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Abstract

Current test sets for task-oriented dialog sys-
tems tend to overestimate the systems’ per-
formance on conversation-level tasks like di-
alog state tracking. We observed that they
fail to showcase similar efficacy when tested
on some commonly occurring realistic scenar-
ios like repetition and clarification through di-
alogues. This limited generalizability of mod-
els can be attributed to two key aspects. Firstly,
crowd-workers who create these test sets have
a highly restrictive/limited dialog policy to
generate samples, leading to very rigid and
less realistic samples. Secondly, the train and
test splits are plagued with annotator biases
since the same set of crowd-workers is re-
cruited to create both splits. Using a graphi-
cal framework for dialogues, called Conversa-
tion Flow Modeling, we highlight the limita-
tions for one such dataset. While motivating
practitioners to create stricter test sets, we pro-
pose FRAMEWORK FOR AUTOMATED PAT-
TERN INDUCTION (FRAPI), an HCI (human-
computer-interaction) framework for the in-
duction of additional natural dialog flows.
FRAPI helps create annotator-bias-free pat-
terns in testbeds of task-oriented dialog sys-
tems with minimal human intervention. Us-
ing FRAPI, we build a testbed for the models
trained on the MultiWQOZ data set. The pro-
posed testbed helps validate learning from di-
verse yet natural patterns. Through it, we high-
light the shortcomings of the current architec-
tures to model simple, realistic human-level
language variations on dialog state tracking.

1 Introduction

When task-oriented dialogue systems are evalu-
ated using standard metrics on common data sets
like the MultiWwOZ dataset (Budzianowski et al.,
2018), there is usually an overestimation of per-
formance on the provided test bed. This can be
attributed to the model learning the data, and not
the task (Linzen, 2020). In an ideal world, NLP

data would be a good representative of the task.
However, in reality, these data sets are plagued
with local biases. In the machine learning com-
munity, this problem is usually referred to as the
Generalization problem. The biases can range from
data sets adhering to very limited patterns to data
sets having certain annotator biases (Geva et al.,
2019). To alleviate such biases and integrate more
of the natural language nuances into the testing pro-
tocol, Ribeiro et al. (2020) propose CHECKLIST a
software-engineering motivated approach to eval-
uate the current NLP systems. This approach not
only helps in assessing models, but also in devel-
oping competitive test beds.

While CHECKLIST is helpful in providing sen-
tence level modifications for turn-level tasks like
Intent classification (IC) and Slot Labeling (SL)
(Liu and Lane, 2016; Goo et al., 2018; Wang et al.,
2018b; Gupta et al., 2019), it provides no clear
guidelines on how to approach the conversational-
level problems i.e., tasks that leverage contextual
information e.g., Dialog Generation and Dialog-
State-Tracking (DST). (Williams et al., 2005;
Williams and Young, 2007; Wu et al., 2019a).
Hence, the applicability of this framework is lim-
ited when it comes to task-oriented dialogue sys-
tems. We propose a complementary approach
FRAMEWORK FOR AUTOMATED PATTERN IN-
DUCTION (FRAPI) which helps in constructing
competitive test beds specifically dealing with
Conversational-level problems. Our contributions
are as follows:

1. Introduce a mechanism for analyzing failure
patterns in a data set via conversation flow
modeling. We do this for MultiWwOZ2.1 (Eric
et al., 2019).

2. Leverage a two-person spoken conversation
data set: TaskMaster (Byrne et al., 2019) to
infuse natural but more complex patterns into
conversational data sets.



Abstract Template

Sample Conversation 1

Sample Conversation 2

®< Request - Flight {Departure City} ]

®< Please book a flight from Frankfurt

®< | want to book a flight from Denver

[ Request {Arrival_City} > I:| [ Sure, what would the arrival location be. 2 > I:l [ Sure, where are you planning to travel to 2 > I:|
Q)< ontomm nerivarcion @<= ) Q< oo
Request {Departure Time} > |:| Ok Frankfurt, Germany to Tokyo, Japan. 1 Thanks! | can do that. Can you please let me J>|:|
At what time would you like to travel ? = know the preferred time ?
Q)< antomm wepartire zinet ] Q)< mmssan ) (Q)<Cresram paming o ve i e evenng, sy rounc .|
Inform {Departure Time, Duration} l:] A Lufthansa flight leaves at 8:21 am. I have a JetBlue flight which leaves at 6:10pm. l:l
Request {Confirmation} - Itis an 11 hr long flight. Should | book that for you ? l:l The duration of the flight 3 hrs 39 mins. Does that work ?

