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Abstract

Recent advances in artificial intelligence (AI), especially large language models,1

have accelerated the integration of multimodal data in scientific research. Given2

that scientific fields involve diverse data types, ranging from text and images to3

complex biological sequences and structures, multimodal large language mod-4

els (MLLMs) have emerged as powerful tools to bridge these modalities, enabling5

more comprehensive data analysis and intelligent decision-making. This work,6

S3-Bench, provides a comprehensive overview of recent advances in MLLMs,7

focusing on their diverse applications across science. We systematically review the8

progress of MLLMs in key scientific domains, including drug discovery, molecular9

& protein design, materials science, and genomics. The work highlights model10

architectures, domain-specific adaptations, benchmark datasets, and promising11

future directions. More importantly, we benchmarked open-source MLLMs on a12

range of critical molecular and protein property prediction tasks. Our work aims to13

serve as a valuable resource for both researchers and practitioners interested in the14

rapidly evolving landscape of multimodal AI for science. 115
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Figure 1: Average monthly number
of publications on MLLMs in science
(2022–present), collected from arXiv,
Nature, and bioRxiv, showing the in-
creasing attention to MLLM applications
in science.

Recent breakthroughs in artificial intelligence (AI) have17

been driven by foundation models—large-scale neural18

networks trained on broad data that can be adapted to19

diverse tasks [137, 57]. In particular, large language mod-20

els (LLMs) based on the Transformer architecture [169]21

have achieved remarkable proficiency in natural language22

processing, exhibiting emergent abilities such as few-23

shot learning [5, 15, 182, 85, 183] and human-aligned24

dialogue generation [138, 244, 50]. However, these ad-25

vances remain confined to text-based inputs and out-26

puts, whereas scientific problems are inherently multi-27

modal—spanning modalities such as clinical text, biomed-28

ical images, molecular structures, and genomic sequences,29

among others [90, 123, 112, 36]. This has catalyzed a new30

generation of multimodal large language models (MLLMs)31

designed to bridge diverse data modalities and enable more32

comprehensive reasoning.33

MLLMs extend language modeling beyond text, enabling34

AI systems to ingest and generate diverse data types such as images, audio, and structured scientific35

representations [208, 188, 102]. Early examples like Flamingo [5] and Kosmos-1 [74] showed that36

LLMs can be adapted or trained to jointly reason over visual and textual inputs, while open-source37

efforts such as MiniGPT-4 [240] and LLaVA [91] align vision encoders with LLMs, marking a38
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shift from text-only AI towards generalist multimodal agents. This multimodal trend is especially39

impactful in science, where tasks often integrate multiple modalities. Biomedical models such40

as BioMedGPT [123] unify protein sequences, molecular structures, and textual knowledge for41

drug discovery. In genomics, systems like Geneverse [117] and GeneChat [36] connect DNA42

sequences with biomedical knowledge. In materials science, multimodal AI can parse literature and43

microstructure images jointly to propose new materials or predict properties [12, 16, 4, 141]. Across44

these domains, MLLMs act as engines that fuse language with domain-specific modalities, enabling45

holistic analysis and accelerating discovery (Figure 1).46

Given this rapid progress, there is a pressing need to systematically survey MLLMs in science.47

Existing surveys mainly focus on general-purpose LLMs (e.g., [230]) or on narrower multimodal48

techniques (e.g., [208]). Domain-specific reviews exist for biology or biomedicine [225, 222, 164,49

235, 63, 192, 233, 110, 172, 174], but no prior work offers a unified overview across natural language,50

biomedical imaging, molecular data, genomics, and material science (Table 1).51

Figure 2: Overview of our S3-Bench, highlighting four major com-
ponents discussed in the paper and presenting the key modalities and
their corresponding applications in this field.

To fill this gap, we present52

S3-Bench, a comprehensive53

study with benchmarking54

evluation of MLLMs for55

scientific discovery. Our56

contributions are threefold:57

(1) We present the first58

comprehensive survey work59

of MLLMs across major sci-60

entific domains—including61

drug discovery, protein62

engineering, genomics,63

materials science, and64

biomedicine—highlighting65

representative model archi-66

tectures, domain-specific67

adaptations, and benchmark68

datasets. (2) we synthesize69

emerging directions, includ-70

ing diffusion-based LLMs71

and multimodal diffusion-72

based LLMs, and outline73

open challenges for future74

research (Appendix F); and75

(3) we conduct benchmarking76

experiments on selected open-77

source MLLMs, evaluating78

their performance on highly79

significant tasks such as molecular property prediction and protein function prediction (Appendix G).80

In summary, MLLMs are rapidly evolving and hold immense promise for advancing scientific81

discovery, by consolidating progress across diverse modalities and domains and by providing82

empirical benchmark results, this survey aims to serve as both a reference and a foundation for future83

work. The paper is organized as follows: Section 2, Appendix A, Appendix B, and Appendix C84

review domain-specific developments of MLLMs in small molecules, proteins, genomics, and85

materials, respectively. We also discuss emerging topics and future directions in Appendix F.86

2 MLLMs for Molecule Science and Drug Design87

Multimodal large language models (MLLMs) are transforming molecular science and drug discovery88

by combining different chemical representations such as SMILES (1D) [184], SELFIES (1D) [87],89

molecular graphs (2D) [41] and geometric structure (3D) [51]. They improve key tasks including90

property prediction, molecular generation, reaction planning, and synthesis optimization, thus ac-91

celerating the discovery of novel compounds. In this section, we review recent progress along four92

directions: (1) LLMs for molecular representation and design, focusing on SMILES- and graph-93

based embeddings as well as generative models; (2) MLLMs for 1D and 2D tasks, where string and94

graph/image representations are fused; (3) MLLMs with 3D integration, which enhance structural95
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understanding and retrosynthesis; and (4) chemistry-focused agents and specific applications, cover-96

ing tool-augmented systems, puzzle-style reasoning, and reaction optimization. Table H1, Table I1,97

Table I2 and Figure 3 summarize models, datasets, and the research landscape. We also present the98

benchmarking results of molecular property prediction in Appendix G.99

2.1 LLMs for Molecule Representation and Design100

Table 1: Comparison of coverage of recent survey papers on
LLMs/MLLMs across different domains.

Survey Protein Drug & Samll Molecule Gene Material Biomedicine Target Multimodal Benchmarking

Our Survey ✓ ✓ ✓ ✓ ✓ ✓ ✓

LLMs/MLLMs for Science
[225] ✓ ✓ ✓ ✓
[223] ✓ ✓ ✓ ✓
[73] ✓ ✓ ✓ ✓ ✓
[21] ✓ ✓ ✓

LLMs/MLLMs for Biomedicine
[193] ✓
[207] ✓
[171] ✓ ✓
[235] ✓
[17] ✓ ✓ ✓
[233] ✓
[110] ✓
[63] ✓
[192] ✓
[174] ✓
[172] ✓
[164] ✓

While our work centers on multi-101

modal LLMs, we also include an102

overview of LLMs for molecular sci-103

ence to give readers a comprehensive104

understanding of progress in this field.105

LLMs are advancing molecular sci-106

ence by learning from diverse chem-107

ical representations [186], including108

the aforementioned 1D, 2D, and 3D109

data. Transformer models such as110

ChemBERTa [31] and MolBERT [44]111

yield rich embeddings that improve112

property, drug-target, and drug-drug113

interaction prediction [65, 78]. For de novo design, models like MolGPT [10], ChatMol [216],114

and ChatDrug [118] generate valid and novel compounds via conditional generation, reinforcement115

learning, or molecular editing [29]. LLMs further support multi-objective optimization and iterative116

refinement with expert or oracle feedback [191]. In reaction prediction and synthesis, the Molecular117

Transformer excels in forward and retrosynthetic tasks [106], while multimodal and instruction-118

following models bridge chemical language with experimental reasoning [163]. Overall, LLMs are119

emerging as powerful engines for molecular discovery, optimization, and synthesis.120

2.2 MLLMs for 1D and 2D Molecular Tasks121

Recent advances in molecular AI highlight a fundamental paradigm shift from single-modality122

models toward deeply integrated MLLMs, particularly focusing on the fusion of 1D (e.g., SMILES,123

SELFIES) and 2D (e.g., molecular graphs, structure images) representations [11, 148, 78, 89, 70,124

88, 34, 218, 94, 111, 167, 26, 121, 19, 124, 122]. This shift is motivated by the realization that 1D125

string representations provide scalability and access to abundant chemical databases, but alone cannot126

capture the rich spatial, topological, and functional information encoded in 2D modalities. Early127

progress in the field centered around models leveraging 1D molecular strings, but these were soon128

recognized as insufficient for tasks demanding a nuanced understanding of molecular connectivity and129

spatial arrangement. Addressing this, recent works such as MolPROP [148] pioneered the fusion of130

pretrained language models with GNN-based graph encoders, achieving significant gains in property131

prediction. This line of research has since been extended by LLM-MPP [78], Mol-LLM [89], and132

related models such as M3LLM [70], which employ advanced architectural innovations such as cross-133

attention between SMILES, molecular graphs, and textual descriptions, large-scale instruction tuning,134

and multi-level graph feature integration, resulting in strong and generalizable performance across135

property prediction, reaction, and generation tasks. Modular and adapter-based approaches, including136

MolX [88] and ChemLML [34], make it possible to flexibly combine graph encoders with LLMs and137

rapidly adapt to new tasks with minimal parameter overhead. Meanwhile, tokenizer-based solutions138

like UniMoT [218] unify 1D and 2D information at the token level, enabling seamless molecule-to-139

text and text-to-molecule generation. Beyond graph representations, vision-enhanced models such140

as ChemVLM [94], GIT-Mol [111], and Mol2Lang-VLM [167] incorporate 2D structure images141

alongside textual and graph modalities, further boosting captioning and molecular understanding. On142

the system level, frameworks like ModuLM [26] and nach0 [121] generalize the multimodal paradigm143

by supporting arbitrary combinations of 1D, 2D, and even 3D encoders, while InstructMol [19] and144

BioMedGPT [124] demonstrate the value of multi-stage instruction tuning and domain-specific145

integration for high-stakes biomedical applications. Importantly, domain-specialized models such146

as BioGPT [122] represent a milestone in biomedical molecular research. Pre-trained on large-147

scale PubMed literature, BioGPT achieves state-of-the-art results in biomedical text generation148

and knowledge extraction, accelerating automated molecular discovery from unstructured data.149

Collectively, these studies demonstrate that fusing 1D and 2D modalities not only consistently150

improves accuracy and generalizability for property prediction, generation, and retrosynthesis tasks,151

but also lowers the barrier for extending models to new modalities and domains. As such, the152
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evolution from 1D-only to 1D&2D-fused MLLMs marks a major leap for molecular AI, setting a new153

foundation for interpretable, robust, and transferable molecular representation learning in chemistry,154

biology, and drug discovery.155

2.3 MLLMs with 3D Geometry Integration for Molecular Tasks156
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Figure 3: Distribution of MLLMs for drug
and molecule tasks, presenting each model’s
release date, scale, architecture and applica-
tion.

Recent advances in MLLMs with 3D geometry in-157

tegration can be broadly categorized by their tar-158

get molecular tasks. For representation learning159

and property prediction, MolBind [195] aligns sci-160

entific language, 2D molecular graphs, 3D confor-161

mations, and protein pockets into a unified repre-162

sentation space via contrastive learning, enabling163

cross-modal retrieval and zero-shot molecular prop-164

erty prediction. Similarly, ModuLM [26] provides a165

modular framework that flexibly combines 1D, 2D,166

and 3D encoders with diverse LLM backbones, facil-167

itating benchmarking and adaptation across a wide168

range of molecular tasks. For reaction modeling,169

RetroInText [82] integrates 3D geometry, 2D molec-170

ular graphs, and in-context reaction text to enhance171

multi-step retrosynthesis, particularly for long and172

complex synthetic routes. For materials and polymer173

science, PolyLLMem [224] couples Llama3-based174

SMILES embeddings with Uni-Mol 3D embeddings175

through a gated fusion mechanism, demonstrating176

strong performance in polymer property prediction under limited-data scenarios. Overall, these177

approaches reflect a growing trend toward fully multimodal MLLMs that combine complementary178

molecular representations (1D, 2D, and 3D) to achieve improved accuracy, interpretability, and179

generalizability across chemical and biological domains180

2.4 MLLMs for Chemistry-Focused Agents and Special Applications181

(1) Chemistry-Focused Agents. Recent work has introduced chemistry-focused agents that cou-182

ple MLLMs with domain-specific tools to automate molecular data processing and reason-183

ing [13, 214, 211, 161, 80]. Examples include ChatMolData [214], which integrates modules184

for literature mining, structure handling, and database operations; ChemCrow [13] and ChemToolA-185

gent [211], which enhance LLMs for synthesis planning and property prediction; and ChemA-186

gent [161] and ChemThinker [80], which introduce memory or multi-agent designs for more accurate187

and interpretable reasoning. (2) Puzzle and Reaction Condition Recommendation. Beyond standard188

benchmarks, chemistry also involves expert-level reasoning tasks that require integrating diverse data189

sources. Puzzle-style problems [133, 1, 245, 48, 18], such as structure elucidation from spectroscopic190

clues, test the limits of MLLMs; MolPuzzle [60] shows that while models like GPT-4o handle simple191

cases, they still lag behind human experts. Similarly, tasks such as reaction condition recommenda-192

tion and synthesis optimization demand advanced reasoning. MM-RCR [226] exemplifies progress193

here by unifying textual, graph, and SMILES data, achieving state-of-the-art results and strong194

generalization. Overall, MLLMs are moving from unimodal to fused 1D/2D/3D, agent-augmented195

systems that boost property prediction, generation, retrosynthesis, and condition recommendation.196

We believe key hurdles remain in rigorous reasoning, interpretability/reproducibility, and closed-loop197

experimental and safety integration.198

3 Conclusion199

This work provides a comprehensive overview of recent advances in MLLMs for science, highlighting200

representative architectures, datasets, and benchmarks, as well as their emerging applications in201

science. Beyond cataloging progress, we also emphasize the growing role of diffusion-based LLMs in202

multimodal generation and reasoning. Looking ahead, MLLMs hold the potential to reshape the way203

scientists explore and integrate diverse data sources. Continued progress will require addressing open204

challenges in factual reliability, modality-specific reasoning, interpretability, and ethical deployment.205

By synthesizing current advances and pointing toward future directions, this work aims to serve as206

both a reference and a foundation for further research in multimodal scientific AI.207
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A MLLMs for Protein Science934

