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Abstract

The rapidly growing market demand for dia-
logue agents capable of goal-oriented behavior
has caused many tech-industry leaders to in-
vest considerable efforts into task-oriented di-
alog systems. The performance and success of
these systems is highly dependent on the accu-
racy of their intent identification — the process
of deducing the goal or meaning of the user’s
request and mapping it to one of the known in-
tents for further processing. Gaining insights
into unrecognized utterances — user requests
the systems fails to attribute to a known intent
— is therefore a key process in continuous im-
provement of goal-oriented dialog systems.

We present an end-to-end pipeline for process-
ing unrecognized user utterances, including
a specifically-tailored clustering algorithm, a
novel approach to cluster representative extrac-
tion, and cluster naming. We evaluated the
proposed clustering algorithm and compared
its performance to out-of-the-box SOTA solu-
tions, demonstrating its benefits in the analysis
of unrecognized user requests.

1 Introduction

The development of task-oriented dialog systems
has gained much attention in both the academic and
industrial communities over the past decade. Task-
oriented (also referred to as goal-oriented) dialog
systems help customers accomplish a task in one
or multiple domains (Chen et al., 2017), compared
with open-domain dialog systems aimed at maxi-
mizing user engagement (Huang et al., 2020). A
typical pipeline system architecture is divided into
several components, including a natural language
understanding (NLU) module. This module is re-
sponsible for classifying the first user request into
potential intents, performing a decisive step that is
required to drive the subsequent conversation with
the virtual assistant in the right direction.
Goal-oriented dialog systems often fail to rec-
ognize the intent of natural language requests due
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Figure 1: Natural language understanding (NLU) mod-
ule. Based to the intent classifier’s confidence level,
first user utterances are ‘recognized’ and associated
with an execution flow, or stored in an unhandled pool.

to system errors, incomplete service coverage, or
insufficient training (Grudin and Jacques, 2019;
Kvale et al., 2019). In practice, these cases are
normally identified using intent classifier uncer-
tainty. Here, user utterances that are predicted to
have a level of confidence below a certain thresh-
old to any of the predefined intents, are identified
and reported as unrecognized or unhandled. Fig-
ure 1 presents the NLU module from a typical task-
oriented dialog system: the user utterance is either
transformed into an intent with an appropriate flow
of subsequent actions, or labelled as unrecognized
and stored in the unhandled pool.

Unhandled utterances often carry over various
aspects of potential importance, including novel
examples of existing intents, novel topics that may
introduce a new intent, or seasonal topical peaks
that should be monitored but not necessarily mod-
eled within the system. In large deployments, the
amount of unhandled utterances can reach tens of
thousands each day. Despite their evident impor-
tance for continuous bot improvement, tools for
gaining effective insights into unhandled utterances
have not been developed sufficiently, leaving a vast
body of knowledge, as well as a range of potential
actionable items, unexploited.

Gaining insights into the topical distribution of
user utterances can be achieved using unsupervised



text analysis tools, such as clustering or topic mod-
eling. Indeed, identifying clusters of semantically
similar utterances can help surface topics of inter-
est to a conversation analyst. We show that tradi-
tional clustering algorithms result in sub-optimal
performance due to the unique traits of unhandled
utterances in dialog systems: an unknown number
of expected clusters and a very long tail of outliers.
Consequently, we propose and evaluate a simple
radius-based variant of the k-means clustering al-
gorithm (Lloyd, 1982), that does not require a fixed
number of clusters and tolerates outliers gracefully.
We demonstrate that it outperforms its out-of-the-
box counterparts on a range of datasets.

We further propose an end-to-end process for sur-
facing topical clusters in unhandled user requests,
including utterance cleanup, a designated cluster-
ing procedure and its extensive evaluation, a novel
approach to cluster representatives extraction, and
cluster naming. We demonstrate the benefits of the
suggested clustering approach on multiple publicly
available, as well as proprietary datasets for real-
world task-oriented chatbots. The rest of the paper
is structured as follows. We survey related work in
Section 2 and detail our clustering procedure and
its evaluation in Section 3. Cluster representatives
selection is presented in Section 4, and the process
used to assign clusters with names is described in
Section 5. Finally, we conclude in Section 6.