®< Inform {Confirmation} ]

@ < Sounds good. Please book one ticket. ]

@ Yes. Please book one ticket.

[ Inform {Success}, Bye

>0

[ Done. The ticket will be mailed to you. Have a Nice day. > l:l

[ Done. The ticket will be mailed to you. Have a Nice day. > l:]
=

Figure 1:

Both Conversation 1 and 2 are natural language realizations of the same abstract conversation flow

template given on the left. They differ only in their surface forms but each turn essentially contains/asks for the

same information. Please refer Section 3 for details

Prompt

®< | want to book a flight from Denver

Sure, where are you planning to travel to ? > m

Subsequent Conversation 1

@< een ]

[ Thanks! | can do that. Can you please let me know the preferred time ? > I:l

®< Yes, | am planning to leave in the evening, say around 6 pm. ]
| have a JetBlue flight which leaves at 6:10pm. I:l
The duration of the flight 3 hrs 39 mins. Does that work ?

=
®< Yes. Please book one ticket.

[ Done. The ticket will be mailed to you. Have a Nice day. >|:|
=

Subsequent Conversation 2

@ < | am planning to catch an evening flight, say around 6pm to New York ]

>

I have a JetBlue flight which leaves at 6:10.
The duration of the flight 3 hrs 39 mins. Does that work ?

@< vt

Yes [j

@ < Sounds good. Please book one ticket. ]

[ Done. The ticket will be mailed to you. Have a Nice day. > :I
=

Figure 2: Although the goal of both the conversation is the same - Flight booking. They differ in the overall
conversation flow abstraction to achieve the same goal. The first two turns (called prompt) are the same for
both the conversations and based on the human unpredictability, follow different conversation flow paths in each

conversation. Please refer Section 3 for details

3. Propose FRAPI, a framework for building
competitive test-points for task-oriented dia-
log systems with minimal human supervision.

4. Demonstrate the applicability of the proposed
framework on the MultiWwOZ2.1 test set. We
build a competitive test bed MTASK-TEST,
incorporating those realistic complex patterns.

2 Related Work

Conversational Flow modeling via graph data-
structures has previously been explored in Gritta
et al. (2020). We adopt a similar approach albeit
with the difference in the application. While Gritta
et al. (2020) uses graph sampling for augmentation
to help with dialog-policy/policy learning, the fo-
cus of our work is to produce diversity-rich and
competitive natural language samples with annota-
tions. We anticipate a lot of future research scope

using conversational flow graphs.

Dialogue State Tracking (DST) is an important
task in goal-oriented dialogue systems. Correct di-
alogue state tracking helps the agent construct a co-
herent response and helps, in-directly, resolve long-
term dependency issues in conversations, where the
long term is across all the previous dialogue turns.
Other pertinent issues like believability of a con-
versation i.e., how realistic is the complete conver-
sation, also depend directly on the dialogue-state.
An example of unrealistic/unbelievable conversa-
tion might look like, “I am looking for a Lufthansa
flight to the Moon".

There have been multiple previous works (Wu
et al., 2019b; Zhou and Small, 2019; Heck et al.,
2020) which focus on the problem of dialogue-state
tracking. Our work focuses on highlighting the
shortcomings of two of the current models (Zhou
and Small, 2019; Heck et al., 2020) through natural




policy variations.

Generalization through Data. Another line of
work which deals with the notion of generalizabil-
ity is DialoGLUE (Mehri et al., 2020). DialoGLUE
groups together different types of tasks in dialogue
systems and is focused on testing the generalizabil-
ity of a unified model, as in GLUE (Wang et al.,
2018a). In contrast, we aim to provide a framework
for assessing conversation-flow robustness of mod-
els for a single conversational-level task at a time,
be it dialogue generation or dialogue state tracking.

