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Abstract
Most human diseases exhibit a complex genetic
etiology impacted by many genes and proteins
in a large network of interactions. The process
of evaluating gene-disease association through
in-vivo experiments is both time-consuming and
expensive. Thus, network-based computational
methods capable of modeling the complex inter-
play between molecular components can lead to
more targeted evaluation. In this paper, we pro-
pose and validate geneDRAGNN: a general data
processing and machine learning methodology for
exploiting information about gene-gene interac-
tion networks for predicting gene-disease associa-
tion. We demonstrate that information about the
gene-gene interaction network can significantly
improve the performance of gene-disease associ-
ation prediction models. We apply this method-
ology to predicting gene-disease association for
lung adenocarcinoma, a histological subtype of
lung cancer, and perform genomic analysis on
genes flagged as potential associations.

1. Introduction
With the widespread adoption of direct-to-consumer gene
sequencing and increased interest in precision medicine,
uncovering the genetic mechanisms underlying diseases en-
ables new avenues for disease prevention and treatment.
Currently, linkage analysis and genome-wide association
studies (GWAS) are the most widespread approaches to
uncovering gene-disease associations. However, these ap-
proaches are limited by costly and time-consuming statisti-
cal analysis and validation of identified biomarkers due to a
high rate of false positives (1). Moreover, these techniques
are often focused on broad genotype-phenotype associations
and fail to capture the complex molecular interactions that
constitute broader biological systems.

While there exist many biological networks such as gene
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regulatory networks and metabolic interaction networks,
protein-protein interaction (PPI) networks are the most ex-
tensively used for predicting gene-disease associations. As
proteins are encoded by genes, genetic mutations often also
lead to disease as they can lead to protein abnormalities.
This indicates that an enriched gene-gene interaction (GGI)
network with additional domain knowledge, such as gene
ontology, expression and functional features, could build a
more complete and robust molecular environment. Graph
Neural Networks (GNNs) can leverage these networks to
predict disease associated genes.

GNNs are neural networks which take node data and a
graph as input. In a general GNN, an embedding hv is
computed for each node v using its features and features
of its neighbours. Using that embedding, the output ov is
computed for each node. There is a local transition function,
f , that aggregates information from neighbouring nodes and
updates each node’s embedding. After some predetermined
number of updates, the embeddings are passed through a
global output function, g, that produces the final prediction
ov .

hv = f(xv,xnb[v],xco[v],hnb[v]), (1)
ov = g(hv,xv) (2)

The functions f and g are learned through, for example,
feed-forward neural networks. In this study, we propose a
new framework, geneDRAGNN, for predicting gene-disease
associations. geneDRAGNN aims to leverage PPIs while
also incorporating other biological information. Specifically,
gene ontology, tissue- and cell- specific gene expression,
and mutation rate are used to enhance and annotate the
network. To successfully model this data we employ GNNs.

The disease of interest is lung adenocarcinoma (LUAD) –
a histological subtype of lung cancer. Lung cancer has the
highest incidence (approx. 1.8 million new cases yearly)
of all cancers, largest number of deaths globally (approx.
1 million yearly), and is the most frequent malignancy (2).
The effectiveness of conventional treatments remains lim-
ited and the results of diagnosis indicate a poor prognos-
tic outcome (3). Therefore, the discovery of novel genes
which are associated with the occurrence and progression
of LUAD is essential to identifying future treatments and
prevention methods. In our research we make the following
contributions:
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• We develop a general data collection and machine
learning methodology geneDRAGNN for exploiting
information about the GGI network to predict gene-
disease associations.

• We apply our methodology to gene-disease associa-
tion prediction for lung adenocarcinoma, and demon-
strate that graph-based machine learning methods like
graph neural networks (GNNs) outperform traditional
machine learning methods which don’t use network
information.

• Using our GNN models, we identify a set of genes
which are enriched for association with LUAD and
conduct a simple genomic analysis to qualitatively as-
sess the performance of the model.

In this paper, we build upon previous work in bioinformat-
ics and graph-based machine learning, and apply it to the
study of classifying gene association to LUAD. While there
exists research on applying machine learning to predicting
genes associated with cancer, to our knowledge, this is the
first exploration of using graph-based machine learning to
predict genes associated with a specific histological subtype
of cancer.

