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Abstract

Tracking objects of interest in a video is one of the most popular and widely
applicable problems in computer vision. However, with the years, a Cambrian
explosion of use cases and benchmarks has fragmented the problem in a multitude
of different experimental setups. As a consequence, the literature has fragmented
too, and now novel approaches proposed by the community are usually specialised
to fit only one specific setup. To understand to what extent this specialisation is
necessary, in this work we present UniTrack, a solution to address five different
tasks within the same framework. UniTrack consists of a single and task-agnostic
appearance model, which can be learned in a supervised or self-supervised fashion,
and multiple “heads” that address individual tasks and do not require training.
We show how most tracking tasks can be solved within this framework, and that
the same appearance model can be successfully used to obtain results that are
competitive against specialised methods for most of the tasks considered. The
framework also allows us to analyse appearance models obtained with the most
recent self-supervised methods, thus extending their evaluation and comparison to
a larger variety of important problems.

1 Introduction

Unlike popular image-based computer vision tasks such as classification and object detection, which
are (for the most part) unambiguous and clearly defined, the problem of object tracking has been
considered under different setups and scenarios, each motivating the design of a separate set of
benchmarks and methods. For instance, for the Single Object Tracking (SOT) and Video Object
Segmentation (VOS) communities [70, 29, 48], tracking means estimating the location of an arbitrary
user-annotated target object throughout a video, where the location of the object is represented
by a bounding box in SOT and by a pixel-wise mask in VOS. Instead, in multiple object tracking
settings (MOT [41], MOTS [57] and PoseTrack [2]), tracking means connecting sets of (often given)
detections across video frames to address the problem of identity association and forming trajectories.
Despite these tasks only differing in the number of objects per frame to consider and observation
format (bounding boxes, keypoints or masks), the best practices developed by the methods tackling
them vary significantly.
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Though the proliferation of setups, benchmarks and methods is positive in that it allows specific use
cases to be thoroughly studied, we argue it makes increasingly harder to effectively study one of the
fundamental problems that all these tasks have in common, i.e. what constitutes a good representation
to track objects throughout a video? Recent advancements in large-scale models for language [15, 6]
and vision [24, 10] have suggested that a strong representation can help addressing multiple down-
stream tasks. Similarly, we speculate that a good representation is likely to benefit many different
tracking tasks, regardless of their specific setup. In order to validate our speculation, in this paper
we present a framework that allows to adopt the same appearance model to address five different
tracking tasks (Figure 2). In our taxonomy (Figure 4), we consider existing tracking tasks as problems
that have either propagation or association at their core. When the core problem is propagation (as
in SOT and VOS), one has to localise a target object in the current frame given its location in the
previous one. Instead, in association problems (MOT, MOTS, and PoseTrack), target states in both
previous and current frames are given, and the goal is to determine the correspondence between the
two sets of observations. We show how most tracking tasks currently considered by the community
can be simply expressed starting from the primitives of propagation or association. For propagation
tasks, we employ existing box and mask propagation algorithms [5, 61, 58]. For association tasks, we
propose a novel reconstruction-based metric that leverages fine-grained correspondence to measure
similarities between observations. In the proposed framework, each individual task is assigned to a
dedicated “head” that allows to represent the object(s) in the appropriate format to compare against
prior arts on the relevant benchmarks.

Note that, in our framework, only the appearance model contains parameters that can be learned via
back-propagation, and that we do not experiment with appearance models that have been trained on
specific tracking tasks. Instead, we adopt models trained via recent self-supervised learning (SSL)
techniques and that have already demonstrated their effectiveness on a variety of image-based tasks.
Our motivation is twofold. First, SSL models are particularly interesting for our use-case, as they are
explicitly conceived to be of general purpose. As a byproduct, our work also serves the purpose of
evaluating and comparing appearance models obtained from self-supervised learning approaches (see
Figure 1). Second, we hope to facilitate the tracking community in directly benefiting from the rapid
advancements of the self-supervised learning literature.

To summarise, the contributions of our work are as follows:

• We propose UniTrack, a framework that supports five tracking tasks: SOT [70], VOS [48],
MOT [41], MOTS [57], and PoseTrack [2]; and that can be easily extended to new ones.

• We show how UniTrack can leverage many existing general-purpose appearance models to
achieve a performance that is competitive with the state-of-the-art on several tracking tasks.

• We propose a novel reconstruction-based similarity metric for association that preserves
fine-grained visual features and supports multiple observation formats (box, mask and pose).

• We perform an extensive evaluation of self-supervised models, significantly extending the
empirical analysis of prior literature to video-based tasks.

2 The UniTrack Framework

2.1 Overview

Inspecting existing tracking tasks and benchmarks, we noticed that their differences can be roughly
categorised across four axes, illustrated in Figure 2 and detailed below.

1. Whether the requirement is to track a single object (SOT [70, 29], VOS [48]), or multiple
objects (MOT [48], MOTS [57], PoseTrack [2]).

2. Whether the targets are specified by a user in the first frame only (SOT, VOS), or instead are
given in every frame, e.g. by a pre-trained detector (MOT, MOTS, PoseTrack).

