the scale coefficient as 0.2 and 0.8,
respectively. As in Jo et al. (2022), we quantize the entries of the adjacency matrices by mapping the
values of (−∞, 0.5) to 0, the values of [0.5, 1.5) to 1, the values of [1.5, 2.5) to 2, and the values of
[2.5,+∞) to 3 after the sampling.

3https://github.com/harryjo97/GDSS
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C.4 PROPERTY OPTIMIZATION

Scoring function We use the popular docking program QuickVina 2 (Alhossary et al., 2015) to
compute the docking scores and set the exhaustiveness as 1, following Yang et al. (2021). Note that
the docking scores are negative values. QED and SA scores are computed using the RDKit (Landrum
et al., 2016) library. To compute the objective function of Eq. (13), we clip the docking score in the
range [−20, 0] and compute D̂S and ŜA as follows:

D̂S = −DS
20

, ŜA =
10− SA

9
. (18)

Following Yang et al. (2021), we choose five proteins, parp1 (Poly [ADP-ribose] polymerase-1), fa7
(Coagulation factor VII), 5ht1b (5-hydroxytryptamine receptor 1B), braf (Serine/threonine-protein
kinase B-raf), and jak2 (Tyrosine-protein kinase JAK2), that have highest AUROC scores when the
protein-ligand binding affinities for DUD-E ligands are approximated with AutoDock Vina, as the
target proteins about which the docking scores are calculated.

Scheduling the scaling coefficients Instead of manually setting the value of the scaling coefficients
of the Boltzmann distribution α1,t and α2,t, we automatically set the value through the time-dependent
magnitude ratios r1,t and r2,t, respectively, throughout the diffusion process as shown in Eq. (11).
The ratios are in turn scheduled according to time as follows:

r1,t = r1,0 · 0.1t, r2,t = r2,0 · 0.1t, (19)

where r1,0 and r2,0 are the final values (when t = 0) of r1,t and r2,t, respectively.

Evaluation metrics Novel hit ratio is the fraction of unique hit molecules that have the maximum
Tanimoto similarity less than 0.4 with the training molecules, which can be written as follows:

1

n

∑
G∈M

1{DS(G) > (the median DS of the known active molecules),QED(G) > 0.5,SA(G) < 5},

(20)

where n is the number of total generated molecules, and M is the set of generated molecules with no
duplicates. Novel top 5% docking score is the average DS of the top 5% of total generated molecules
with no duplicates that satisfy the following constraints: QED > 0.5, SA < 5, and sim(G,GSNN) < 0.4.
GSNN is the nearest training molecule of the generated molecule G, and sim(G,G′) is the pairwise
Tanimoto similarity over Morgan fingerprints of radius 2 and 1024 bits.

Implementation details The implementation details regarding the preprocessing of data, the
model of GDSS, and the postprocessing procedure are the same as explained in Section C.3. We
perform the grid search with the search space λ ∈ {0.01, 0.02, 0.03, 0.04, 0.05}, and find λ = 0.04
performs reasonably well throughout the experiments. Regarding the hyperparameters of the property
prediction network, we set the number of the GNN operations L as 3 with the hidden dimension of
16. The number of linear layers in MLPs and MLPt are both 1, and the number of linear layers in the
final MLPs is 2. We perform the grid search with the search space r1,0 ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8},
and set r1,0 as 0.5, 0.4, 0.6, 0.7, and 0.6 for the optimization with the target protein as parp1, fa7,
5ht1b, braf, and jak2, respectively. We find that r2,0 = 0 (i.e., α2,t = 0) performs reasonably well
regardless of the target.

Implementation details of the baselines We follow the corresponding original papers for most of
the settings of the baselines. We describe the specifics and the differences from the original papers
here. For REINVENT, we utilize the ZINC250k dataset to construct the vocabulary and train the
prior4. For MORLD, we set the absolute value of docking score from QuickVina 2 as the final reward
function and use benzene as the initial molecule5. For HierVAE, we use the ZINC250k dataset to
construct the vocabulary and pretrain the model6. We follow the procedure utilized in Yang et al.
(2021) to finetune the model for the optimization task. Specifically, we finetune the model using the

4https://github.com/MarcusOlivecrona/REINVENT
5https://github.com/wsjeon92/morld
6https://github.com/wengong-jin/hgraph2graph
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Table 3: Novel molecule generation results on the QM9 dataset.