2 Related Work

In the context of the pipeline approach to build-
ing goal-oriented dialog systems, our work is re-
lated to the task of intent detection, performed by
the NLU component. Intent detection is normally
formulated as a standalone classification task (Xu
and Sarikaya, 2013; Guo et al., 2014; Chen et al.,
2019), which is loosely interlaced with the suc-
cessive tasks in the pipeline. Out-of-domain ut-
terance detection, which is the task of accurately
discriminating between requests that are within-
and outside the scope of a system, has gained much
attention recently (Schuster et al., 2019; Larson
et al., 2019; Gangal et al., 2020; Cavalin et al.,
2020). Contrary to these works, we assume a set
of utterances already labeled by a system’s NLU
module as unrecognized; these are user requests
that the system failed to attribute to an existing
intent. We demonstrate an end-to-end approach
for extracting potentially actionable insights from
these utterances, by making them easily accessible

to a conversation analyst.

Clustering is one of the most useful techniques
for extracting insights from data in an unsupervised
manner. In the context of text, clustering typically
refers to the task of grouping together units (e.g.,
sentences, paragraphs, documents) carrying simi-
lar semantics, such that units in the same cluster
are more semantically similar to each other than
those in different clusters. The unique nature of our
setting imposes two constraints on the clustering al-
gorithm: (1) unknown number of partitions, and (2)
tolerating outliers that lie isolated in low-density
regions. Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN) (Ester et al., 1996)
and its hierarchical version (HDBSCAN) (McInnes
et al., 2017) are two common choices that satisfy
these requirements. We evaluate our clustering ap-
proach against (H)DBSCAN and show its benefits
across multiple datasets.

Another popular clustering algorithm that de-
termines the number of partitions is MeanShift
(Cheng, 1995), a non-parametric method for lo-
cating the maxima of a density function. Outlier
detection can further be achieved with MeanShift
by considering only clusters that exceed a prede-
fined minimal size, where the rest are assigned to
the outlier pool. MeanShift yielded inferior per-
formance in all our experiments; we, therefore,
exclude its results from this work.

3 Clustering of Unrecognized Requests

Consider a virtual assistant aimed to attend to pub-
lic questions about Covid-19. The rapidly evolving
situation with the pandemic means that novel re-
quests are likely to be introduced to the bot on
a daily basis. For example, changes in interna-
tional travel regulations would entail requests re-
lated to PCR test availability, and the decision to
offer booster shots for seniors might cause a spike
in questions about vaccine appointments for elderly
citizens. Monitoring and promptly detecting these
topics is fundamental for continuous bot improve-
ment. We next describe the pipeline we apply, in-
cluding utterance cleanup, clustering, cluster repre-
sentative extraction, and cluster naming.

3.1 Cleaning and Filtering Utterances

Clustering unrecognized utterances aims at gaining
topical insights into client needs that are currently
poorly covered by the automatic reply system. In
some cases, these utterances include easily iden-



tifiable, yet practically useless clusters, such as
greetings (‘hello, how are you?’), acknowledge-
ments (‘thank you’), or other statements of little
practical importance (‘would you please check that
for me?’). Generally treated as dialog fluff, these
statements and their semantic equivalents can be
filtered out from the subsequent processing.

We address this issue by manually collecting a
sample set of fluff utterances: a set of domain-
independent ones and a (small) set of domain-
specific ones, where both are treated as anchors
for data cleanup. Specifically, given a predefined
anchor set of fluff utterances F', and a set of ut-
terances subject for clustering U, we encode ut-
terances in both F' and U into their semantic rep-
resentations using the SentenceTransformer (ST)
encoder (Reimers and Gurevych, 2019)', and filter
out each utterance u€U that exceeds a minimal co-
sine similarity threshold to any fluff utterance f€F.
We set the similarity threshold to 0.7 using qualita-
tive evaluation over the [0.5, 0.8] range. Requests
such as ‘hi, how are you doing today’, and ‘thanks
for your help’ would be filtered out prior to the
clustering procedure since they closely resemble
utterances from the anchor fluff set.

