
Topological and Temporal Data Augmentation for
Temporal Graph Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Temporal graphs are extensively employed to represent evolving networks, finding1

applications across diverse fields such as transportation systems, social networks,2

and biological networks. Temporal Graph Networks (TGNs) build upon these3

graphs to model and learn from temporal dependencies in dynamic networks. A4

significant aspect of enhancing the performance of TGNs lies in effective data5

augmentation, which helps in better capturing the underlying patterns within6

temporal graphs while ensuring robustness to variations. However, existing data7

augmentation strategies for temporal graphs are largely heuristic and hand-crafted,8

which may alter the inherent semantics of temporal graphs, thereby degrading the9

performance of downstream tasks. To address this, we propose two simple yet10

effective data augmentation strategies, specifically tailored within the representation11

space of TGNs, targeting both the graph topology and the temporal axis. Through12

experiments on future link prediction and node classification tasks, we demonstrate13

that the integration of our proposed augmentation methods significantly amplifies14

the performance of TGNs, outperforming state-of-the-art methods.15

1 Introduction16

Temporal graphs have gained increasing attention due to their wide application in diverse fields, from17

social networks [11, 16] and transportation systems [1, 24] to biomedical applications [9, 28] and18

financial markets [14, 15]. These graphs capture not only static connections between entities but19

also the dynamic evolution of these relationships over time, where every edge (or interaction) has20

a timestamp to denote its occurrence time. Therefore, the temporal nature of such graphs presents21

unique challenges for modeling and learning. In this paper, we focus on continuous-time dynamic22

graphs [11], where timestamps associated with interactions can span any continuous value across the23

entire time range. This characteristic often results in data redundancy [20, 21] along the temporal axis,24

which, in turn, could engender overfitting in temporal graph learning models, thereby highlighting25

the need for data augmentation methods.26

Data augmentation [3, 10, 17, 27] is a crucial technique for training neural networks, diversifying27

training data and enhancing model generalization across many domains. For example, image28

processing functions like randomized cropping and horizontal flipping are widely adopted in image29

recognition models. Existing research on temporal graph augmentation [19] predominately relies on30

hand-crafted augmentation strategies such as removing edges, perturbing timestamps, or adding edges31

with perturbed timestamps – to modify either the graph structure or temporal features. However,32

our empirical results (as detailed in Section 3.2) reveal that these hand-crafted augmentations might33

change the semantics of the original temporal graphs and harm downstream task performance. For34

instance, alterations in timestamps could lead to a change in the chronological order of events, which35

in turn misguide the model’s comprehension of causal relationships between these events. Given36
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these insights, there emerges a clear need for more refined augmentation approaches for temporal37

graphs that can mitigate such adverse effects while enhancing model performance.38

Motivated by these revelations, our objective is to identify data augmentation strategies that can39

benefit the performance of TGNs. Drawing inspiration from the achievements of latent augmentation40

techniques across diverse modalities such as text, tabular, time-series, and image data [3], we41

propose two straightforward yet effective data augmentation strategies. Specifically, these strategies42

are designed to operate within the representation space of temporal graph networks, targeting43

enhancements along both the topological and temporal axes of temporal graphs. The topological44

strategy aims to enhance the robustness of aggregated messages, which often encapsulate temporal45

interactions. The temporal strategy refines temporal graphs by introducing temporal smoothness46

along the temporal axis, aiding in better understanding the temporal evolution of the graph. We47

conduct experiments on both link prediction and node classification tasks. The results show that48

by combining these two augmentation strategies, our method has significant improvement built on49

backbone models and outperforms or performs comparably to the SOTA methods on widely-used50

datasets, which supports the efficacy of our method.51

2 Related Works52

Representation Learning for Temporal Graphs. While most graph neural networks are designed53

for representation learning on static graphs, there is relatively less work focused on temporal graph54

learning, where the graph evolves over time. Temporal graphs can generally be classified into55

two categories: discrete-time dynamic graphs (DTDG) [12] and continuous-time dynamic graphs56

(CTDG) [11]. DTDGs consist of sequences of static graph snapshots taken at specific time intervals,57

whereas CTDGs are more versatile and can be represented as timed lists of events. Initially, early58

models for temporal graph learning predominantly concentrated on DTDGs [6, 8, 12, 25], until59

recent developments introduced methods tailored for CTDGs [4, 11, 16, 18, 22]. For example,60

