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Abstract

The rapidly growing market demand for dia-001
logue agents capable of goal-oriented behavior002
has caused many tech-industry leaders to in-003
vest considerable efforts into task-oriented di-004
alog systems. The performance and success of005
these systems is highly dependent on the accu-006
racy of their intent identification – the process007
of deducing the goal or meaning of the user’s008
request and mapping it to one of the known in-009
tents for further processing. Gaining insights010
into unrecognized utterances – user requests011
the systems fails to attribute to a known intent012
– is therefore a key process in continuous im-013
provement of goal-oriented dialog systems.014

We present an end-to-end pipeline for process-015
ing unrecognized user utterances, including016
a specifically-tailored clustering algorithm, a017
novel approach to cluster representative extrac-018
tion, and cluster naming. We evaluated the019
proposed clustering algorithm and compared020
its performance to out-of-the-box SOTA solu-021
tions, demonstrating its benefits in the analysis022
of unrecognized user requests.023

1 Introduction024

The development of task-oriented dialog systems025

has gained much attention in both the academic and026

industrial communities over the past decade. Task-027

oriented (also referred to as goal-oriented) dialog028

systems help customers accomplish a task in one029

or multiple domains (Chen et al., 2017), compared030

with open-domain dialog systems aimed at maxi-031

mizing user engagement (Huang et al., 2020). A032

typical pipeline system architecture is divided into033

several components, including a natural language034

understanding (NLU) module. This module is re-035

sponsible for classifying the first user request into036

potential intents, performing a decisive step that is037

required to drive the subsequent conversation with038

the virtual assistant in the right direction.039

Goal-oriented dialog systems often fail to rec-040

ognize the intent of natural language requests due041

Figure 1: Natural language understanding (NLU) mod-
ule. Based to the intent classifier’s confidence level,
first user utterances are ‘recognized’ and associated
with an execution flow, or stored in an unhandled pool.

to system errors, incomplete service coverage, or 042

insufficient training (Grudin and Jacques, 2019; 043

Kvale et al., 2019). In practice, these cases are 044

normally identified using intent classifier uncer- 045

tainty. Here, user utterances that are predicted to 046

have a level of confidence below a certain thresh- 047

old to any of the predefined intents, are identified 048

and reported as unrecognized or unhandled. Fig- 049

ure 1 presents the NLU module from a typical task- 050

oriented dialog system: the user utterance is either 051

transformed into an intent with an appropriate flow 052

of subsequent actions, or labelled as unrecognized 053

and stored in the unhandled pool. 054

Unhandled utterances often carry over various 055

aspects of potential importance, including novel 056

examples of existing intents, novel topics that may 057

introduce a new intent, or seasonal topical peaks 058

that should be monitored but not necessarily mod- 059

eled within the system. In large deployments, the 060

amount of unhandled utterances can reach tens of 061

thousands each day. Despite their evident impor- 062

tance for continuous bot improvement, tools for 063

gaining effective insights into unhandled utterances 064

have not been developed sufficiently, leaving a vast 065

body of knowledge, as well as a range of potential 066

actionable items, unexploited. 067

Gaining insights into the topical distribution of 068

user utterances can be achieved using unsupervised 069
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text analysis tools, such as clustering or topic mod-070