3. Whether the target objects are represented by bounding-boxes (SOT, MOT), pixel-wise
masks (VOS, MOTS) or pose annotations (PoseTrack).

4. Whether the task is class-agnostic, i.e. the target objects can be of any class (SOT, VOS); or
if instead they are from a predefined set of classes (MOT, MOTS, PoseTrack).
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Figure 1: High-level overview of the performance of sixteen self-supervised learning models on five tracking
tasks: SOT, VOS, MOT, PoseTracking and MOTS. A higher rank (better performance) corresponds to a vertex
nearer to the outer circle. A larger area of the pentagon signifies better overall performance of its respective
appearance model. Results of a vanilla ImageNet-supervised model are indicated with a gray dashed line as
reference. Notice how the best model VFS [74] dominates on four out of the five tasks considered.
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Figure 2: Existing tracking problems and their respective benchmarks
differ from each other under several aspects: the assumption could be that
there is a single or multiple objects to track; targets can be specified by
the user in the first frame only, or assumed to be given at every frame (e.g.
provided by a detector); the classes of the targets can be known (class-
specific) or unknown (class-agnostic); the representation of the targets can
be bounding boxes, pixel-wise masks, or pose annotations.
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Figure 3: Overview of UniTrack.
The framework can be divided in
three levels. Level-1: a trainable
appearance model. Level-2: the
fundamental primitives of propa-
gation and association. Level-3:
task-specific heads.

Typically, in single-object tasks the target is specified by the user in the first frame, and it can be
of any class. Instead, for multi-object tasks detections are generally considered as given for every
frame, and the main challenge is to solve identity association for the several objects. Moreover, in
multi-object tasks the set of classes to address is generally known (e.g. pedestrians or cars).

Figure 3 depicts a schematic overview of the proposed UniTrack framework, which can be understood
as conceptually divided in three “levels”. The first level is represented by the appearance model,
responsible for extracting high-resolution feature maps from the input frame (Section 2.2). The second
level consists of the algorithmic primitives addressing propagation (Section 2.3) and association
(Section 2.4). Finally, the last level comprises multiple task-specific algorithms that make direct use
of the primitives of the second level. In this work, we illustrate how UniTrack can be used to obtain
competitive performance on all of the five tracking tasks of level-3 from Figure 3. Moreover, new
tracking tasks can be easily integrated.

Importantly, note that the appearance model is the only component containing trainable parameters.
The reason we opted for a shared and non task-specific representation is twofold. Firstly, the large
amount of different setups motivated us to investigate whether having separately-trained models for
each setup is necessary. Since training on specific datasets can bias the representation towards a
limited set of visual concepts (e.g. animals or vehicles) and limit its applicability to “open-world”
settings, we wanted to understand how far can a shared representation go. Second, we wanted to
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Figure 4: Propagation v.s. Association. In the propagation problem, the goal is to estimate the target state at the
current frame given the observation in the previous one. This is typically addressed for one object at the time. In
the association problem, observations in both previous and current frames are given, and the goal is to determine
correspondences between the two sets.

provide the community with multiple baselines that can be used to better assess newly proposed
contributions, and that can be immediately used on new datasets and tasks without the need of
retraining.

2.2 Base appearance model

The base appearance model φ takes as input a 2D image I and outputs a feature map X = φ(I) ∈
RH×W×C . Since ideally an appearance model used for object propagation and association should be
able to leverage fine-grained semantic correspondences between images, we choose a network with a
small stride of r = 8, so that its output in feature space can have a relatively large resolution.

We refer to the vector (along the channel dimension) of a single point in the feature map as a point
vector. We expect a point vector xi1 ∈ RC from the feature map X1 to have a high similarity with its
“true match” point vector xî2 in X2, while being far apart from all the other point vectors xj2 in X2; i.e.
we expect s(xi1, x

î
2) > s(xi1, x

j
2),∀j 6= î, where s(·, ·) represents a similarity function.

In order to learn fine-grained correspondences, fully-supervised methods are only amenable for
synthetic datasets (e.g. Flying Chairs for optical flow [16]). With real-world data, it is intractable
to label pixel-level correspondences and train models in a fully-supervised fashion. To overcome
this obstacle, in this paper we adopt representations obtained with self-supervision. We experiment
both with models trained with approaches that leverage pixel-wise pretext tasks [27, 58] and, inspired
by prior works that have pointed out how fine-grained correspondences emerge in middle-level
features [39, 74], with models obtained from image-level tasks (e.g. MoCo [24], SimCLR [10]).

2.3 Propagation

Problem definition. Figure 4a schematically illustrates the problem of propagation, which we use
as a primitive to address SOT and VOS tasks. Considering the single-object case, given video frames
{It}Tt=1 and an initial ground truth observation z1 as input, the goal is to predict object states {ẑt}Tt=2
for each time-step t. In this work we consider three formats to represent objects: bounding boxes,
segmentation masks and pose skeletons.