As protein-related tasks increasingly involve diverse data modalities, including natural language935

descriptions (1D) [], amino acid sequences (1D) [], protein graph (2D) [], and protein geometric936

structures (3D) [], MLLMs have emerged as a powerful framework for integrating these heterogeneous937

sources of information [112, 61, 237]. Unlike unimodal models, MLLMs can jointly reason across938

multiple biological representations, enabling more expressive learning and flexible interaction with939

biological data. In this section, we review recent advances in MLLMs across three major categories:940

(1) we examine models that integrate protein sequences with textual information, supporting tasks941

such as protein captioning, design, and function prediction. (2) we discuss models that incorporate942

geometric representations alongside sequence and text, enabling structure-aware learning for enhanced943

prediction and generation. (3) we highlight MLLMs developed for specialized tasks, including944

protein–protein and free-text-based biological translation. Table H2, Table I3, Table I4 and Figure 4945

summarize models, datasets, and the research landscape. We also present the benchmarking results946

of protein function prediction in Appendix G.947

A.1 LLMs for Protein Science948

We likewise begin by providing an overview of LLMs in protein science for readers to contextualize949

the broader advances in this domain. Large language models have revolutionized protein science,950

enabling efficient and scalable solutions for major challenges in protein property prediction, function951

annotation, structure prediction, and protein engineering [6, 42, 147, 81, 127]. In property prediction,952

models such as UniRep [6] and ProtTrans [42] leverage large-scale pretraining to achieve state-of-953

the-art accuracy on tasks including stability, solubility, and fluorescence. For function annotation,954

transformer-based models like ESM-1b [147], MSA Transformer [145], TCR-BERT [189], and955

ProteinBERT [14] have significantly improved label prediction, enzyme classification, and TCR-956

antigen binding. In structure prediction, advances such as AlphaFold2 [81], ESMFold [105], and957

ESM-IF [69] have enabled end-to-end and inverse folding, approaching experimental-level 3D958

accuracy. Models like GearNet [228], SaProt [159], and OntoProtein [221] integrate structural959

knowledge and ontologies, further enhancing performance on structure-aware tasks. For protein960

engineering and generation, ProGen [127], ProtGPT2 [46], and ProGen2 [135] apply autoregressive961

and conditional generation to produce novel, functional, and diverse proteins. Specialized models962

such as IgLM [156] and PALM-H3 [62] address antibody and virus-specific design. Collectively,963

these advances establish Protein LLMs as powerful engines for biological discovery and rational964

protein design, expanding the reach of AI-driven protein science [147, 81, 127, 14, 105].965

A.2 MLLMs for Protein Sequence–Language Integration966

Recent advancements in MLLMs that integrate protein sequences with textual descriptions have967

led to significant progress in protein-related tasks [112, 120, 234, 37, 219, 123, 243, 126, 178, 98,968

231, 140, 139, 162, 181, 75, 237, 23]. ProteinDT [112] combines protein sequences with textual969

prompts for protein design, achieving high accuracy in generating novel proteins. ProtT3 [120]970

excels in generating text descriptions from protein sequences using a Q-Former encoder, specifically971

targeting protein captioning and QA tasks. ProtCLIP [234] enhances protein function prediction by972

integrating protein sequences with textual knowledge graphs, further improving prediction accuracy.973

BioMedGPT [123] expands this by incorporating both protein sequences and textual knowledge for974

biomedical question answering, enabling improved understanding and reasoning in the biomedical975

domain. PROTLLM [243] and ProLLaMA [126] bridge protein sequence understanding and gener-976

ation tasks, with ProLLaMA excelling in multi-task learning, particularly in protein structure and977

function prediction. InstructProtein [178] aligns protein sequences with natural language through978

knowledge-guided instructions, improving task handling.979

Other models such as DrugGPT [98] and ESM-AA [231] target drug design and molecular modeling,980

tackling ligand generation and protein interaction analysis. BioT5 [140] and BioT5+ [139] integrate981

molecular properties with text for multi-task protein understanding. OntoProtein [219] fuses Gene982

Ontology with sequences to improve function prediction (e.g., GO-CC/GO-BP). Galactica [162]983

trains on a curated scientific corpus for multimodal reasoning, outperforming GPT-3 on LaTeX and984

PubMedQA. For multimodal protein tasks, BioBRIDGE [181] links unimodal biomedical models985

via knowledge graphs to predict drug–target and protein–protein interactions. xTrimoPGLM [23]986

unifies protein understanding and generation, achieving state-of-the-art results. ProteinChat [75]987

conditions on sequences and text prompts to describe protein functions in free-form and classification988

settings. LLaPA [237] combines sequences, PPI networks, and instructions for multi-label PPI and989
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multi-protein affinity prediction. Lastly, MProt-DPO [37] employs Direct Preference Optimization to990

surpass the ExaFLOPS barrier in protein design, improving efficiency. Collectively, these models991

showcase the power of MLLMs that couple sequences with text for protein design, function prediction,992

and interaction analysis.993

A.3 MLLMs for Protein Structure–Sequence–Language Integration994
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Figure 4: Distribution of MLLMs for protein
tasks, presenting each model’s release date,
scale, architecure and application.

Given the critical role of geometric information in995

understanding protein behavior, recent research has996

increasingly focused on integrating structural modal-997

ities into MLLMs [61, 175, 49, 96, 103, 160, 170,998

197, 194, 242, 238, 149]. Several representative999

models—including ESM3 [61], DPLM2 [175], Fold-1000

Token [49], ProTokens [103], Saprot [160], and1001

ProSST [96]—incorporate protein structural infor-1002

mation using various tokenization strategies. Com-1003

pared to other models, ESM3 [61] incorporates ad-1004

ditional functional tokens designed to support spe-1005

cific protein function design tasks. DPLM2 [175]1006

leverages a GVP-based encoder and an IPA-based1007

decoder to learn structural tokens, fine-tuned from1008

DPLM [176], and achieves strong performance in1009

generative tasks. ProTokens [103] employs an SE(3)-1010

invariant transformer to obtain latent structural repre-1011

sentations, which are then quantized into discrete to-1012

kens that capture structural features. FoldToken [49],1013

identifies the limitations of classical quantization ap-1014

proaches and proposes three custom-designed quan-1015

tizers, whose effectiveness is validated through experimental evaluation. Saprot [160] constructs1016

structure-aware tokens with the aid of Foldseek [168] and performs well across various downstream1017

tasks. ProSST [96] differs from previous models by constructing a local structure codebook that1018

captures contextual information beyond individual residues and introducing a sequence–structure1019

disentangled attention mechanism, which is validated through ablation studies.1020

Beyond tokenization-based approaches, other MLLMs integrate structural information primarily1021

through encoders and align the resulting representations with corresponding sequences or textual1022

data. Models such as ProtChatGPT [170], ProteinGPT [197], STELLA [194], InstructBioMol [242],1023

Evolla [238], and ProseLM [149] exemplify this strategy. The overall architectures of ProtChat-1024

GPT [170], STELLA [194], InstructBioMol [242], and ProteinGPT [197] are similar, as they all1025

utilize protein structure encoders. However, ProtChatGPT uniquely incorporates a second protein1026

structure encoder to enhance structural feature extraction, while InstructBioMol adds an additional1027

molecular encoder to integrate molecular information. ProseLM [149] employs a causal encoder that1028

integrates structural and functional contexts, successfully designing a PD-1 binder with a binding1029

affinity of 2.2 nM. Evolla [238] also integrates structural information through protein encoders;1030

however, its distinguishing feature is the use of Direct Preference Optimization (DPO) [143] as a1031

post-pretraining method. The model is primarily designed for protein-related question answering1032

tasks.1033

A.4 MLLMs for Protein Interactions and Specialized Applications1034

Understanding protein–protein interactions (PPIs) [136] is critical for elucidating protein function,1035

and several MLLMs have been developed for this task. LLaPA [237] integrates protein and graph1036

encoders with a language model in a multimodal fusion framework, while BioBRIDGE [181] links1037

diverse biological modalities through a knowledge graph, both achieving strong PPI performance.1038

Although BioT5 [140] and BioT5+ [139] were not explicitly designed for interaction prediction, they1039

still perform competitively on PPI benchmarks. Beyond interaction tasks, multimodal translation1040

is another emerging direction: MolBind [196] supports protein-related zero-shot cross-modal re-1041

trieval, and BioTranslator [199] converts free-text descriptions into biological representations across1042

modalities, enabling more flexible interaction with scientific data.1043
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Collectively, these advances highlight the growing potential of MLLMs to unify heterogeneous1044

protein modalities, enabling more accurate prediction, versatile design, and broader applications in1045

protein science.1046
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B MLLMs for Genomics and Gene1047

MLLMs and LLMs are rapidly advancing genomics by enabling tasks such as sequence modeling,1048

gene function prediction, functional annotation, and knowledge retrieval. Compared to traditional1049

computational approaches, these models offer greater flexibility, interpretability, and the ability to1050

integrate heterogeneous biological data [27, 72, 79]. In this section, we review recent progress1051

from two perspectives. First, we introduce LLMs for genomics, covering their applications in1052

molecular and drug design, functional annotation, gene and variant prioritization, regulatory network1053

modeling, and sequence-level protein or gene tasks. Second, we focus on MLLMs for genomics1054

and gene function prediction, highlighting how multimodal integration of sequences, biological data,1055

and language enables richer reasoning, interpretable predictions, and generalist genomic analysis.1056

Table H3, Table I5, Table I6 and Figure 5 summarize models, datasets, and the research landscape.1057

B.1 LLMs for Genomics1058
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Figure 5: Distribution of MLLMs for gene
and materials, presenting each model’s re-
lease date, scale, and architecture.

LLMs are rapidly transforming bioinformatics and1059

genomics, with applications spanning molecular1060

and drug design, functional annotation, gene and1061

variant prioritization, regulatory network model-1062

ing, sequence analysis, and synthetic data genera-1063

tion [27, 72, 22, 79, 68, 166]. In molecular de-1064

sign, models such as GexMolGen [27] align gene1065

expression features with chemical structures to en-1066

able gene-guided de novo molecule generation. For1067

functional annotation and knowledge retrieval, LLMs1068

are evaluated on summarizing gene sets [72], dis-1069

covering gene–disease associations [22], and aug-1070

menting biomedical search with APIs [79], while1071

GeneTuring [68] provides systematic benchmarks.1072

In gene and variant prioritization, LLM-based ap-1073

proaches [166, 99, 97] integrate literature, biological1074

data, and phenotypes to rank causative genes, with1075

automated pipelines supported by API-driven work-1076

flows [84, 83]. For network modeling, LLMs aid1077

cancer driver gene discovery [215] and reconstruct1078

regulatory networks from single-cell and multi-omics data [177]. In sequence-level tasks, models like1079

ProGen [128] generate functional proteins, while others annotate genes and structures directly from1080

sequence data [39, 241, 109, 3, 155]. Beyond these, LLMs support antimicrobial resistance predic-1081

tion [209], variant effect modeling [64], and even generate synthetic training data for fine-tuning and1082

benchmarking [129]. Together, these studies highlight the broad and transformative role of LLMs in1083

genomics, offering new levels of automation, accuracy, and creativity for precision medicine.1084

B.2 MLLMs for Genomics and Gene Function Prediction1085

The integration of MLLMs into genomics has introduced a transformative paradigm for gene function1086

prediction, gene expression modeling, and broader biological tasks [117, 36, 11, 146, 66, 130].1087

Traditional methods based on sequence homology, ontology classification, or narrow supervised1088

models often lack flexibility and interpretability. In contrast, MLLMs enable free-form reasoning1089

and cross-modal understanding. For example, GeneChat [36] reframes gene function prediction as a1090

language generation task, combining DNABERT-2 [239] as a gene encoder with Vicuna-13B [30]1091

as a decoder to produce rich natural-language descriptions from raw DNA input. Extending this1092

idea, Geneverse [117] provides a suite of open-source models tailored to genomic and proteomic1093

data, demonstrating strong results in gene/protein function summarization and spatial transcrip-1094

tomics. ChatNT [146], built on the Nucleotide Transformer [32], supports unified instruction-based1095

inference across DNA, RNA, and protein tasks, making advanced analyses more accessible. Other1096

methods, such as GTA [66] and GeneBERT [130], further improve regulatory modeling by aligning1097

sequence features with language embeddings or leveraging multimodal pretraining. Despite ongoing1098

challenges—such as limited annotations and multimodal heterogeneity—these advances highlight1099

the potential of MLLMs as generalist, interpretable, and conversational engines for genomics and1100

molecular biology [11].1101
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C MLLMs for Material Science1102

The use of MLLMs in materials science is still at an early stage but shows strong potential. By1103

integrating text (1D), images (2D), and geometric structural data (3D), these models promise to1104

accelerate material discovery, property prediction, and design optimization [12, 4, 16, 141]. In1105

this section, we review progress from two angles: (1) we discuss LLMs for material discovery,1106

highlighting their role in crystal structure generation, property prediction, and inverse design. (2) we1107

turn to MLLMs for material discovery, where multimodal fusion of textual, visual, and structural1108

representations further enhances property estimation, data extraction, and design pipelines. Table H41109

and Figure 5 summarize models and the research landscape.1110

C.1 LLMs for Material Discovery1111

Recent advancements show that LLMs can significantly aid materials discovery by generating crystal1112

structures, predicting properties, and supporting inverse design [33, 8, 59, 108, 76, 25, 202, 158,1113

201, 179, 56]. CrystaLLM [8] autoregressively generates CIF sequences to produce plausible crystal1114

structures. MatterGPT [25] targets properties such as formation energy and band gap and enables1115

multi-property inverse design, demonstrating control over both lattice-insensitive and lattice-sensitive1116

attributes [25]. LLMatDesign [76] provides an agentic, iterative framework where LLMs propose1117

material modifications, while domain-aware prompt engineering further boosts property predic-1118

tion [108]. FlowLLM [158] couples LLMs with Riemannian Flow Matching to refine representations1119

and generate stable, novel materials. CrystaltextLLM [59] fine-tunes LLMs by encoding atomistic1120

data as text and using energy calculations for stability prediction. [33] demonstrate ChatGPT’s1121

ability to suggest compositions and processing routes, accelerating design. GenMS [202] combines1122

language conditioning with diffusion to generate low-energy crystal structures, and Mat2Seq [201]1123

offers SE(3)- and periodic-invariant crystal sequences for robust LM generation. Finally, studies1124

on material selection show that prompt-refined LLMs can assist decisions by comparing expert1125

recommendations [56]. Collectively, these advances expand the searchable chemical space and1126

strengthen data-driven materials design.1127

C.2 MLLMs for Material Discovery1128

The integration of MLLMs into materials science is advancing rapidly for discovery and property1129

prediction [12, 4, 16, 141]. A key direction is multimodal fusion of text, images, and molecular1130

representations; for example, LLM-Fusion [12] flexibly ingests SMILES/SELFIES/fingerprints1131

to enhance property prediction over unimodal baselines. Cephalo [16] applies vision–language1132

integration to bio-inspired materials, combining images and text from documents and experiments for1133

property estimation and design optimization. MaCBench [4] identifies current limitations—especially1134

spatial reasoning and cross-modal synthesis—highlighting the need for stronger multimodal reasoning.1135