eling. Indeed, identifying clusters of semantically071

similar utterances can help surface topics of inter-072

est to a conversation analyst. We show that tradi-073

tional clustering algorithms result in sub-optimal074

performance due to the unique traits of unhandled075

utterances in dialog systems: an unknown number076

of expected clusters and a very long tail of outliers.077

Consequently, we propose and evaluate a simple078

radius-based variant of the k-means clustering al-079

gorithm (Lloyd, 1982), that does not require a fixed080

number of clusters and tolerates outliers gracefully.081

We demonstrate that it outperforms its out-of-the-082

box counterparts on a range of datasets.083

We further propose an end-to-end process for sur-084

facing topical clusters in unhandled user requests,085

including utterance cleanup, a designated cluster-086

ing procedure and its extensive evaluation, a novel087

approach to cluster representatives extraction, and088

cluster naming. We demonstrate the benefits of the089

suggested clustering approach on multiple publicly090

available, as well as proprietary datasets for real-091

world task-oriented chatbots. The rest of the paper092

is structured as follows. We survey related work in093

Section 2 and detail our clustering procedure and094

its evaluation in Section 3. Cluster representatives095

selection is presented in Section 4, and the process096

used to assign clusters with names is described in097

Section 5. Finally, we conclude in Section 6.098

2 Related Work099

In the context of the pipeline approach to build-100

ing goal-oriented dialog systems, our work is re-101

lated to the task of intent detection, performed by102

the NLU component. Intent detection is normally103

formulated as a standalone classification task (Xu104

and Sarikaya, 2013; Guo et al., 2014; Chen et al.,105

2019), which is loosely interlaced with the suc-106

cessive tasks in the pipeline. Out-of-domain ut-107

terance detection, which is the task of accurately108

discriminating between requests that are within-109

and outside the scope of a system, has gained much110

attention recently (Schuster et al., 2019; Larson111

et al., 2019; Gangal et al., 2020; Cavalin et al.,112

2020). Contrary to these works, we assume a set113

of utterances already labeled by a system’s NLU114

module as unrecognized; these are user requests115

that the system failed to attribute to an existing116

intent. We demonstrate an end-to-end approach117

for extracting potentially actionable insights from118

these utterances, by making them easily accessible119

to a conversation analyst. 120

Clustering is one of the most useful techniques 121

for extracting insights from data in an unsupervised 122

manner. In the context of text, clustering typically 123

refers to the task of grouping together units (e.g., 124

sentences, paragraphs, documents) carrying simi- 125

lar semantics, such that units in the same cluster 126

are more semantically similar to each other than 127

those in different clusters. The unique nature of our 128

setting imposes two constraints on the clustering al- 129

gorithm: (1) unknown number of partitions, and (2) 130

tolerating outliers that lie isolated in low-density 131

regions. Density-Based Spatial Clustering of Appli- 132

cations with Noise (DBSCAN) (Ester et al., 1996) 133

and its hierarchical version (HDBSCAN) (McInnes 134

et al., 2017) are two common choices that satisfy 135

these requirements. We evaluate our clustering ap- 136

proach against (H)DBSCAN and show its benefits 137

across multiple datasets. 138

Another popular clustering algorithm that de- 139

termines the number of partitions is MeanShift 140

(Cheng, 1995), a non-parametric method for lo- 141

cating the maxima of a density function. Outlier 142

detection can further be achieved with MeanShift 143

by considering only clusters that exceed a prede- 144

fined minimal size, where the rest are assigned to 145

the outlier pool. MeanShift yielded inferior per- 146

formance in all our experiments; we, therefore, 147

exclude its results from this work. 148

3 Clustering of Unrecognized Requests 149

Consider a virtual assistant aimed to attend to pub- 150

lic questions about Covid-19. The rapidly evolving 151

situation with the pandemic means that novel re- 152

quests are likely to be introduced to the bot on 153

a daily basis. For example, changes in interna- 154

tional travel regulations would entail requests re- 155

lated to PCR test availability, and the decision to 156

offer booster shots for seniors might cause a spike 157

in questions about vaccine appointments for elderly 158

citizens. Monitoring and promptly detecting these 159

topics is fundamental for continuous bot improve- 160

ment. We next describe the pipeline we apply, in- 161

cluding utterance cleanup, clustering, cluster repre- 162

sentative extraction, and cluster naming. 163

3.1 Cleaning and Filtering Utterances 164

Clustering unrecognized utterances aims at gaining 165

topical insights into client needs that are currently 166

poorly covered by the automatic reply system. In 167

some cases, these utterances include easily iden- 168
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tifiable, yet practically useless clusters, such as169