2. Related Works
Machine learning methods have been applied with some suc-
cess to the problem of gene-disease association prediction.
In (4), the authors explore an ensemble machine learning ap-
proach for predicting gene-disease association using lexical,
syntactic, and semantic features extracted from literature us-
ing Word2Vec. (5) employs a similar approach, combining
text mining of the vast biomedical literature with machine
learning to develop RENET: a deep learning approach which
considers the correlation between the sentences in an article
to extract gene-disease associations. (6) uses neural net-
works to predict gene-disease association using biological
features, gene sequence length, the entropy of an amino
acid sequence, the discrete wavelet transform of gene se-
quences, and topological features from gene interactions.
An overview and comparison of network based techniques
for gene-disease association classification for various can-
cers can be seen in (7).

In (8), the authors exploited the unique properties of graph
neural networks to propose a network-based deep learning
approach to prioritizing autism genes in the Human Molecu-
lar Interaction Network (HMIN). Their framework, Prioriti-
zation of Autism-genes using Network-based Deep-learning
Approach (PANDA), estimates and ranks the probability
of autism association for every gene in the network. It
achieved a classification accuracy of 89%, outperforming
other common machine learning algorithms, and identified

genes that were found to be significantly enriched for autism
association.

Since the publication of (8), more elaborate GNN archi-
tectures have been proposed with improved performance.
This includes Graph Convolutional Networks (9), Graph
Attention Network (10), Message-Passing Networks (11),
node2vec (12), Graph SAmple and aggreGatE (Graph-
SAGE) (13), Chebyshev Graph Neural Network (ChebNet)
(14), and Topology Adaptive Graph Convolutional Network
(TAGCN) (15).

3. Datasets
geneDRAGNN takes a comprehensive knowledge-based
approach to gene-disease association by aggregating het-
erogeneous biological systems and gene functional data.
Specifically, data used in this study are classified into three
categories: (1) gene ontology and functional annotation, (2)
GGI network, and (3) gene-disease associations. The GGI
network (2) is annotated with gene-ontology (GO) terms
and tissue- and cell-specific expression levels (1). We train
our models on the annotated GGI network using known
gene-disease associations (3) as positive labels.

3.1. Gene Ontology and Functional Annotation

In the geneDRAGNN framework, gene properties are pro-
vided to the graph learning models as node features. We use
two primary datasets for gene features, the Human Protein
Atlas and the National Institute of Health: Genomic Data
Commons.

Human Protein Atlas The Human Protein At-
las (HPA) combines ontological, expression and
immunohistochemistry-based data to create compre-
hensive proteomic and transcriptomic profiles of human
tissue. The database was queried for genes that are
expressed in lung tissue (n=15021). These datasets include
common gene identifiers, ontological data, expression data,
and additional features such as pathology prognostics and
protein class.

The ontological data is organized into the following cat-
egories: Subcellular Location (n=35), Biological Process
(n=224), and Molecular Function (n=123). HPA data also in-
cludes tissue and cell-specific expression data collected from
in-house RNA samples of 52 frozen tissues, the Genotype-
Tissue Expression consortium dataset (GTEx), and FAN-
TOM5 consortium data. The latter two datasets were pro-
duced using deep mRNA sequencing and all data was nor-
malized.

National Institute of Health Genomic Data Commons
In addition to the gene ontology features, we used the Na-
tional Cancer Institute: Genomic Data Commons (GDC) to
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obtain frequency of mutation data, such as simple somatic
mutations and copy number alteration gain and loss, from
the TCGA-LUAD patient cohort (n=567) (16). The TGCA-
LUAD target cohort comprised 19,123 out of 21,092 genes
which had at least 1 simple somatic mutation.

3.2. Protein-Protein Interaction Network

The STRING dataset is a composite PPI network contain-
ing multiple categories of protein interactions saved in an
edgelist format. Edges represent interaction between two
proteins and evidence for each edge is derived from a broad
range of curated and literature based evidence. (17). Specif-
ically, the STRING PPI network includes protein interac-
tions from experimental evidence, genomic context, curated
databases, and homology. As such the STRING PPI is
information rich and contains 11,938,498 edges.