λ FCD NSPDK MMD (×10−2) Novelty (%)

0 3.794 0.354 44.033
0.15 6.276 2.119 70.533

DUD-E active molecules of the target protein as the training set, and set the number of training epochs
as 800 for 5ht1b and 700 for other proteins, since the 5ht1b training set is larger. We adopt the two-
cycle active learning scheme that gathers the generated hit molecules in the first round, then utilize
them as additional training molecules in the second round. Note that although the active learning
scheme improves the performance of HierVAE, it also requires twice of docking computations as the
other methods. For FREED and FREED-QS, we utilize the predictive error-PER7. For LIMO, we
utilized the pretrained VAE model and train the property network to predict the docking score from
QuickVina 2, and generate molecules without the filtering based on the ring size for a fair evaluation8.

Implementation details of Table 13 For the comparison with the 3D molecule generation baselines,
we train GDSS and MOOD on the CrossDocked2020 (Francoeur et al., 2020) dataset with the same
train/test split used in Luo et al. (2021a) and Peng et al. (2022). We utilize the molecules with less
than 40 atoms as the training set, which corresponds to 96.77% of the original training set. We
choose glmu (N-acetylglucosamine-1-phosphate uridyltransferase) as the target protein, and set the
hit threshold as the docking score of the reference ligand contained in the test set. For the model
of Luo et al. (2021a), we utilize the pretrained model without duplication or ring filtering for a fair
evaluation9. For Pocket2Mol, we utilize the pretrained model and generate molecules with 5,000
initial molecules, and collect the first 3,000 generated molecules without the duplication filtering for
a fair evaluation10.

C.5 COMPUTING RESOURCES

We conduct all the experiments on TITAN RTX, GeForce RTX 2080 Ti, or GeForce RTX 3090 GPUs.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 NOVEL MOLECULE GENERATION

To verify that the proposed OOD-controlled diffusion scheme can control the OOD-ness of the gener-
ated samples, we additionally conduct the novel molecule generation task on the QM9 (Ramakrishnan
et al., 2014) dataset. We report the FCD, NSPDK MMD, and novelty results in Table 3.

D.2 PROPERTY OPTIMIZATION

We report the property optimization results of additional baselines that are not based on distribution
learning or a fragment vocabulary in Table 4 and Table 5. GCPN (You et al., 2018) is an atom-based
RL model that utilizes adversarial training. Graph GA (Jensen, 2019) is a genetic algorithm-based
model that utilizes predefined crossovers and mutations. MORLD (Jeon & Kim, 2020) is an RL
model that uses QED and SA scores as intermediate rewards and docking scores as final rewards with
the MolDQN algorithm (Zhou et al., 2019). As shown in the tables, MOOD outperforms the baselines
in most target proteins, and this performance gap increases with the harsher novelty condition of 0.3
as shown in Table 6 and Table 7. These results show that MOOD is indeed very effective in generating
drug candidates that are both novel and high-quality and superior in de novo drug discovery tasks
even to the methods that do not conduct distribution learning or utilize a fragment vocabulary.

We also additionally report the novelty, diversity, uniqueness, hit ratio, and the top 5% docking score
of the generated molecules in Table 8, Table 9, Table 10, Table 11, and Table 12. Novelty is the

7https://github.com/AITRICS/FREED
8https://github.com/Rose-STL-Lab/LIMO
9https://github.com/luost26/3D-Generative-SBDD

10https://github.com/pengxingang/Pocket2Mol
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Table 4: Novel hit ratio (%) results. The results are the means and the standard deviations of 5 runs. The best
performance and comparable results (p > 0.05) are highlighted in bold.

Method
Target protein

parp1 fa7 5ht1b braf jak2
GCPN (You et al., 2018) 0.056 (± 0.016) 0.444 (± 0.333) 0.444 (± 0.150) 0.033 (± 0.027) 0.256 (± 0.087)
Graph GA (Jensen, 2019) 4.811 (± 1.661) 0.422 (± 0.193) 7.011 (± 2.732) 3.767 (± 1.498) 5.311 (±1.667)
MORLD (Jeon & Kim, 2020) 0.047 (± 0.050) 0.007 (± 0.013) 0.880 (± 0.735) 0.047 (± 0.040) 0.227 (± 0.118)

MOOD (ours) 7.017 (± 0.479) 0.733 (± 0.141) 18.673 (± 0.423) 5.240 (± 0.285) 9.200 (± 0.524)

Table 5: Novel top 5% docking score (kcal/mol) results. The results are the means and the standard deviations
of 5 runs. The best performance and comparable results (p > 0.05) are highlighted in bold.