3.2 Clustering Utterances

Here we describe the main clustering procedure
followed by an optional single merging step.

3.2.1

Clustering requirements Multiple traits make
up an effective clustering procedure in our scenario.
First, the number of clusters is unknown, and has
to be discovered by the clustering algorithm. Sec-
ond, the nature of data typically implies several
large and coherent clusters, where users repeatedly
introduce very similar requests, and a very long
tail of unique utterances that do not have similar
counterparts in the dataset. While the latter are of
somewhat limited importance, they can amount to
a significant ratio of the input data. There is an
evident trade-off between the size of the generated
clusters, their density or sparsity, and the amount
of outliers: smaller and denser clusters entail larger
amounts of outliers. The decision regarding the
precise outcome granularity may vary according to
domain and bot maturity. Growing deployments,
with a high volume of unrecognized requests could
benefit from surfacing large and coarse topics that

Main Clustering Procedure

lUsing the Universal Sentence Encoder (USE) (Cer et al.,
2018) yielded similar results, see Section 3.3.2 for details.
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Figure 2: Example outcome of the clustering process.
Identified clusters (four in this case) are depicted in
color, while outliers appear in grey.

are subject to automation. That said, mature deploy-
ments are likely to focus on fine-grained coherent
clusters of utterances, introducing enhancements
into the existing solution. Our third requirement
is, therefore, a configurable density of the outcome
clusters, which can be set up prior to the clustering
procedure. Figure 2 illustrates a typical outcome
of the clustering process; identified clusters are de-
picted in color, while the outliers, which are the
majority of instances in this case, appear in grey.

Existing clustering solutions can be roughly cat-
egorized across two major dimensions in terms of
functional requirements: those requiring a fixed
number of output clusters (1.a) and those that do
not (1.b); those forcing cluster assignment on the
entire dataset (2.a) and those tolerating outliers
(2.b). Our clustering solution should accommodate
(1.b) and (2.b): the number of clusters is deter-
mined by the clustering procedure, allowing for out-
liers. DBSCAN (Ester et al., 1996) and its descen-
dant variants constitute a popular family of cluster-
ing solutions that satisfies these requirements; we,
therefore, evaluate our algorithm against implemen-
tations of DBSCAN and its hierarchical version
HDBSCAN (Mclnnes et al., 2017).

Data representation Given a set of m unhan-
dled utterances U=(u1, uo, ..., Um;), W€ COm-
pute their vector representations F=(e;, e2, ...,
em) Using a sentence encoder. A distance ma-
trix D of size mxm is then computed, where
Dli, j]=1.0—cos(e;, ;). The matrix D is further
used as an input to the core clustering algorithm.

Radius-based clustering (RBC) We introduce a
variant of the popular k-means clustering algorithm.



This variant complies with our clustering require-
ments by (1) imposing a strict cluster assignment
criterion and (2) eventually omitting points that do
not constitute clusters exceeding a predefined size.
Specifically, we iterate over randomly-ordered vec-
tors in I, where each utterance vector can be as-
signed to an existing cluster if certain conditions
are satisfied; otherwise, it initiates a new cluster. To
join an existing cluster, the utterance is required to
surpass a predefined similarity threshold min_sim
for the cluster’s centroid?, implying its placement
within a certain radius from the centroid. If multi-
ple clusters satisfy the similarity requirement, the
utterance is assigned to the cluster with the highest
proximity i.e., the cluster with the highest semantic
similarity to its centroid. Additional iterations over
the utterances are further performed, re-assigning
them to different clusters if needed, until conver-
gence or until a pre-defined number of iterations
is exhausted. The amount of clusters generated by
the final partition is controlled by the predefined
min_stze value: elements that constitute clusters
of small size (in particular, those with a single mem-
ber) are considered outliers. Algorithm 1 presents
the Radius-based Clustering (RBC) pseudo-code.

