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Abstract

Recent advances in artificial intelligence (AI), especially large language models,
have accelerated the integration of multimodal data in scientific research. Given
that scientific fields involve diverse data types, ranging from text and images to
complex biological sequences and structures, multimodal large language mod-
els (MLLMs) have emerged as powerful tools to bridge these modalities, enabling
more comprehensive data analysis and intelligent decision-making. This work,
S3-Bench, provides a comprehensive overview of recent advances in MLLMs,
focusing on their diverse applications across science. We systematically review the
progress of MLLMs in key scientific domains, including drug discovery, molecular
& protein design, materials science, and genomics. The work highlights model
architectures, domain-specific adaptations, benchmark datasets, and promising
future directions. More importantly, we benchmarked open-source MLLMs on a
range of critical molecular and protein property prediction tasks. Our work aims to
serve as a valuable resource for both researchers and practitioners interested in the
rapidly evolving landscape of multimodal AI for science.

1 Introduction
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Figure 1: Average monthly number
of publications on MLLMs in science
(2022–present), collected from arXiv,
Nature, and bioRxiv, showing the in-
creasing attention to MLLM applications
in science.

Recent breakthroughs in artificial intelligence (AI) have
been driven by foundation models—large-scale neural
networks trained on broad data that can be adapted to
diverse tasks [137, 57]. In particular, large language mod-
els (LLMs) based on the Transformer architecture [169]
have achieved remarkable proficiency in natural language
processing, exhibiting emergent abilities such as few-
shot learning [5, 15, 182, 85, 183] and human-aligned
dialogue generation [138, 244, 50]. However, these ad-
vances remain confined to text-based inputs and out-
puts, whereas scientific problems are inherently multi-
modal—spanning modalities such as clinical text, biomed-
ical images, molecular structures, and genomic sequences,
among others [90, 123, 112, 36]. This has catalyzed a new
generation of multimodal large language models (MLLMs)
designed to bridge diverse data modalities and enable more
comprehensive reasoning.
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MLLMs extend language modeling beyond text, enabling AI systems to ingest and generate diverse
data types such as images, audio, and structured scientific representations [208, 188, 102]. Early
examples like Flamingo [5] and Kosmos-1 [74] showed that LLMs can be adapted or trained to
jointly reason over visual and textual inputs, while open-source efforts such as MiniGPT-4 [240]
and LLaVA [91] align vision encoders with LLMs, marking a shift from text-only AI towards
generalist multimodal agents. This multimodal trend is especially impactful in science, where tasks
often integrate multiple modalities. Biomedical models such as BioMedGPT [123] unify protein
sequences, molecular structures, and textual knowledge for drug discovery. In genomics, systems
like Geneverse [117] and GeneChat [36] connect DNA sequences with biomedical knowledge. In
materials science, multimodal AI can parse literature and microstructure images jointly to propose
new materials or predict properties [12, 16, 4, 141]. Across these domains, MLLMs act as engines
that fuse language with domain-specific modalities, enabling holistic analysis and accelerating
discovery (Figure 1).

Given this rapid progress, there is a pressing need to systematically survey MLLMs in science.
Existing surveys mainly focus on general-purpose LLMs (e.g., [230]) or on narrower multimodal
techniques (e.g., [208]). Domain-specific reviews exist for biology or biomedicine [225, 222, 164,
235, 63, 192, 233, 110, 172, 174], but no prior work offers a unified overview across natural language,
biomedical imaging, molecular data, genomics, and material science (Table 1).

Figure 2: Overview of our S3-Bench, highlighting four major com-
ponents discussed in the paper and presenting the key modalities and
their corresponding applications in this field.