Recent work also targets automatic extraction of materials data from literature and visual content1136

to enable scalable prediction [141]. Overall, these multimodal approaches are poised to transform1137

materials discovery by enabling robust, data-driven design pipelines for both research and industrial1138

applications.1139
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D MLLMs Bridging Molecular Science and Biomedicine1140

The biomedical field encompasses a vast array of disciplines, from fundamental biological research to1141

complex clinical applications [171], and naturally involves a variety of data modalities, amog which1142

analyses of molecules, proteins, genes, and cells play a crucial role. MLLMs have opened new possi-1143

bilities for integrating heterogeneous biomedical data, enabling not only multi-molecular data fusion1144

[117, 100] but also the combination of microscopic-level data(e.g., molecular or cellular information)1145

with macroscopic-level data such as pathology images [104, 200], offering valuable insights into1146

disease machanisms and improving diagnostic accuracy. In this section, we primarily focus on the1147

recent surge of studies employing MLLMs to integrate molecular science with biomedicine,along1148

with their methodological approaches. Table H5 summarizes the models discussed in this section.1149

Based on existing advancements, we discuss the limitations identified and outline future directions1150

for further integrating molecular science into biomedicine.1151

D.1 LLMs for Biomedicine1152

Genomic, epigenetic, and transcriptomic analyses such as gene pathway finding, gene expression anal-1153

ysis, and so on, greatly facilitate our understanding of biological processes and mechanisms in both1154

normal organism development and disease [180]. These sequences modalities are escpecially suitable1155

for LLMs to process. Some methods [180, 2] integrates domain knowledge and study context into1156

LLMs to enable gene analysis at different levels of granularity. Specifically, [180] focuses on gene set1157

enrichment analysis to explicitly consider gene interactions and regulatory relationships within gene1158

sets, while [2] aims to infer gene regulatory networks (GRNs). Together, these approaches facilitate1159

the characterization of caner-related pathways and the elucidation of disease mechanisms, ultimately1160

aiding the idendification of effective treatments. In more recent applications, GenoMAS [107] orches-1161

trating six specialized LLM agents, each contributing complementary strengths to a shared analytic1162

canvas, is applied to gene expression analysis which exposes biologically plausible gene-phenotype1163

associations corroborated by the literature.1164

D.2 MLLMs for cross modal tasks1165

With the advent of MLLMs, it has become possible to analyze biomedical problems from multiple1166

perspectives — not only at the macroscopic level (e.g., images and audio) but also at the molecular1167

level. Unlike traditional multimodal fusion approaches [152, 20, 132], which rely on human-designed1168

summarization, MLLMs can autonomously provide highly interpretable insights and handle cross-1169

modal tasks such as visual question answering and report generation.1170

(1) Multi-omics Fusion Models. Combining omics data into biomedical research has achieved some1171

success [40]. Current research primarily focuses on developing methods to effectively harmonize1172

diverse omics modalities [207]. One line of research leverages the intrinsic capability of MLLMs to1173

directly fuse heterogeneous omics data, such as genes, molecules, and proteins. Geneverse [117] fine-1174

tunes LLaVA by incorporating protein structural information, gene expression profiles, and functional1175

descriptions as inputs. BioMedGPT [123] further integrates a broader range of biomedical modalities1176

with different encoders, unifies the feature spaces of molecules, proteins, and natural language through1177

encoding and alignment. Another line of research first transforms different modalities into a shared1178

representation before feeding them into MLLMs. LLaMA-Gene [101] trains a single BPE (Byte Pair1179

Encoding) tokenizer to encode genes, proteins, and natural language sequences without additional1180

markers and further converts gene-related task data into a unified format for instruction fine-tuning,1181

constructing a unified model for diverse gene tasks. Collectively, these works support downstream1182

applications such as protein identification and marker gene discovery with the potential to greatly1183

accelerate the discovery of new drugs and therapeutic targets.1184

(1) Richer Multimodal Fusion in Biomedicine. At the same time, beyond exploring modality fusion1185

within a specific domain or dimension, there have been growing efforts to integrate a broader range1186

of modalities. For example, multi-omics data are fused with cell even organ type data, offering more1187

subtle information about the condition. OmniCellTOSG [217] encodes textual annotations with1188

an LLM and leverages a graph neural network (GNN) to capture the topology of signaling(TOSG)1189

networks labeled with annotations like organ, cell subtype, and quantitative gene and protein data. By1190

integrating these two representations, it constructs patient-specific single-cell TOSG maps, thereby1191

enabling precise cell classification, cancer cell state prediction, and other clinically relevant tasks1192
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transforming research in life sciences, healthcare, and precision medicine. SpaLLM [95] combines1193

LLM representations from single-cell transcriptomics with spatially resolved multi-omics data (e.g.,1194

RNA, chromatin accessibility, proteins), enabling precise identification of functionally specialized1195

cell types, providing essential molecular and spatial references for disease diagnosis. Recently,1196

another popular direction in MLLM-based research has been to leverage spatial transcriptomics1197

(ST) technologies, which provide both molecular signatures and the spatial localization of cells1198

within tissues. ST-ALign [104] leverages ST technology to achieve fine-grained alignment between1199

histological morphology and molecular features, including image–gene alignment at both the spot and1200

niche levels, following by an Attention-Based Fusion Network used to fuse visual and genetic features.1201

Extending spatial transcriptomics to pathology, mSTAR and spEMO [200, 116] integrate microscopic1202

slides, macroscopic reports, and gene expression via multi-level alignment into a pathology foundation1203

model, enabling tasks such as diagnosis, molecule prediction, survival analysis, and report generation.1204

Furthermore, spEMO introduces the novel task of multimodal alignment, offering a new perspective1205

to evaluate information retrieval ability and guide the development of future pathology foundation1206

models.1207

D.3 Outlook1208

Although MLLMs have begun to explore the integration of multiple modalities, current progress1209

remains at an early stage. For instance, while some models [95, 117, 101] have been trained on1210

multi-omics data simultaneously, few are capable of jointly processing image-based data, largely due1211

to the weak consistency across such heterogeneous modalities. integrating more diverse data types1212

thus remains challenging. A few models, such as [? ], have attempted to combine pathological images1213

with genomic information for disease diagnosis, but such approaches are still limited. There remains1214

a clear need for more comprehensive methods that effectively integrate diverse multimodal data in1215

the future. A promising direction for sustainable progress is to curate large-scale, comprehensive1216

multimodal benchmarks and datasets to facilitate the development of future methods.1217
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E General Overview for LLMs and MLLMs1218

1219

In this section, we aim to provide readers with a coherent background framework by reviewing the1220

foundational components and architectural innovations of LLMs and their multimodal counterparts1221

(MLLMs). By systematically discussing their core components, training paradigms, multi-modal1222

extensions, we establish a clear understanding of how these models function. We also present a1223

high-level overview of the framework for the LLMs and MLLMs in Figure 6. This overview sets1224

the stage for the the main paper, where we turn to the specific applications of MLLMs in scientific1225

domains.1226

Figure 6: The overview of the architecture for LLMs and MLLMs. The figure illustrates three
major LLM paradigms (encoder-only, encoder-decoder, and decoder-only) with their pretraining
and fine-tuning tasks(IT means Instruction tuning, and RLHF means Reinforcement Learning from
Human Feedback). LLMs serve as the foundation of MLLMs. The latter integrate modality-specific
encoders to extract representations from diverse data modalities. These representations are then
projected or injected into the language embedding space via projection layers or perceivers, followed
by fusion of multi-modal embeddings to generate the final output.

Core Components of LLMs. The backbone of modern LLMs is the Transformer architecture [169],1227

which revolutionized natural language processing by introducing self-attention mechanisms. At1228

the input stage, text is first processed into tokens through a tokenizer. Depending on the domain,1229

these tokens may correspond to words, subwords, or characters, while specialized tokenizers are1230

designed for structured domains such as DNA sequences or chemical molecules. Each token is then1231

27



mapped into a dense vector representation by the embedding layer, where positional embeddings1232

(absolute or relative type)inject sequence order information into the otherwise permutation-invariant1233

architecture. The central component of LLMs consists of stacked Transformer blocks. Based on the1234

original Transformer architecture, three mainstream LLM architectures have emerged: encoder-only,1235

represented by the BERT [43] family; decoder-only, exemplified by LLaMA [101]; and encoder-1236

decoder, represented by models such as GLM [38]. Specifically, each block(often referred to as an1237

LM layer) contains multi-head self-attention layers, feed-forward networks, normalization steps, and1238

residual connections, which together enable the model to capture long-range dependencies across1239

large contexts. Finally, the model is equipped with an output layer: generative models project hidden1240

representations to vocabulary probabilities, while encoder-based models connect to task-specific heads1241

for classification, retrieval, or regression. These components collectively determine the expressive1242

power and adaptability of LLMs across tasks.1243

Training Objectives and Techniques. The objectives used in training LLMs directly shape their1244

behavior and suitability for downstream tasks. Autoregressive models, exemplified by the GPT1245

family [142], learn to predict the next token in a sequence, which makes them particularly effective for1246

text generation. In contrast, masked language modeling (MLM), popularized by BERT [35], involves1247

randomly masking tokens and training the model to recover them, producing strong bidirectional1248

representations useful for understanding tasks. Other approaches, such as XLNet [204], introduce1249

permutation-based objectives to combine the strengths of both autoregressive and masked methods.1250

Beyond these pretraining objectives, finetuning strategies are used for models to better perform1251

on downstream tasks or align better with human preferences. alignment with human preferences1252

has become increasingly important. By training LLMs on a dataset consisting of instruction and1253

output pairs or using reinforcement learning with human feedback, instruction tuning bridges the gap1254

between the next-word prediction objective and users’ objective of having LLMs adhere to human1255

instructions [154, 138]. These techniques have been critical to the deployment of interactive models1256

like ChatGPT and GPT-4.1257

Multimodal Large Language Models (MLLMs). While LLMs excel in language tasks, many1258

real-world applications demand reasoning across multiple modalities such as text, images, audio, or1259

structured scientific data. MLLMs extend LLMs by introducing architectures capable of integrating1260

heterogeneous inputs. Typically, they first leverage modality-specific encoders which are aligned1261

with the text modality via contrastive learning to transform non-textual modalities into language-1262

aligned embeddings , such as pretrained CLIP visual encoder [91]. Textual inputs are processed in a1263

manner similar to LLMs. These embeddings may be then projected into the language space through1264

a projection layer or a perceiver module,followed by the adoption of various fusion strategies to1265

integrate information across modalities. Early-fusion approaches combine embeddings from different1266

modalities at the input stage, often through direct concatenation [240]. In contrast, late-fusion1267

architectures encode each modality independently and combine their outputs only at the reasoning or1268

decision stage. The strategy has become less common as LLM capabilities have advanced. More1269

sophisticated Fusion strategy can occur in the mid stage. for example, cross-attention architectures1270

allow one modality to attend to features from another, exemplified by models such as Flamingo [5]1271

and BLIP-2 [93], which achieve strong results in vision-language tasks. To address the prohibitive1272

cost of retraining entire LLMs for multimodal tasks, adapter-based techniques such as LoRA [71]1273

introduce lightweight, trainable components into frozen models. These advances make MLLMs more1274

efficient and practical for specialized multimodal scenarios.1275

Pretraining Datasets and Modalities. The performance of LLMs and MLLMs is intimately tied1276

to the scale and diversity of their pretraining datasets. For text, models typically rely on large and1277

diverse corpora such as Wikipedia, Common Crawl, PubMed, and patent databases. In the multimodal1278

domain, paired datasets such as LAION-5B [153] provide billions of image-text pairs for training1279

vision-language systems. Scientific and technical applications require more specialized resources.1280

Biological sequence data (e.g., UniProt), molecular graphs (e.g., ChEMBL), and crystallographic1281

structures are increasingly integrated into pretraining. Moreover, structured ontologies and knowledge1282

graphs such as the Gene Ontology (GO) or UMLS are used to augment factual reasoning and reduce1283

hallucinations. The combination of unstructured and structured data creates rich environments for1284

pretraining models capable of bridging multiple domains.1285

Common Use Cases Across Domains. The versatility of LLMs and MLLMs is reflected in their1286

broad range of use cases. One major paradigm is zero- or few-shot inference, where models solve1287

novel tasks with little to no labeled data by leveraging their pretraining knowledge. When higher1288
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domain specificity is needed, fine-tuning can adapt general-purpose LLMs to specialized applications1289

such as drug discovery, clinical prediction, or materials design. Increasingly, LLMs are being used1290

as tool-augmented systems. By integrating with external APIs, databases, or scientific engines such1291

as AlphaFold DB, models can dynamically expand their capabilities beyond what is encoded in1292

their parameters. A further evolution of this idea is the emergence of agent-based workflows, where1293

models orchestrate multi-step reasoning, execute code, and autonomously coordinate experiments or1294

data analysis pipelines.1295
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F Emerging Hot Topics and Future Directions1296

In this section, we (1) examine several emerging hot topics, with a particular focus on diffusion-based1297

paradigms that are reshaping large language models and their multimodal extensions, and (2) discuss1298

future directions in scientific applications of MLLMs, covering domain-specific challenges and1299

opportunities across molecular science, protein modeling, materials discovery, and genomics.1300

F.1 Emerging Hot Topics1301

The rapid progress of large language models has spurred a new wave of research into alternative1302

training and decoding paradigms, as well as extensions to multimodal understanding and generation.1303