Algorithm 1: Radius-based Clustering

input: E (el,e2,...en) /» elements */
input: D (nxn) /+ dist matrix x/
input: min_sim /+ min similarity */
input: min_size /* min cluster size x/

C+ 0

while convergence criteria are not met do

for each element e;€ E do

if the highest similarity of e; to any existing
cluster exceeds min_sim then

assign e; to its most similar cluster ¢
re-calculate the centroid of ¢

else
create a new cluster ¢’ and assign e; to it

set the centroid of ¢’ to be e;
add ¢’ to C

/+*clusters with fewer elements than
the predefined min_size are
considered outliers */

return: each ceC of size exceeding min_size

3.2.2 Merging Clusters
Cluster merging has been extensively used as a

means to determine the optimal clustering out-

Following the k-means notation, we compute a cluster’s
centroid as the arithmetic mean of its member vectors.

come in the scenario where the ‘true’ number of
partitions is unknown (Krishnapuram, 1994; Kay-
mak and Setnes, 2002; Xiong et al., 2004). These
start with a large number of clusters and iteratively
merge compatible partitions until the optimization
criteria is satisfied. Beginning with a fine-grained
partitioning, we perform a single step of cluster
merging, combining similar clusters into larger
groups. A similar outcome could potentially be ob-
tained by relaxing the min_sim similarity threshold
and thereby, generating more heterogeneous flat
clusters in the first place. However, a single step of
cluster merging yielded results that outperform flat
clustering on a range of datasets (see Table 3 and
Section 3.3.2 for details).

Classical agglomerative hierarchical clustering
(AHC) algorithms merge pairs of lower-level clus-
ters by minimizing the agglomerative criterion: a
similarity requirement that has to be satisfied for
a pair of clusters to be merged. Similar to AHC,
we seek to merge clusters exhibiting high mutual
similarity. In contrast to AHC, our approach is not
pair-wise, rather it constitutes a subsequent invo-
cation of Algorithm 1 that takes inter-cluster (and
not inter-utterance) distance matrix D, as its input.
We next describe two approaches for building this
distance matrix towards a single merging step.

Semantic Merging Formally, given a set of clus-
ters C' of size k=|C/, identified by Algorithm 1,
we compute the set of cluster centroid vectors (cny,
cna, ..., cng); these vectors are assumed to reliably
represent the semantics of their corresponding clus-
ters. A distance matrix D, is then computed by
calculating the pairwise semantic distance between
all pairs of centroids in the set C. D, is further
used as an input to subsequent invocation of the
RBC algorithm, where the min_sim parameter can
possibly differ from the previous invocation.

Keyword-based Merging User requests to a
goal-oriented dialog system are likely to be charac-
terized by the extensive use of a domain-specific
lexicon. For example, in the domain of banking, we
are likely to encounter terms related to ‘accounts’,
‘transactions’, and ‘balance’, while in the context
of a Covid-19 Q&A bot, the lexicon is likely to
contain extensive use of words related to ‘vaccine’,
‘boosters’, ‘appointments’, and so on. Although
impressive at capturing meaning, semantic repre-
sentations do not necessarily capture the domain-
specific notion of similar requests. For example,



cluster name: difference covid flu (28)

cluster name: covid pregnancy (17)

is covid the same as the flu? (4)

how is covid different from the flu? (3)

what is the difference between covid 19 and flu?
what’s the difference between covid and flu

is the covid the same as cold?

covid vs flu vs sars

covid 19 and pregnancy (10)

covid risks for a pregnant woman (4)

what is the risk of covid for pregnant women?

is covid-19 dangerous when pregnant?

7 months pregnant and tested positive for covid, any risks?
covid 19 during pregnancy

Table 1: Example clusters of user requests generated by the RBC algorithm when applied on the Covid-19 dataset.
Only a partial list of cluster members is presented in the table; the number in parenthesis denotes a cluster size.

the two utterances ‘covid 19 and pregnancy’ and ‘7
months pregnant and tested positive for covid, any
risks?” do not exhibit exceptional semantic sim-
ilarity, while practically they should be clustered
together. The intuition that stems from the fact that
both sentences contain ‘pregnant’/‘pregnancy’, and
‘covid’ — words typical of the underlying domain.
We therefore suggest the additional, keyword-based
merging approach, as detailed below.