greetings (‘hello, how are you?’), acknowledge-170

ments (‘thank you’), or other statements of little171

practical importance (‘would you please check that172

for me?’). Generally treated as dialog fluff, these173

statements and their semantic equivalents can be174

filtered out from the subsequent processing.175

We address this issue by manually collecting a176

sample set of fluff utterances: a set of domain-177

independent ones and a (small) set of domain-178

specific ones, where both are treated as anchors179

for data cleanup. Specifically, given a predefined180

anchor set of fluff utterances F , and a set of ut-181

terances subject for clustering U , we encode ut-182

terances in both F and U into their semantic rep-183

resentations using the SentenceTransformer (ST)184

encoder (Reimers and Gurevych, 2019)1, and filter185

out each utterance u∈U that exceeds a minimal co-186

sine similarity threshold to any fluff utterance f∈F .187

We set the similarity threshold to 0.7 using qualita-188

tive evaluation over the [0.5, 0.8] range. Requests189

such as ‘hi, how are you doing today’, and ‘thanks190

for your help’ would be filtered out prior to the191

clustering procedure since they closely resemble192

utterances from the anchor fluff set.193

3.2 Clustering Utterances194

Here we describe the main clustering procedure195

followed by an optional single merging step.196

3.2.1 Main Clustering Procedure197

Clustering requirements Multiple traits make198

up an effective clustering procedure in our scenario.199

First, the number of clusters is unknown, and has200

to be discovered by the clustering algorithm. Sec-201

ond, the nature of data typically implies several202

large and coherent clusters, where users repeatedly203

introduce very similar requests, and a very long204

tail of unique utterances that do not have similar205

counterparts in the dataset. While the latter are of206

somewhat limited importance, they can amount to207

a significant ratio of the input data. There is an208

evident trade-off between the size of the generated209

clusters, their density or sparsity, and the amount210

of outliers: smaller and denser clusters entail larger211

amounts of outliers. The decision regarding the212

precise outcome granularity may vary according to213

domain and bot maturity. Growing deployments,214

with a high volume of unrecognized requests could215

benefit from surfacing large and coarse topics that216

1Using the Universal Sentence Encoder (USE) (Cer et al.,
2018) yielded similar results, see Section 3.3.2 for details.

Figure 2: Example outcome of the clustering process.
Identified clusters (four in this case) are depicted in
color, while outliers appear in grey.

are subject to automation. That said, mature deploy- 217

ments are likely to focus on fine-grained coherent 218

clusters of utterances, introducing enhancements 219

into the existing solution. Our third requirement 220

is, therefore, a configurable density of the outcome 221

clusters, which can be set up prior to the clustering 222

procedure. Figure 2 illustrates a typical outcome 223

of the clustering process; identified clusters are de- 224

picted in color, while the outliers, which are the 225

majority of instances in this case, appear in grey. 226

Existing clustering solutions can be roughly cat- 227

egorized across two major dimensions in terms of 228

functional requirements: those requiring a fixed 229

number of output clusters (1.a) and those that do 230

not (1.b); those forcing cluster assignment on the 231

entire dataset (2.a) and those tolerating outliers 232

(2.b). Our clustering solution should accommodate 233

(1.b) and (2.b): the number of clusters is deter- 234

mined by the clustering procedure, allowing for out- 235

liers. DBSCAN (Ester et al., 1996) and its descen- 236

dant variants constitute a popular family of cluster- 237

ing solutions that satisfies these requirements; we, 238

therefore, evaluate our algorithm against implemen- 239

tations of DBSCAN and its hierarchical version 240

HDBSCAN (McInnes et al., 2017). 241

Data representation Given a set of m unhan- 242

dled utterances U=(u1, u2, ..., um), we com- 243

pute their vector representations E=(e1, e2, ..., 244

em) using a sentence encoder. A distance ma- 245

trix D of size m×m is then computed, where 246

D[i, j]=1.0−cos(ei, ej). The matrix D is further 247

used as an input to the core clustering algorithm. 248

Radius-based clustering (RBC) We introduce a 249

variant of the popular k-means clustering algorithm. 250
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This variant complies with our clustering require-251

ments by (1) imposing a strict cluster assignment252

criterion and (2) eventually omitting points that do253

not constitute clusters exceeding a predefined size.254

Specifically, we iterate over randomly-ordered vec-255

tors in E, where each utterance vector can be as-256

signed to an existing cluster if certain conditions257

are satisfied; otherwise, it initiates a new cluster. To258

join an existing cluster, the utterance is required to259

surpass a predefined similarity threshold min_sim260

for the cluster’s centroid2, implying its placement261

within a certain radius from the centroid. If multi-262

ple clusters satisfy the similarity requirement, the263

utterance is assigned to the cluster with the highest264

proximity i.e., the cluster with the highest semantic265

similarity to its centroid. Additional iterations over266

the utterances are further performed, re-assigning267

them to different clusters if needed, until conver-268

gence or until a pre-defined number of iterations269

is exhausted. The amount of clusters generated by270

the final partition is controlled by the predefined271

min_size value: elements that constitute clusters272

of small size (in particular, those with a single mem-273

ber) are considered outliers. Algorithm 1 presents274

the Radius-based Clustering (RBC) pseudo-code.275

Algorithm 1: Radius-based Clustering
input: E (e1, e2, ... en) /* elements */
input: D (n×n) /* dist matrix */
input: min_sim /* min similarity */
input: min_size /* min cluster size */

C ← ∅
while convergence criteria are not met do

for each element ei∈E do
if the highest similarity of ei to any existing

cluster exceeds min_sim then
assign ei to its most similar cluster c
re-calculate the centroid of c

else
create a new cluster c′ and assign ei to it
set the centroid of c′ to be ei
add c′ to C