Method
Target protein

parp1 fa7 5ht1b braf jak2
GCPN (You et al., 2018) -7.464 (± 0.089) -7.024 (± 0.629) -7.632 (± 0.058) -7.691 (± 0.197) -7.533 (± 0.140)
Graph GA (Jensen, 2019) -10.949 (± 0.532) -7.365 (± 0.326) -10.422 (± 0.670) -10.789 (± 0.341) -10.167 (± 0.576)
MORLD (Jeon & Kim, 2020) -7.532 (± 0.260) -6.263 (± 0.165) -7.869 (± 0.650) -8.040 (± 0.337) -7.816 (± 0.133)

MOOD (ours) -10.865 (± 0.113) -8.160 (± 0.071) -11.145 (± 0.042) -11.063 (± 0.034) -10.147 (± 0.060)

fraction of valid molecules with similarity less than 0.4 compared to the nearest neighbor in the
training set, as explained in Section C.3. Diversity is calculated based on the pairwise similarity over
Morgan fingerprints of the generated molecules. Uniqueness is the fraction of the valid molecules
that are unique. Hit ratio (%) is the fraction of unique hit molecules. Top 5% docking score is
the average DS of the top 5% unique molecules that satisfy the constraints QED > 0.5 and SA < 5.
Note that the high novelty of MORLD shown in Table 8 arose from the fact that MORLD does not
utilize any training molecules nor fragment vocabulary extracted from known molecules, and LIMO
also exhibits high novelty due to its inceptionism-like technique applied to the learned latent space.
However, the novelty values are trivial as MORLD and LIMO completely fail to generate high-quality
and meaningful molecules. As one can observe in Table 1, Table 2, Table 11, and Table 12, the
majority of the generated molecules of MORLD and LIMO do not satisfy the basic QED and SA
constraints or do not exhibit high binding affinity. Also note that in the case of HierVAE, the validity
is very low and since FCD and NSPDK MMD only take valid molecules into account, the FCD and
NSPDK MMD values do not contain much information.

We also additionally compare MOOD with the 3D molecule generation methods in Table 13.
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Table 6: Novel hit ratio (%) results with the similarity condition of 0.3. The results are the means and the
standard deviations of 5 runs. The best performances are highlighted in bold.

Method
Target protein

parp1 fa7 5ht1b braf jak2
GCPN (You et al., 2018) 0.044 (± 0.016) 0.378 (± 0.333) 0.344 (± 0.126) 0.000 (± 0.000) 0.222 (± 0.113)
REINVENT (Olivecrona et al., 2017) 0.033 (± 0.042) 0.020 (± 0.027) 0.020 (± 0.016) 0.000 (± 0.000) 0.000 (± 0.000)
JTVAE (Jin et al., 2018) 0.111 (± 0.083) 0.022 (± 0.016) 0.933 (± 1.085) 0.000 (± 0.000) 0.167 (± 0.047)
Graph GA (Jensen, 2019) 0.311 (± 0.134) 0.011 (± 0.016) 0.644 (± 0.340) 0.267 (± 0.309) 0.778 (± 0.468)
GraphAF (Shi et al., 2019) 0.233 (± 0.054) 0.000 (± 0.000) 0.867 (± 0.072) 0.167 (± 0.000) 0.267 (± 0.047)
MORLD (Jeon & Kim, 2020) 0.040 (± 0.039) 0.007 (± 0.013) 0.760 (± 0.587) 0.033 (± 0.037) 0.207 (± 0.106)
HierVAE (Jin et al., 2020a) 0.047 (± 0.045) 0.000 (± 0.000) 0.080 (± 0.096) 0.013 (± 0.016) 0.013 (± 0.016)
GraphDF (Luo et al., 2021c) 0.044 (± 0.031) 0.000 (± 0.000) 0.000 (± 0.000) 0.011 (± 0.016) 0.011 (± 0.016)
FREED (Yang et al., 2021) 0.287 (± 0.115) 0.107 (± 0.049) 0.827 (± 0.240) 0.160 (± 0.129) 0.407 (± 0.108)
FREED-QS 0.547 (± 0.062) 0.220 (± 0.034) 1.633 (± 0.531) 0.260 (± 0.077) 0.773 (± 0.147)
LIMO (Eckmann et al., 2022) 0.433 (± 0.072) 0.033 (± 0.027) 0.922 (± 0.164) 0.267 (± 0.141) 0.644 (± 0.300)
GDSS (Jo et al., 2022) 0.533 (± 0.118) 0.133 (± 0.082) 1.567 (± 0.219) 0.133 (± 0.098) 0.533 (± 0.128)