A common way to extract lexical characteristics
of a corpus is using a log-odds ratio with infor-
mative Dirichlet prior (Monroe et al., 2008) — a
method that discovers markers with excessive fre-
quency in one dataset compared to another. We
used the collection of unhandled utterances as our
target corpus and a random sample of 100K sen-
tences from a Wikipedia dump® as our background
neutral dataset. Setting the strict log-odds score of
-5, markers identified for the dataset of Covid-19
requests included { ‘quarantine’, ‘measures’, ‘emer-
gency’, ‘pregnant’, ‘sick’, ‘leave’, ‘risk’}.

Given a set of markers, we now define cluster
similarity as follows: we denote the set of domain-
specific markers discovered by the log-odds ratio
procedure by M and the set of top-k most frequent
words”* in two clusters ¢; and cs, by Wy and Wo,
respectively. The similarity of ¢; and co is then
defined to be proportional to the number of mark-
ers from M that can be found in both W7 and Ws:
sim(cy, c2) o< |[MNW1NWs|, where | M | amounts
to the maximal possible similarity. Pairwise cluster
distances are further computed by normalizing the
similarity values to the [0, 1] range, and subtracting
them from 1. A distance matrix D, is constructed
by calculating pairwise distance on the set of clus-
ters in C, and is further used as an input to sub-
sequent invocation of the RBC algorithm, with an
adjusted min_sim threshold.

*We used the Wikipedia 2006 dump available at ht tps :
//nlp.lsi.upc.edu/wikicorpus/.
*k=10 by qualitative evaluation over the [3, 15] range.

Following this definition and assuming a sam-
ple set of domain specific markers { ‘covid’, ‘risk’,
‘quarantine’, ‘pregnant’, ‘appointment’, ‘test’, ‘pos-
itive’ }, the two utterances ‘covid 19 and preg-
nancy’ and ‘7 months pregnant and tested positive
for covid, any risks?’ will exhibit considerable
keyword-based similarity (intersection size=2), de-
spite only moderate semantic proximity.

Example Clustering Result Table 1 presents
two example clusters generated from user request
to the Covid-19 bot. We applied the main RBC clus-
tering procedure and a subsequent keyword-based
merge step. As can be observed, semantically re-
lated utterances are grouped together, where the
number beside an utterance reflects its frequency
in the cluster. As an example, ‘is covid the same as
the flu?” was asked four times by different users.

3.3 Evaluation of Clustering

We performed a comparative evaluation of the pro-
posed clustering algorithm and HDBSCAN?, us-
ing common clustering evaluation metrics. The
nature of topical distribution of unrecognized utter-
ances is probably most closely resembled by intent
classification datasets, where semantically similar
training examples are grouped into classes, based
on their underlying intent. We used these classes
to simulate cluster partitioning for the purpose of
evaluation. We make use of three publicly available
intent classification datasets (Liu et al. (2019), Lar-
son et al. (2019) and Tepper et al. (2020)), as well
as three datasets from real task-oriented chatbots
in varying domains. Table 2 presents details for the
datasets used in our evaluation.

3.3.1 Evaluation Approach

The main approaches to clustering evaluation in-
clude extrinsic methods, which assume a ground
truth, and intrinsic methods, which work in the

SDBSCAN resulted in outcome systematically inferior to
HDBSCAN; hence, it was excluded from further experiments.
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dataset intents examples  mean STD
Liu et al. (2019) 46 20849 45323 896.34
Larson et al. (2019) 150 22500 150.00 0.00
Tepper et al. (2020) 57 844 1480 14.16
datasetl1 157 5954 3792  26.74
dataset2 135 2387  17.68  25.28
dataset3 112 1821 1625 11.42

Table 2: Datasets details: the number of intents, total
training examples, mean and STD of the num of ex-
amples. We excluded out-of-scope examples from the
Larson et al. (2019) dataset for the sake of evaluation.

absence of ground truth. Extrinsic techniques com-
pare the clustering outcome to a human-generated
gold standard partitioning. Intrinsic techniques
assess the resulting clusters by measuring charac-
teristics such as cohesion, separation, distortion,
and likelihood (Pfitzner et al., 2009). We employ
two popular extrinsic and intrinsic evaluation met-
rics: adjusted random index (ARI, (Hubert and
Arabie, 1985)) and Silhouette Score (Rousseeuw,
1987). We vary the parameters of the RBC al-
gorithm: merge type with none vs. semantic vs.
keyword-based, see Section 3.2.2); the encoder
used for distance matrix construction using ST vs.
USE; min similarity threshold used as a cluster “ra-
dius” (see Algorithm 1 for details). Both ARI and
Silhouette yield values in the [-1, 1] range, where
-1, 0 and 1 mean incorrect, arbitrary, and perfect
assignment, respectively.