In this section, we highlight two directions that have recently gained considerable momentum. The1304

first is diffusion large language models (dLLMs), which replace the conventional autoregressive1305

decoding strategy with an iterative mask–denoise process and have shown promising advances1306

in reasoning, controllability, and efficiency. The second is diffusion multimodal large language1307

models (dMLLMs), which extend this paradigm to vision, audio, and other modalities, enabling more1308

flexible cross-modal reasoning and structured generation. Together, these emerging topics illustrate1309

how diffusion-based methods are shaping the future landscape of language and multimodal modeling.1310

F.1.1 Diffusion Large Language Models1311

dLLMs replace the traditional left-to-right next-token prediction paradigm with a mask-and-denoise1312

process over discrete tokens. Instead of generating text sequentially with unidirectional atten-1313

tion, dLLMs begin from a heavily masked (or absorbed) sequence and iteratively denoise it using1314

bidirectional attention. This design enables parallel decoding of many tokens at once, providing1315

explicit trade-offs between quality, latency, and controllability through adjustable steps and schedul-1316

ing [212, 53, 232, 157, 119]. Compared with autoregressive (AR) models, which suffer from rigidity1317

in mid-sequence editing and lack global structural control, diffusion-based decoding offers greater1318

flexibility and coherence.1319

(1) Core Mechanics. The forward process in dLLMs typically applies random masking or absorbing1320

states, while the reverse process learns to reconstruct clean tokens from noisy inputs. Recent1321

advances, such as reparameterized discrete diffusion (RDM), reduce training variance and enable1322

confidence-aware decoding by prioritizing high-confidence tokens during generation [232]. Training1323

objectives span from NLL-equivalent token prediction to reweighting strategies at the token or1324

sequence level. For example, multi-granularity diffusion (MGDM) emphasizes difficult tokens and1325

subgoals to enhance complex reasoning [205]. At inference, specialized schedulers such as dilated1326

unmasking explicitly minimize conditional entropy in each round, thereby reducing the number of1327

iterations [125].1328

(2) Scaling Strategies. Two main approaches have emerged for scaling dLLMs. The first is training1329

from scratch, exemplified by LLaDA, which pre-trains an 8B-parameter diffusion LLM on 2.3T tokens1330

and demonstrates competitive or superior performance to comparable AR baselines, particularly1331

on reversal-style tasks that reveal AR brittleness [134]. The second strategy adapts pretrained AR1332

models by gradually relaxing the causal mask and shifting prediction targets, yielding variants such1333

as DiffuGPT & DiffuLLaMA that achieve strong zero/few-shot and fill-in-the-middle abilities with1334

significantly reduced training cost [52].1335

(3) Capabilities and Directions. Diffusion decoding has opened new research avenues across multiple1336

fronts: (i) Reasoning and planning. Diffusion-of-Thought supports parallelized chain-of-thought1337

and multi-step self-correction [206], while MGDM reports substantial improvements on tasks such1338

as Countdown, Sudoku, and SAT [205]. Recent work like d1 combines supervised fine-tuning with1339

a diffusion-compatible policy-gradient method (diffu-GRPO), further improving math, logic, and1340

coding performance [229]. (ii) Program synthesis and structured generation. DiffuCoder introduces1341

analysis tools for “AR-ness” of dLLMs and a coupled-GRPO RL procedure, matching or beating1342

similar-sized AR coders on several leaderboards [54]. For controllable outputs (JSON/tables), the1343

S3 scaffolding method uses schema templates and null tokens to achieve high structural validity1344

without retraining [198]. (iii) Seq2Seq and one-step generation. DiffuSeq extends diffusion to1345

conditional text generation [53]. DLM-One distills iterative denoising into a single forward pass via1346

score-based distillation—reporting up to 500× speedups on classic Seq2Seq tasks at near-teacher1347

quality [24]. (iv) Systems & efficiency. At inference, dilated unmasking reduces rounds from O(B) to1348
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roughly O(logB) per block [125]; Fast-dLLM adds block-wise KV caching plus confidence-gated1349

parallel decoding, reporting up to 27.6× speedups with minimal accuracy loss [187]. Block diffusion1350

interleaves AR across blocks with diffusion within blocks, closing perplexity gaps while preserving1351

parallelism [9]. (v) Industrial interest. Google DeepMind’s Gemini Diffusion signals growing1352

product-level exploration of text diffusion [55].1353

(4) Safety Outlook. The novel dynamics of dLLMs introduce distinct safety challenges. Parallel1354

decoding and mask-aware mechanisms create new attack surfaces, and recent jailbreak methods1355

such as PAD and DIJA achieve high success rates across multiple diffusion models [227, 185].1356

These results suggest that AR-based defenses cannot be directly applied, underscoring the need for1357

diffusion-native alignment and guardrails.1358

(5) Takeaway. dLLMs combine parallelism, global coherence, and fine-grained controllability, posi-1359

tioning them as a promising alternative—and in some regimes, a superior paradigm—to autoregressive1360

models [212]. With both training-from-scratch and AR-adaptation paths maturing, and with rapidly1361

improving inference-time efficiency, dLLMs are evolving from niche prototypes to competitive1362

large-scale systems.1363

(6) Open Problems and Future Directions. Key challenges remain: (i) establishing theoretical founda-1364

tions for scheduling, convergence, and optimality; (ii) developing scalable diffusion-native alignment1365

and RLHF methods [229]; (iii) hybridizing diffusion with AR, retrieval, and external tools [9, 205];1366

(iv) designing standardized evaluation protocols for latency–quality trade-offs and structural va-1367

lidity; (v) advancing security via mask-aware defenses and robust red-teaming [227, 185]; and1368

(vi) optimizing serving systems for KV-cache consistency, adaptive decoding, and distributed/edge1369

deployment [187, 125].1370

F.1.2 Diffusion Multi-modal Large Language Models.1371

dMLLMs are also attracting increasing attention in the multimodal domain. Compared to autore-1372

gressive approaches, iterative mask–denoise refinement provides global context modeling, parallel1373

token prediction, and natural support for structure priors (e.g., layouts, JSON schemas) as well as1374

fill-in-the-middle editing. These properties make diffusion particularly suitable for vision–language,1375

audio–language, and other structured multimodal tasks, while offering explicit quality–latency trade-1376

offs through the choice of denoising steps [212].1377

(1) Representative Models. Several recent systems demonstrate the potential of diffusion in mul-1378

timodal scenarios. (i) Vision–language. Llada-v extends LLaDA with visual instruction tuning1379

while retaining diffusion-style parallel decoding, enabling visual question answering and multimodal1380

dialogue [210]. Dimple adopts a two-stage training paradigm: an initial AR phase aligns vision and1381

text representations and supports instruction following, after which diffusion decoding is reinstated1382

to recover parallelism and structural control. At inference, Dimple incorporates confident decoding1383

and explicit structure priors (e.g., JSON length control), achieving state-of-the-art results with fewer1384

denoising steps (often less than one-third of the response length) [213]. (ii) Audio–language. DIFFA1385

freezes Whisper and a diffusion LLM backbone, training only lightweight dual adapters (semantic1386

and acoustic). This adapter-based design yields strong performance across multiple audio–language1387

benchmarks at modest data and compute cost, highlighting the efficiency of multimodal diffusion1388

tuning [236]. (iii) Broader ecosystem. Beyond academic prototypes, Gemini Diffusion illustrates1389

early integration of diffusion-style generation into large-scale product pipelines, signaling practical1390

interest in retrieval- and tool-augmented multimodal agents [55].1391

(2) Capabilities and Engineering Patterns. Diffusion multimodal models inherit many of the strengths1392

of their text-only counterparts. (i) Controllability and structure. By conditioning on scaffolds such as1393

schemas or layouts, these models substantially reduce format errors and hallucination in chart/table1394

reasoning and structured generation; S3-style prompting can be readily reused in multimodal con-1395

texts [213, 198]. (ii) Throughput and latency. Inference accelerations developed for dLLMs, including1396

KV-cache reuse, confidence-gated parallel decoding, and dilated scheduling, transfer cleanly to vi-1397

sion and audio modalities [187, 125]. (iv) Applications. Iterative refinement proves beneficial for1398

fact-faithful summarization (Arg-LLaDA) and for constrained scientific design/optimization where1399

diffusion acts as a constrained sampler over feasible manifolds [92, 86]. Other applications in-1400

clude controllable user-facing content generation such as poll/question generation with attribute1401

control [28].1402
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(3) Risks and Challenges. Despite these advances, several challenges remain open. (i) Security.1403

Mask-aware, parallel denoising can amplify multimodal jailbreak attacks, including cross-modal1404

prompt mixing and masked injection; diffusion-native safeguards are still underdeveloped [227, 185].1405

(ii) Long-context efficiency. Processing long videos or extended speech raises issues of memory and1406

cache consistency across denoising steps, requiring more principled architectural solutions [187, 125].1407

(iii) Data and alignment. High-quality multimodal instruction data remain scarce; balancing frozen-1408

backbone adapters (e.g., DIFFA) with full-parameter training (e.g., Dimple) is still an open question1409

for efficient scaling [236, 213].1410

(4) Future Directions. Promising research avenues include: (i) designing unified diffusion agents that1411

couple vision, audio, and text with retrieval and tool use; (ii) developing verifiable generation under1412

hard structure/layout constraints; (iii) scalable alignment via multimodal preference modeling and1413

reinforcement learning for diffusion; (iv) building diffusion-native defenses and safety benchmarks;1414

and (v) systems co-design for efficient step-adaptive serving, block-wise diffusion, and distributed or1415

edge inference [9, 198, 187, 125].1416

F.2 Future Directions1417

MLLMs have profoundly transformed the research landscape across domains including molecular1418

science, protein science, material discovery, genomics, medicine, and beyond [123, 112, 36, 12].1419

Despite these advances, there remain substantial gaps between the current state of the art and the1420

long-term vision of autonomous, trustworthy, and general-purpose scientific agents. To bridge this1421

gap, we identify future directions that can be broadly categorized into domain-specific challenges1422

and cross-disciplinary opportunities, with the goal of guiding research toward impactful advances.1423

F.2.1 MLLMs for Molecular Design.1424

Molecular design demands models that can faithfully capture the geometry, dynamics, and physical1425

constraints of molecules. At this juncture, we identify several promising research avenues that merit1426

particular attention. (1) Physical-constraint modeling. Current MLLMs primarily rely on sequence-1427

or graph-based representations, but often fail to enforce fundamental physical constraints such as1428

atomic distance limits, bond angles, or quantum-level properties. Embedding such priors into the1429

modeling pipeline can significantly improve robustness and interpretability. (2) Modeling dynamics.1430

Most existing approaches treat molecules as static entities, whereas real-world properties depend1431

heavily on dynamic behavior. Extending MLLMs to incorporate temporal molecular dynamics would1432

open new opportunities in reaction prediction, drug discovery, and material synthesis. (3) Complex1433

data integration. Molecular research spans diverse modalities, including spectroscopy, microscopy,1434

and quantum simulation data. Designing models capable of integrating such heterogeneous data1435

while respecting inter-modality constraints (e.g., protein–ligand interactions) is a key challenge. (4)1436

Quantum-aware representations. A promising direction is to develop encoders grounded in quantum1437

chemistry and physics, moving beyond atomistic descriptors toward foundation models that operate1438

directly at the quantum level.1439

F.2.2 MLLMs for Protein Science1440

Proteins present distinctive challenges for MLLMs owing to their rugged, high-dimensional confor-1441

mational landscapes and the tight coupling between structure, dynamics, and function. Progress in1442

this area will likely hinge on advances along three fronts: (1) Protein dynamics. Most current LLM-1443

based approaches operate on static snapshots (e.g., single structures or sequences), whereas many1444

biological functions are mediated by ensembles, transitions, and rare events. Incorporating temporal1445

information—through trajectory-aware representations, coarse-to-fine dynamical priors, or learned1446

surrogates of molecular simulation—remains underexplored yet essential for capturing allostery,1447

binding pathways, and conformational selection. (2) All-atom modeling. To achieve biochemical1448

fidelity, models must scale beyond residue- or coarse-grained abstractions toward all-atom resolution1449

when warranted. This entails addressing substantial challenges in data volume and quality, long-range1450

interactions, and computational cost. Promising directions include hybrid granularity (coarse-to-fine1451

decoding), equivariant architectures, and teacher–student distillation from physics-based engines to1452

amortize expensive detail into lightweight predictors. (3) Physical priors. Ensuring physical plausibil-1453

ity requires embedding biophysical constraints into both learning and inference. Constraints such as1454

steric exclusion, hydrogen bonding patterns, rotamer preferences, electrostatics, and solvation effects1455
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can be introduced via energy-inspired regularization, constraint-aware decoding, or differentiable1456

scoring functions. Such priors improve sample quality, stabilize training, and facilitate interpretation1457

of model hypotheses.1458

F.2.3 MLLMs for Material Science1459

Materials science is inherently multiscale: atomic arrangements and compositional motifs give rise1460

to mesoscale structures and ultimately emergent macroscopic properties. This hierarchy creates1461

both challenges and opportunities for MLLMs. We outline three research directions that, in our1462

view, are especially promising: (1) Embedding physical priors. Robust generalization in materials1463

requires models that respect conservation laws, crystallographic symmetries, and periodic boundary1464

conditions. Incorporating such priors can be achieved via symmetry-/equivariance-aware archi-1465

tectures (e.g., SE(3)- or space-group–equivariant layers), periodic convolutions or attention with1466

fractional translations, and energy-/constraint-informed objectives that penalize unphysical predic-1467

tions. Physics-informed learning not only improves accuracy and sample efficiency but also enhances1468

interpretability and reliability for downstream design. (2) Graph and 3D-aware encodings. Faithful1469

structure–property learning hinges on representations that capture local coordination, long-range1470

interactions, and periodicity. Promising approaches include crystal graphs with edge features for bond1471

topology and lattice geometry, voxelized or point-cloud 3D tensors coupled with SE(3)-equivariant1472

networks, and hybrid representations that combine composition-aware language tokens with geomet-1473

ric encoders. For polycrystalline or amorphous systems, hierarchical encodings that bridge atomic1474

neighborhoods to microstructural descriptors (e.g., grains, phases, defects) are critical. (3) Modeling1475

material dynamics. Many target properties (e.g., conductivity, elasticity, phase stability) are path-1476

and state-dependent. Integrating molecular/mesoscale dynamics with MLLMs—via differentiable1477

simulators, learned surrogates of MD/DFT, or sequence-of-states generation with uncertainty calibra-1478

tion—can enable predictive modeling of time-dependent behavior and rare events. Coarse-to-fine1479

multiscale schemes (linking atomic MD to continuum models) and step-adaptive inference further1480

reduce cost while retaining fidelity.1481

F.2.4 MLLMs for Genomics and Gene Modeling1482

Genomic modeling with LLMs remains nascent, yet it holds substantial promise for both biomed-1483

ical research and clinical translation. We highlight six directions that, in our view, are especially1484

consequential: (1) Domain-specific architectures. Genomic sequences obey grammars distinct from1485

natural language (e.g., reverse-complement symmetry, motif locality, long-range regulatory dependen-1486

cies). Dedicated encoders—such as k-mer or PWM-based tokenization, reverse-complement–aware1487

embeddings, and DNABERT-style pretraining—should be scaled with explicit inductive biases for1488

strand orientation, periodicity, and promoter/enhancer motif composition. Long-context modeling1489