MOOD-w/o property predictor (ours) 0.873 (± 0.181) 0.160 (± 0.044) 3.073 (± 0.397) 0.253 (± 0.067) 0.847 (± 0.220)
MOOD-w/o OOD control (ours) 1.473 (± 0.157) 0.133 (± 0.042) 4.347 (± 0.394) 0.860 (± 0.088) 1.460 (± 0.164)
MOOD (ours) 4.107 (± 0.405) 0.387 (± 0.163) 10.687 (± 0.411) 3.293 (± 0.351) 5.525 (± 0.578)

Table 7: Novel top 5% docking score (kcal/mol) results with the similarity condition of 0.3. The results are
the means and the standard deviations of 5 runs. The best performances are highlighted in bold.

Method
Target protein

parp1 fa7 5ht1b braf jak2
GCPN (You et al., 2018) -7.347 (± 0.099) -6.870 (± 0.579) -7.445 (± 0.039) -7.589 (± 0.210) -7.426 (± 0.141)
REINVENT (Olivecrona et al., 2017) -7.046 (± 0.438) -6.417 (± 0.728) -6.026 (± 1.634) -7.356 (± 0.494) -7.123 (± 0.498)
JTVAE (Jin et al., 2018) -7.326 (± 0.190) -6.121 (± 0.101) -7.441 (± 1.062) -6.996 (± 0.225) -7.007 (± 0.106)
Graph GA (Jensen, 2019) -7.558 (± 0.173) -5.423 (± 0.164) -7.465 (± 0.558) -8.059 (± 0.488) -7.780 (± 0.465)
GraphAF (Shi et al., 2019) -7.964 (± 0.057) -5.921 (± 0.104) -7.588 (± 0.147) -8.302 (± 0.210) -7.635 (± 0.092)
MORLD (Jeon & Kim, 2020) -7.253 (± 0.198) -6.037 (± 0.135) -7.734 (± 0.570) -7.572 (± 0.212) -7.560 (± 0.187)
HierVAE (Jin et al., 2020a) -9.193 (± 0.558) -6.463 (± 0.179) -8.188 (± 1.005) -9.544 (± 0.487) -7.950 (± 0.906)
GraphDF (Luo et al., 2021c) -6.110 (± 0.545) -5.020 (± 0.210) -6.269 (± 0.613) -5.593 (± 0.099) -5.659 (± 0.161)
FREED (Yang et al., 2021) -8.770 (± 0.216) -7.090 (± 0.092) -8.509 (± 0.197) -8.882 (± 0.190) -8.440 (± 0.117)
FREED-QS -8.633 (± 0.118) -6.982 (± 0.086) -8.303 (± 0.312) -8.332 (± 0.727) -8.034 (± 0.613)
LIMO (Eckmann et al., 2022) -8.910 (± 0.235) -6.629 (± 0.159) -8.184 (± 0.100) -8.934 (± 0.349) -8.338 (± 0.306)
GDSS (Jo et al., 2022) -8.906 (± 0.023) -7.121 (± 0.031) -8.547 (± 0.092) -8.354 (± 0.061) -8.217 (± 0.073)

MOOD-w/o property predictor (ours) -9.410 (± 0.070) -7.391 (± 0.054) -9.112 (± 0.128) -9.003 (± 0.030) -8.628 (± 0.086)
MOOD-w/o OOD control (ours) -9.678 (± 0.111) -7.279 (± 0.051) -9.671 (± 0.059) -9.669 (± 0.076) -8.880 (± 0.072)
MOOD (ours) -10.585 (± 0.124) -7.740 (± 0.070) -10.817 (± 0.089) -10.754 (± 0.059) -9.876 (± 0.105)

Table 8: Novelty (%) results. The results are the means and the standard deviations of 5 runs. The best results
are highlighted in bold. The results of GDSS and MOOD-w/o Pϕ are the same for the different target proteins.