The unique nature of our clustering requirements
introduces a challenge to standard extrinsic eval-
uation techniques. Specifically, the min cluster
size attribute controls the amount of outliers, by
considering only clusters that exceed the minimal
number of members (see Figure 2). As such, a high
min_size value will yield a large amount of left-
out utterances, while a min_size=1 will partition
the entire data, including single-member clusters.
Aiming to mimic the ground truth partition (i.e, the
intent classification datasets), we set the min_size
attribute according to the minimal class size in the
dataset, subject to evaluation. For example, this
attribute was set to 150 for the Larson et al. (2019)
dataset, but to 2 for dataset2.

Both evaluation techniques assume partitioning
of the input space. Therefore, for our evaluation,
we exclude the set outliers generated by our clus-
tering algorithm altogether: only the subset of in-
stances constructing the outcome clusters (e.g., in-
stances depicted in color in Figure 2) was used to
compute both ARI and Silhouette. For complete-

ness, we also report the ratio of a dataset utterances
covered by the generated partition (‘% clustered’
in Table 3), where the higher, the better.

3.3.2 Evaluation Results

Table 3 presents the results of our evaluation.
Clearly, the RBC algorithm outperforms HDB-
SCAN across the board for both ARI and Silhuette
scores, with the exception of dataset3, where the
second best ARI score (0.37) is obtained by RBC
along with over 80% of clustered utterances (com-
pared to only 49.79% by HDBSCAN). HDBSCAN
also outperforms RBC in terms of the ratio of clus-
tered utterances for Liu et al. (2019) and dataset].
However, these results are achieved by a nearly
arbitrary partition of the input data, as mirrored by
the extremely low ARI and Silhuette scores. We
conclude that RBC outperforms its out-of-the-box
counterpart on virtually all datasets in this work.

The ratio of clustered examples (% clustered)
exhibits considerable variance among the datasets;
this result is indicative of the varying levels of se-
mantic coherence of the underlying intent classes,
which are typically constructed manually by a bot
designer. As such, over 87% of all training exam-
ples were covered by the clustering procedure for
dataset3, but only 33.90% for Larson et al. (2019).
Although it generated different final outcome, the
merging step does not affect the ratio of clustered
utterances, which is determined by the first cluster-
ing round. For example, 87.18% of the utterances
are clustered for all three merge types when using
the ST encoder for dataset3.

Various merging strategies, encoders, and sim-
ilarity thresholds show the benefits for different
datasets, with no single parameter configuration
outperforming others systematically. This result
implies that the decision regarding the precise clus-
tering configuration is dependent on the specific
dataset, and should be made per qualitative or quan-
titative evaluation, where possible.

4 Selecting Cluster Representatives

Contemporary large-scale deployments of virtual
assistants must cope with increasingly high vol-
umes of incoming user requests. A typical large
task-oriented system can accept over 100K requests
(i.e., user utterances) per day, where the amount
of conversations that pass the initial step of intent
identification can vary between 40% and 80%. Con-
sequently, tens of thousands of requests can be iden-
tified as unrecognized on a daily basis. Clustering



algo RBC algorithm HDBSCAN

merge type no merge semantic merge keyword merge

encoder type USE | ST USE | ST USE | ST USE | ST

sim threshold | 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 * *

ARI 043 042 032 040 060 074 044 047 060 0.74 043 048 | 042 0.03
2 | Silhouette 050 047 036 042 059 0.67 050 058 059 0.67 040 043 039 0.09