Mask propagation. In order to propagate masks, we rely on the approach popularised by recent
video self-supervised methods [27, 58, 35, 31]. Consider the feature maps of a pair of consecutive
frames Xt−1 and Xt, both ∈ Rs×C , and the label mask zt−1 ∈ [0, 1]

s of the previous frame 2, where
s = H ×W indicates its spatial resolution. We compute the matrix of transitions Kt

t−1 = [ki,j ]s×s
as the affinity matrix between Xt−1 and Xt. Each element ki,j is defined as

ki,j = Softmax(Xt−1, X
>
t ; τ)ij =

exp(〈xit−1, x
j
t〉 /τ)∑s

k exp(〈xit−1, x
k
t 〉 /τ)

, (1)

where 〈·, ·〉 indicates inner product, and τ is a temperature hyperparameter. As in [27], we only keep
the top K values for each row and set other values to zero. Then, the mask for the current frame
at time t is predicted by propagating the previous prediction: zt = Kt

t−1zt−1. Mask propagation
proceeds in a recurrent fashion: the output mask of the current frame is used as input for the next one.

2Note this corresponds to the ground-truth initialisation when t = 1, and to the latest prediction otherwise.
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Pose propagation. In order to represent pose keypoints, we use the widely adopted Gaussian belief
maps [66]. For a keypoint p, we obtain a belief map zp ∈ [0, 1]s by using a Gaussian with mean
equal to the keypoint’s location and variance proportional to the subject’s body size. In order to
propagate a pose, we can then individually propagate each belief map in the same manner as mask
propagation, again as zpt = Kt

t−1z
p
t−1.

Box propagation. The position of an object can also be more simply expressed with a four-
dimensional vector z = (u, v, w, h), where (u, v) are the coordinates of the bounding-box center,
and (w, h) are its width and height. While one could reuse the strategy adopted above by simply
converting the bounding-box to a pixel-wise mask, we observed that using this strategy leads to
inaccurate predictions. Instead, we use the approach of SiamFC [5], which consists in performing
cross-correlation (XCORR) between the target template zt−1 and the frameXt to find the new location
of the target in frame t. Cross-correlation is performed at different scales, so that the bounding-box
representation can be resized accordingly. We also provide a Correlation Filter-based alternative
(DCF) [54, 61] (see Appendix B.1).

2.4 Association

Problem definition. Figure 4b schematically illustrates the association problem, which we use as
primitive to address the tasks of MOT, MOTS and PoseTrack. In this case, observations for object
states {Ẑt}Tt=1 are given for all the frames {It}Tt=1, typically via the output of a pre-trained detector.
The goal here is to form trajectories by connecting observations across adjacent frames according to
their identity.

Association algorithm. We adopt the association algorithm proposed in JDE [65] for MOT, MOTS
and PoseTrack tasks, of which detailed description can be found in Appendix C.1. In summary, we
compute an N ×M distance matrix between N already-existing tracklets and M “new” detections
from the last processed frame. We then use the Hungarian algorithm [30] to determine pairs of
matches between tracklets and detections, using the distance matrix as input. To obtain the matrix
of distances used by the algorithm, we compute the linear combination of two terms accounting for
motion and appearance cues. For the former, we compute a matrix indicating how likely a detection
corresponds to the object state predicted by a Kalman Filter [28]. Instead, the appearance component
is directly computed by using feature-map representations obtained by processing individual frames
with the appearance model (Section 2.2). While object-level features for box and mask observations
can be directly obtained by cropping frame-level feature maps, when an object is represented via a
pose it first needs to be converted to a mask (via a procedure described in Appendix C.2).

A key issue of this scenario is how to measure similarities between object-level features. We find
existing methods limited. First, objects are often compared by computing the cosine similarity of
average-pooled object-level feature maps [84, 51]. However, the operation of average inherently
discards local information, which is important for fine-grained recognition. Approaches [18, 52]
that instead to some extent do preserve fine-grained information, such as those computing the cosine
similarity of (flattened) feature maps, do not support objects with differently-sized representation
(situation that occurs for instance with pixel-level masks). To cope with the above limitations, we
propose a reconstruction-based similarity metric that is able to deal with different observation formats,
while still preserving fine-grained information.

Reconstruction Similarity Metric (RSM). Let {ti}Ni=1 denote the object-level features ofN existing
tracklets, ti ∈ Rsti×C and sti indicates the spatial size of the object, i.e. the area of the box or
the mask representing it. Similarly, {dj}Mj=1 denotes the object-level features of M new detections.
With the goal of computing similarities to obtain an N ×M affinity matrix to feed to the Hungarian
algorithm, we propose a novel reconstruction-based similarity metric (RSM) between pairs (i, j),
which is obtained as

RSM(i, j) =
1

2
(cos(ti, t̂i←j) + cos(dj , d̂j←i)), (2)

where t̂i←j represents ti reconstructed from dj and d̂j←i represents dj reconstructed from ti. In
multi-object tracking scenarios, observations are often incomplete due to frequent occlusions. As
such, directly comparing features between incomplete and complete observations often fails because
of misalignment between local features. Suppose dj is a detection feature representing a severely
occluded pedestrian, while ti a tracklet feature representing the same person, but unoccluded. Likely,
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Figure 5: Reconstruction Similarity Metric (RSM): First, object-level features of existing tracklets and current
detections are flattened and concatenated. Then, an affinity matrix between the two feature sets is computed.
For a pair of tracklet ti and detection dj , we “extract” the corresponding sub-matrix from the entire affinity
matrix as linear weights and reconstruct ti from dj using these linear weights. The similarity between the
original object-level feature and its reconstructed version is finally taken as the RSM. We want the metric to be
symmetric, so we perform reconstruction both forward (ti ← dj) and backward (ti → dj).

directly computing the cosine similarity between the two will not be very telling. RSM addresses this
issue by introducing a step of reconstruction after which the co-occurring parts of point features will
be better aligned, thus making the final similarity more likely to be meaningful.