Shah et al. (2018) propose a bootstrapping mech-
anism for generating data sets having high cover-
age w.r.t dialog/conversations flows. Their main
goal is to generate turn-level template guidance for
crowd-source workers. These templates, however,
are not natural language texts. Hence each tem-
plate is sent to crowd-workers for conversion to
natural language. In contrast, our proposed frame-
work provides natural language utterances, thereby
reducing the burden on crowd-workers. With our
approach, the task of crowd-workers essentially re-
duces to performing minor edits in the dialogue
state annotations.

Realistic variations and Standard Test-bed. Di-
verse decoding methods (Vijayakumar et al., 2018;
Kumar et al., 2019), as well as CHECKLIST
(Ribeiro et al., 2020) might offer linguistic vari-
ability at turn level however they do not provide a
way to do it at the conversational level. Our goal
is not to compete with their work, but to offer a
complementary approach which is suited for cre-
ating competitive test sets task-oriented dialogue
systems.

Ganhotra et al. (2020) highlight the effects of
inducing naturalistic patterns in Goal-Oriented Di-
alog. While, the naturalistic patterns help in as-
sessing the robustness of the systems, the approach
provided in the paper is mostly restricted to simpler
datasets like the bAbI dataset (Bordes et al., 2016),
not easily scalable to new domains and locales, and
requires a lot of manual effort to incorporate (and
potentially annotate) the pattern into a conversation.
In contrast, our framework provides a scalable ap-
proach while looking at a more complex dataset
i.e., MultivOZ2.1.

In the next section, we understand conversation
flow and some problems associated with it.

3 Understanding Conversation Flow

Every conversation (be it human-human or ma-
chine human), despite being fraught with uncertain-
ties (in terms of human unpredictability or machine
understanding) as well as linguistic variability, has
a certain level of underlying abstract Conversa-
tion Flow. At a high level, a Conversation Flow
governs how a conversation proceeds and is not
concerned with the linguistic variability associated
with each turn in the conversation. We elucidate the
importance of conversation flow using two main
examples:

1. Linguistic Variability: Consider the two par-
allel samples (Sample 1, Sample 2) in Fig-
ure 1. We can see that the two conversations,
though addressing the same problem and as-
sociated with similar domains, differ a lot in
their surface forms. However on an abstract
level, the conversation flow of both these con-
versations is very similar, as depicted on the
left in Figure 1.

2. Uncertainty: Consider the two conversations
in Figure 2. We can see that though the two
conversations have the same end goal, the way
the conversation proceeds is very different. In
sample (a), the user answers every question
asked by the agent, perfectly; no more no
less. However, in sample (b) the user, asks
for clarification, and provides multiple slots
even without the specific agent prompt. These
conversations, though realistic, showcase the
unpredictability of humans when it comes to
providing relevant information.

Dialog Policy Learning v/s Conversation Flow

Dialog Policy Learning is the task of assigning a
probability to possible dialog acts based on the con-
versation history. The realm of policy learning is
restricted to agent actions only. In contrast, conver-
sation flow modeling is concerned not only with
the possible choices for an agent but also with the
unpredictability of humans. In essence, conversa-
tional flow modeling is a more complicated task
and one which encompasses dialog policy.

The primary goal of this work is to target the
uncertainty associated with the conversation flow,
and build a competitive test-set which has instances
of those uncertainties. To analyze conversation
flows, we use an abstract graph data-structure
which we describe in the next section. Insights
from this analysis is essential for building FRAPI.



4 Conversation Flow Modeling

In this section, we describe the abstract frame-
work used for analyzing the conversation flows.
Using the abstraction, namely the conversational
flow graph, we partition the MultiWOZ2.1 test set
into two disjoint sets. We then analyze the sets
individually to find out key characteristics of each
set. The analysis plays a pivotal role in building
the competitive test set.

4.1 Dataset

We use the MultiwOZ2.1 dataset (Eric et al.,
2019), a multi-domain dialogue dataset spanning
7 distinct domains like attraction, hotel,
restaurant, taxi, train, for obtaining
and analysing conversational flow. It is a con-
solidated dataset build on top of Multiw0Z2.0
(Budzianowski et al., 2018) with relevant state cor-
rections and added dialogue act annotations. It con-
tains a collection of fully-labeled (intent-slot label-
ing and dialogue state tracking) human-human writ-
ten conversations gathered using the WOZ (Wizard-
of-Oz) framework (Kelley, 1984).