/*clusters with fewer elements than
the predefined min_size are
considered outliers */

return: each c∈C of size exceeding min_size

3.2.2 Merging Clusters276

Cluster merging has been extensively used as a277

means to determine the optimal clustering out-278

2Following the k-means notation, we compute a cluster’s
centroid as the arithmetic mean of its member vectors.

come in the scenario where the ‘true’ number of 279

partitions is unknown (Krishnapuram, 1994; Kay- 280

mak and Setnes, 2002; Xiong et al., 2004). These 281

start with a large number of clusters and iteratively 282

merge compatible partitions until the optimization 283

criteria is satisfied. Beginning with a fine-grained 284

partitioning, we perform a single step of cluster 285

merging, combining similar clusters into larger 286

groups. A similar outcome could potentially be ob- 287

tained by relaxing the min_sim similarity threshold 288

and thereby, generating more heterogeneous flat 289

clusters in the first place. However, a single step of 290

cluster merging yielded results that outperform flat 291

clustering on a range of datasets (see Table 3 and 292

Section 3.3.2 for details). 293

Classical agglomerative hierarchical clustering 294

(AHC) algorithms merge pairs of lower-level clus- 295

ters by minimizing the agglomerative criterion: a 296

similarity requirement that has to be satisfied for 297

a pair of clusters to be merged. Similar to AHC, 298

we seek to merge clusters exhibiting high mutual 299

similarity. In contrast to AHC, our approach is not 300

pair-wise, rather it constitutes a subsequent invo- 301

cation of Algorithm 1 that takes inter-cluster (and 302

not inter-utterance) distance matrix Dc as its input. 303

We next describe two approaches for building this 304

distance matrix towards a single merging step. 305

Semantic Merging Formally, given a set of clus- 306

ters C of size k=|C|, identified by Algorithm 1, 307

we compute the set of cluster centroid vectors (cn1, 308

cn2, ..., cnk); these vectors are assumed to reliably 309

represent the semantics of their corresponding clus- 310

ters. A distance matrix Dc is then computed by 311

calculating the pairwise semantic distance between 312

all pairs of centroids in the set C. Dc is further 313

used as an input to subsequent invocation of the 314

RBC algorithm, where the min_sim parameter can 315

possibly differ from the previous invocation. 316

Keyword-based Merging User requests to a 317

goal-oriented dialog system are likely to be charac- 318

terized by the extensive use of a domain-specific 319

lexicon. For example, in the domain of banking, we 320

are likely to encounter terms related to ‘accounts’, 321

‘transactions’, and ‘balance’, while in the context 322

of a Covid-19 Q&A bot, the lexicon is likely to 323

contain extensive use of words related to ‘vaccine’, 324

‘boosters’, ‘appointments’, and so on. Although 325

impressive at capturing meaning, semantic repre- 326

sentations do not necessarily capture the domain- 327

specific notion of similar requests. For example, 328
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cluster name: difference covid flu (28) cluster name: covid pregnancy (17)
is covid the same as the flu? (4) covid 19 and pregnancy (10)
how is covid different from the flu? (3) covid risks for a pregnant woman (4)
what is the difference between covid 19 and flu? what is the risk of covid for pregnant women?
what’s the difference between covid and flu is covid-19 dangerous when pregnant?
is the covid the same as cold? 7 months pregnant and tested positive for covid, any risks?
covid vs flu vs sars covid 19 during pregnancy

Table 1: Example clusters of user requests generated by the RBC algorithm when applied on the Covid-19 dataset.
Only a partial list of cluster members is presented in the table; the number in parenthesis denotes a cluster size.