Method
Target protein

parp1 fa7 5ht1b braf jak2
REINVENT (Olivecrona et al., 2017) 9.894 (± 2.178) 10.731 (± 1.516) 11.605 (± 3.688) 8.715 (± 2.712) 11.456 (± 1.793)
JTVAE (Jin et al., 2018) 37.444 (± 2.450) 28.478 (± 2.032) 33.778 (± 8.856) 27.544 (± 0.521) 28.833 (± 5.920)
GraphAF (Shi et al., 2019) 45.544 (± 1.870) 42.656 (± 3.490) 44.789 (± 0.545) 48.722 (± 1.846) 48.533 (± 3.153)
MORLD (Jeon & Kim, 2020) 98.433 (± 1.189) 97.967 (± 1.764) 98.787 (± 0.743) 96.993 (± 2.787) 97.720 (± 0.995)
HierVAE (Jin et al., 2020a) 60.453 (±17.165) 24.853 (±15.416) 48.107 (± 1.988) 59.747 (±16.403) 85.200 (±14.262)
GraphDF (Luo et al., 2021c) 85.767 (± 0.303) 88.133 (± 1.260) 91.833 (± 4.142) 87.233 (± 3.869) 86.856 (± 2.499)
FREED (Yang et al., 2021) 71.483 (± 1.233) 57.687 (± 8.808) 64.460 (±12.037) 65.560 (±11.701) 72.607 (± 5.170)
FREED-QS 74.640 (± 2.953) 78.787 (± 2.132) 75.027 (± 5.194) 73.653 (± 4.312) 75.907 (± 5.916)
LIMO (Eckmann et al., 2022) 99.356 (± 0.247) 98.589 (± 0.042) 94.267 (± 1.688) 98.756 (± 0.220) 98.911 (± 0.185)
GDSS (Jo et al., 2022) 75.933 (± 0.427) - - - -
MOOD-w/o property predictor (ours) 79.460 (± 0.221) - - - -
MOOD-w/o OOD control (ours) 72.607 (± 3.184) 75.793 (± 1.377) 70.321 (± 1.529) 70.667 (± 1.024) 69.947 (± 1.323)
MOOD (ours) 84.180 (± 2.123) 83.180 (± 1.519) 84.613 (± 0.822) 87.413 (± 0.830) 83.273 (± 1.455)
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Table 9: Diversity results. The results are the means and the standard deviations of 5 runs. The best results are
highlighted in bold. The results of GDSS and MOOD-w/o Pϕ are the same for the different target proteins.

Method
Target protein

parp1 fa7 5ht1b braf jak2
REINVENT (Olivecrona et al., 2017) 0.827 (± 0.007) 0.842 (± 0.006) 0.841 (± 0.006) 0.831 (± 0.005) 0.851 (± 0.004)
MORLD (Jeon & Kim, 2020) 0.895 (± 0.001) 0.893 (± 0.000) 0.896 (± 0.001) 0.893 (± 0.002) 0.895 (± 0.001)
HierVAE (Jin et al., 2020a) 0.724 (± 0.003) 0.725 (± 0.002) 0.739 (± 0.008) 0.749 (± 0.003) 0.762 (± 0.012)
FREED (Yang et al., 2021) 0.831 (± 0.010) 0.842 (± 0.009) 0.831 (± 0.010) 0.837 (± 0.008) 0.808 (± 0.010)
FREED-QS 0.855 (± 0.003) 0.855 (± 0.002) 0.850 (± 0.002) 0.851 (± 0.003) 0.850 (± 0.003)
LIMO (Eckmann et al., 2022) 0.894 (± 0.002) 0.898 (± 0.001) 0.891 (± 0.002) 0.893 (± 0.001) 0.894 (± 0.001)
GDSS (Jo et al., 2022) 0.887 (± 0.004) - - - -
MOOD-w/o property predictor (ours) 0.886 (± 0.005) - - - -
MOOD-w/o OOD control (ours) 0.884 (± 0.003) 0.887 (± 0.000) 0.880 (± 0.002) 0.875 (± 0.002) 0.878 (± 0.001)
MOOD (ours) 0.873 (± 0.005) 0.889 (± 0.003) 0.872 (± 0.003) 0.862 (± 0.000) 0.866 (± 0.001)

Table 10: Uniqueness (%) results. The results are the means and the standard deviations of 5 runs. The best
results are highlighted in bold. The results of GDSS and MOOD-w/o Pϕ are the same for the different target
proteins.