4.2 Framework

Each data point is a fully annotated conversation
instance. The annotation involves turn-level utter-
ances, speaker (user/agent) of each turn, turn-level
slots, as well as the belief states (which also con-
tains information about the domains under consid-
eration). Instead of looking at each turn separately,
we focus our attention to convert each turn-pair
(consecutive user-agent turns) in the conversation
instance into a node of a graph G. Let G = (V| E),
where V' is the set of nodes in the graph G and
FE is the set of associated edges. The edge set
is a tuple (u, v) signifying a directed edge, where
u,v € V. In our case, each successive turn-pair
in a conversation is connected through a directed
edge based on the flow of the conversation. To
re-iterate, we only use the fully annotated Multi-
WOZ2.1 training set for constructing this graph,
and hence some natural conversation flows might
not be present in the graph G .

Each node is represented as a binary vector
containing information about the evolution of
dialogue/belief-states. Each co-ordinate in the
binary vector represents if a specific belief-state-
value has been filled (represented using 1) or not
(represented using 0). Note that the representation
for belief-state being adopted in our model is ag-

nostic of the domain being considered. We do this
because many domains share common traits which
are used interchangeably in other domains. For
e.g. (in majority cases), for a conversation to look
realistic, the area being considered for a domain
like attraction, is used in other domains like
taxi (for either departure or arrival area). We ad-
ditionally keep two states, namely the source and
the sink states which denote the start and end of
a conversation. It should be noted that we do not
take into consideration the actual slot values. This
provides an abstraction to the conversation flow,
for e.g., two conversation might have very different
slot values, but can have the same conversational
flow. This is pictorially depicted in Figure 1.

Conversation Flow Graph

Turn Pair Turn Pair

Figure 3: Conversation Flow Graph G: Each node
is turn-pair level binary vector containing information
about the current belief-state. A path (trace of the dot-
ted line in the figure) represents an abstraction of a data
point (conversation) in the data set. When mapped to a
natural language each path is essentially an instance of
the data set. Please refer Section 4.2 for details

Each data point/conversation instance essentially
exists as a path in G starting from the source state
and terminating in the sink. The nodes alternate be-
tween user and agent turns. The graph G is depicted
in Figure 3

4.3 Analysis

Experimental Setup

Having obtained the abstract graph G from the train-
ing set Dy qin, We partition the test set D;.q; into
two parts:

1. Non-violation conversation instances (NV):
Contains those test set instances where the
complete conversation exists as a path in the
graph.



2. Violation conversation instances (V): Con-
tains the complementary of set NV. This can
be qualitatively thought of as those conversa-
tion instance in the test set which deviate from
the graph at a certain node i.e., no edge exists
in the graph G from a certain state or turn of
the conversation.

In essence, NVNV = ¢

We then assess the joint accuracy scores of each
set using the models described, subsequently. Joint
Goal Accuracy in DST is the ratio of dialog turns in
the data set for which all slots have been filled with
the correct value according to the ground truth.

Dialogue State Tracking Models

We measure the joint accuracy scores of the predic-
tions obtained using the following SOTA models:

1. BERT Based: TripPy (Heck et al., 2020) is
a DST model which uses one of the follow-
ing three copy mechanisms to generate dialog
states (a) Span prediction directly from user
utterance, (b) Copy from system-inform mem-
ory, (c) Copy from different slot but similar
intent, e.g., area is one of such slots.

2. Non-BERT Based: DSTQA (Zhou and
Small, 2019) models a multi-domain DST
problem as a question answering problem and
leverages dynamic knowledge graph which ex-
plicitly learns relationship between multiple
(domain, slots) pairs.

Results
Model Violation Non-Violation Overall
TripPy 42.3(43.2) 65.8 (68.6) 56.0 (59.0)
DSTQA 33.9(38.2) 56.9 (59.7) 50.8 (54.2)

Table 1: Joint Accuracy' results across two models,
TripPy and DSTQA. Format: Test (Validation).

The results of the analysis are tabulated in Table
1. We take the mean value of the scores across 5
different checkpoints (last 5). It is evident that the
performance on instances which conform to the
styles already modeled in the training data i.e., the
set NV, is higher than instances in the violation set
V. Upon closer manual inspection of the violation
test conversations, we observed some similar trends
(subsequence in the conversation - also referred to

'Based on the models trained by us from scratch.