The reconstructed object-level feature map t̂i←j is a simple linear transformation of dj , i.e.
t̂i←j = Ri←jdj , where Ri←j ∈ Rsti×sdj is a transformation matrix obtained as follows. We
first flatten and concatenate all object-level features belonging to a tracklet (i.e. the set of ob-
servations corresponding to an object) into a single feature matrix T ∈ R(

∑
i sti )×C . Simi-

larly, we obtain all the object-level feature maps of a new set of detections D ∈ R(
∑

j sdj )×C .
Then, we compute the affinity matrix A = Softmax(TD>) and “extract” individual Ri←j map-
pings as sub-matrices of A with respect to the appropriate (i, j) tracklet-detection pair: Ri←j =

A
[∑i−1

i′=1 si′ :
∑i

i′=1 si′ ,
∑j−1

j′=1 sj′ :
∑j

j′=1 sj′
]

3. For a schematic representation of the procedure
just described, see Figure 5.

RSM can be interpreted from an attention [55] perspective. The feature map of a tracklet ti being
reconstructed can be seen as a set of queries, and the “source” detection feature dj can be interpreted
both as keys and values. The goal is to reconstruct the queries by linear combination of the values.
The linear combination (attention) weights are computed using the affinity between queries and keys.
Specifically, we first compute a global affinity matrix between ti and all the dj′ for j′ = 1, ...,M ,
and then extract the corresponding sub-matrix for ti and dj′ as the attention weights. Our formulation
leads to a desired property: if the attention weights approach zero, the corresponding reconstructed
point vectors will approach zero and so the RSM between ti and dj .

Measuring similarity by reconstruction is popular in problems such as few-shot learning [67, 80],
self-supervised learning [38], and person re-identification [26]. However, reconstruction is typically
framed as a ridge regression or optimal transport problem. With O(n2) complexity, RSM is more
efficient than ridge regression and it has a similar computation cost to calculating the Earth Moving
Distance for the optimal transport problem. Appendix D shows a series of ablation studies illustrating
the importance of the proposed RSM for the effectiveness of UniTrack on association-type tasks.

3 Experiments

Since UniTrack does not require task-specific training, we were able to experiment with many
alternative appearance models (see Figure 3) with little computational cost. In Section 3.1 we
perform an extensive evaluation to benchmark a wide variety of off-the-shelf, modern self-supervised
models, showing their strengths and weaknesses on all five tasks considered. In this section we also
conduct a correlation study with the so-called “linear probe” strategy [81], which became a popular

3Here we use a numpy-style matrix slicing notation to represent a submatrix, i.e. A[i : j, k : l] indicates a
submatrix of A with row indices ranging from i to j and column indices ranging from k to l.
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way to evaluate representations obtained with self-supervised learning. Then, in Section 3.2 we
compare UniTrack (equipped with supervised or unsupervised appearance models) against recent and
task-specific tracking methods.

Implementation details. We use ResNet-18 [25] or ResNet-50 as the default architecture. With
ImageNet-supervised appearance model, we refer to the ImageNet pre-trained weights made available
in PyTorch’s “Model Zoo”. To prevent excessive downsampling, we modify the spatial stride of
layer3 and layer4 to 1, achieving a total stride of r = 8. We extract features from both layer3
and layer4. We report results with layer3 features when comparing against task-specific methods
(Section 3.2), and with both layer3 and layer4 when evaluating multiple different representations
(Section 3.1). Further implementation details are deferred to Appendix B and C.

Datasets and evaluation metrics. For fair comparison with existing methods, we report results on
standard benchmarks with conventional metrics for each task. Please refer to Appendix A for details.

3.1 UniTrack as evaluation platform of previously-learned representations

The process of evaluating representations obtained via self-supervised learning (SSL) often involves
additional training [17, 24, 10], for instance via the use of linear probes [81], which require to fix the
pre-trained model and train an additional linear classifier on top of it. In contrast, using UniTrack as
evaluation platform (1) does not require any additional training and (2) enables the evaluation on a
battery of important video tasks, which have generally been neglected in self-supervised-learning
papers in favour of more established image-level tasks such as classification.

In this section, we evaluate three types of SSL representations: (a) Image-level representations
learned from images, e.g. MoCo [24] and BYOL [21]; (b) Pixel-level representations learned from
images (such as DetCo [72] and PixPro [73]) and (c) videos (such as UVC [35] and CRW [27]). For
all methods considered, we use the pre-trained weights provided by the authors.