(chromatin-scale windows) and equivariant or positionally robust attention schemes are likely pre-1490

requisites for capturing distal regulation. (2) Precision medicine. Clinically useful systems must1491

generalize to rare variants and patient-specific contexts while quantifying uncertainty. Promising1492

approaches include: (i) variant-centric pretraining with functional assays and curated pathogenicity1493

labels; (ii) multi-omics conditioning (genome, transcriptome, epigenome, proteome) with cohort-level1494

normalization; and (iii) calibration- and causality-aware objectives (counterfactual augmentation,1495

conformal prediction) to support safe decision-making and evidence grading. (3) Multimodal rea-1496

soning. Many phenotypes emerge from interactions between sequence, expression, imaging, and1497

clinical narratives. MLLMs that fuse DNA/RNA with single-cell profiles, spatial transcriptomics,1498

radiology/pathology images, and EHR text require alignment objectives across modalities (contrastive1499

or cycle-consistent learning), privacy-preserving training (federated or DP-SGD), and representations1500

that remain stable across batches, platforms, and tissues. Such models could enable end-to-end1501

gene–phenotype mapping and mechanism-aware hypothesis generation. (4) Ontology-grounded1502

learning. Embedding structured biological knowledge—e.g., Gene Ontology (GO) and Human Phe-1503

notype Ontology (HPO)—into pretraining and inference can improve interpretability and biological1504

fidelity. Practical instantiations include knowledge-graph–regularized objectives, constraint-aware de-1505

coding that enforces ontology consistency, and retrieval-augmented generation over curated databases1506

to reduce hallucinations and promote traceable evidence. (5) Clinical deployment. Translation1507

to practice demands robust interfaces and governance. Key components are validated APIs that1508

interoperate with established resources (e.g., Ensembl, ClinVar), auditable provenance and versioning,1509

shift detection and post-deployment monitoring, and standardized reporting of model confidence1510
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and limitations. Attention to data governance, consent, and reproducibility is essential for regulatory1511

acceptance and safe adoption. (6) 3D genome modeling. Gene regulation depends on 3D chromatin1512

organization (loops, TADs, compartments). Moving beyond linear sequence requires integrating1513

Hi-C/Micro-C and imaging-derived contact maps via geometric encoders (graph transformers with1514

chromatin contacts, SE(3)-aware models) or discrete “3D structure tokens”. Joint sequence–structure1515

pretraining with constraint-aware objectives (e.g., enforcing topological consistency) may unlock1516

more accurate prediction of enhancer–promoter interactions and context-specific expression.1517

F.2.5 Key Opportunities of dLLMs and dMLLMs for Scientific Discovery1518

Diffusion models can fill many tokens in parallel, keep the whole output consistent, and follow1519

templates or rules. Multimodal diffusion extends this to images, spectra, micrographs, 3D structures,1520

and time series. In molecules/drug discovery, proteins, genomics, and materials, this leads to the1521

following concrete wins: (1) Structured outputs you can use immediately. With mask–denoise1522

decoding and JSON/table templates, the model can produce ELN/LIMS-ready content: steps with1523

timestamps and units, property tables with ranges and confidence, and provenance fields. If you1524

change a solvent or temperature, a quick refinement updates stoichiometry and safety notes without1525

breaking the rest. (2) Design that respects hard scientific rules. Encode required constraints (e.g.,1526

valence/sterics, space groups and site occupancy, rotamers and clashes) as scaffolds. Each denoising1527

round proposes candidates; fast scorers or small simulators (QSAR, DFT, MD, energy terms)1528

accept/reject and feed back. You get a ranked set of synthesizable molecules, stable crystal prototypes,1529

or robust protein variants. (3) Plan–execute–revise instead of one-shot generation. Parallel chain-of-1530

thought drafts multiple synthesis routes or assay protocols at once. Confidence-aware unmasking1531

keeps strong steps and rewrites weak ones. The system can insert checks (yield, hazard class,1532

cost) and suggest plan B/C with different reagents or instruments so labs can pick what fits their1533

resources and risk. (4) Tight loops with retrieval and domain tools. At each diffusion step, call1534

literature/patent search, databases, and tools (reaction predictors, DFT/MD, docking). Write the1535

numbers back—conditions, peaks/bands, formation energies—then refine once more to keep text,1536

tables, and figures consistent. This helps gene–function summaries, materials reports, and chemistry1537

writeups line up with evidence. (5) Handles long and streaming data. Block-wise or step-adaptive1538

diffusion can summarize microscopy videos, time-lapse experiments, or audio lab logs as they1539

arrive. It flags anomalies (phase change, crack start, contamination) with timestamps and follow-up1540

suggestions, and maintains a running, unit-checked report for shift handover. (6) Built-in safety and an1541

audit trail. Before unmasking sensitive content, apply mask rules (e.g., banned reagents or protocols),1542

schedule randomization, and uncertainty gates. Every run records sources used, constraints triggered,1543

and candidates rejected, creating a clear, reproducible record for compliance and peer review.1544
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G Selected Benchmarking Evaluation1545

G.1 Molecular Property Prediction1546

Experiment setting. We evaluate on the MoleculeNet benchmark [190], which comprises three1547

single-modal binary classification datasets for assessing the expressiveness of pretrained molecular1548

representation methods. Performance is reported as the area under the receiver operating characteristic1549

curve (AUROC).1550

Table G1: ROC-AUC (%) results on molecular property prediction tasks (BACE, BBBP, HIV) from
the MoleculeNet benchmark [190]. For non-MLLM models, we adopt the results reported in the
InstructMol paper [19].

Method BACE ↑
1513

BBBP ↑
2039

HIV ↑
41127

Specialist Models
ChemBERTa v2 73.5 69.8 79.3
DMP(TF+GNN) 89.4 77.8 81.4
KV-PLM 78.5 70.5 71.8
GraphCL 75.3 69.7 78.5
GraphMVP-C 81.2 72.4 77.0
MoMu 76.7 70.5 75.9
MolFM 83.9 72.9 78.8
Uni-Mol 85.7 72.9 80.8

LLM Based Generalist Models
Galactica-6.7B 58.4 53.5 72.2
Vicuna-v1.5-13b-16k (4-shot) 49.2 52.7 50.5
Vicuna-v1.3-7B* 68.3 60.1 58.1
LLaMA-2-7B-chat* 74.8 65.6 62.3
MolCA(1D) 79.3 70.8 –
MolCA(1D + 2D) 79.8 70.0 –

Instruct-G 84.3 (±0.6) 68.6 (±0.3) 74.0 (±0.1)
Instruct-GS 82.1 (±0.1) 72.4 (±0.3) 68.9 (±0.3)

MoleculeSTM (Graph) 80.77 (±1.34) 69.98 (±0.52) 76.93 (±1.84)
MoleculeSTM (Smiles) 81.99 (±0.41) 70.75 (±1.90) 76.23 (±0.80)
Token-Mol (averaged across five runs) 89.52 (±1.32) 91.67 (±0.98) 82.40 (±0.17)

Benchmarking Models. We identify several MLLMs, including InstructMol [19], MoleculeSTM1551

(Graph) [114], MoleculeSTM (Smiles) [114], GIT-Mol [111], Token-Mol [173], and M3LLM [70],1552

which target the downstream task of molecular property prediction. For non-MLLM models, we1553

adopt the results reported in the InstructMol paper [19]. Since the model weights of InstructMol,1554

M3LLM, and GIT-Mol are not publicly available, we rely on the reported results of InstructMol from1555

the original paper, while M3LLM and GIT-Mol are excluded from our evaluation. For the remaining1556

models, we rerun the experiments ourselves.1557

Observations. Overall, as show in Table G1, the results show that MLLM-based models achieve1558

competitive performance in molecular property prediction, but they generally lag behind strong1559

specialist models such as Uni-Mol and MolFM. Among the evaluated MLLMs, Token-Mol and1560

MoleculeSTM (Smiles/Graph) consistently perform comparably, while other generalist LLM-based1561

methods (e.g., Galactica and Vicuna variants) exhibit significantly weaker performance across all1562

tasks. InstructMol demonstrates strong results as reported in the original paper, though its lack of1563

released weights prevents direct reproducibility. Notably, Token-Mol achieves results that are on par1564

with MoleculeSTM, indicating that specialized adaptation of MLLMs can substantially narrow the1565

performance gap with task-specific molecular models.1566
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G.2 Protein Property Prediction1567

Experiment setting. In our study, we evaluate protein property prediction across six benchmark tasks1568

derived from the TAPE suite [144]. (1) Secondary structure prediction (SS). This task operates at the1569

amino-acid (token) level, aiming to assign a secondary structural label (e.g., helix, strand, or coil) to1570

each residue. We report results for both three-class (SS-Q3) and eight-class (SS-Q8) formulations.1571

(2) Homology prediction. Following [67, 47], this task requires identifying the fold type of a given1572

protein sequence. Accuracy serves as the evaluation metric for this task and the two secondary1573

structure tasks. The evaluation metric is accuracy for these three tasks. (3) Contact prediction.1574

Following prior work [7, 131, 150], this task aims to determine whether a pair of amino acids in1575

a protein sequence are in spatial contact, defined as having a distance less than 8 Å. Evaluation is1576

performed using the precision of the top L/2 predicted contacts, where L denotes the sequence length,1577

focusing on medium- and long-range interactions. (4) Fluorescence prediction. Based on [151], this1578

regression task predicts the logarithm of a protein’s fluorescence intensity. (5) Stability prediction.1579

As proposed by Graves [58], this task estimates a proxy for protein stability. Both fluorescence and1580

stability prediction are evaluated using Spearman’s rank correlation coefficient (ρ).1581

Observations. As shown in Table G2, traditional baselines such as LSTM, TAPE Transformer, and1582

ResNet perform moderately, while specialist models like ProtBERT and OntoProtein achieve stronger1583

results. Our ProteinDT-ProteinCLAP variants further improve performance across most tasks, with1584

the EBM-NCE objective giving a slight edge on contact and homology prediction.1585

Table G2: Benchmark Results covers six protein property prediction tasks from the TAPE [144]
benchmark. For non-MLLM models, we adopt the results reported in OntoProtein [220] and Pro-
teinDT [112].

Method Structure Evolutionary Engineering

SS-Q3 ↑ SS-Q8 ↑ Contact ↑ Homology ↑ Fluorescence ↑ Stability ↑
LSTM 0.75 0.59 0.26 0.26 0.67 0.69
TAPE Transformer 0.73 0.59 0.25 0.21 0.68 0.73
ResNet 0.75 0.58 0.25 0.17 0.21 0.73
MSA Transformer - 0.73 0.49 - - -

ProtBERT 0.81 0.67 0.59 0.29 0.61 0.82
OntoProtein 0.82 0.68 0.56 0.24 0.66 0.75
ProteinDT-ProteinCLAP-InfoNCE 0.8354 0.6912 0.6011 0.3109 0.6047 0.8110
ProteinDT-ProteinCLAP-EBM-NCE 0.8310 0.6941 0.6023 0.2865 0.6127 0.7978
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H Summary Model Tables1586

Table H1: Summary of recent representative MLLMs for drug and molecule representation, property
prediction, and chemistry-focused tasks.

Model Year Modality Architecture Size Category Main Task

MolPROP [148] 2024/05/22 SMILES, Graph Encoder-Only 46M Property Prediction Molecular property prediction
LLM-MPP [78] 2025/05/20 SMILES, Graph, Text Decoder-Only 8B Property Prediction Property prediction

interpretability
ModuLM [26] 2025/06/01 1D, 2D, 3D, Text Modular/Encoder 14B Property Prediction Flexible property prediction
GIT-Mol [111] 2023/08/14 Graph, Image, Text Encoder-Decoder 700M Property Prediction Property prediction

generation
PolyLLMem [224] 2025/03/29 Polymer, Structure, Text Encoder-Only 8B Polymer Informatics Polymer property prediction
Molbind [195] 2024/03/13 Structure, Protein, Text Encoder-Only 150M Property Prediction Binding affinity prediction

BioMedGPT [124] 2023/08/18 Protein, Text Encoder-Decoder 10B General-purpose Biomedical QA
multi-modal tasks

InstructMol [19] 2023/11/27 Graph, Text Encoder-Decoder 2.2B General-purpose Instruction following
generation

UniMoT [218] 2024/08/01 Graph, Text Encoder-Decoder 7B General-purpose Generation
multi-task

Mol-LLM [89] 2025/01/01 SMILES, Graph, Text Encoder-Decoder 7B General-purpose Generation
multi-task

ChemVLM [94] 2024/08/14 Graph, Image, Text Encoder-Decoder 20B General-purpose Vision-language tasks
Token-Mol [173] 2024/07/10 SMILES, 2D/3D Decoder-Only N/A General-purpose Generative modeling
M3LLM [70] 2025/08/03 Graph, Text Encoder-Decoder 1.28B General-purpose Generation

granularity study

ChemCrow [13] 2023/04/11 Text, Tools Agent (LLM+Tools) 100B-1T Agents & Special Tasks Chemistry agent
ChatMolData [214] 2024/11/19 Text, Molecular Data Agent (LLM+Modules) 100B-1T Agents & Special Tasks Data analysis

retrieval
ChemToolAgent [211] 2024/11/11 Text, Tools Agent (LLM+Tools) 100B-1T Agents & Special Tasks Tool-use agent
ChemAgent [161] 2025/01/11 Text, Memory Agent (LLM+Memory) 100B-1T Agents & Special Tasks Agent with memory
ChemThinker [80] 2024/09/28 Text, Tools, Agents Multi-Agent 70B Agents & Special Tasks Multi-agent reasoning
MolPuzzle [60] 2024/01/01 Multimodal Special Task N/A Puzzle Task Structure elucidation

reasoning
MM-RCR [226] 2024/07/21 Text, Graph, SMILES Encoder-Decoder 7B Reaction Condition Reaction condition recommendation
Chem3DLLM [77] 2025/08/14 Text, 3D structure Encoder-Decoder ∼ 7B Drug discovery Generation

Table H2: Summary of recent representative MLLMs for protein representation, prediction, and
design tasks.