3.3. Gene-Disease Associations

DisGeNet is a widely used discovery platform for gene-
disease associations (GDA). The platform consolidates data
from curated repositories, GWAS catalogs, animal models,
and the scientific literature to rank potential GDAs. Factors
such as the number of publications, type of publication, and
publication source are used to create a weighted association
score. In addition, DisGeNet also provides an evidence
index (EI). The EI is derived from the BEFREE and Psy-
GeNET datasets and measures the degree of contradictory
sources for a GDA. In this study, we use the DisGeNet
platform to gather known LUAD-gene associations.

4. Methodology
4.1. Gene Ontology (Node Features) Processing

Gene ontology terms, protein class, and disease involvement
features were one-hot encoded. This resulted in a sparse
matrix encoding of our GO features on which we applied
singular value decomposition (SVD) to reduce dimensional-
ity. Multiple configurations of the SVD embeddings were
tested on a random forest classifier and the embedding yield-
ing the highest accuracy (100-component SVD) was used
for the remainder of our modeling experiments.

4.2. Tissue-Specific Gene-Gene Interaction Network

In this study, we present the Lung Specific Functional Gene
Interaction Network (LS-fGIN), a GGI network that priori-
tizes genes in the lungs. LS-fGIN is a subset of the STRING
PPI such that each interaction is represented by one orien-
tation resulting in an undirected graph. Nodes are mapped
from Ensembl protein identifiers to their corresponding En-
sembl gene identifiers using the STRING protein aliases
dictionary. The conversion is a many-to-one mapping where

multiple protein identifiers map to a single gene identifier.
Finally, LS-fGIN is subset to include only genes expressed
in the lung.

4.3. Gene-Disease Association Score Processing

Using the Disease Gene Network (DisGeNet) portal, we
collected the Gene-Disease Association (GDA) scores of all
genes associated with LUAD. The corresponding Evidence
Indices, which indicate the percentage of support for the
GDA, were also extracted. To increase the confidence in
our GDA labels, we applied a GDA score threshold of 0.02
and Evidence Index threshold of 0.7 to ensure the candidate
genes had sufficient evidence to support the association
while maintaining a large sample size.

As defined in (18), we used the Selected Completely At
Random (SCAR) assumption to develop negative labels.
Random samples were collected from the unknown labels
of the Disease Gene Network to create a set of negative
labels.This methodology assumes that most genes are not
associated with LUAD so that the true label of the sampled
genes is negative. To verify this assumption and account for
sampling bias, 100 samples of negative labels were created
and results over the 100 trials were averaged to determine a
final score.

4.4. Models

4.4.1. BASELINE NODE-ONLY MODELS

To evaluate the impact that the network information has
on the performance of our models, a selection of baseline
models were trained to establish a benchmark for the graph-
based models. These models use only features about the
genes (nodes) themselves as described in Section 3.1 and
Section 4.1. The models tested include Multilayer Percep-
trons (MLP), Random Forests (RF), K-Nearest Neighbours
(KNN), and Support Vector Machines (SVM).

4.4.2. GRAPH-BASED MODELS

node2vec

node2vec is a method of graph representation learning which
learns a low-dimensional vector representation of nodes,
edges, and subgraphs through a biased random walk proce-
dure (12) (19). We applied node2vec to LS-fGIN to generate
neighbourhood-based network features for each node. We
set the dimension of the generated embeddings to 128, the
number of walks to 10, the walk length to 80, the window
size to 10, and the number of epochs to 10. Lastly, we con-
catenate the features generated by node2vec with the node
features described in Section 4.1 and trained MLP, RF, and
SVM models using the same process as our baseline.
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Figure 1. geneDRAGNN consists of three main components. Data is collected on gene ontology and functional annotation features, the
GGI network, and GDA scores. These features are used to train graph-based machine learning models as well as benchmark models
which perform gene-disease association prediction. A model is chosen based on performance to predict gene association with LUAD of
unlabeled genes and the results are validated through biological enrichment analysis.

GRAPH NEURAL NETWORK

In our experiments, we used a common architecture for our
GNN as depicted in Figure 2, and iterated with different
graph convolution layers.