DyRep [18] and JODIE [11] employ RNNs to propagate messages across interactions to update node61

representations. Additionally, TGAT [22] employs self-attention to aggregate messages from the62

central node’s neighbors before event timestamps. Building upon these methodologies, TGN [16]63

provide a generic framework combining memory module (e.g. RNNs) and graph-based operator. In64

parallel with these efforts, we propose data augmentation strategies designed to be integrated with65

popular TGN backbones, effectively enhancing their performance.66

Data Augmentation on Temporal Graphs. Data augmentation is significant for training neural67

networks, and its effectiveness has been validated on image data [10, 17, 27]. While several data68

augmentation methods [5, 7, 23, 26] have been developed for static graphs, they cannot be directly69

applied to temporal graphs due to their lack of consideration for the temporal axis. Specifically, these70

methods primarily focus on edge addition or deletion without accounting for the timestamps, which are71

integral to capturing the dynamic evolution in temporal graphs. Furthermore, there have been limited72

efforts in augmenting CTDGs. Among them, the most related work is MeTA [19], which adaptively73

combines heuristic augmentations like edge removal, timestamp perturbation, and edge addition with74

perturbed timestamps. MeTA employs varying magnitudes for these augmentations—applying lower75

magnitudes for nodes that are closer in time or topology, and larger magnitudes for those that are76

more distant. In contrast to MeTA, our approach does not apply transformations to the temporal graph77

structure or node features but rather focuses on augmenting the feature space of messages for TGNs.78

3 Topological and Temporal Data Augmentation79

3.1 Preliminaries80

Dynamic Graphs. Following [13], we represent a dynamic graph as a sequence of interaction events81

– triplets of source, destination, timestamp, i.e. G = {(s1, v1, t1) , (s2, v2, t2) , · · · , (sn, vn, tn)},82

where 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn. In this paper, we focus on continuous time dynamic graphs (CTDGs),83

in which the time t associate with each interaction is not restricted to specific timestamps with fixed84

intervals but can be any continuous value within the entire time span [0, tn].85
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Figure 1: An Illustration of the proposed TTDA framework. Our proposed topological and temporal
augmentation strategies are shown in the green and yellow boxes, respectively.

Temporal Graph Networks. Advanced temporal graph networks generally consists of five key86

modules [16], namely memory module, message function, message aggregator, memory updater, and87

embedding module. An RNN-based memory module is used to store the state of each node at current88

timestamp. Specifically, the state si(t
−) of node i is expected to represent i’s history before time t in89

a compressed format. When a new event involving node i is observed, a message function is used to90

computed a new message mi(t). Then all messages involving node i are combined with a message91

aggregator into a final message m̄i(t). A memory updater updates the memory of a node based on92

the aggregated messages and previous state si(t
−),93

si(t) = mem(m̄i(t), si(t
−)). (1)

Finally, the embedding of node i at timestamp t is derived by considering its state in the memory,94

associated edge, and node feature. And the node embeddings subsequently serve as input to generate95

predictions for specific downstream tasks, such as link prediction and node classification. Note that96

different models can have different implementations of these five models, tailored to address specific97

downstream tasks and objectives.98

3.2 Motivation99
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Figure 2: Performance gains (%) of TGN [16]
under different augmentation settings on
Wikipedia dataset [11] compared to no aug-
mentation setting.

For temporal graphs, Wang et al. [19] proposed three100

heuristic data augmentation strategies, namely (i) re-101

moving edges, (ii) perturbing timestamps, and (iii)102

adding edges with perturbed timestamps. While the103

proposed method in that paper [19] adaptively com-104

bine these augmentations and achieve encouraging105

results, we notice that performing the augmentation106

directly on the input temporal graph structure does107

not bring improvement on the TGN performance.108

A plausible explanation for this could be that such109

augmentations could potentially disrupt the temporal110

coherency and the structural integrity of the graph,111

which in turn could mislead the learning process,112

rendering a model less effective in capturing the un-113

derlying temporal dynamics. To illustrate the impact114

of augmentation strategies and their combinations,115

we conduct experiments on a Wikipedia dataset with magnitude of 0.1 on a widely-used TGN116