Results are shown in Table 1 and 2, where we report the results obtained by using features from either
layer3 or layer4 of the pre-trained ResNet backbone. We report both results and separate them by
a ‘/’ in the table. Note that, for this analysis only, for association-type tasks motion cues are discarded
to better highlight distinctions between different representations and avoid potential confounding
factors. Figure 1 provides a high-level summary of the results by focusing on the ranking obtained by
different SSL methods on the five tasks considered (each represented by a vertex in the radar-style
plot). Several observations can be made:

(1) There is no significant correlation between “linear probe accuracy” on ImageNet and overall
tracking performance. The linear probe approach [81] has become a standard way to compare SSL
representations. In Figure 6, we plot tracking performance on five tasks (y-axes) against ImageNet
top-1 accuracy of 16 different models (x-axes), and report Pearson and Spearman (rank) correlation
coefficients. We observe that the correlation between ImageNet accuracy and tracking performance
is small, i.e. the Pearson’s r ranges from −0.38 to +0.20, and Spearman’s ρ ranges from −0.36 to
+0.26. For most tasks, there is almost no correlation, while for VOS the two measures are mildly
inversely correlated. The result suggests that evaluating SSL models on five extra tasks with UniTrack
could constitute a useful complement to ImageNet linear probe evaluation, and encourage the SSL
community to pursue the design of even more general purpose representations.

(2) A vanilla ImageNet-trained supervised representation is surprisingly effective across the board.
On most tasks, it reports a performance competitive with the best representation for that task. This is
particularly evident from Figure 1, where its performance is outlined as a gray dashed line. This result
suggests that results obtained with vanilla ImageNet features should be reported when investigating
new tracking methods.

(3) The best self-supervised representation ranks first on most tasks. Recently, it has been shown
how SSL-trained representations can match or surpass their supervised counterparts on ImageNet
classification (e.g. [21]) and many downstream tasks [17, 72]. Within UniTrack, although no
individual SSL representation is able to beat the vanilla ImageNet-trained representation on every
single task, we observe that the recently proposed VFS [74] ranks first on every task, except for
single-object tracking. This suggests that advancements of the self-supervised learning literature can
directly benefit the tracking community: it is reasonable to expect that newly-proposed representations
will further improve performance across the board.
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Representation SOT [70] VOS [48] MOT [41] MOTS [57] PoseTrack [2]

AUCXCorr ↑ AUCDCF ↑ J -mean↑ IDF1↑ HOTA↑ IDF1↑ HOTA↑ IDF1↑ IDs↓

Random Init. 10.3 / 9.0 28.0 / 20.0 29.3 / 33.9 8.4 / 8.9 8.4 / 8.5 20.8 / 23.1 25.9 / 28.7 40.2 / 38.5 88792 / 90963
ImageNet-sup. 58.6 / 49.5 62.0 / 53.9 62.3 / 57.9 75.6 / 73.2 63.3 / 61.8 68.4 / 69.4 70.2 / 71.0 73.7 / 73.3 6969 / 7103
InsDis [71] 47.6 / 47.3 61.8 / 51.1 62.6 / 60.1 66.7 / 73.9 57.9 / 61.9 68.4 / 68.0 69.6 / 70.3 72.4 / 73.9 7106 / 7015
MoCoV1 [24] 50.9 / 47.9 62.2 / 53.7 61.5 / 57.9 69.2 / 74.1 59.4 / 61.9 70.6 / 69.3 71.6 / 70.9 72.8 / 73.9 6872 / 7092
PCLV1 [34] 56.8 / 31.5 61.3 / 35.0 60.4 / 38.8 74.8 / 68.8 62.8 / 59.1 67.6 / 65.2 69.7 / 67.3 73.3 / 71.1 6855 / 10694
PIRL [42] 43.8 / 51.0 61.2 / 53.4 60.8 / 57.7 62.0 / 73.4 54.6 / 61.9 66.0 / 67.4 66.7 / 69.9 72.1 / 73.0 7235 / 7173
PCLV2 [34] 54.9 / 50.3 62.5 / 51.6 61.2 / 52.5 74.9 / 72.9 62.7 / 61.8 68.3 / 66.6 70.5 / 69.0 73.5 / 73.4 6859 / 8489
SimCLRV1 [10] 47.3 / 51.9 61.3 / 50.7 60.5 / 56.5 66.9 / 75.6 57.7 / 63.2 65.8 / 67.6 67.7 / 69.5 72.3 / 73.5 7084 / 7367
MoCoV2 [12] 53.7 / 47.2 61.5 / 53.3 61.2 / 54.0 72.0 / 74.9 61.2 / 62.8 67.5 / 67.3 69.6 / 69.6 73.0 / 73.7 6932 / 7702
SimCLRV2 [11] 50.0 / 54.7 61.7 / 56.8 61.6 / 58.4 67.6 / 75.7 58.1 / 63.3 69.1 / 67.4 70.4 / 69.4 72.5 / 73.6 7228 / 7856
SeLaV2 [3] 51.0 / 9.6 63.1 / 14.2 60.2 / 40.2 68.8 / 68.9 59.0 / 59.3 66.8 / 66.1 68.7 / 68.5 72.9 / 72.3 6983/ 7815
Infomin [53] 48.5 / 46.8 61.2 / 51.9 58.4 / 51.1 66.7 / 73.4 57.6 / 61.9 66.7 / 66.3 68.5 / 68.8 72.5 / 74.0 7066 / 7901
BarLow [79] 44.5 / 55.5 60.5 / 60.1 61.7 / 57.8 63.7 / 74.5 55.4 / 62.4 68.7 / 67.4 69.5 / 69.8 72.3 / 74.3 7131 / 7456
BYOL [21] 48.3 / 55.5 58.9 / 56.8 58.8 / 54.3 65.3 / 74.9 56.8 / 62.9 70.1 / 66.8 70.8 / 69.3 72.4 / 73.8 7213 / 8032
DeepCluster [7] 51.5 / 52.9 61.2 / 61.2 59.3 / 53.4 66.9 / 75.1 57.8 / 63.5 67.7 / 67.4 69.4 / 69.8 72.7 / 73.7 7018 / 7283
SwAV [8] 49.2 / 52.4 61.5 / 59.4 59.4 / 57.0 65.6 / 74.4 56.9 / 62.3 68.8 / 67.0 69.9 /69.5 72.7 / 73.6 7025 / 7377
VFS [74] 51.1 / 45.3 60.3 / 43.8 62.8 / 56.8 74.1 / 77.0 62.6 / 63.9 71.0 / 68.0 72.1 / 70.4 73.3 / 74.2 6731 / 7091