The GNN architectures we tested include Graph Convolu-
tional Networks (GCN) (9), Simple Graph Convolutional
Networks (SGC) (20), GraphSAGE (13), Graph Attention
Networks (GAT) (10), ChebNets (14), and Topology Adap-
tive Graph Convolutional Networks (TAGCN) (15). Cheb-
Nets, GCNs, and GraphSAGE are examples of successful
spectral approaches towards graph convolution operators
which propagate information across nodes. In spectral meth-
ods, the graph signal is transformed to the spectral domain,
processed, then transformed back using graph fourier trans-
forms. ChebNet employs approximations of the Cheby-
shev polynomial as learnable filters. GCNs build on Cheb-
Nets and simplify the convolution operation. SGCs further
simplify GCNs by removing non-linearities and collapsing
weight matrices between consecutive layers, demonstrating
in the process that the low-pass filter behavior of GNNs
is the essential component for their success. The Graph-
SAGE framework generates embeddings by sampling from
a node’s neighbourhood and performing some form of ag-
gregation through an LSTM, pooling, or averaging. GATs
are an example of attention-based spatial approaches and
incorporate an attention mechanism into the propagation
step (19).

The choice of hyperparameters is motivated by the network
properties described in Section 5.1. In particular, the diam-
eter of LS-fGIN motivates a shallow network of at most 4
graph convolution layers. The large size of the graph also
places restrictions on computationally tractable architec-

tures. For example, GNN architectures which process edge
features were not computational tractable on the full GGI
network.

4.5. Model Evaluation

A consistent methodology is used in the development and
training of each model to enable an unbiased comparison.
Each model is trained for 100 different trials each corre-
sponding to a label set as described in Section 4.3. The use
of multiple trials with different sets of negative labels pro-
vides confidence that our models’ performance generalizes
to the full set of genes. On each trial, independent training
(70%), validation (10%), and test (20%) sets are created. At
the end of each trial, a common set of metrics are calculated
on the training and test sets including: accuracy, precision,
recall, and f1-score. Recall is the more important metric
for the purposes of this paper since false negatives are more
costly than false positives.The comparison between models
is made on the basis of the average performance of their 100
trials on the test sets as well as the stability of this level of
performance. Each trial consisted of a balanced dataset of
1556 genes.

5. Results
5.1. Network Properties

Table 1 describes the fundamental network properties of LS-
fGIN. LS-fGIN is highly connected, containing 1 strongly
connected component and node degrees ranging from 1 to
6282 with a mean degree of 593.193. Interestingly, LS-fGIN
does not follow a power law distribution and instead dis-
plays qualities of a Erdös-Rényi network. The Erdös-Rényi
model describes random graphs and is characterized by a
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Figure 2. The general architecture of our graph neural networks.

Poissonian degree distribution for large graphs. Moreover,
the probability of connections between two pairs of ver-
tices is approximately the same for each pair. Erdös-Rényi
graphs tend to have a larger central component containing
the majority of connections, as seen in LS-fGIN (21).

Table 1. Properties of the gene-gene interaction network
Property
Number of nodes 14854
Number of edges 4405641
Number of connected components 1
Network diameter 4
Network density 0.0399
Clustering coefficient 0.1998
Average node degree 593.193
Average shortest path length 1.998

5.2. Classification Results

5.2.1. BASELINE MODELS

The goal of the baseline models is to establish a bench-
mark for the network based methods and measure the added
predictiveness and value of network information. Gene on-
tology and expression data were found to be predictive of
gene-disease association, with baseline node-only models
achieving roughly 69% accuracy. MLPs, Random Forests,
K-Nearest Neighbours, and Support Vector Machines clas-
sifiers were used and achieved accuracies of 69.7%, 71.2%,
64.5%, and 69.1%, respectively.

5.2.2. GRAPH-BASED MODELS

Section 5.2.2 shows the model performances. In general
models using LS-fGIN consistently outperformed the base-
line models trained exclusively on gene-ontology features.
Graph-based models achieved a maximum accuracy, preci-
sion, and recall of 78%, 80%, and 75% respectively. The
model which achieved the highest average accuracy was the
Support Vector Machine trained on gene-ontology features
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Figure 3. The log-scale degree distribution of LS-fGIN. The dis-
tribution does not follow a power law distribution as expected
but instead approximates the degree distribution of a Erdos Renyi
network (22)

and node2vec embeddings of LS-fGIN with an average ac-
curacy of 78.0%. The highest performing GNNs achieved
an average accuracy of roughly 75%. SGConv achieved
an average accuracy of 74.3% with a standard deviation of
2.7%, and an average precision of 74.6%. The SGConv
model had the highest positive recall of all GNN models,
averaging 75.0%.