model [16]. Figure 2 shows the performance gains (%) in terms of test accuracy for the transductive117

link prediction task under different augmentation combinations compared to no augmentation. It is118

evident from the results that all augmentation combinations yield negative effects compared to the119

absence of augmentation. This observation indicates the detrimental impact of these augmentations120

on the model training process. Motivated by this, we want to undercover data augmentation strategies121

that have positive impact on the training process and can be further used in contrastive learning or122

label-invariant learning for temporal graphs. We propose two simple but effective data augmentation123

strategies, topological and temporal data augmentation (TTDA) techniques, on the representation124
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space of messages functions instead of altering original temporal graph structure or timestamps. An125

overview of our model is shown in Figure 1.126

3.3 Message Topological Augmentation127

Inspired by latent augmentation methods [3, 26], we carefully design a message topology augmen-128

tation to avoid refeeding edges for each batch. During the training phase of temporal graph, when129

processing a batch, the memory module is updated with messages coming from previous batches,130

and then predicts the interactions. This mechanism enables gradient back-propagation through131

the memory-related modules while mitigating information leakage. Consequently, in the design132

of augmentations for temporal graphs, we maintain this efficient training mechanism and perturb133

messages directly. An illustration of the proposed message topology augmentation module is shown134

in the green box in Figure 1. Specifically, when the raw messages rmi(t
−) from previous batches135

are retrieved, we augment rmi(t
−) by adding Gaussian noise with with zero mean and a standard136

deviation of I. Let ϵ ∼ N (0, I) be a random unit vector and λtopo be the scaling factor for message137

topological augmentation, we have the noisy messages:138

m̂i(t) = rmi(t) + λtopoϵ. (2)

Then we apply the message aggregator and embedding module to obtain the topology augmented node139

embedding zi(t) at current timestamp t, while the memory is updated with original node embedding.140

In this way, we augment the messages without refeeding all edges for each batch.141

To enhance the robustness of TGNs against noise, we maximize the mutual information between142

ẑi(t) and original node embedding zi(t). To achieve this, we employ a projection head consist143

of fully-connected layers to get projections p̂i(t) and pi(t) from ẑi(t) and zi(t), respectively. To144

maximize the mutual information, we apply a normalized temperature-scaled cross-entropy loss145

(NT-Xent) [2] but only keep the positive-pair part as follows:146

Ltopo =
−(pi(t))

⊤ · p̂i(t)

∥pi(t)∥ · ∥p̂i(t)∥
. (3)

Diverging from existing methods, our strategy augments the representation space to diversify aggre-147

gated messages, thereby bolstering the robustness of TGNs. Additionally, our approach maintains the148

efficient training scheme of TGNs, eliminating the need for refeeding during training.149

3.4 Message Temporal Augmentation150

In temporal graphs, it is often observed that more recent edges on the temporal axis typically carry151

higher predictive value for the target node’s states [16, 19]. Therefore, we impose a smoothness152

constraint over time in temporal graph learning to encourage the model to capture and exploit these153

informative temporal patterns effectively. We design a message temporal augmentation to achieve154

this. An illustration of the proposed message topology augmentation module is shown in the yellow155

box in Figure 1. Before each update of the memory, we store a copy of node states. Given a batch of156

interacting events, instead of using the raw messages in previous batch, we use the stored, obsolete157

node states to compute message m̃i(t) and node embedding z̃i(t). Then we use the projection head158

to obtain projection p̃i(t). To enforce the temporal smoothness, similar to the process in message159

topological augmentation module, we maximize the mutual information between temporal augmented160

projection p̃i(t) and the original projection pi(t) as positive pairs with loss Ltemp.161

To summarize, this augmentation strategy maximizes the mutual information between neighboring162

batches, imposing smoothness along the temporal axis, thereby enhancing the robustness of modeling163

timestamps and inherent dynamics of the graph in TGNs.164

3.5 Overall Loss Function165

Combining the message topological and temporal augmentation, as introduced in Sec. 3.3 and Sec. 3.4,166

respectively, our TTDA framework is trained by minimizing the combined loss167

L = LCE + αLtopo + βLtemp. (4)

where LCE is the cross-entropy loss for downstream tasks, α and β are predefined hyper-parameters.168