% clustered 14.00 12.12 16.09 12.03 14.00 12.12 16.09 12.03 1400 12.12 16.09 12.03 | 12.69 38.36
= | ARI 087 089 08 08 064 068 076 087 066 0.68 071 0.75| 049 0.69
% Silhouette 040 047 047 050 042 048 050 054 037 038 039 047 | 039 047
=~ | % clustered 2690 1629 3390 3260 2690 1629 3390 3260 2690 1629 33.90 32.60 | 24.92 32.98
~ | ARI 071 066 065 065 072 073 052 061 071 0.66 0.65 0.65| 069 0.67
% Silhouette 046 045 047 049 049 051 037 047 046 045 047 049 | 045 046
& | % clustered 84.72 79.68 88.18 85.12 84.72 79.68 88.18 85.12 84.72 79.68 88.18 85.12 | 58.31 60.15
= | ARI 036 032 052 054 066 063 038 044 040 037 051 053] 000 0.00
;” Silhouette 0.16 0.17 0.16 020 0.17 0.8 0.11 015 0.13 0.12 0.15 0.19| 0.00 0.00
< | % clustered 3829 25.18 59.78 46.87 3829 2518 59.78 46.87 3829 25.18 59.78 46.87 | 83.24 97.90
« | ARI 045 040 056 042 058 045 046 054 061 052 056 045| 055 0.59
ié Silhouette 031 037 027 039 022 035 032 033 034 033 025 033| 034 035
< | % clustered 59.17 4759 7428 6326 59.17 4759 7428 6326 59.17 4759 7428 63.26 | 23.46 36.22
« | ARI 032 028 034 037 029 031 024 030 031 028 031 034| 037 038
;” Silhouette 022 024 028 028 0.19 022 027 026 021 024 026 026| 023 032
< | % clustered 77.60 68.19 87.18 8043 77.60 68.19 87.18 8043 77.60 68.19 87.18 80.43 | 37.55 49.79

Table 3: Clustering evaluation results. “*’ in HDBSCAN columns denotes similarity threshold (0.55 or 0.60)
yielding the highest results (the threshold varies per dataset). The best result in a row is boldfaced.

these utterances would result in large clusters that
are often impractical for manual processing. Pro-
viding conversation analysts with a limited set of
cluster representatives can help extract value from
the unrecognized data.

4.1 Representative Characteristics

A plausible set of representative cluster utterances
would have to satisfy two desirable properties: ut-
terance centrality and diversity. We define an utter-
ance centrality to be proportional to its frequency
in a cluster: requests with higher frequency should
be boosted, since they are typical of the way people
express their need to the bot. The diversity of the
utterance set mirrors the subtle differences in the
phrasing and meaning of utterances; these reflect
the various ways people can express the same need.

Sampling randomly from a cluster may result
in a sub-optimal set of representatives, in terms of
both centrality and diversity. Consider the example
where no ‘covid 19 and pregnancy’ requests (Table
1, right) are selected as representatives (low central-
ity), or both ‘what is the difference between covid
19 and flu?’ and ‘what’s the difference between
covid and flu’ (Table 1, left) are selected (low di-
versity). Contrary to these examples, the set {‘is
covid the same as the flu?’, ‘is the covid the same
as cold?’, ‘covid vs flue vs sars’ } contains utterance
of high centrality (the first utterance), and compre-
hensive coverage of the entire cluster semantics.

4.2 Selecting Representatives

Given a set of utterance vectors represented in a k-
dimensional Euclidean space, the volume enclosed
by the vectors is influenced by two factors — the
angle made by the vectors with respect to each
other and their length. More orthogonal vectors
span higher volume in the semantic space. Sim-
ilarly, the higher is the length of the vectors, the
higher is the volume they encompass. Intuitively,
the angle made by the vectors is indicative of how
similar the corresponding utterances are. Moreover,
if the length of the vectors is equated to the cen-
trality of the corresponding utterances, we reduce
the problem of selecting & diverse utterances with
high centrality to that of maximizing the volume
encompassed by k corresponding vectors.