5.3. Validation of prioritized LUAD genes

We use the DAVID functional annotation tool to perform
enrichment analysis on the top-ranking genes as predicted
by the SGConv GNN model (chosen on the basis of its
high recall). Specifically, we looked for enriched GO terms
and KEGG pathways in the highest-ranked decile and top
ten unlabeled genes classified by our chosen model. We
perform a similar analysis on the top ten genes classified
by our MLP model to qualitatively assess functional differ-
ences between classifiers in the top-ranked genes. ?? shows
the top ten enriched GO terms. In addition to functional
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Table 2. The performance achieved by each model which was tested. The baseline models use only node features–features about the genes
themselves. The graph-based models use features about the gene-gene interaction network (either via node2vec embeddings or a GNN
processing the graph directly). The metrics are averaged over multiple trials. Some models were evaluated on fewer than the full 100 trials
due time and computational constraints. The more promising models were evaluated on the full 100 trials.
Model Features Used Accuracy Positive Recall Positive Precision F1-Score # of Trials

Baseline Models

Random Forest Node features 0.707 0.728 0.699 0.707 100
MLP Node features 0.699 0.668 0.713623 0.699 100
K-Nearest Neighbours Node features 0.645 0.45 0.737 0.630 100
Support Vector Machine Node features 0.693 0.506 0.809 0.681 100

Graph-based Models

Random Forest Node Features, node2vec Network Features 0.766 0.705 0.802 0.765 100
K-Nearest Neighbours Node Features, node2vec Network Features 0.645 0.751 0.620 0.640 100
Support Vector Machine node2vec Network Features 0.780 0.759 0.794 0.780 100
MLP Node Features, node2vec Network Features 0.744 0.735 0.749 0.744 100
MLP node2vec Network Features 0.731 0.736 0.730 0.730 100
SGConv GNN Node features, Functional Graph 0.743 0.750 0.746 0.741 100
TAG Node Features, Functional Graph 0.749 0.706 0.778 0.747 10
TAG Node Features, node2vec Network Features, Functional Graph 0.741 0.726 0.750 0.741 10
ClusterGCN Node Features, Functional Graph 0.726 0.671 0.757 0.724 11
GraphSAGE Node Features, Functional Graph 0.714 0.674 0.733 0.713 10
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Figure 4. Average accuracies of the baseline and graph-based mod-
els over their trials. Error bars represent standard deviation of
accuracy across trials and indicate the stability of each model at its
average level of performance.

enrichment analysis, we also examined literature surround-
ing the top ten ranked unlabeled genes from both our SG-
Conv model and MLP model. Literature was chosen using
the DISEASES tool (23), which aggregates all literature
on potential gene-disease associations. Overall, we found
literature-based evidence for LUAD association in eight out
of the top ten unlabeled genes classified by SGConv. Table
X shows a selection of our top-ranked genes, a functional
description of the gene, and literature-based evidence sup-
porting a gene-disease association. Lastly, we sought to
check the functional enrichment of benchmark gene sets
from the Cancer Census (n=575) (16), DisGeNet labels with
GDA < 0.01 (n=1755), and Cystic Fibrosis (n=2507) in our
ranked deciles. We chose cystic fibrosis to test classification
specificity as cystic fibrosis is a genetic disorder of the lung.
Figure X shows the fraction of the respective gene sets in

each decile and highlights significantly enriched deciles.
Using a one-tailed binomial test for significance we found
that all three gene sets, Cancer Census, DisGeNet LUAD-
gene associations with GDA < 0.01, and cystic fibrosis were
enriched in the top decile.

6. Discussion
In this study we proposed and validated a general methodol-
ogy for exploiting GGI network information for predicting
gene-disease association using machine learning. The mo-
tivation behind this research is that most human diseases
exhibit a complex genetic etiology impacted by many genes
and proteins in a large network of interaction. Thus, lever-
aging information about this interaction network may be
helpful in predicting associations between genes and dis-
eases. We applied this methodology to the task of flagging
genes associated with lung adenocarcinoma.