Dataset Train Test Val
Multiw0Zz2.1 8438 1000 1000
TaskMaster 17289 NA NA

Table 2: Dataset statistics

as complex patterns), after which the performance
of the DST models declined. These included, but
were not limited to, multi-slots being filled in a
single turn, turn repetition and speaker asking for
clarification. It gave an indication that if we induce
those difficult but natural patterns in the test sets,
then the resulting test set would be competitive for
the current models.

One of the naive ways to approach this infusion
of natural patterns is to manually insert them into
the current test set (Ganhotra et al., 2020). How-
ever, this approach is not only cumbersome but also
restricted by ones’ imagination. We analyzed other
goal-oriented conversational data sets and found
that the TaskMaster data set, which was built out of
spoken conversations, had an abundance of those
naturally occurring but difficult patterns. In the
next section, we describe the automated approach
we took to infuse the natural patterns into the cur-
rent MultiwOZ2.1 test set.

5 FRAPI: Automated Pattern Infusion

5.1 Datasets

TaskMaster (Byrne et al., 2019) contains single-
domain goal-oriented conversational data. In con-
trast to MultiwOZ2.1, data points in TaskMaster
do not contain dialog state annotations but con-
tain more naturally occurring realistic variations
in the conversations. This can be attributed to the
construction mechanism for Taskmaster. Two col-
lection procedures were adopted for its construc-
tion: (a) Two-person spoken conversations using
the WOZ approach and (b) self-dialog where in
the complete dialog is constructed using a single
crowd-worker. The relevant data set statistics is
mentioned in Table 2.

5.2 Modeling

A conversation C' consists of multiple alternate
turns of user and agent utterances. Most of the
current dialog-systems use the following blueprint:
User Utterance/Turn (U) — Natural Language Un-
derstanding (NLU) — Dialog-Management (D M)
— Dialog-policy (DP) — Agent Utterance (A).
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produces the encoder representation {hp,}. The en-
coded representation is utilized by the decoder to pro-
duce the current turn-pair Pr. Please refer Section 5.2
for details

Dialog-Management (D M) additionally comprises
the database access to fill up the belief states. In-
stead of thinking about conversations at turn level,
we consider turn-pair level conversations i.e., each
turn comprises the user utterance as well as the sub-
sequent agent utterance. Intuitively, such a repre-
sentation makes sense since the belief state changes
only during the agent side (and not the user turn).
We convert each turn-pair into a tokenized string
comprising three main components, each separated
by a unique identifier:

1. dpsr: The change in the dialog state from
one turn pair to the next.

2. Ugejes: De-lexicalized version of the user ut-
terance.

3. Ageler: De-lexicalized version of the agent
utterance.

Compactly represented,
D= {Pl}J = {(6DST7 Udelea Adelez)i}j

where 7 is the number of turn pairs (P) in a con-
versation and j is the number of conversation data
points in the set D.

dpst; = DST; 1 — DST;

DSTy=¢
DST; is the tokenized representation of dialog
states at turn-pair level ¢ and the ‘—’ (set subtrac-

tion between DST; 1 and DST;) in the equation

indicates the change in dialog state from turn-pair
7 to ¢ + 1. Note that we maintain a dictionary of
delexicalized tokens so that once the conversation
is generated, it can be re-lexicalized with necessary
values. We additionally augment the representa-
tions with and <eod> symbol at the end of each
conversation, denoting the end-of-dialog. An ex-
ample of this can be found in Figure 4.

Since our main aim is to generate conversation
test points along with the dialog states, we rely
on the transformer network (Vaswani et al., 2017).
Transformer network is an encoder-decoder model
(Sutskever et al., 2014) which uses self-attention to
encode the context history (previous 4 turn-pairs)
of a conversation flow and outputs the current turn-
pair in an auto-regressive manner via the decoder.
The network comprises 6 layers of multi-head self-
attention network each in the encoder as well as
the decoder.

5.3 Experimental Setup

We train the transformer network on the accumu-
lated training data set: MultiWOZ2.1 + TaskMaster.
Since TaskMaster does not contain annotated di-
alog states, we treat change in sentence level slot
labels over subsequent turns as a proxy for §pgr.
Once we accumulate the entire training data set, we
train the transformer network as described earlier
in Section 5.2.