Model Date Modality Architecture Size Category Main Task

ProteinDT [112] 2023/02/09 Sequence, Text Encoder-Decoder 220M Sequence-Text Protein Design
ProtT3 [120] 2024/05/21 Sequence, Text Encoder-Decoder ∼1.3B Sequence-Text QA tasks,

Protein captioning
ProtCLIP [234] 2024/12/28 Sequence, Text Encoder-Only 770M Sequence-Text Function prediction
OntoProtein [219] 2022/01/23 Sequence, Graph Encoder-Only 220M Sequence-Text Multi prediction tasks
BioMedGPT [123] 2023/05/26 Sequence, Text, Graph Encoder-Decoder 10B Sequence-Text Different QA tasks
ProtLLM [243] 2024/02/28 Sequence, Text Encoder-Decoder 7B Sequence-Text Protein understanding,

Generation tasks
ProLLaMA [126] 2024/02/26 Sequence, Text Encoder-Decoder 7B Sequence-Text Protein understanding,

Generation tasks
InstructProtein [178] 2023/10/05 Sequence, Text, Graph Decoder-Only 1.3B / 7B Sequence-Text Protein design,

Prediction tasks
ESM-AA [231] 2024/03/05 Sequence, SMILES Encoder-Only 35M Sequence-Text Classification,

Property prediction tasks
BioT5 [140] 2023/10/11 Sequence, SMILES, Text Encoder-Decoder 252M Sequence-Text Diversity prediction,

Generation tasks
BioT5+ [139] 2024/02/27 Sequence, SMILES, Text Encoder-Decoder 252M Sequence-Text Diversity prediction,

Generation tasks
Galactica [162] 2022/11/16 Sequence, Text Decoder-Only 120B Sequence-Text Prediction,

QA tasks
ProteinChat [75] 2024/08/19 Sequence, Text Encoder-Decoder 14B Sequence-Text Function prediction,

categories

ESM3 [61] 2025/01/16 Sequence, Text, Structure Encoder-Decoder 1.4/7/98B Geometric-Sequence-Text Design,
Generation tasks

proseLM-XL [149] 2024/08/03 Sequence, Structure Encoder-Decoder 6.5B Geometric-Sequence-Text Protein Design
SaProt [160] 2023/10/01 Sequence, Structure Encoder-Only 650M Geometric-Sequence-Text Prediction tasks
FoldToken [49] 2024/02/04 Sequence, Structure Encoder-Decoder 280M Geometric-Sequence-Text Reconstruction,

Antibody Design
Evolla [238] 2025/01/05 Sequence, Text, Structure Encoder-Decoder 80B Geometric-Sequence-Text Diverse QA tasks
DPLM-2 [175] 2024/10/17 Sequence, Structure Encoder-Decoder 150/650M Geometric-Sequence-Text Protein generation,

Folding
ProTokens [103] 2023/11/27 Sequence, Structure Encoder-Decoder 7B Geometric-Sequence-Text Protein Design
ProSST [96] 2024/04/15 Sequence, Structure Encoder-Decoder 110M Geometric-Sequence-Text Prediction tasks
ProteinGPT [197] 2024/08/21 Sequence, Text, Structure Encoder-Decoder 10B Geometric-Sequence-Text Protein QA

Protein understanding
ProtChatGPT [170] 2024/02/15 Sequence, Text, Structure Encoder-Decoder 13B Geometric-Sequence-Text Protein QA,

Protein understanding
STELLA [194] 2025/06/04 Sequence, Text, Structure Encoder-Decoder ∼9B Geometric-Sequence-Text Structure understanding,

QA tasks
InstructBioMol [242] 2024/10/10 Sequence, Text, SMILES, Structure Encoder-Decoder ∼7B Geometric-Sequence-Text Protein Design,

QA tasks

BioBRIDGE [181] 2023/10/05 Sequence, Graph, Text Encoder-Only ∼3B Special-case PPI Prediction
LLaPA [237] 2024/09/26 Sequence, Graph, Text Encoder-Decoder ∼10B Special-case PPI Prediction
MolBind [196] 2024/03/13 Text, SMILES, Graph, Structure Encoder-Only N/A Special-case Retrieval tasks
BioTranslator [199] 2023/02/10 Text, Gene, Sequence, Graph Encoder-Only 230M Special-case Modal Translator
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Table H3: Representative MLLMs for gene function prediction, regulatory genomics, and multimodal
biological tasks.

Model Date Modality Architecture Size Category Main Task

GeneChat [36] 2025/06/05 DNA, Text DNABERT-2 + Adaptor ∼13B Function Prediction Free-text gene function generation
+ Vicuna-13B

ChatNT [146] 2024/04/30 DNA, RNA, Nucleotide Transformer + ∼7B Multi-task Genomics Multimodal sequence
Protein, Text Perceiver + Vicuna-7B Language Q&A

Gene classification
Structure prediction

LLaMA-Gene [101] 2024/11/30 DNA, Protein, LLaMA3-7B ∼7B Multi-task Genomics MSA
Text Function prediction

Regression
OmniCellTOSG [217] 2025/04/02 RNA, Text DeBERTa+DNAGPT+ ∼16B Multi-task Genomics Predict cellular states

ProtGPT2+GAT Predict cell types
Geneverse [117] 2024/07/21 DNA, Protein, Multi-model ∼7/8/13B Multi-task Genomics Multi-modal gene/protein tasks

Text, Figure LLM/MLLM collection

GenoMAS [107] 2025/07/08 DNA, RNA, LLM Agents N/A Gene Expression Analysis (Un)conditional GTA
Text Report Generation

cGSA [180] 2025/06/04 DNA, Text LLaMA 3.1-70B ∼70B Gene Expression Analysis Gene pathway finding
GTA [66] 2024/10/02 DNA, Text Sei Encoder + Token Alignment ∼8B Gene Expression Analysis Long-range gene expression modeling

+ Llama3-8B

LLM4GRN [2] 2024/10/21 RNA, Text LLaMA3.1-70B ∼70B Regulatory Genomics Gene regulatory network discovery
GeneBERT [130] 2021/10/11 DNA (1D), BERT+ ∼110M Regulatory Genomics Multi-modal self-supervised pre-training

TF-Region (2D) Swin Transformer
GeneCompass [203] 2023/09/28 RNA, Text Transformer N/A Regulatory Genomics GRN inference

Table H4: Summary of recent representative LLMs and MLLMs for material discovery, property
prediction, and design tasks.

Model Date Modality Architecture Size Category Main Task

CrystaLLM [8] 2023/07/10 Text Decoder-Only 25/200M Crystal Structure Generate crystal structures
LLMatDesign [76] 2024/06/19 Text LLM Agent N/A Autonomous Discovery Autonomous materials discovery
FlowLLM [158] 2024/10/30 Text LLM+RFM N/A Material Design Generate stable novel materials
GenMS [202] 2024/09/10 Text, Graph LLM+Diffusion N/A Crystal Generation Low-energy crystal structure generation
Mat2Seq [201] 2024/12/01 Text, Graph Encoder-Decoder 25/200M Property Prediction Crystal sequence representation
CrystaltextLLM [59] 2024/02/06 Text Encoder-Decoder ∼70B Stability Prediction Generate stable materials
ChatGPTMaterial [33] 2024/02/12 Text Decoder-Only 11B Material Design Suggest material compositions
ICGPT [108] 2024/04/22 Text Transformer N/A Property Prediction Accurate material property prediction
ELLM [56] 2024/04/23 Text Encoder-Decoder N/A Material Selection Expert recommendations for materials
ElaTBot [115] 2024/11/19 Text, Quantitative Data Llama2-7B ∼7B Material Discovery (Details TBD)
CrossMatAgent [165] 2025/03/25 Text,Image Agent N/A Material Discovery Multi-agent material design framework
AutoMEX [45] 2025/03/– Text,3D Document Agent N/A Material Selection Autonomous material extrusion workflow

Structure Data

LLM-Fusion [12] 2024/12/19 Text, SMILES, Fingerprints Encoder-Decoder N/A Property Prediction Multimodal property prediction
Cephalo [16] 2024/05/29 Image, Text VLM ∼600M Bio-Inspired Design Analyze bio-inspired materials
MaCBench [4] 2024/10/08 Text, Image VLM N/A Material Discovery Evaluate multimodal models’ performance
FMMD [141] 2024 Text, Image Fusion Model N/A Material Prediction Scalable property prediction
MatterGPT [25] 2024/08/14 Text Transformer 80M Property Prediction Generate solid-state materials

Table H5: Representative MLLMs for biomedical science.
Model Date Modality Architecture Size Main Tasks

GenoMAS [107] 2025/07/08 DNA, RNA, Text LLM agents N/A Gene expression analysis
cGSA [180] 2025/06/04 DNA, Text LlaMA 3.1-70B ∼70B Gene pathway findiing
LLM4GRN [2] 2024/10/21 RNA, Text LLaMA3.1-70B ∼70B Gene regulatory networks discovery
GeneCompass [203] 2023/09/28 RNA, Text Transformer N/A Gene Regulatory Network inference

Geneverse [117] 2024/07/21 DNA, Protein Multi-model LLM/MLLM collection ∼7/8/13B Multi-modal gene/protein tasks
Text, Figure

Natural Language BioMedGPT-LM+ Protein Question Answering
BioMedGPT [123] 2024/11/25 Molecular Graphs Multimodal encoder ∼10B Molecule Question Answering

Protein Sequences
Gene classification

LLaMA-Gene [101] 2024/11/30 DNA, Protein, Text LLaMA3-7B ∼7B Gene structure prediction
Multiple sequence analysis

Function prediction
OmniCellTOSG [217] 2025/04/02 RNA, Text DeBERTa+DNAGPT ∼16B Cellular States Prediction

+ProtGPT2+GAT Cell Type Prediction
Survival prediction

mSTAR [200] 2024/07/22 pathological images, CLIP Varies Diagnosis
RNA-seq, Text Molecule prediction

Report generation
ST-ALign [104] 2024/11/25 pathological images, gene Image encoder + Gene encoder N/A Spatial clustering identification

Spot Gene Expression Prediction
Pathological images Spatial domain identification

spEMO [? ] 2025/01/13 spatial multi omics PFM+LLM N/A Disease Prediction
Report Generation

SpaLLM [95] 2025/07/03 Single-cell transcriptome data, LLM+omics encoder+GNN N/A Region Identification
Multi-omics data
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I Summary Dataset Tables of MLLMs for Science1587

Table I1: Summary of pretraining / instruction-tuning datasets for MLLMs in molecular tasks.
Datasets Year Modality Tasks Source Application Stage

PubChem (77M SMILES) – SMILES, Text MLM, MTR, caption/retrieval Source

[148]
[111]
[88]
[19]
[218]
[121]
[26]
[78]

Pretraining

ChEBI-20 2021 SMILES, Text Captioning, generation Source

[111]
[218]
[89]
[19]

Pretraining

ZINC – SMILES Language modeling, generation Source [121] Pretraining

USPTO (full/50k) 2012/2017 Reaction SMILES, Text FS/RS/RP reaction modeling
Source (full)
Source (full)
Source (50k)

[89]
[218] Pretraining/Instr.

Mol-Instructions 2023 Text, SMILES, Graph FS, RS, RP, caption-guided gen Source [89]
[218] Instruction

SMolInstruct 2024 Text, SMILES, Graph FS, RS, RP, generation Source [89] Instruction
PCdes – Molecule, Text Retrieval (M2T/T2M) Source [218] Instruction
MoMu 2022 Molecule, Text Cross-modal retrieval Source [218] Instruction

Molecule3D 2021 3D Conformations Graph–3D alignment Source
Source [195] Pretraining

GEOM 2020 3D Conformations Graph–3D alignment Source [195] Pretraining
PDBBind 2016 Protein pockets, 3D Conf.–Protein alignment Source [195] Pretraining
CrossDock 2019 Protein pockets, 3D Conf.–Protein alignment Source [195] Pretraining
DrugBank – SMILES, Text (properties) Molecular relational learning Source [26] Pretraining
L+M-24 2024 Image, Text Captioning (Mol2Lang) Source [167] Pretraining
Chem Exam 2024–2025 Image, Text OCR, VQA, Chem QA Source [94] Pretraining
Chem OCR 2024–2025 Image, Text OCR, VQA, Chem QA Source [94] Pretraining
Web-Chem 2024–2025 Image, Text OCR, VQA, Chem QA Source [94] Pretraining
PubMed abstracts – Text (biomedical) Domain LM pretraining Source [122] Pretraining
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https://pubchem.ncbi.nlm.nih.gov/docs/downloads
https://www.ebi.ac.uk/chebi/
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https://pubmed.ncbi.nlm.nih.gov/download/


Table I2: Summary of downstream task datasets for MLLMs in molecular tasks.
Datasets Year Modality Tasks Source Application Stage

ESOL (LogS) 2012 SMILES, Graph Regression (solubility) source

[148]
[78]
[89]
[88]

Downstream

FreeSolv 2014 SMILES, Graph Regression (hydration free energy) source
[148]
[78]
[26]

Downstream

Lipophilicity (Lipo) 2016 SMILES, Graph Regression (logD/logP) source
[148]
[78]
[89]

Downstream

QM7 2011 SMILES, Graph Regression (atomization energy) source [148]
[78] Downstream

QM9 2014 SMILES, Graph Regression (HOMO/LUMO etc.) source [19]
[89] Downstream

BBBP 2018 SMILES, Graph Classification (BBB) source

[148]
[78]
[89]
[88]

Downstream

BACE 2016 SMILES, Graph Classification (binding) source

[148]
[78]
[89]
[88]

Downstream

ClinTox 2018 SMILES, Graph Classification (toxicity) source

[148]
[78]
[89]
[88]

Downstream

Tox21 2014 SMILES, Graph Multi-task toxicity source
[111]
[218]
[88]

Downstream

ToxCast 2013 SMILES, Graph Multi-task toxicity source [111]
[218] Downstream

HIV 2014 SMILES, Graph Classification (anti-HIV) source [89]
[88] Downstream

SIDER 2015 SMILES, Graph Multi-label side effects source
[111]
[89]
[88]