The GNN model achieving the highest recall was SGConv.
For prioritization of LUAD genes, we use recall as our pri-
mary evaluation metric as the purpose of this study is to
screen for novel gene-disease associations. Flagging genes
using a high recall model has a purpose for further research
and clinical action too, as identifying potential gene candi-
dates can accelerate diagnostics turnaround and potentially
drug discovery. Moreover, if the model can efficiently iden-
tify positive genes based on molecular characteristics, then
it is efficiently trained to recognize similar characteristics in
unlabeled genes.

Using SGConv, LS-fGIN nodes were scored on LUAD as-
sociation and functional enrichment analysis was performed
on the top ranked genes. The PI3K-AKT signaling path-
way was found to be significantly enriched in the top-ranked
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Figure 5. Distribution of benchmark gene sets among ranked deciles. (a) Cystic fibrosis associated genes from DisGeNet (b) lung
adenocarcinoma associated genes with GDA score < 0.02 threshold (c) Cancer Gene Census. Significantly enriched deciles are highlighted
in red.

decile with a p-value of 2.8E−14. Activated by PI3K, AKT
is a protein kinase that regulates fundamental cellular func-
tions such as transcription, translation, proliferation, growth,
and survival (24). Aberrant activation of the PI3K-AKT sig-
naling pathway is often associated with tumor progression
and resistance to cancer therapies (25). (26) has shown that
the PI3K-AKT pathway is upregulated in NSCLCs, and is
thus associated with LUAD.

Literature-based validation was also performed on the top 10
unlabeled genes and can be found in the Appendix A.2. Here
we highlight FYN, a carcinogenic protein kinase with the
highest prediction score. FYN plays an important role in the
cell migration of lung carcinoma epithelial (A549) cells and
is associated with the PI3K-AKT pathway (27). Overexpres-
sion of FYN reduces the migration and invasion capacities
of A549 cells via down-regulating the PI3K/AKT pathway,
thus effectively reducing tumorigenic capacity (28). (28)
found that FYN levels were suppressed in LUAD tissue,
allowing for AKT mediated tumorigenesis and ultimately
supporting positive association with LUAD. This finding is
significant since, in addition to supporting our functional
enrichment analysis of the PI3K-AKT pathway, this find-
ing also provides substantive and experimentally-verified
evidence that geneDRAGNN is capable of identifying new,
previously unlabeled, positively associated genes.

It is important that the findings made by geneDRAGNN are
interpreted with regards to the methodology used for gener-
ating labels. In particular, while positive-label associations
were based on experimentation in the literature, negative
labels were obtained through random sampling. This is a
common practice in similar bioinformatics machine learn-
ing research since negative association is very difficult or
impossible to prove. For this reason, we ran multiple tri-
als with different random samplings of negative labels as
it ensures that the performance levels achieved are not due
to random chance and the particular set of negative labels
generated.

Computational limitations also restricted the size of possi-
ble models more generally. It is possible that larger models
would have achieved better performance. In our case, the
primary bottleneck was memory limitations caused by the
large size of LS-fGIN which must be kept in memory dur-
ing training. With more memory, weighted edges, or edge
features, could be incorporated and potentially improve
performance. Therefore, a promising direction for future
research is to explore the potential benefits of using edge
features and larger graph-based models.

Ultimately, geneDRAGNN successfully identified new
genes associated with LUAD and has demonstrated the im-
portance of taking an integrative approach to gene-disease
association. Furthermore, we demonstrate that appropriate
utilization of this information in machine learning meth-
ods can produce models which identify genes associated
with a given disease with high accuracy, precision, and re-
call. In particular, different flavours of GNNs and network
embedding methods like node2vec are effective methods
for processing and utilizing network information for gene-
disease association prediction.

Data Availability Statement
This study uses open source data from the Human Protein
Atlas, the National Institute of Health, the Disease Gene
Network, and STRING. Our code, along with instructions
for reproducing our results, can be found at https://
github.com/QMINDProjectX/geneDRAGNN.

https://github.com/QMINDProjectX/geneDRAGNN
https://github.com/QMINDProjectX/geneDRAGNN
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A. Appendix
A.1. Baseline Model Parameters

The MLPs used a simple architecture with 2 hidden layers of
128 units each and ReLU activation, implemented with Py-
Torch (29). The number of estimators of the random forests
was set to 100. The K-Nearest Neighbors classifier used
k=5 and the standard euclidean metric. The Support Vector
Machine classifier used the Radial Basis Function kernel.
Random Forests, K-Nearest Neighbours, and Support Vector
Machine classifiers were implemented with Sci-Kit Learn
(30).