We then use the trained model to generate com-
petitive test samples. The prompt given to the trans-
former network (initial state) is the first two turn-
pairs of each data point in the MultiWOZ2.1 test
set. Based on the initial prompt, the transformer
generates subsequent turn-pairs. We accumulate
the generated turn-pair to the previous turns for
generation of next turn-pairs. Since the model gen-
erates {0ps7y, Udelewy, Adelexy }» We first separate
d0pst, from the generation and then with proba-
bility p, give the inference model a choice to ei-
ther replace the generated  pg7,, with None value
or keep it as is. The reason for None is that for
patterns like repetition and clarification, dialogue
state does not change, hence it makes sense to use
dpst; = None for those turns. The control over
p helps in inculcating diversity or complex patterns
into the final test point. We have the choice of in-
troducing human intervention during the decoding
process for sanity check. This is especially useful,
in case the model outputs unwanted tokens, akin to
CHECKLIST. The process stops when the model



Prompt/Generated Turn  Conversation

1 are there any catalan restaurants in the centre of town ?

PROMPT
9

i ’m sorry , there are no catalan dining establishments in the centre . would you like to look for a different cuisine or area

are there any european restaurants in the centre ?
i ’m sorry , there are no european restaurants in the centre. would you like to try another area ?

how about american food ?

yes , please book a table for 2 people at 20:00 on sunday .

what time would you like to dine ?
GENERATED

else i can help you with ?

i would like the reservation for 20:00 please .
booking was successful . the table will be reserved for 15 minutes . reference number is : fucdlrg3 . is there anything

3
4
5
6 there are 9 american restaurants in the centre . i recommend bar . would you like a reservation ?
7
8
9

11 no , that ’s all i need . thank you for your help !

12 you ‘re welcome ! have a great day !

Table 3: Generated example showing the incorporation of repetition and clarification in the MultiWOZ2.1 test set.
We only provide the first two turns as the prompt to the Transformer Network, and the rest of the turns (turn-pairs)
are generated through the decoder. Note that white cells are for user turns and gray cells are for agent turns. Please

refer to Section 6.1 for details.

either outputs the <eod> symbol or the maximum
allowable generation turn-pairs are exhausted.

Why does it make sense to use Dialogue States
and not Dialog Act in the representation

Dialog act is a by-product of the user or agent utter-
ance itself. The labels associated in dialog acts are
essentially tokens already present in the user/agent
utterances. Since, we are using utterance tokens as
an input to the encoder, providing that information
again to the encoder in another form would only
increase redundancy. On the other hand, dialogue
state is a by-product of dialogue acts as well as the
database queries issued by the agent. The access
to the database provides some vital details to the
dialogue state that are not directly encoded in the
previous utterances.

5.4 Implementation Details

We use sockeye (Hieber et al., 2017) implemen-
tation of 6-layered transformer networks for gen-
erating turn-pairs. Each layer in the transformer
block is composed of 8 headed multi-head atten-
tion network with residual connections.We use
the Adam optimizer (Kingma and Ba, 2014) with
B = 0.9,0.999 and an initial learning rate of 1e — 4
with warm-up step size of 4000. The network typi-
cally reaches convergence around 25 epochs. We
train our model on four Nvidia V100 GPUs. Dur-
ing inference, we set p = 0.3 and the maximum
number of generated turn pairs are restricted to 10.
Setting higher values of p results in more number
of difficult patterns, which might not always be
desirable.

5.5 Evaluation Protocol

Once the conversations are generated, we measure
the performance of the models using the joint ac-
curacy scores. Additionally, we assess the quality
of generations through human evaluation. Human
evaluation involves assessment of the conversation
sets by crowd-workers. The crowd-workers pro-
vide score on a S-level Likert scale (1 being the
lowest and 5 being the highest) for (a) coherence:
whether the conversation follows a logical and nat-
ural order, (b) believability: whether the conversa-
tion look like a realistic conversation between an
agent and a user and a score on a 3-level Likert
scale for (c) appropriateness: does the user/agent
ask appropriate questions on the conversation topic.