the two utterances ‘covid 19 and pregnancy’ and ‘7329

months pregnant and tested positive for covid, any330

risks?’ do not exhibit exceptional semantic sim-331

ilarity, while practically they should be clustered332

together. The intuition that stems from the fact that333

both sentences contain ‘pregnant’/‘pregnancy’, and334

‘covid’ – words typical of the underlying domain.335

We therefore suggest the additional, keyword-based336

merging approach, as detailed below.337

A common way to extract lexical characteristics338

of a corpus is using a log-odds ratio with infor-339

mative Dirichlet prior (Monroe et al., 2008) – a340

method that discovers markers with excessive fre-341

quency in one dataset compared to another. We342

used the collection of unhandled utterances as our343

target corpus and a random sample of 100K sen-344

tences from a Wikipedia dump3 as our background345

neutral dataset. Setting the strict log-odds score of346

-5, markers identified for the dataset of Covid-19347

requests included {‘quarantine’, ‘measures’, ‘emer-348

gency’, ‘pregnant’, ‘sick’, ‘leave’, ‘risk’}.349

Given a set of markers, we now define cluster350

similarity as follows: we denote the set of domain-351

specific markers discovered by the log-odds ratio352

procedure by M and the set of top-k most frequent353

words4 in two clusters c1 and c2, by W1 and W2,354

respectively. The similarity of c1 and c2 is then355

defined to be proportional to the number of mark-356

ers from M that can be found in both W1 and W2:357

sim(c1, c2) ∝ |M∩W1∩W2|, where |M | amounts358

to the maximal possible similarity. Pairwise cluster359

distances are further computed by normalizing the360

similarity values to the [0, 1] range, and subtracting361

them from 1. A distance matrix Dc is constructed362

by calculating pairwise distance on the set of clus-363

ters in C, and is further used as an input to sub-364

sequent invocation of the RBC algorithm, with an365

adjusted min_sim threshold.366

3We used the Wikipedia 2006 dump available at https:
//nlp.lsi.upc.edu/wikicorpus/.

4k=10 by qualitative evaluation over the [3, 15] range.

Following this definition and assuming a sam- 367

ple set of domain specific markers {‘covid’, ‘risk’, 368

‘quarantine’, ‘pregnant’, ‘appointment’, ‘test’, ‘pos- 369

itive’}, the two utterances ‘covid 19 and preg- 370

nancy’ and ‘7 months pregnant and tested positive 371

for covid, any risks?’ will exhibit considerable 372

keyword-based similarity (intersection size=2), de- 373

spite only moderate semantic proximity. 374

Example Clustering Result Table 1 presents 375

two example clusters generated from user request 376

to the Covid-19 bot. We applied the main RBC clus- 377

tering procedure and a subsequent keyword-based 378

merge step. As can be observed, semantically re- 379

lated utterances are grouped together, where the 380

number beside an utterance reflects its frequency 381

in the cluster. As an example, ‘is covid the same as 382

the flu?’ was asked four times by different users. 383

3.3 Evaluation of Clustering 384

We performed a comparative evaluation of the pro- 385

posed clustering algorithm and HDBSCAN5, us- 386

ing common clustering evaluation metrics. The 387

nature of topical distribution of unrecognized utter- 388

ances is probably most closely resembled by intent 389

classification datasets, where semantically similar 390

training examples are grouped into classes, based 391

on their underlying intent. We used these classes 392

to simulate cluster partitioning for the purpose of 393

evaluation. We make use of three publicly available 394

intent classification datasets (Liu et al. (2019), Lar- 395

son et al. (2019) and Tepper et al. (2020)), as well 396

as three datasets from real task-oriented chatbots 397

in varying domains. Table 2 presents details for the 398

datasets used in our evaluation. 399

3.3.1 Evaluation Approach 400

The main approaches to clustering evaluation in- 401

clude extrinsic methods, which assume a ground 402

truth, and intrinsic methods, which work in the 403

5DBSCAN resulted in outcome systematically inferior to
HDBSCAN; hence, it was excluded from further experiments.
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dataset intents examples mean STD
Liu et al. (2019) 46 20849 453.23 896.34
Larson et al. (2019) 150 22500 150.00 0.00
Tepper et al. (2020) 57 844 14.80 14.16
dataset1 157 5954 37.92 26.74
dataset2 135 2387 17.68 25.28
dataset3 112 1821 16.25 11.42

Table 2: Datasets details: the number of intents, total
training examples, mean and STD of the num of ex-
amples. We excluded out-of-scope examples from the
Larson et al. (2019) dataset for the sake of evaluation.