Downstream

MUV 2013 SMILES, Graph Virtual screening source [88] Downstream

ChEBI-20 2021 SMILES, Text Captioning, generation source

[111]
[89]
[218]
[88]

Downstream

L+M-24 2024 Image, Text Captioning source [167] Downstream
PubChem Captions – Image, SMILES, Text Captioning, Image→SMILES source [111] Downstream

USPTO-50k 2017 Reaction SMILES, Text FS, RS, RP source [89]
[19] Downstream

RetroBench 2024 Reaction network Multi-step retrosynthesis source [82] Downstream
ORDERly 2024 Reactions OOD reaction evaluation source [89] Downstream
AqSolDB 2019 SMILES OOD solubility evaluation source [89] Downstream
ChEMBL-02 2020 Pairwise molecules Molecule optimization source [88] Downstream
PCdes – Molecule, Text Retrieval (M2T/T2M) source [218] Downstream
MoMu 2022 Molecule, Text Cross-modal retrieval source [218] Downstream
ZhangDDI 2017 SMILES, Graph Drug–drug interaction source [26] Downstream
ChChMiner 2018 SMILES, Graph Drug–drug interaction source [26] Downstream
DeepDDI 2018 SMILES, Graph Drug–drug interaction source [26] Downstream
TWOSIDES 2012 SMILES, Graph Drug–drug interaction source [26] Downstream
MNSol 2020 SMILES, Graph Solute–solvent interaction source [26] Downstream
CompSol 2017 SMILES, Graph Solute–solvent interaction source [26] Downstream
Abraham 2010 SMILES, Graph Solute–solvent interaction source [26] Downstream
CombiSolv 2021 SMILES, Graph Solute–solvent interaction source [26] Downstream
CombiSolv-QM 2021 SMILES, Graph (QM) Solute–solvent interaction source [26] Downstream
Chromophore 2020 SMILES, Graph Chromophore–solvent interaction source [26] Downstream
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http://deepchem.io.s3-website-us-west-1.amazonaws.com/datasets/delaney-processed.csv
https://github.com/MobleyLab/FreeSolv
https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/Lipophilicity.csv
http://www.quantum-machine.org/datasets/
http://www.quantum-machine.org/datasets/
https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/BBBP.csv
https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/bace.csv
https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/clintox.csv
https://tripod.nih.gov/tox21/challenge/
https://www.epa.gov/comptox-tools/exploring-toxcast-data
https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/HIV.csv
http://sideeffects.embl.de/download/
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https://github.com/language-plus-molecules/LPM-24-Dataset
https://huggingface.co/datasets/AI4Industry/MolCap
https://github.com/wengong-jin/nips17-rexgen
https://github.com/SongtaoLiu0823/FusionRetro
https://github.com/sustainable-processes/ORDerly
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OVHAW8
https://github.com/BenevolentAI/guacamol
https://www.nature.com/articles/s41467-022-28494-3
https://arxiv.org/abs/2209.05481
https://www.pingzhang.net/bak/ddi.html
https://snap.stanford.edu/biodata/datasets/10001/10001-ChCh-Miner.html
https://bitbucket.org/kaistsystemsbiology/deepddi/src/master/
https://nsides.io/
https://conservancy.umn.edu/items/c3db00cf-d573-461b-adf5-389ff929d918
https://aip.figshare.com/articles/dataset/Compsol_database_revised_2024_/26871184
https://bmcchem.biomedcentral.com/articles/10.1186/s13065-015-0080-9
https://www.sciencedirect.com/science/article/abs/pii/S1385894721008925
https://www.sciencedirect.com/science/article/abs/pii/S1385894721008925
https://figshare.com/articles/dataset/DB_for_chromophore/12045567


Table I3: Summary of pretraining / instruction-tuning datasets for MLLMs in protein tasks.
Datasets Year Modality Tasks Source Application Stage

SwissProt 2000 Sequence, Text Sequence–text alignment, Captioning Source

[113]
[120]
[234]
[75]
[238]

Pretraining

TrEMBL 2000 Sequence, Text Sequence–text alignment Source [234]
[238] Pretraining

ProtAnno-S 2024 Sequence, Text Contrastive alignment (sparse, curated) Source [234] Pretraining
ProtAnno-D 2024 Sequence, Text Contrastive alignment (dense, auto) Source [234] Pretraining

ProteinKG25 2022 Sequence, Graph, Text KG-enhanced pretraining Source [221]
[120] Pretraining

PrimeKG 2023 Graph, Text Biomedical KG bridging Source [181] Pretraining
UniRef50 2007 Sequence Language modeling corpus Source [126] Pretraining
UniRef90 2007 Sequence Language modeling corpus Source [175] Pretraining

AlphaFold DB 2022 Structure (3D) Structure-aware pretraining Source
[160]
[231]
[61]

Pretraining

PDB 2000 Structure (3D) Structure and token pretraining Source [175]
[103] Pretraining

PDBbind (v2019) 2019 Structure, Binding Binding-aware pretraining Source [231] Pretraining
S2ORC 2020 Text (scholarly) Biomedical text pretraining Source [123] Pretraining

PubMed abstracts 1996 Text (biomedical) Biomedical text pretraining Source
[123]
[243]
[139]

Pretraining

bioRxiv 2013 Text (preprints) Biomedical text pretraining Source [139] Pretraining

PubChem 2004 SMILES, Text Chem–structure pretraining Source [140]
[139] Pretraining

ChEMBL 2012 SMILES, Bioactivity Chem–structure pretraining Source [231]
[140] Pretraining

ZINC (ZINC15) 2015 SMILES Generative pretraining Source [140]
[139] Pretraining

InterPT (instruction set) 2024 Sequence, Text Protein–text instruction pretraining Source [243] Instruction
ProteinChat Corpus 2024 Sequence, Text Instruction/QA pretraining Source [75] Instruction
SwissProtCLAP 2023 Sequence, Text Sequence–text alignment Source [113] Pretraining

NeurIPS Paper Checklist1588

1. Claims1589

Question: Do the main claims made in the abstract and introduction accurately reflect the1590

paper’s contributions and scope?1591

Answer: [Yes]1592

Justification: The abstract and introduction clearly state the paper’s scope as a comprehensive1593

survey plus selected benchmarking of open-source MLLMs for science; the contributions1594

enumerated in the introduction match what is delivered in the body and appendices (survey1595

across domains and benchmarking in Appendix G).1596

Guidelines:1597

• The answer NA means that the abstract and introduction do not include the claims1598

made in the paper.1599

• The abstract and/or introduction should clearly state the claims made, including the1600

contributions made in the paper and important assumptions and limitations. A No or1601

NA answer to this question will not be perceived well by the reviewers.1602

• The claims made should match theoretical and experimental results, and reflect how1603

much the results can be expected to generalize to other settings.1604

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1605

are not attained by the paper.1606

2. Limitations1607

Question: Does the paper discuss the limitations of the work performed by the authors?1608

Answer: [Yes]1609

Justification: The paper explicitly discusses risks, open challenges, and limitations of1610

current (multi)modal LLMs (e.g., security, long-context efficiency, data/alignment gaps) and1611

provides forward-looking caveats in Appendix F.1612

Guidelines:1613
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Table I4: Summary of downstream task datasets for MLLMs in protein tasks.
Datasets Year Modality Tasks Source Application Stage

TAPE 2019 Sequence, Structure SS, Contact, Homology, Fluorescence, Stability Source

[113]
[221]
[243]
[231]
[178]
[149]
[160]

Downstream

DeepLoc 2017 Sequence, Text Subcellular localization Source [234]
[178] Downstream

Solubility (DeepSol) 2017 Sequence Solubility prediction Source [140] Downstream
Localization 2017 Sequence Membrane/soluble classification Source [140] Downstream

SwissProt 2000 Sequence, Text Function description classification Source [178]
[75] Downstream

CASP15 2022 Structure Protein folding Source [61] Downstream

CB513 1999 Sequence Secondary structure prediction Source [160]
[96] Downstream

SCOPe 2014 Structure Fold/superfamily classification Source
[126]
[149]
[96]

Downstream

TAPE Stability 2019 Sequence Stability prediction Source [149] Downstream

TAPE Contact 2019 Structure Contact map prediction Source [160]
[178] Downstream

STRING 2021 Graph (PPI) PPI classification Source

[221]
[243]
[178]
[181]
[237]

Downstream

SHS27k 2019 Sequence, Graph PPI classification Source

[221]
[243]
[178]
[181]

Downstream

SHS148k 2019 Sequence, Graph PPI classification Source

[221]
[243]
[178]
[181]

Downstream

BioGRID 2003 Graph PPI classification Source [237] Downstream
PPI (Yeast, Human) 2019 Sequence, Graph PPI classification Source [140] Downstream
BioSNAP 2018 Sequence, Graph DTI, PPI prediction Source [140] Downstream
DMS (β-lac, AAV, Thermo, Flu, Sta) 2018 Sequence Mutational effect prediction Source [234] Downstream

ProteinGym 2023 Sequence Mutational effect prediction Source
[61]
[160]
[96]

Downstream

PubMedQA 2019 Text Biomedical QA Source
[123]
[162]
[199]

Downstream

MedMCQA 2022 Text Biomedical QA Source [123]
[162] Downstream

USMLE 2020 Text Medical exam QA Source [123]
[162] Downstream

UniProtQA 2023 Sequence, Text Protein QA Source
[123]
[162]
[199]

Downstream

ProteinQA benchmark 2024 Sequence, Text Protein QA Source

[75]
[197]
[170]
[194]

Downstream

PDB-QA 2024 Structure, Text Protein QA Source [120] Downstream
MMLU-bio 2021 Text Multitask biomedical QA Source [162] Downstream

ChEBI-20 2019 Molecule, Text Molecule QA, Captioning Source [123]
[140] Downstream

ChemProt 2019 Text Relation extraction Source [140] Downstream

BindingDB 2007 Sequence, SMILES Binding prediction Source
[231]
[140]
[196]

Downstream

MoleculeNet 2018 Molecule Property prediction Source [231]
[162] Downstream

USPTO 2019 SMILES, Text Reaction prediction Source [162] Downstream
PubChem BioAssay 2014 SMILES, Text Retrieval Source [196] Downstream
SAbDab 2014 Structure Antibody design Source [49] Downstream
Inverse folding sets 2019 Sequence, Structure Inverse folding Source [103] Downstream

Protein design benchmarks 2024 Sequence, Structure Protein generation, Design Source
[61]
[238]
[242]

Downstream
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Table I5: Summary of pretraining / instruction-tuning datasets for MLLMs in gene tasks.
Datasets Year Modality Tasks Source Application Stage

NCBI Gene 2005 DNA, Text Function modeling source [36] Pretraining
NT 2023 DNA Sequence classification source [146] Pretraining
BEND 2022 DNA Regulatory element classification source [146] Pretraining
AgroNT 2023 DNA Plant genomics tasks source [146] Pretraining
ChromTransfer 2022 DNA Regulatory element transfer source [146] Pretraining
ATAC-seq fetal atlas 2020 DNA, TF-region Chromatin accessibility source [130] Pretraining
Sei 2022 DNA, Chromatin Epigenomic feature extraction source [66] Pretraining
SwissProt 1986 Protein Protein sequence modeling source [101] Pretraining
TrEMBL 1996 Protein Protein sequence modeling source [101] Pretraining
S2ORC 2020 Text Scientific text modeling source [101] Pretraining
scCompass-126M 2024 RNA Cross-species modeling source [203] Pretraining
Ensembl GRCh38 2013 DNA Genomic sequences source [117] Pretraining
GTEx v8 2015 RNA Expression profiles source [117] Pretraining
UniProt 2023 Protein Protein sequences source [117] Pretraining
PubMed abstracts 1996 Text Biomedical language modeling source [117] Pretraining

Table I6: Summary of downstream task datasets for MLLMs in gene tasks.
Datasets Year Modality Tasks Source Application Stage

NCBI Gene 2005 DNA, Text Function prediction source [36] Downstream
NT 2023 DNA Sequence classification source [146] Downstream
BEND 2022 DNA Regulatory element classification source [146] Downstream
AgroNT 2023 DNA Plant genomics tasks source [146] Downstream
ChromTransfer 2022 DNA Regulatory element transfer source [146] Downstream
DeepSTARR 2019 DNA Enhancer activity prediction source [146] Downstream
APARENT2 2022 RNA Polyadenylation prediction source [146] Downstream
Saluki 2022 RNA RNA degradation prediction source [146] Downstream
GM12878 2012 RNA Expression prediction source [66] Downstream
Geuvadis 2013 RNA Expression prediction source [66] Downstream
GenoTEX 2025 DNA, RNA Gene–trait association source [107] Downstream
GEO 2002 RNA Expression prediction source [107] Downstream
TCGA 2008 RNA, DNA Expression prediction source [107] Downstream
Curated gene sets (102) 2025 Gene sets Pathway enrichment source [180] Downstream
Case studies (melanoma, breast cancer) 2025 RNA, Text Disease-specific analysis source [180] Downstream
UniProt 2023 Protein Function prediction source [101] Downstream
Pfam 1997 Protein Domain classification source [101] Downstream
InterPro 2000 Protein Domain classification source [101] Downstream
PBMC-ALL 2017 RNA GRN inference source [2] Downstream
PBMC-CTL 2017 RNA GRN inference source [2] Downstream
BoneMarrow 2019 RNA GRN inference source [2] Downstream
OmniCellTOSG 2025 scRNA-seq, Text Cellular state prediction source [217] Downstream
HCA 2017 scRNA-seq Cross-species GRN inference source [203] Downstream
MCA 2018 scRNA-seq Cross-species GRN inference source [203] Downstream
Tabula Sapiens 2022 scRNA-seq Cross-species GRN inference source [203] Downstream
GO annotation 2000 DNA, Text Function prediction source [117] Downstream
UniProt 2002 Protein Protein classification source [117] Downstream
GTEx v8 2015 RNA Expression prediction source [117] Downstream

• The answer NA means that the paper has no limitation while the answer No means that1614

the paper has limitations, but those are not discussed in the paper.1615

• The authors are encouraged to create a separate "Limitations" section in their paper.1616

• The paper should point out any strong assumptions and how robust the results are to1617

violations of these assumptions (e.g., independence assumptions, noiseless settings,1618

model well-specification, asymptotic approximations only holding locally). The authors1619

should reflect on how these assumptions might be violated in practice and what the1620

implications would be.1621

• The authors should reflect on the scope of the claims made, e.g., if the approach was1622

only tested on a few datasets or with a few runs. In general, empirical results often1623

depend on implicit assumptions, which should be articulated.1624

• The authors should reflect on the factors that influence the performance of the approach.1625