Method
Target protein

parp1 fa7 5ht1b braf jak2
REINVENT (Olivecrona et al., 2017) 99.781 (± 0.265) 99.780 (± 0.121) 99.706 (± 0.161) 99.663 (± 0.280) 99.714 (± 0.407)
JTVAE (Jin et al., 2018) 89.400 (± 1.943) 90.811 (± 1.415) 88.033 (± 2.098) 80.522 (± 7.340) 90.944 (± 1.251)
GraphAF (Shi et al., 2019) 99.978 (± 0.016) 99.933 (± 0.027) 99.967 (± 0.027) 99.956 (± 0.016) 99.944 (± 0.042)
MORLD (Jeon & Kim, 2020) 99.427 (± 0.666) 99.320 (± 0.874) 99.880 (± 0.086) 99.367 (± 0.924) 99.667 (± 0.173)
HierVAE (Jin et al., 2020a) 4.480 (± 0.645) 6.667 (± 0.967) 4.707 (± 1.022) 5.773 (± 0.931) 4.053 (± 0.866)
GraphDF (Luo et al., 2021c) 100.000 (± 0.000) 100.000 (± 0.000) 100.000 (± 0.000) 100.000 (± 0.000) 100.000 (± 0.000)
FREED (Yang et al., 2021) 97.153 (± 2.886) 97.593 (± 1.877) 95.133 (± 3.385) 96.760 (± 2.601) 96.667 (± 2.382)
FREED-QS 100.000 (± 0.000) 99.980 (± 0.040) 100.000 (± 0.000) 99.913 (± 0.173) 99.940 (± 0.120)
LIMO (Eckmann et al., 2022) 99.556 (± 0.228) 99.511 (± 0.208) 92.322 (± 4.280) 99.478 (± 0.247) 99.689 (± 0.042)
GDSS (Jo et al., 2022) 99.833 (± 0.098) - - - -
MOOD-w/o property predictor (ours) 99.827 (± 0.065) - - - -
MOOD-w/o OOD control (ours) 98.767 (± 0.335) 99.613 (± 0.100) 98.220 (± 0.407) 97.300 (± 0.119) 97.860 (± 0.486)
MOOD (ours) 98.860 (± 0.455) 99.600 (± 0.138) 98.467 (± 0.322) 98.693 (± 0.354) 98.153 (± 0.432)

Table 11: Hit ratio (%) results. The results are the means and the standard deviations of 5 runs. The best
results are highlighted in bold.

Method
Target protein

parp1 fa7 5ht1b braf jak2
REINVENT (Olivecrona et al., 2017) 4.693 (± 1.776) 1.967 (± 0.661) 26.047 (± 2.497) 2.207 (± 0.800) 5.667 (± 1.067)
JTVAE (Jin et al., 2018) 3.200 (± 0.348) 0.933 (± 0.152) 18.044 (± 0.747) 0.644 (± 0.157) 5.856 (± 0.204)
GraphAF (Shi et al., 2019) 0.822 (± 0.113) 0.011 (± 0.016) 6.978 (± 0.952) 1.422 (± 0.556) 1.233 (± 0.284)
MORLD (Jeon & Kim, 2020) 0.047 (± 0.050) 0.007 (± 0.013) 0.893 (± 0.758) 0.047 (± 0.040) 0.227 (± 0.118)
HierVAE (Jin et al., 2020a) 1.180 (± 0.182) 0.033 (± 0.030) 0.740 (± 0.371) 0.367 (± 0.187) 0.487 (± 0.183)
GraphDF (Luo et al., 2021c) 0.044 (± 0.031) 0.000 (± 0.000) 0.000 (± 0.000) 0.011 (± 0.016) 0.011 (± 0.016)
FREED (Yang et al., 2021) 4.860 (± 1.415) 1.487 (± 0.242) 14.227 (± 5.116) 2.707 (± 0.721) 6.067 (± 0.790)
FREED-QS 5.960 (± 0.902) 1.687 (± 0.177) 23.140 (± 2.422) 3.880 (± 0.623) 7.653 (± 1.373)
LIMO (Eckmann et al., 2022) 0.456 (± 0.057) 0.044 (± 0.016) 1.200 (± 0.178) 0.278 (± 0.134) 0.711 (± 0.329)
GDSS (Jo et al., 2022) 2.367 (± 0.316) 0.467 (± 0.112) 6.267 (± 0.287) 0.300 (± 0.198) 1.367 (± 0.258)