PixPro [73] 40.5 / 49.2 57.4 / 49.3 56.4 / 52.2 61.7 / 67.7 54.3 / 58.6 64.2 / 66.2 65.1 / 67.6 72.4 / 73.1 7163 / 6953
DetCo [72] 55.0 / 47.1 59.0 / 53.2 62.3 / 56.1 75.3 / 72.9 62.8 / 61.6 67.8 / 66.8 70.0 / 69.4 73.9 / 73.3 7357 / 8009
TimeCycle [64] 43.8 / 24.2 57.5 / 48.7 51.8 / 48.9 68.7 / 28.2 59.3 / 25.5 69.9 / 47.1 71.3 / 49.3 72.0 / 62.3 7837 / 27884

Table 1: Tracking performance of pre-trained image-based SSL models. All methods employ a ResNet-50.

Representation SOT [70] VOS [48] MOT [41] MOTS [57] PoseTrack [2]

AUCXCorr ↑ AUCDCF ↑ J -mean↑ IDF1↑ HOTA↑ IDF1↑ HOTA↑ IDF1↑ IDs↓

Random Init. 16.0 / 18.2 36.1 / 32.1 33.0 / 36.7 18.4 / 14.6 20.2 / 12.9 34.5 / 33.1 39.9 / 37.6 52.8 / 50.5 65317 / 66230
ImageNet-sup. 55.0 / 46.2 61.8 / 52.6 58.4 / 46.7 74.8 / 74.5 62.7 / 62.1 67.6 / 68.6 69.8 / 70.5 72.7 / 73.2 6808 / 7024
Color. [58]+mem. 41.6 / 43.4 56.7 / 58.7 53.6 / 59.7 64.9 / 62.8 56.8 / 55.5 68.8 / 66.1 69.4 / 66.3 72.4 / 72.6 6850 / 6778
UVC [35] 46.0 / 38.7 58.1 / 59.9 56.5 / 53.9 66.9 / 64.5 57.7 / 54.1 69.9 / 68.7 69.6 / 69.4 72.6 / 72.8 6843 / 6972
CRW [27] 46.3 / 49.1 58.9 / 54.9 63.2 / 60.7 67.8 / 73.0 58.4 / 61.7 69.0 / 71.3 69.2 / 71.9 72.7 / 73.0 6799 / 6761

Table 2: Tracking performance of pre-trained video-based SSL models. All methods employ a ResNet-18. In
the above two tables, we report results with [layer3 / layer4] features in each cell, and the best performance
between the two is bolded. We use the bolded values to rank the models in each column, and visualise
(column-wise) better performance with darker cell colors. Best results in each column are underlined.
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Figure 6: Tracking performance is poorly correlated with ImageNet accuracy. On the x-axes we plot ImageNet
linear probe top-1 accuracy and on the y-axes the tracking performance on five tracking datasets. Correlation
coefficients (Spearman’s ρ and Pearson’s r) are shown in the left bottom of each plot.