absence of ground truth. Extrinsic techniques com-404

pare the clustering outcome to a human-generated405

gold standard partitioning. Intrinsic techniques406

assess the resulting clusters by measuring charac-407

teristics such as cohesion, separation, distortion,408

and likelihood (Pfitzner et al., 2009). We employ409

two popular extrinsic and intrinsic evaluation met-410

rics: adjusted random index (ARI, (Hubert and411

Arabie, 1985)) and Silhouette Score (Rousseeuw,412

1987). We vary the parameters of the RBC al-413

gorithm: merge type with none vs. semantic vs.414

keyword-based, see Section 3.2.2); the encoder415

used for distance matrix construction using ST vs.416

USE; min similarity threshold used as a cluster “ra-417

dius” (see Algorithm 1 for details). Both ARI and418

Silhouette yield values in the [-1, 1] range, where419

-1, 0 and 1 mean incorrect, arbitrary, and perfect420

assignment, respectively.421

The unique nature of our clustering requirements422

introduces a challenge to standard extrinsic eval-423

uation techniques. Specifically, the min cluster424

size attribute controls the amount of outliers, by425

considering only clusters that exceed the minimal426

number of members (see Figure 2). As such, a high427

min_size value will yield a large amount of left-428

out utterances, while a min_size=1 will partition429

the entire data, including single-member clusters.430

Aiming to mimic the ground truth partition (i.e, the431

intent classification datasets), we set the min_size432

attribute according to the minimal class size in the433

dataset, subject to evaluation. For example, this434

attribute was set to 150 for the Larson et al. (2019)435

dataset, but to 2 for dataset2.436

Both evaluation techniques assume partitioning437

of the input space. Therefore, for our evaluation,438

we exclude the set outliers generated by our clus-439

tering algorithm altogether: only the subset of in-440

stances constructing the outcome clusters (e.g., in-441

stances depicted in color in Figure 2) was used to442

compute both ARI and Silhouette. For complete-443

ness, we also report the ratio of a dataset utterances 444

covered by the generated partition (‘% clustered’ 445

in Table 3), where the higher, the better. 446

3.3.2 Evaluation Results 447

Table 3 presents the results of our evaluation. 448

Clearly, the RBC algorithm outperforms HDB- 449

SCAN across the board for both ARI and Silhuette 450

scores, with the exception of dataset3, where the 451

second best ARI score (0.37) is obtained by RBC 452

along with over 80% of clustered utterances (com- 453

pared to only 49.79% by HDBSCAN). HDBSCAN 454

also outperforms RBC in terms of the ratio of clus- 455

tered utterances for Liu et al. (2019) and dataset1. 456

However, these results are achieved by a nearly 457

arbitrary partition of the input data, as mirrored by 458

the extremely low ARI and Silhuette scores. We 459

conclude that RBC outperforms its out-of-the-box 460

counterpart on virtually all datasets in this work. 461

The ratio of clustered examples (% clustered) 462

exhibits considerable variance among the datasets; 463

this result is indicative of the varying levels of se- 464

mantic coherence of the underlying intent classes, 465

which are typically constructed manually by a bot 466

designer. As such, over 87% of all training exam- 467

ples were covered by the clustering procedure for 468

dataset3, but only 33.90% for Larson et al. (2019). 469

Although it generated different final outcome, the 470

merging step does not affect the ratio of clustered 471

utterances, which is determined by the first cluster- 472

ing round. For example, 87.18% of the utterances 473

are clustered for all three merge types when using 474

the ST encoder for dataset3. 475

Various merging strategies, encoders, and sim- 476

ilarity thresholds show the benefits for different 477

datasets, with no single parameter configuration 478

outperforming others systematically. This result 479

implies that the decision regarding the precise clus- 480

tering configuration is dependent on the specific 481

dataset, and should be made per qualitative or quan- 482

titative evaluation, where possible. 483

4 Selecting Cluster Representatives 484

Contemporary large-scale deployments of virtual 485

assistants must cope with increasingly high vol- 486

umes of incoming user requests. A typical large 487

task-oriented system can accept over 100K requests 488

(i.e., user utterances) per day, where the amount 489

of conversations that pass the initial step of intent 490

identification can vary between 40% and 80%. Con- 491

sequently, tens of thousands of requests can be iden- 492

tified as unrecognized on a daily basis. Clustering 493
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algo RBC algorithm HDBSCAN
merge type no merge semantic merge keyword merge
encoder type USE ST USE ST USE ST USE ST
sim threshold 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 * *

L
iu

ARI 0.43 0.42 0.32 0.40 0.60 0.74 0.44 0.47 0.60 0.74 0.43 0.48 0.42 0.03
Silhouette 0.50 0.47 0.36 0.42 0.59 0.67 0.50 0.58 0.59 0.67 0.40 0.43 0.39 0.09
% clustered 14.00 12.12 16.09 12.03 14.00 12.12 16.09 12.03 14.00 12.12 16.09 12.03 12.69 38.36

L
ar

so
n ARI 0.87 0.89 0.86 0.86 0.64 0.68 0.76 0.87 0.66 0.68 0.71 0.75 0.49 0.69

Silhouette 0.40 0.47 0.47 0.50 0.42 0.48 0.50 0.54 0.37 0.38 0.39 0.47 0.39 0.47
% clustered 26.90 16.29 33.90 32.60 26.90 16.29 33.90 32.60 26.90 16.29 33.90 32.60 24.92 32.98