MOOD-w/o property predictor (ours) 2.360 (± 0.234) 0.480 (± 0.096) 9.907 (± 0.234) 0.627 (± 0.132) 2.780 (± 0.280)
MOOD-w/o OOD control (ours) 3.860 (± 0.177) 0.587 (± 0.153) 15.393 (± 0.567) 2.860 (± 0.223) 5.073 (± 0.437)
MOOD (ours) 7.260 (± 0.764) 0.787 (± 0.128) 21.427 (± 0.502) 5.913 (± 0.311) 10.367 (± 0.616)
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Table 12: Top 5% docking score (kcal/mol) results. The results are the means and the standard deviations of
5 runs. The best results are highlighted in bold.

Method
Target protein

parp1 fa7 5ht1b braf jak2
REINVENT (Olivecrona et al., 2017) -10.447 (± 0.170) -8.510 (± 0.111) -10.474 (± 0.100) -10.363 (± 0.136) -9.565 (± 0.077)
JTVAE (Jin et al., 2018) -10.304 (± 0.062) -8.312 (± 0.030) -10.105 (± 0.107) -9.915 (± 0.061) -9.656 (± 0.034)
GraphAF (Shi et al., 2019) -9.568 (± 0.029) -7.360 (± 0.025) -9.562 (± 0.160) -10.180 (± 0.190) -8.971 (± 0.084)
MORLD (Jeon & Kim, 2020) -7.580 (± 0.275) -6.293 (± 0.167) -7.877 (± 0.663) -8.081 (± 0.360) -7.833 (± 0.135)
HierVAE (Jin et al., 2020a) -9.581 (± 0.195) -6.842 (± 0.200) -8.178 (± 0.225) -9.029 (± 0.270) -8.347 (± 0.134)
GraphDF (Luo et al., 2021c) -7.032 (± 0.009) -6.396 (± 0.107) -7.265 (± 0.033) -7.340 (± 0.199) -7.007 (± 0.053)
FREED (Yang et al., 2021) -10.607 (± 0.186) -8.440 (± 0.055) -10.627 (± 0.283) -10.493 (± 0.147) -9.772 (± 0.097)
FREED-QS -10.709 (± 0.100) -8.475 (± 0.040) -10.830 (± 0.144) -10.702 (± 0.074) -9.849 (± 0.069)
LIMO (Eckmann et al., 2022) -8.986 (± 0.222) -6.771 (± 0.147) -8.447 (± 0.052) -9.048 (± 0.319) -8.449 (± 0.274)
GDSS (Jo et al., 2022) -10.095 (± 0.031) -7.921 (± 0.036) -9.619 (± 0.082) -9.447 (± 0.054) -9.027 (± 0.071)

MOOD-w/o property predictor (ours) -10.155 (± 0.037) -8.021 (± 0.051) -9.949 (± 0.064) -9.769 (± 0.040) -9.350 (± 0.045)
MOOD-w/o OOD control (ours) -10.488 (± 0.052) -8.081 (± 0.041) -10.602 (± 0.056) -10.581 (± 0.060) -9.695 (± 0.054)
MOOD (ours) -10.898 (± 0.117) -8.229 (± 0.070) -11.194 (± 0.034) -11.135 (± 0.037) -10.194 (± 0.059)

Table 13: Novel hit ratio (%) and novel top 5% docking score
(kcal/mol) results with 3D molecule generation baselines and GDSS
with respect to the target protein glmu. Results are the means and the
standard deviations of 5 runs. Best performance and its comparable
results (p > 0.05) are highlighted in bold.