Our proposed method can adapt to memory-based TGNs in an efficient way.169
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Table 1: Statistics of the datasets used in the experiments.
Data #Users #Items #Interactions #State Changes Action Repetition
Reddit 10,000 984 672,447 366 79%
Wikipedia 8,227 1,000 157,474 217 61%
MOOC 7,047 97 411,749 4,066 –

Table 2: Test accuracy and average precision (AP) of transductive edge prediction. Mean (%) and
standard deviations are reported. The best results are highlighted in bold.

Method MOOC Reddit Wikipedia
Accuracy AP Accuracy AP Accuracy AP

JODIE [11] 76.45± 0.6 83.87± 0.4 90.91± 0.3 97.11± 0.3 87.04± 0.4 94.62± 0.5
TGAT [22] 75.20± 0.5 82.66± 0.4 92.92± 0.3 98.12± 0.2 88.14± 0.2 95.34± 0.1
DyRep [18] 73.36± 0.4 81.75± 0.3 92.11± 0.2 97.98± 0.1 87.77± 0.2 94.59± 0.2
TGN [16] 81.38± 0.6 89.79± 0.5 92.56± 0.2 98.70± 0.1 89.51± 0.4 98.46± 0.1

DyRep + MeTA 76.21± 0.4 84.18± 0.3 93.04± 0.3 98.62± 0.1 88.92± 0.2 95.63± 0.2
DyRep + TTDA (Ours) 84.12± 0.7 89.17± 0.3 93.54± 0.2 98.39± 0.1 91.87± 0.2 98.10± 0.1

TGN + MeTA 83.84± 0.5 92.03± 0.3 94.19± 0.2 99.08± 0.1 91.34± 0.3 98.87± 0.1
TGN + TTDA (Ours) 86.58± 0.1 92.03± 0.7 94.53± 0.1 98.76± 0.1 93.67± 0.2 98.65± 0.1

4 Experiments170

4.1 Experiment Setup171

Dataset. We conduct experiments on three widely-used temporal graph datasets, namely Wikipedia,172

Reddit, and MOOC [11]. Following Xu et al. [22], we use a chronological train/validation/test split173

with a ratio of 70%-15%-15%. Table 1 shows the statistics of these datasets. The downstream tasks174

we use are future link prediction and dynamic node classification.175

Baselines. We take the state-of-the-art approaches for continuous time dynamic graph learning,176

namely JODIE [11], TGAT [22], DyRep [18], and TGN [16] as well as the state-of-the-art temporal177

graph augmentation method MeTA [19]. We implement our TTDA augmentation strategies on top of178

the baseline models DyRep and TGN.179

Experimental settings. Our experimental settings closely follow those of the previous work [22, 16]180

to a ensure fair comparison. For the all datasets, we use the Adam optimizer with a learning rate181

of 0.0001, a batch size of 200 for both training, validation and testing, and early stopping with a182

patience of 5. We sample an equal amount of negatives to the positive interactions, and use average183

precision as reference metric. All experiments and timings are conducted on an NVIDIA RTX A5000184

machine and the results are averaged over 10 runs. The code will be made available for reproduction.185

4.2 Link Prediction186

For the link prediction task, we study both the transductive and inductive setting. We conduct187

experiments and report the average precision and accuracy on the test set over 10 runs. For the188

transductive setting, the nodes for link prediction are observed during training. The results are shown189

in Table 6. The numbers for baselines are taken from Wang et al. [19]. We observe that by adding190

our TTDA strategies, the test accuracy of DyRep improves by 7.91% on MOOC, 0.5% on Reddit,191

Table 3: Test accuracy and average precision (AP) of inductive edge prediction. Mean (%) and
standard deviations are reported. The best results are highlighted in bold.