Te
pp

er

ARI 0.71 0.66 0.65 0.65 0.72 0.73 0.52 0.61 0.71 0.66 0.65 0.65 0.69 0.67
Silhouette 0.46 0.45 0.47 0.49 0.49 0.51 0.37 0.47 0.46 0.45 0.47 0.49 0.45 0.46
% clustered 84.72 79.68 88.18 85.12 84.72 79.68 88.18 85.12 84.72 79.68 88.18 85.12 58.31 60.15

da
ta

se
t1 ARI 0.36 0.32 0.52 0.54 0.66 0.63 0.38 0.44 0.40 0.37 0.51 0.53 0.00 0.00

Silhouette 0.16 0.17 0.16 0.20 0.17 0.18 0.11 0.15 0.13 0.12 0.15 0.19 0.00 0.00
% clustered 38.29 25.18 59.78 46.87 38.29 25.18 59.78 46.87 38.29 25.18 59.78 46.87 83.24 97.90

da
ta

se
t2 ARI 0.45 0.40 0.56 0.42 0.58 0.45 0.46 0.54 0.61 0.52 0.56 0.45 0.55 0.59

Silhouette 0.31 0.37 0.27 0.39 0.22 0.35 0.32 0.33 0.34 0.33 0.25 0.33 0.34 0.35
% clustered 59.17 47.59 74.28 63.26 59.17 47.59 74.28 63.26 59.17 47.59 74.28 63.26 23.46 36.22

da
ta

se
t3 ARI 0.32 0.28 0.34 0.37 0.29 0.31 0.24 0.30 0.31 0.28 0.31 0.34 0.37 0.38

Silhouette 0.22 0.24 0.28 0.28 0.19 0.22 0.27 0.26 0.21 0.24 0.26 0.26 0.23 0.32
% clustered 77.60 68.19 87.18 80.43 77.60 68.19 87.18 80.43 77.60 68.19 87.18 80.43 37.55 49.79

Table 3: Clustering evaluation results. ‘*’ in HDBSCAN columns denotes similarity threshold (0.55 or 0.60)
yielding the highest results (the threshold varies per dataset). The best result in a row is boldfaced.