6 Results

6.1 Qualitative Analysis

In utterance-level conversation generated by the
transformer network as highlighted in Table 3, it
can be observed that patterns like repetition and
clarification are naturally infused into the gener-
ated set. A particularly interesting example of this
complex pattern is from turn 7-9 (italicized text).
We can see that the user has indicated the booking
time as 20:00 hrs, but the agent is not able to com-
prehend that in the first go. It is easy to imagine
this scenario occurring in realistic conversations
where the agent is unable to comprehend the time
because of various issues, one of which can be
difficulty in understanding the dialect of the user.
These types of naturally occurring patterns are gen-
erally missing in the current test set. It should be
noted that the transformer generates only the de-
lexicalized strings during inference. They undergo



Repetition Clarification

| Multi-value State info.

A: how many people will be staying ?

U:i would like it for 4 nights that time .

A: how many people will be staying ?

U: i would like a booking for two people for 4

nights, starting on saturday meet that criteria .

U: i would like to travel on friday .

A:i’m sorry , i do n’t have anything leaving at

U: i would like it to be on friday at 10:00 .

A:i’msorry , i was n’t able to find any trains that

U: i ’'m looking for an attraction called williams
art and antiques .

A: williams art and antiques is at gwydir street ,
no . 5 dale ’s brewery . would you like me to book
tickets ?

U: no thank you . just the area and postcode please

A: it is in the 4017 hillsboro pike #301, nashville,
tn 37215 and the postcode is cb12lj . is there any-
thing else you need help with today ?

U: i "'m looking for places to go in town

A: what type of place would you like to visit ?
U: i am looking for something fun to do .
A: how about castle galleries ?

Table 4:
attraction-name slot is filled multiple times.

a simple post-processing where the generation is re-
lexicalized using the saved dictionary as mentioned
earlier. Additional samples in Table 4.

6.2 Human Evaluation

Test Set Coherence Believability Appro.
Original 4.4 4.4 2.8
MTASK-TEST 4.1 3.9 2.5

Table 5: Human evaluation results on the original test-
bed and the generated conversations. Please refer to
Section 6.2 for details.

We randomly sample 50 test set conversations
from the current MultiwOZ2.1 data set as well
as 50 conversations generated by the Transformer
model (Vaswani et al., 2017) with human in the
loop setup. For this setup, we allow at max one
correction (addition/removal of an utterance) per
conversation. The sampled conversations are then
sent to crowd-workers for assessment on the follow-
ing three qualities: (a) coherence, (b) believability,
(c) appropriateness, as described in Section 5.5. Ta-
ble 5 contains the compilation of those results. We
observe that the generations with minimal human
intervention have competitive quality as the origi-
nal test-bed. In addition, FRAPI took approximate
22 seconds per conversation (mostly validation)
compared to the pilot human-human collection that
took an average of 137 seconds per conversation
collection, thus leading to significant reduction of
burden on data collection while introducing the
nuances with complex patterns.

6.3 DST Task Performance

The evaluation results of the test set on current base-
line models Section 4.3 are highlighted in Table

Sample patterns induced by FRAPI into the conversations.

For multi-value state info., the

Model Original Test Set MTASK-TEST
TripPy 56.01 27.12
DSTQA 50.78 25.76

Table 6: Comparison of performance of current base-
line models on the original test set against the proposed
test set

6. We can see that the joint accuracy performance
of the models fall drastically on the generated test
set, as compared to the current test set. This indi-
cates that current models are not able to account
for realistic variations which are omnipresent in
natural conversations and cling onto perfect signals
obtained from restricted test sets. A possible cause
might be because the same set of biases are present
in the test set as in the training set.

7 Conclusion

There are umpteen ways in which a task-oriented
conversation might proceed. This variability only
increases with the induction of more domains into
the conversations. We analyzed the limitations of
diversity in current test beds and the importance of
inducing diversity at conversational flow level us-
ing a graphical abstraction. Based on our findings,
we proposed FRAPI, a framework for inducing rich
conversation patterns into current test sets through
Transformer Networks. The resultant test dialogues
were found to be challenging for current systems.
While we provide a general framework for gener-
ating good test sets, we anticipate better assistive
capabilities and results using pre-trained seq2seq
models like BART (Lewis et al., 2020). Given the
simplicity of this approach, we believe that will be
helpful in building competitive test beds for other
dialogue data sets.
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