For example, a facial recognition algorithm may perform poorly when image resolution1626

is low or images are taken in low lighting. Or a speech-to-text system might not be1627

used reliably to provide closed captions for online lectures because it fails to handle1628

technical jargon.1629

• The authors should discuss the computational efficiency of the proposed algorithms1630

and how they scale with dataset size.1631

• If applicable, the authors should discuss possible limitations of their approach to1632

address problems of privacy and fairness.1633
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• While the authors might fear that complete honesty about limitations might be used by1634

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1635

limitations that aren’t acknowledged in the paper. The authors should use their best1636

judgment and recognize that individual actions in favor of transparency play an impor-1637

tant role in developing norms that preserve the integrity of the community. Reviewers1638

will be specifically instructed to not penalize honesty concerning limitations.1639

3. Theory assumptions and proofs1640

Question: For each theoretical result, does the paper provide the full set of assumptions and1641

a complete (and correct) proof?1642

Answer: [NA]1643

Justification: This work is a survey with benchmarking and does not present new theorems1644

or proofs; hence formal theoretical assumptions and proofs are not applicable.1645

Guidelines:1646

• The answer NA means that the paper does not include theoretical results.1647

• All theorems, formulas, and proofs in the paper should be numbered and cross-1648

referenced.1649

• All assumptions should be clearly stated or referenced in the statement of any theorems.1650

• The proofs can either appear in the main paper or the supplemental material, but if1651

they appear in the supplemental material, the authors are encouraged to provide a short1652

proof sketch to provide intuition.1653

• Inversely, any informal proof provided in the core of the paper should be complemented1654

by formal proofs provided in appendix or supplemental material.1655

• Theorems and Lemmas that the proof relies upon should be properly referenced.1656

4. Experimental result reproducibility1657

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1658

perimental results of the paper to the extent that it affects the main claims and/or conclusions1659

of the paper (regardless of whether the code and data are provided or not)?1660

Answer: [No]1661

Justification: Appendix G specifies tasks, datasets, and metrics, and notes where results are1662

taken from prior work due to unavailable weights; however, detailed training configurations1663

(e.g., full hyperparameters, seeds, environment) and runnable artifacts are not fully disclosed1664

for exact reproduction.1665

Guidelines:1666

• The answer NA means that the paper does not include experiments.1667

• If the paper includes experiments, a No answer to this question will not be perceived1668

well by the reviewers: Making the paper reproducible is important, regardless of1669

whether the code and data are provided or not.1670

• If the contribution is a dataset and/or model, the authors should describe the steps taken1671

to make their results reproducible or verifiable.1672

• Depending on the contribution, reproducibility can be accomplished in various ways.1673

For example, if the contribution is a novel architecture, describing the architecture fully1674

might suffice, or if the contribution is a specific model and empirical evaluation, it may1675

be necessary to either make it possible for others to replicate the model with the same1676

dataset, or provide access to the model. In general. releasing code and data is often1677

one good way to accomplish this, but reproducibility can also be provided via detailed1678

instructions for how to replicate the results, access to a hosted model (e.g., in the case1679

of a large language model), releasing of a model checkpoint, or other means that are1680

appropriate to the research performed.1681

• While NeurIPS does not require releasing code, the conference does require all submis-1682

sions to provide some reasonable avenue for reproducibility, which may depend on the1683

nature of the contribution. For example1684

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1685

to reproduce that algorithm.1686
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(b) If the contribution is primarily a new model architecture, the paper should describe1687

the architecture clearly and fully.1688

(c) If the contribution is a new model (e.g., a large language model), then there should1689

either be a way to access this model for reproducing the results or a way to reproduce1690

the model (e.g., with an open-source dataset or instructions for how to construct1691

the dataset).1692

(d) We recognize that reproducibility may be tricky in some cases, in which case1693

authors are welcome to describe the particular way they provide for reproducibility.1694

In the case of closed-source models, it may be that access to the model is limited in1695

some way (e.g., to registered users), but it should be possible for other researchers1696

to have some path to reproducing or verifying the results.1697

5. Open access to data and code1698

Question: Does the paper provide open access to the data and code, with sufficient instruc-1699

tions to faithfully reproduce the main experimental results, as described in supplemental1700

material?1701

Answer: [No]1702

Justification: The paper lists an anonymized project homepage and provides dataset1703

sources/links in the appendix, but it does not include a public code release or step-by-1704

step reproduction scripts for the benchmarking.1705

Guidelines:1706

• The answer NA means that paper does not include experiments requiring code.1707

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1708

public/guides/CodeSubmissionPolicy) for more details.1709

• While we encourage the release of code and data, we understand that this might not be1710

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1711

including code, unless this is central to the contribution (e.g., for a new open-source1712

benchmark).1713

• The instructions should contain the exact command and environment needed to run to1714

reproduce the results. See the NeurIPS code and data submission guidelines for more1715

details.1716

• The authors should provide instructions on data access and preparation, including how1717

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1718

• The authors should provide scripts to reproduce all experimental results for the new1719

proposed method and baselines. If only a subset of experiments are reproducible, they1720

should state which ones are omitted from the script and why.1721

• At submission time, to preserve anonymity, the authors should release anonymized1722

versions (if applicable).1723

• Providing as much information as possible in supplemental material (appended to the1724

paper) is recommended, but including URLs to data and code is permitted.1725

6. Experimental setting/details1726

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1727

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1728

results?1729

Answer: [Yes]1730

Justification: Appendix G describes the evaluation tasks/datasets (e.g., MoleculeNet and1731

TAPE), metrics (e.g., AUROC, accuracy, Spearman ρ), and clarifies which baselines are1732

adopted from prior work vs. rerun by the authors, which is sufficient to interpret the results.1733

Guidelines:1734

• The answer NA means that the paper does not include experiments.1735

• The experimental setting should be presented in the core of the paper to a level of detail1736

that is necessary to appreciate the results and make sense of them.1737

• The full details can be provided either with the code, in appendix, or as supplemental1738

material.1739
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7. Experiment statistical significance1740

Question: Does the paper report error bars suitably and correctly defined or other appropriate1741

information about the statistical significance of the experiments?1742

Answer: [Yes]1743

Justification: Benchmark tables include mean ± standard deviation for several models1744

(e.g., Token-Mol and MoleculeSTM variants), and note averaging across five runs where1745

applicable.1746

Guidelines:1747

• The answer NA means that the paper does not include experiments.1748

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1749

dence intervals, or statistical significance tests, at least for the experiments that support1750

the main claims of the paper.1751

• The factors of variability that the error bars are capturing should be clearly stated (for1752

example, train/test split, initialization, random drawing of some parameter, or overall1753

run with given experimental conditions).1754

• The method for calculating the error bars should be explained (closed form formula,1755

call to a library function, bootstrap, etc.)1756

• The assumptions made should be given (e.g., Normally distributed errors).1757

• It should be clear whether the error bar is the standard deviation or the standard error1758

of the mean.1759

• It is OK to report 1-sigma error bars, but one should state it. The authors should1760

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1761

of Normality of errors is not verified.1762

• For asymmetric distributions, the authors should be careful not to show in tables or1763

figures symmetric error bars that would yield results that are out of range (e.g. negative1764

error rates).1765

• If error bars are reported in tables or plots, The authors should explain in the text how1766

they were calculated and reference the corresponding figures or tables in the text.1767

8. Experiments compute resources1768

Question: For each experiment, does the paper provide sufficient information on the com-1769

puter resources (type of compute workers, memory, time of execution) needed to reproduce1770

the experiments?1771

Answer: [No]1772

Justification: The appendix describes datasets/metrics and baseline sourcing, but does not1773

specify hardware, memory, or runtime requirements for the rerun experiments.1774

Guidelines:1775

• The answer NA means that the paper does not include experiments.1776

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1777

or cloud provider, including relevant memory and storage.1778

• The paper should provide the amount of compute required for each of the individual1779

experimental runs as well as estimate the total compute.1780

• The paper should disclose whether the full research project required more compute1781

than the experiments reported in the paper (e.g., preliminary or failed experiments that1782

didn’t make it into the paper).1783

9. Code of ethics1784

Question: Does the research conducted in the paper conform, in every respect, with the1785

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1786

Answer: [Yes]1787

Justification: The work surveys literature and benchmarks on publicly available datasets1788

without collecting new human data; dataset sources are cited/linked in the appendix.1789

Guidelines:1790
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1791

• If the authors answer No, they should explain the special circumstances that require a1792

deviation from the Code of Ethics.1793

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1794

eration due to laws or regulations in their jurisdiction).1795

10. Broader impacts1796

Question: Does the paper discuss both potential positive societal impacts and negative1797

societal impacts of the work performed?1798

Answer: [Yes]1799

Justification: The introduction highlights the promise of MLLMs for accelerating scientific1800

discovery, while Appendix F discusses risks/challenges (e.g., security and alignment issues)1801

relevant to potential negative impacts.1802

Guidelines:1803

• The answer NA means that there is no societal impact of the work performed.1804

• If the authors answer NA or No, they should explain why their work has no societal1805

impact or why the paper does not address societal impact.1806

• Examples of negative societal impacts include potential malicious or unintended uses1807

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1808

(e.g., deployment of technologies that could make decisions that unfairly impact specific1809

groups), privacy considerations, and security considerations.1810

• The conference expects that many papers will be foundational research and not tied to1811

particular applications, let alone deployments. However, if there is a direct path to any1812

negative applications, the authors should point it out.1813

• The authors should consider possible harms that could arise when the technology is1814

being used as intended and functioning correctly, harms that could arise when the1815

technology is being used as intended but gives incorrect results, and harms following1816

from (intentional or unintentional) misuse of the technology.1817

• If there are negative societal impacts, the authors could also discuss possible mitigation1818

strategies (e.g., gated release of models, providing defenses in addition to attacks,1819

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1820

feedback over time, improving the efficiency and accessibility of ML).1821

11. Safeguards1822

Question: Does the paper describe safeguards that have been put in place for responsible1823

release of data or models that have a high risk for misuse (e.g., pretrained language models,1824

image generators, or scraped datasets)?1825

Answer: [NA]1826

Justification: No new high-risk models or datasets are released; the work is a survey plus1827

benchmarking of existing models/datasets.1828

Guidelines:1829

• The answer NA means that the paper poses no such risks.1830

• Released models that have a high risk for misuse or dual-use should be released with1831

necessary safeguards to allow for controlled use of the model, for example by requiring1832

that users adhere to usage guidelines or restrictions to access the model or implementing1833

safety filters.1834

• Datasets that have been scraped from the Internet could pose safety risks. The authors1835

should describe how they avoided releasing unsafe images.1836

• We recognize that providing effective safeguards is challenging, and many papers do1837

not require this, but we encourage authors to take this into account and make a best1838

faith effort.1839

12. Licenses for existing assets1840

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1841

the paper, properly credited and are the license and terms of use explicitly mentioned and1842

properly respected?1843
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Answer: [No]1844

Justification: Dataset creators and sources are cited with links in the appendix, but explicit1845

license names/terms are not listed within the paper itself.1846

Guidelines:1847

• The answer NA means that the paper does not use existing assets.1848

• The authors should cite the original paper that produced the code package or dataset.1849

• The authors should state which version of the asset is used and, if possible, include a1850

URL.1851

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1852

• For scraped data from a particular source (e.g., website), the copyright and terms of1853

service of that source should be provided.1854

• If assets are released, the license, copyright information, and terms of use in the package1855

should be provided.1856

• For existing datasets that are re-packaged, both the original license and the license of1857

the derived asset (if it has changed) should be provided.1858

• If this information is not available online, the authors are encouraged to reach out to1859

the asset’s creators.1860

13. New assets1861

Question: Are new assets introduced in the paper well documented and is the documentation1862

provided alongside the assets?1863

Answer: [NA]1864

Justification: No new datasets or code assets are introduced beyond the model implementa-1865

tion; no new dataset is released.1866

Guidelines:1867

• The answer NA means that the paper does not release new assets.1868

• Researchers should communicate the details of the dataset/code/model as part of their1869

submissions via structured templates. This includes details about training, license,1870

limitations, etc.1871

• The paper should discuss whether and how consent was obtained from people whose1872

asset is used.1873

• At submission time, remember to anonymize your assets (if applicable). You can either1874

create an anonymized URL or include an anonymized zip file.1875

14. Crowdsourcing and research with human subjects1876

Question: For crowdsourcing experiments and research with human subjects, does the paper1877

include the full text of instructions given to participants and screenshots, if applicable, as1878

well as details about compensation (if any)?1879

Answer: [NA]1880

Justification: This research does not involve human subjects or crowdsourcing.1881

Guidelines:1882

• The answer NA means that the paper does not involve crowdsourcing nor research with1883

human subjects.1884

• Including this information in the supplemental material is fine, but if the main contribu-1885

tion of the paper involves human subjects, then as much detail as possible should be1886

included in the main paper.1887

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1888

or other labor should be paid at least the minimum wage in the country of the data1889

collector.1890

15. Institutional review board (IRB) approvals or equivalent for research with human1891

subjects1892
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Question: Does the paper describe potential risks incurred by study participants, whether1893

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1894

approvals (or an equivalent approval/review based on the requirements of your country or1895

institution) were obtained?1896

Answer: [NA]1897

Justification: Not applicable; there are no experiments involving human subjects.1898

Guidelines:1899

• The answer NA means that the paper does not involve crowdsourcing nor research with1900

human subjects.1901

• Depending on the country in which research is conducted, IRB approval (or equivalent)1902

may be required for any human subjects research. If you obtained IRB approval, you1903

should clearly state this in the paper.1904

• We recognize that the procedures for this may vary significantly between institutions1905

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1906

guidelines for their institution.1907

• For initial submissions, do not include any information that would break anonymity (if1908

applicable), such as the institution conducting the review.1909

16. Declaration of LLM usage1910

Question: Does the paper describe the usage of LLMs if it is an important, original, or1911

non-standard component of the core methods in this research? Note that if the LLM is used1912

only for writing, editing, or formatting purposes and does not impact the core methodology,1913

scientific rigorousness, or originality of the research, declaration is not required.1914

Answer: [NA]1915

Justification: No large language model is used as an important or original component of the1916

core methodology; LLMs may only have been used for minor writing/editing assistance.1917

Guidelines:1918

• The answer NA means that the core method development in this research does not1919

involve LLMs as any important, original, or non-standard components.1920

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1921

for what should or should not be described.1922
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