Method MOOC Reddit Wikipedia
Accuracy AP Accuracy AP Accuracy AP

JODIE [11] 75.79± 0.5 83.44± 0.6 88.34± 0.9 94.36± 1.1 84.32± 0.4 93.11± 0.4
TGAT [22] 74.02± 0.3 80.84± 0.5 90.73± 0.2 96.62± 0.3 85.35± 0.2 93.99± 0.3
DyRep [18] 72.92± 0.4 80.36± 0.4 89.60± 0.2 95.68± 0.2 83.46± 0.3 92.05± 0.3
TGN [16] 80.73± 0.2 89.21± 0.3 91.62± 0.1 97.55± 0.1 88.60± 0.2 97.81± 0.1

DyRep + MeTA 75.89± 0.4 82.56± 0.3 90.52± 0.2 96.59± 0.2 85.67± 0.3 94.13± 0.2
DyRep+TTDA(Ours) 82.27± 0.4 88.04± 0.2 91.38± 0.4 97.32± 0.2 90.47± 0.2 97.60± 0.1

TGN + MeTA 83.47± 0.2 90.85± 0.2 92.96± 0.1 98.17± 0.1 90.82± 0.2 98.26± 0.1
TGN+TTDA(Ours) 85.49± 0.1 91.45± 0.5 92.43± 0.1 97.86± 0.1 91.89± 0.2 98.10± 0.1
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Table 4: ROC AUC for the dynamic node classification. Mean (%) and standard deviations are
reported. The best results are highlighted in bold.

Method Reddit Wikipedia
JODIE [11] 61.83± 2.7 84.84± 1.2
TGAT [22] 65.56± 0.7 83.69± 0.7
DyRep [18] 62.91± 2.4 84.59± 2.2
TGN [16] 67.06± 0.9 87.81± 0.3

DyRep + MeTA 64.36± 2.0 86.65± 1.9
DyRep+TTDA(Ours) 68.38± 0.9 87.90± 1.3

TGN + MeTA 68.37± 0.9 90.03± 0.3
TGN+TTDA(Ours) 69.75± 1.3 90.08± 0.6

and 2.95% on Wikipedia, comparing with SOTA data augmentation method MeTA [19]. Besides,192

the test accuracy of TGN improves 2.74%, 0.34%, 2.33% on MOOC, Reddit, and Wikipedia dataset,193

respectively, comparing with the previous SOTA temporal graph augmentation method MeTA [19].194

As for the inductive setting, we predict edges for unseen nodes. We keep the same experiment settings195

and baselines with transductive setting. Table 7 shows the results. We observe that by adding our196

TTDA strategies, the test accuracy improves by 6.38% on MOOC, 5.48% on Reddit, and 4.8% on197

Wikipedia by using DyRep as the backbone model, and 1.02% on MOOC and 1.07% on Wikipedia198

with TGN, comparing with MeTA [19]. To summarize, our TTDA method enhances DyRep and199

TGN to outperform the baseline methods in both transductive and inductive link prediction tasks.200

4.3 Node Classification201

In this experiment, the goal is to predict the time-varying labels of nodes following an interaction202

event [11]. For node classification, the transductive setting is used. Following previous works [16], we203

initiate the model with pre-training via the link prediction task. Subsequently, we fixed the parameters204

of the TGN models and introduced a one-layer MLP as the decoder for the node classification task.205

The decoder was supervisedly trained using the node state labels. The results are shown in Table 4206

where we use the area under the receiver operating characteristic curve (AUC-ROC) metrics for207

evaluation. We observe that TTDA achieves SOTA results on both datasets and improves ROC208

AUC of DyRep by 2.1% on MOOC, 2.3% on Reddit, 2.4% on Wikipedia, and TGN by 2.2% on209

MOOC, 2.0% on Reddit, 2.5% on Wikipedia. The results indicate the effectiveness of our proposed210

augmentation strategies in enhancing the performance of TGNs in the node classification tasks.211

4.4 Ablation Studies212

In this section, we investigate the contributions of our data augmentation strategies. We apply the213

topology augmentation and topology augmentation mechanisms in our TTDA separately on the TGN214

model. The experiments are conducted under the inductive link prediction setting, and the results are215

shown in Table 5. We observe that both topology and temporal augmentation strategies yield positive216

effects on the TGN training. Combining them results in achieving SOTA performance.217

Table 5: Ablation study on the impact of proposed augmentations in inductive link prediction tasks.