Method Novel hit ratio Novel top 5% DS

Luo et al. (2021a) 1.367 (± 1.324) -6.328 (± 0.567)

Pocket2Mol (Peng et al., 2022) 6.002 (± 0.913) -7.714 (± 0.123)

GDSS (Jo et al., 2022) 1.227 (± 0.100) -6.411 (± 0.046)

MOOD-w/o Pϕ (ours) 7.320 (± 0.404) -7.673 (± 0.069)

MOOD-ID (ours) 10.453 (± 1.811) -7.832 (± 0.169)

MOOD (ours) 16.733 (± 1.984) -8.423 (± 0.164)

To
p 

5%
 D

S
(k

ca
l/

m
ol

) -9

-11

-13

-15
Full dataset Lower half L-MOOD-

w/o OOD control 
L-MOOD

Figure 7: Top 5% docking score dis-
tribution of the molecules with respect
to the target protein parp1. Each of the
horizontal lines represents the average
value of the distribution.

Table 14: Property optimization results against the target protein parp1 with various values of λ. The results
are the means and the standard deviations of 3 runs. The best results are highlighted in bold.

λ Novelty (%) Novel hit ratio (%) Novel top 5% DS (kcal/mol)

0.03 81.867 (± 2.407) 5.944 (± 0.735) -10.804 (± 0.061)

0.04 84.180 (± 2.123) 7.017 (± 0.428) -10.865 (± 0.113)

0.05 85.467 (± 0.694) 6.444 (± 0.457) -10.803 (± 0.086)

Table 15: Property optimization results of LIMO against the target protein parp1 with various values of
sampling σ. The results are the means and the standard deviations of 3 runs. The best results are highlighted in
bold.

Method Novel hit ratio (%) Novel top 5% DS (kcal/mol)

LIMO (σ = 1.00) (Eckmann et al., 2022) 0.455 (± 0.057) -8.984 (± 0.223)

LIMO (σ = 1.01) 0.187 (± 0.113) -8.311 (± 0.640)

LIMO (σ = 1.05) 0.233 (± 0.136) -8.468 (± 0.503)

LIMO (σ = 1.10) 0.167 (± 0.098) -8.314 (± 0.474)

MOOD (ours) 7.017 (± 0.428) -10.865 (± 0.113)

Table 16: Dockstring F2 task results. The results are the means and the standard deviations of 3 runs. The
best results are highlighted in bold.

Method Score

FREED (Yang et al., 2021) -3.391 (± 0.209)

LIMO (Eckmann et al., 2022) -0.318 (± 0.102)

MOOD (ours) -3.920 (± 0.021)
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To see the effect of λ on the property optimization task, we additionally provide the property
optimization results with various values of λ in Table 14, where λ = 0.04 is the setting used in the
main experiments. As shown in the table, novelty increases as the value of λ increases as in the novel
molecule generation task. However, the results of λ = 0.03 and λ = 0.05 are worse than that of
λ = 0.04 in terms of novel hit ratio and novel top 5% DS, since molecules that deviate from the
training distribution naturally tend to be low-quality, and balancing the effect of the OOD control and
the property gradient is important to produce novel and high-quality molecules.

We additionally provide the results of the naïve OOD sampling strategy in VAE-based models by
using a larger standard deviation of the latent space at the sampling phase in Table 15. Specifically,
with LIMO, we sampled latent variables from N (0, σ2I), where σ = 1 in the original setting. As
shown in the table, increased variance in the VAE-based model does not help to generate novel,
high-quality drugs. In fact, it degrades the performance since the ELBO objective minimizes KL
divergence with the standard normal and the sampling distribution does not match it and this scheme
lacks theoretical ground, unlike our proposed MOOD.

We additionally report the results of the F2 task of the Dockstring benchmark (García-Ortegón et al.,
2022) in Table 16. The score of the task is calculated as follows:

DS (w.r.t. target protein F2) + 10× (1− QED). (21)

D.3 ADDITIONAL MOLECULE SAMPLES

We additionally provide samples of the generated molecules and the training molecules that are
maximally similar to those molecules in Figure 8. As shown in the figure, while the molecules
generated by the baselines exhibit high Tanimoto similarity, the molecules generated by MOOD do
not share big substructures with the training molecules, even in the maximally similar one.
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Figure 8: Generated hit molecules and the corresponding molecules from the ZINC250k dataset of the
highest similarity. The similarity and docking score (kcal/mol) are provided at the bottom of each generated hit.
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