(4) Pixel-level SSL representations do not seem to have a consistent advantage in pixel-level tasks.
In Table 2 and at the bottom of Table 1 we compare recent SSL representations trained with pixel-
level proxy tasks: PixPro [73], DetCo [72], TimeCycle [64], Colorization [58], UVC [35] and
Contrastive Random Walk (CRW) [27]. Considering that pixel-level models leverage more fine-
grained information during training, one may expect them to outperform image-based models in the
tracking tasks where this is important. It is not straightforward to compare pixel-level SSL models
with image-level ones, as the two types employ different default backbone networks. However, note
how good image-based models (MoCo-v1, SimCLR-v2) are on par with their supervised counterpart
in all tasks, while good pixel-level models (DetCo, CRW) still have gaps with respect to their
supervised counterparts in tasks like SOT and MOT. Moreover, from Table 1, one can notice how the
last three rows, despite representing methods leveraging pixel-level information during training, are
actually outperformed by image-level representations on the pixel-level tasks of VOS, MOTS and
PoseTrack.

(5) Video data can benefit representation learning for video tasks. The top-ranking VFS is similar
to MoCo, SimCLR and BYOL in terms of learning scheme: they all perform contrastive learning
on image level features. The most important distinction is the training data. Previous SSL methods
mostly train on still-image based datasets (typically ImageNet), while VFS employs a large-scale
video dataset Kinetics [9]. Clearly, this is not very surprising, as training on video data can help
closing the domain gap with the (video-based) downstream tasks considered in this paper.
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Methods IDF1↑ IDs↓ MOTA↑ HOTA↑

JDE [65] 55.8 1544 64.4 -
CTracker [47] 57.2 1897 67.6 48.8
TubeTK [46] 62.2 1236 66.9 50.8
MAT [23] 63.8 928 73.5 56.3
TraDes [69] 64.7 1144 70.1 53.2
CSTrack [36] 71.8 1071 70.7 59.8
FairMOT† [82] 72.8 1074 74.9 61.6

UniTrack_ImageNet† 71.8 683 74.7 59.1
UniTrack_VFS† 70.3 829 72.7 58.6

(a) MOT@MOT-16 [41] test split, private detection.

Methods IDF1↑ IDs↓ sMOTA↑

TrackRCNN [57] 42.4 567 40.6
SORTS [68] 57.3 577 55.0
PointTrack [76] 42.9 868 62.3
GMPHD [50] 65.6 566 69.0
COSTA† [1] 70.3 421 69.5

UniTrack_ImageNet† 67.2 622 68.9
UniTrack_VFS† 68.2 342 69.7

(b) MOTS@MOTS [57] test split.

Methods IDF1↑ IDs↓ MOTA↑

MDPN [22] - - 50.6
OpenSVAI [44] - - 62.4
Miracle [78] - - 64.0
KeyTrack [49] - - 66.6
TWVA [19] - - 64.7
LightTrack† [43] 52.2 3024 64.8

UniTrack_ImageNet† 73.2 6760 63.5
UniTrack_VFS† 74.2 7091 63.3

(c) PoseTrack@PoseTrack2018 [2] val split.

Methods J -mean↑

Supervised:
SiamMask [62] 54.3
FEELVOS [56] 63.7
STM [45] 79.2

Unsupervised:
Colorization [58] 34.6
TimeCylce [64] 40.1
UVC [35] 56.7
CRW [27] 64.8

UniTrack_ImageNet 58.4
UniTrack_VFS 62.8

(d) VOS@DAVIS-2017 [48].

Methods AUC↑

Supervised:
SiamFC [5] 58.2
SiamRPN [33] 63.7
SiamRPN++ [32] 69.6

Unsupervised:
UDT [59] 59.4
UDT+ [59] 63.2
LUDT [60] 60.2
LUDT+ [60] 63.9

UniTrack_ImageNet_XCorr 55.5
UniTrack_ImageNet_DCF 61.8
UniTrack_VFS_DCF 60.3

(e) SOT@OTB-2015 [70].

Table 3: Comparison with task-tailored unsupervised and supervised methods on five typical tracking tasks. †
indicates methods using identical observations.

3.2 Comparison with task-specific tracking methods

Unsupervised methods. We observe that UniTrack performs competitively against unsupervised
state-of-the-art methods in both the propagation-type tasks we considered (Table 3d and 3e). For SOT,
UniTrack with a DCF head [61] outperforms UDT [59] (a strong recent method) by 2.4 AUC points,
while it is surpassed by LUDT+ [60] by 2.1 points. Considering that LUDT+ adopts an additional
online template update mechanism [13] while ours does not, we believe the gap could be closed. In
VOS, existing unsupervised methods are usually trained on video datasets [35, 27], and some of the
most recent outperform UniTrack (with an ImageNet-trained representation). Nonetheless, when we
use a VFS-trained representation, this performance difference is reduced to 2%. Finally, note that for
association-type tasks we are not aware of any existing unsupervised learning method, and thus in
this case we limit the comparison to supervised methods.