Method MOOC Reddit Wikipedia
Accuracy AP Accuracy AP Accuracy AP

No Aug. 80.73± 0.2 89.21± 0.3 91.62± 0.1 97.55± 0.1 88.60± 0.2 97.81± 0.1
Topo. Aug. 85.06± 0.8 91.08± 0.5 92.27± 0.3 97.76± 0.1 91.56± 0.2 97.92± 0.2
Temp. Aug. 85.51± 0.1 91.39± 0.5 91.94± 0.1 97.63± 0.1 91.80± 0.4 98.06± 0.2
TTDA 85.49± 0.1 91.45± 0.5 92.43± 0.1 97.86± 0.1 91.89± 0.2 98.10± 0.1

5 Conclusions218

In this paper, we identify the limitations of current data augmentation techniques for temporal graphs219

and introduce two novel strategies for temporal graph networks. Targeting both graph topology220

and temporal axis, we aim to enhance robustness and performance of downstream tasks without221

directly altering graph structure and features. Through experiments, we showcase how our strategies222

significantly improve TGN performance. Our method proves valuable for training temporal graph223

networks and holds promise for application in domains like contrastive and label-invariant learning.224
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Table 6: Test accuracy and average precision (AP) of transductive edge prediction. Mean (%) and
standard deviations are reported. The best results are highlighted in bold.

Method MOOC Reddit Wikipedia
Accuracy AP Accuracy AP Accuracy AP

JODIE [11] 76.45± 0.6 83.87± 0.4 90.91± 0.3 97.11± 0.3 87.04± 0.4 94.62± 0.5
TGAT [22] 75.20± 0.5 82.66± 0.4 92.92± 0.3 98.12± 0.2 88.14± 0.2 95.34± 0.1
DyRep [18] 73.36± 0.4 81.75± 0.3 92.11± 0.2 97.98± 0.1 87.77± 0.2 94.59± 0.2
TGN [16] 81.38± 0.6 89.79± 0.5 92.56± 0.2 98.70± 0.1 89.51± 0.4 98.46± 0.1

DyRep + MeTA 76.21± 0.4 84.18± 0.3 93.04± 0.3 98.62± 0.1 88.92± 0.2 95.63± 0.2
DyRep + TTDA (Ours) 84.12± 0.7 89.17± 0.3 93.54± 0.2 98.39± 0.1 91.87± 0.2 98.10± 0.1

TGN + MeTA 83.84± 0.5 92.03± 0.3 94.19± 0.2 99.08± 0.1 91.34± 0.3 98.87± 0.1
TGN + TTDA (Ours) 86.58± 0.1 92.03± 0.7 94.53± 0.1 98.76± 0.1 93.67± 0.2 98.65± 0.1

Table 7: Test accuracy and average precision (AP) of inductive edge prediction. Mean (%) and
standard deviations are reported. The best results are highlighted in bold.

Method MOOC Reddit Wikipedia
Accuracy AP Accuracy AP Accuracy AP

JODIE [11] 75.79± 0.5 83.44± 0.6 88.34± 0.9 94.36± 1.1 84.32± 0.4 93.11± 0.4
TGAT [22] 74.02± 0.3 80.84± 0.5 90.73± 0.2 96.62± 0.3 85.35± 0.2 93.99± 0.3
DyRep [18] 72.92± 0.4 80.36± 0.4 89.60± 0.2 95.68± 0.2 83.46± 0.3 92.05± 0.3
TGN [16] 80.73± 0.2 89.21± 0.3 91.62± 0.1 97.55± 0.1 88.60± 0.2 97.81± 0.1

DyRep + MeTA 75.89± 0.4 82.56± 0.3 90.52± 0.2 96.59± 0.2 85.67± 0.3 94.13± 0.2
DyRep+TTDA(Ours) 82.27± 0.4 88.04± 0.2 91.38± 0.4 97.32± 0.2 90.47± 0.2 97.60± 0.1

TGN + MeTA 83.47± 0.2 90.85± 0.2 92.96± 0.1 98.17± 0.1 90.82± 0.2 98.26± 0.1
TGN+TTDA(Ours) 85.49± 0.1 91.45± 0.5 92.43± 0.1 97.86± 0.1 91.89± 0.2 98.10± 0.1
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