A.2. Graph-Based Model Parameters

Our implementations used the ‘PyTorch Geometric’ library
(29). First, we converted LS-fGIN to a format readable by
PyTorch Geometric by mapping our Ensembl gene identi-
fiers to a 0-based indexing system and creating an edge list
of shape [2, n_edges]. The edge features, which are
not used by all our models, are represented by[n_edges,
n_edge_feats] tensors. The Adam optimizer is used
(31) with the cross-entropy loss and models are trained for
250 epochs. Throughout the training process, the model
is evaluated on the training and validation sets, and model
checkpoints are saved along the way. At the end of the 250
epochs, the model with the highest validation accuracy is
restored and evaluated on the test set. This completes one
trial.
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Rank Gene Gene functional description and Literature review
1 FYN FYN encodes a tyrosine-protein kinase essential in cell motility and ad-

hension and plays an important role in the PI3K/AKT pathway responsible
for regulating the cell cycle (32). (28) demonstrated that overexpression of
FYN accelerated cell apoptosis and reduced both angiogensis capacity and
PI3K/AKT expression levels in lung carcinoma A549 cells. Conversely,
FYN expression was shown to be correlated with LUAD prognosis as FYN
expression levels were shown to be down-regulated in LUAD tissues and
cells .

2 CDC42 This gene encodes a member of the Rho subfamily of small GTP-binding
proteins and plays a key role in cancer cell migration and metastasis.
(32; 33) found decreased levels of StarD13, a surpressor of CDC42, in
lung tumor tissue and A549 cells subsequently leading to increased CDC42
activation thus increasing formation of invadopodia, a unique hallmark of
cancer, and matrix degradation.

3 PTPRC This gene encodes a tyrosine-protein phosphatase required for T-cell acti-
vation. Upon T-cell activation, PTPRC recruits and dephosphorylates FYN
which has been shown to be correlated with LUAD by (32). (34) directly
supports PTPRC association with LUAD by demonstrating that PTPRC
was a key gene in affecting the immune state of the tumor microenviron-
ment and was ultimately correlated with a variety of tumor-infiltrating
immune cells.

4 CREB1 This gene encodes a phosphorylation-dependent transcription factor that
stimulates transcription upon binding to DNA cAMP response element
(CRE) (32). (35) used protein expression assays to understand the underly-
ing mechanism of ferroptosis, a new form of regulated cell death associated
with cancer, in LUAD. They found that CREB was highly expressed in
LUAD and knockdown of CREB inhibited cell viability and growth by
promoting apoptosis- and ferroptosis-like cell death.

6 ITGB1 ITGB1 encodes the Integrin beta-1 subunit which when associated with In-
tegrin alpha-3 provides a docking site for FAP, a serine protease involved in
extracellular matrix degradation and tumor growth, at invadopodia plasma
membranes. Hence ITGB1 may participate in formation of invadopodia,
matrix degradation, and can promote cell invasion (32). Immune infil-
tration analysis revealed that the ITGB1-DT/ARNTL2 axis may effect
the progression of LUAD and the immune microenvironment. ITGB1-
DT/ARTL2 (36)

9 ISG15 ISG15 acts as a cytokine, modulating immune responses, and can delay
tumor cell growth by inhibiting tumor cell proliferation and angiogenesis.
(37) found that high expression of ISG15 serves as a positive prognos-
tic marker for long-term survival in LUAD patients. ISG15 has a broad
network of protein targets, and (38) concludes that covalent ISG15 conju-
gation enhances the tumor-suppressive activity of the carboxyl terminus of
Hsp70-interacting protein (CHIP), thereby showing an antitumor effect of
Type 1 interferon.

10 LRRK2 In an analysis of TCGA LUAD RNA-seq data, (39) identified that de-
creased LRRK2 expression is associated with LUAD. In (40), reduced
LRRK2 expression was found to promote LUAD tumorigenesis and was
associated with poor survival outcomes. This study also found overactivity
in LRRK2 contributes to Parkinson’s disease, which suggests pathological
links between neurodegenerative disease and cancer are emerging.