Comparison with supervised methods. In general, UniTrack with a ResNet-18 appearance model
already performs on par with several existing task-specific supervised methods, and in several tasks it
even shows superior accuracy, especially for identity-related metrics. (1) For SOT, UniTrack with a
DCF head outperforms SiamFC [5] by 3.6 AUC points. This is a significant margin considering that
SiamFC is trained with a large amount of crops from video datasets with annotated bounding boxes.
(2) For VOS, UniTrack surpasses SiamMask [62] by 4.1 J -mean points, despite this being trained
on the joint set of three large-scale video datasets [37, 14, 75]. (3) For MOT, we employ the same
detections used by the state-of-the-art tracker FairMOT [82]. The appearance embedding in FairMOT
is trained with 270K bounding boxes of 8.7K labeled identities, from a MOT-specific dataset. In
contrast, despite our appearance model not being trained with any MOT-specific data, our IDF1 score
is quite competitive (71.8 v.s. 72.8 of FairMOT), and the ID switches are considerably reduced by
36.4%, from 1074 to 683. (4) For MOTS, we start from the same segmentation masks used by the
COSTA [1] tracker, and observe a degradation in terms of ID switches (622 vs the 421 of the state of
the art), and also a gap in IDF1 and sMOTA. (5) Finally, for pose tracking, we employ the same pose
estimator used by LightTrack [43]. Compared with LightTrack, the MOTA of UniTrack degrades of
1.3 points because of an increased amount of ID switches. However, the IDF-1 score is improved by
a significant margin (+21.0 points). This shows UniTrack preserves identity more accurately for long
tracklets: even if ID switches occur more frequently, after a short period UniTrack is able to correct
the wrong association, leading to a higher IDF-1.

Notice how, overall, UniTrack obtains more competitive performance on tasks that have association
at their core, i.e. MOT, MOTS and PoseTrack. Upon inspection, we observed that most failure cases

9



in propagation-type tasks regard the “drift” occurring when the scale of the object is improperly
estimated. In future work, this could be addressed for instance by a bounding-box regression module
to refine predictions, or by carefully designing a motion model. For association-type tasks, the
consequences of any type of inaccuracy are isolated to individual pairs of frames, and thus much less
catastrophic by nature.

4 Related Work

To the best of our knowledge, sharing the appearance model across multiple tracking tasks has
not been extensively studied in the computer vision literature, and especially not in the context of SSL
representations. Some existing methods do share a common backbone architecture across tasks. For
instance, STEm-Seg [4] addresses VIS [77] and MOTS; while TraDeS [69] addresses MOT, MOTS
and VIS. However, both methods need to be trained separately and on different datasets for every task.
Conversely, we reuse the same representation across five tasks. A promising direction for future work
would be to use UniTrack to train a shared representation in a multi-task fashion. Only a few relevant
works do adopt a multi-task approach [62, 83, 40], and they usually consider SOT and VOS tasks
only. In general, despite the multi-task direction being surely interesting, it requires the availability
of large-scale datasets with annotations in multiple formats, and costly training. These are two of
the main reasons for which we believe that having a framework that allows to achieve competitive
performance on multiple tasks with previously-trained models is a worthwhile endeavour.

Self-supervised model evaluation. Given the difference between the pretext tasks used to train
self-supervised models and the downstream tasks used to evaluate them, the comparison between
self-supervised approaches has always been a delicate matter. Existing evaluation strategies typically
require additional training once a general-purpose representation has been obtained. One strategy
keeps the representation fixed, and then trains additional task-specific heads with very limited capacity
(e.g. a linear classifier [20, 10, 24] or a regression head for object detection [20]). A second strategy,
instead, leverages SSL to obtain particularly effective initializations, and then proceeds to fine-tune
such initialized models on the downstream task of interest. A wider range of tasks can be tested
using this setup, such as semantic segmentation [17, 20] and surface normal estimation [20, 63].
In contrast, UniTrack provides a simpler way to evaluate SSL models, one that does not require
additional training or fine-tuning. Also, this work is the first to extend SSL evaluation to a set of
diverse video tasks. We believe this contribution will allow the study of self-supervised learning
methods with a broader scope of applicability. Our work is also related to a line of self-supervised
learning methods [27, 58, 35, 31] that learn their representations in a task-agnostic fashion, and then
test it on propagation tasks (SOT and VOS). The design of UniTrack is inspired by their task-agnostic
philosophy, while significantly extending their scope to a new set of tasks.

5 Conclusion

Do different tracking tasks require different appearance models? In order to address this question, the
proposed UniTrack framework has been instrumental, as it has allowed to easily experiment with
alternative representations on a wide variety of downstream problems. Although the answer is not
a resounding “no”, as only sometimes a single shared appearance model can outperform dedicated
methods, we argue that a unified framework is an appealing alternative to task-specific methods. The
main reason is that it allows us to make the most of the progress made in the representation learning
literature at no extra cost. With the rapid development of self-supervised learning, and the large
amount of computational resources dedicated to it, we believe it is reasonable to expect that, in the
future, a general-purpose representation will be able to outperform task-specific methods across the
board. Until then, UniTrack could still serve as a useful evaluation tool for novel representations,
especially considering the lack of correlation with the standard linear-probe approach. We believe
this will encourage the community to develop self-supervised representations that are of “general
purpose” in a broader sense.
Broader impact. Upon reflection, we believe that progress in tracking applications and self-
supervised learning is beneficial for society, as it can significantly impact (for instance) the de-
velopment of autonomous vehicles, which we consider a net positive for society. We also recognise
that the same technologies could constitute a threat if deployed for surveillance by entities hostile to
civil liberties.
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