these utterances would result in large clusters that494

are often impractical for manual processing. Pro-495

viding conversation analysts with a limited set of496

cluster representatives can help extract value from497

the unrecognized data.498

4.1 Representative Characteristics499

A plausible set of representative cluster utterances500

would have to satisfy two desirable properties: ut-501

terance centrality and diversity. We define an utter-502

ance centrality to be proportional to its frequency503

in a cluster: requests with higher frequency should504

be boosted, since they are typical of the way people505

express their need to the bot. The diversity of the506

utterance set mirrors the subtle differences in the507

phrasing and meaning of utterances; these reflect508

the various ways people can express the same need.509

Sampling randomly from a cluster may result510

in a sub-optimal set of representatives, in terms of511

both centrality and diversity. Consider the example512

where no ‘covid 19 and pregnancy’ requests (Table513

1, right) are selected as representatives (low central-514

ity), or both ‘what is the difference between covid515

19 and flu?’ and ‘what’s the difference between516

covid and flu’ (Table 1, left) are selected (low di-517

versity). Contrary to these examples, the set {‘is518

covid the same as the flu?’, ‘is the covid the same519

as cold?’, ‘covid vs flue vs sars’} contains utterance520

of high centrality (the first utterance), and compre-521

hensive coverage of the entire cluster semantics.522

4.2 Selecting Representatives 523

Given a set of utterance vectors represented in a k- 524

dimensional Euclidean space, the volume enclosed 525

by the vectors is influenced by two factors – the 526

angle made by the vectors with respect to each 527

other and their length. More orthogonal vectors 528

span higher volume in the semantic space. Sim- 529

ilarly, the higher is the length of the vectors, the 530

higher is the volume they encompass. Intuitively, 531

the angle made by the vectors is indicative of how 532

similar the corresponding utterances are. Moreover, 533

if the length of the vectors is equated to the cen- 534

trality of the corresponding utterances, we reduce 535

the problem of selecting k diverse utterances with 536

high centrality to that of maximizing the volume 537

encompassed by k corresponding vectors. 538

Selection Approach Given a cluster c of size n, 539

we first project the encodings of the n utterances 540

onto a unit sphere. We further take into considera- 541

tion the factor of centrality by scaling the vectors’ 542

length based on their frequency in a cluster. The 543

volume enclosed by any subset of vector repre- 544

sentations is now affected by both angles and the 545

vectors’ length, thereby simultaneously satisfying 546

the two objectives for representative set selection: 547

centrality and diversity. Figure 3 illustrates the idea 548

of selecting cluster representatives; we use a 2D 549

space for the sake of interpretability. 550

Assuming n vectors in a vector space, the square 551

of the k-dimensional volume enclosed by the vec- 552
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Figure 3: Simplified illustration of cluster representa-
tives selection. While taking into consideration only
diversity, the widest angle is ∠BCD, meaning vectors
u and w are the most diverse out of the three visualized
vectors. Assuming vector length that is proportional
to the vectors’ centrality in a cluster, the chart shows a
larger enclosed area between the vectors u and v, out of
all enclosed areas between pairs of vectors; these vec-
tors will be selected as cluster representatives for k=2.

tors is proportional to the Gram-determinant of the553

vectors. Given n utterances, we select k diverse and554

central utterances by computing vectors’ similarity555

matrix, and finding a square sub-matrix of size k556

that has a high determinant; this can be achieved557

by using a determinant’s point process to sample558

such a sub-matrix (Gong et al., 2014; Celis et al.,559

2018). We make use of the freely available DPPy560

Python package6 for this purpose.561

As a concrete example, for the two clusters in562

Table 1 and k=3, two represenative sets were se-563

lected: {‘is covid the same as the flu?’, ‘is the564

covid the same as cold?’, ‘covid vs flue vs sars’}565

and {‘covid 19 and pregnancy’, ‘covid risks for a566

pregnant woman’, ‘7 months pregnant and tested567

positive for covid, any risks?’}.568

5 Naming Clusters569

Assigning cluster with names, or labels, is an es-570

sential step towards their consumability. Common571

approaches to this task resort to simple but reliable572

techniques based on keyword extraction, such as573

tf-idf ; many of these techniques made their way574

into the first large-scale information retrieval (IR)575

systems (Ramos et al., 2003; Aizawa, 2003).576

We treat all utterances in individual clusters577

from a set C=(c1, c2, ..., ck) as distinct docu-578

6https://github.com/guilgautier/DPPy

ments. We first applied lemmatization to these 579

documents using the spacy toolkit7 (Honnibal and 580

Montani, 2017), excluded stopwords, and further 581

ranked all unigram, bigram, and trigram token 582

sequences by their tf-idf score: term-frequency 583

boosts ngrams typical of a cluster, and inverted- 584

document-frequency down-weights the importance 585

of ngrams, common across clusters. 586

Favoring long names (e.g., a trigram) over short 587

ones (e.g., a unigram), we defined a tf-idf score 588

threshold for each ngram with more permissive, 589

lower scores for trigrams and higher ones for uni- 590

grams. Score thresholds were optimized by qual- 591

itative evaluation over the [0.10, 0.75] range, and 592

were set to 0.650, 0.400 and 0.150 for unigrams, bi- 593

grams and trigrams, respectively. We further sorted 594

the candidate key-phrases by their length in a pri- 595

mary sort, and by score for a secondary sort. The 596

first ngram to exceed its pre-defined corresponding 597

threshold was selected as the cluster name. Table 1 598

presents names automatically assigned to the two 599

sample clusters identified in the Covid-19 dataset: 600

‘difference covid flu’ and ‘covid pregnancy’. 601

6 Conclusions and Future Work 602

Analyzing unrecognized user requests is a funda- 603

mental step towards improving task-oriented dia- 604

log systems. We present an end-to-end pipeline 605

for cleanup, clustering, representatives selection, 606

and cluster naming – procedures that facilitate the 607

effective and efficient exploration of utterances un- 608

recognized by the NLU module. We propose a 609

simple clustering variant of the popular k-means 610

algorithm, and show that outperforms its out-of-the- 611

box counterparts on a range of metrics. We also 612

suggest a novel approach to extracting representa- 613

tive utterances from a cluster while simultaneously 614

optimizing their centrality and diversity. 615

Our future work includes evaluation of our clus- 616

tering approach with additional datasets, explo- 617

ration of additional approaches to representative set 618

selection, and advanced techniques for cluster nam- 619

ing. Leveraging clustering results to automatically 620

identify actionable recommendations for conversa- 621

tion analyst is another venue of significant practical 622

importance, we plan to pursue. 623

7https://spacy.io/
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