Selection Approach Given a cluster c of size n,
we first project the encodings of the n utterances
onto a unit sphere. We further take into considera-
tion the factor of centrality by scaling the vectors’
length based on their frequency in a cluster. The
volume enclosed by any subset of vector repre-
sentations is now affected by both angles and the
vectors’ length, thereby simultaneously satisfying
the two objectives for representative set selection:
centrality and diversity. Figure 3 illustrates the idea
of selecting cluster representatives; we use a 2D
space for the sake of interpretability.

Assuming n vectors in a vector space, the square
of the k-dimensional volume enclosed by the vec-



v

Figure 3: Simplified illustration of cluster representa-
tives selection. While taking into consideration only
diversity, the widest angle is Z/BCD, meaning vectors
u and w are the most diverse out of the three visualized
vectors. Assuming vector length that is proportional
to the vectors’ centrality in a cluster, the chart shows a
larger enclosed area between the vectors u and v, out of
all enclosed areas between pairs of vectors; these vec-
tors will be selected as cluster representatives for k=2.

tors is proportional to the Gram-determinant of the
vectors. Given n utterances, we select k diverse and
central utterances by computing vectors’ similarity
matrix, and finding a square sub-matrix of size k
that has a high determinant; this can be achieved
by using a determinant’s point process to sample
such a sub-matrix (Gong et al., 2014; Celis et al.,
2018). We make use of the freely available DPPy
Python package® for this purpose.

As a concrete example, for the two clusters in
Table 1 and k=3, two represenative sets were se-
lected: {‘is covid the same as the flu?’, ‘is the
covid the same as cold?’, ‘covid vs flue vs sars’}
and {‘covid 19 and pregnancy’, ‘covid risks for a
pregnant woman’, ‘7 months pregnant and tested
positive for covid, any risks?’ }.

5 Naming Clusters

Assigning cluster with names, or labels, is an es-
sential step towards their consumability. Common
approaches to this task resort to simple but reliable
techniques based on keyword extraction, such as
tf-idf; many of these techniques made their way
into the first large-scale information retrieval (IR)
systems (Ramos et al., 2003; Aizawa, 2003).

We treat all utterances in individual clusters
from a set C=(c1,ca,...,c,) as distinct docu-

*https://github.com/guilgautier/DPPy

ments. We first applied lemmatization to these
documents using the spacy toolkit’ (Honnibal and
Montani, 2017), excluded stopwords, and further
ranked all unigram, bigram, and trigram token
sequences by their tf-idf score: term-frequency
boosts ngrams typical of a cluster, and inverted-
document-frequency down-weights the importance
of ngrams, common across clusters.

Favoring long names (e.g., a trigram) over short
ones (e.g., a unigram), we defined a tf-idf score
threshold for each ngram with more permissive,
lower scores for trigrams and higher ones for uni-
grams. Score thresholds were optimized by qual-
itative evaluation over the [0.10, 0.75] range, and
were set to 0.650, 0.400 and 0.150 for unigrams, bi-
grams and trigrams, respectively. We further sorted
the candidate key-phrases by their length in a pri-
mary sort, and by score for a secondary sort. The
first ngram to exceed its pre-defined corresponding
threshold was selected as the cluster name. Table 1
presents names automatically assigned to the two
sample clusters identified in the Covid-19 dataset:
‘difference covid flu’ and ‘covid pregnancy’.

6 Conclusions and Future Work

Analyzing unrecognized user requests is a funda-
mental step towards improving task-oriented dia-
log systems. We present an end-to-end pipeline
for cleanup, clustering, representatives selection,
and cluster naming — procedures that facilitate the
effective and efficient exploration of utterances un-
recognized by the NLU module. We propose a
simple clustering variant of the popular k-means
algorithm, and show that outperforms its out-of-the-
box counterparts on a range of metrics. We also
suggest a novel approach to extracting representa-
tive utterances from a cluster while simultaneously
optimizing their centrality and diversity.

Our future work includes evaluation of our clus-
tering approach with additional datasets, explo-
ration of additional approaches to representative set
selection, and advanced techniques for cluster nam-
ing. Leveraging clustering results to automatically
identify actionable recommendations for conversa-
tion analyst is another venue of significant practical
importance, we plan to pursue.

"https://spacy.io/
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