To fill this gap, we present
S3-Bench, a comprehensive
study with benchmarking
evluation of MLLMs for
scientific discovery. Our
contributions are threefold:
(1) We present the first
comprehensive survey work
of MLLMs across major sci-
entific domains—including
drug discovery, protein
engineering, genomics,
materials science, and
biomedicine—highlighting
representative model archi-
tectures, domain-specific
adaptations, and benchmark
datasets. (2) we synthesize
emerging directions, includ-
ing diffusion-based LLMs
and multimodal diffusion-
based LLMs, and outline
open challenges for future
research (Appendix F); and
(3) we conduct benchmarking
experiments on selected open-
source MLLMs, evaluating
their performance on highly
significant tasks such as molecular property prediction and protein function prediction (Appendix G).
In summary, MLLMs are rapidly evolving and hold immense promise for advancing scientific
discovery, by consolidating progress across diverse modalities and domains and by providing
empirical benchmark results, this survey aims to serve as both a reference and a foundation for future
work. The paper is organized as follows: Section 2, Appendix A, Appendix B, and Appendix C
review domain-specific developments of MLLMs in small molecules, proteins, genomics, and
materials, respectively. We also discuss emerging topics and future directions in Appendix F.

2 MLLMs for Molecule Science and Drug Design

Multimodal large language models (MLLMs) are transforming molecular science and drug discovery
by combining different chemical representations such as SMILES (1D) [184], SELFIES (1D) [87],
molecular graphs (2D) [41] and geometric structure (3D) [51]. They improve key tasks including
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property prediction, molecular generation, reaction planning, and synthesis optimization, thus ac-
celerating the discovery of novel compounds. In this section, we review recent progress along four
directions: (1) LLMs for molecular representation and design, focusing on SMILES- and graph-
based embeddings as well as generative models; (2) MLLMs for 1D and 2D tasks, where string and
graph/image representations are fused; (3) MLLMs with 3D integration, which enhance structural
understanding and retrosynthesis; and (4) chemistry-focused agents and specific applications, cover-
ing tool-augmented systems, puzzle-style reasoning, and reaction optimization. Table H1, Table I1,
Table I2 and Figure 3 summarize models, datasets, and the research landscape. We also present the
benchmarking results of molecular property prediction in Appendix G.

2.1 LLMs for Molecule Representation and Design
Table 1: Comparison of coverage of recent survey papers on
LLMs/MLLMs across different domains.

Survey Protein Drug & Samll Molecule Gene Material Biomedicine Target Multimodal Benchmarking

Our Survey ✓ ✓ ✓ ✓ ✓ ✓ ✓

LLMs/MLLMs for Science
[225] ✓ ✓ ✓ ✓
[223] ✓ ✓ ✓
[73] ✓ ✓ ✓ ✓ ✓
[21] ✓ ✓

LLMs/MLLMs for Biomedicine
[193] ✓
[207] ✓ ✓
[171] ✓ ✓
[235] ✓
[17] ✓ ✓ ✓
[233] ✓
[110] ✓
[63] ✓
[192] ✓
[174] ✓
[172] ✓
[164] ✓

While our work centers on multi-
modal LLMs, we also include an
overview of LLMs for molecular sci-
ence to give readers a comprehensive
understanding of progress in this field.
LLMs are advancing molecular sci-
ence by learning from diverse chem-
ical representations [186], including
the aforementioned 1D, 2D, and 3D
data. Transformer models such as
ChemBERTa [31] and MolBERT [44]
yield rich embeddings that improve
property, drug-target, and drug-drug
interaction prediction [65, 78]. For de novo design, models like MolGPT [10], ChatMol [216],
and ChatDrug [118] generate valid and novel compounds via conditional generation, reinforcement
learning, or molecular editing [29]. LLMs further support multi-objective optimization and iterative
refinement with expert or oracle feedback [191]. In reaction prediction and synthesis, the Molecular
Transformer excels in forward and retrosynthetic tasks [106], while multimodal and instruction-
following models bridge chemical language with experimental reasoning [163]. Overall, LLMs are
emerging as powerful engines for molecular discovery, optimization, and synthesis.

2.2 MLLMs for 1D and 2D Molecular Tasks
Recent advances in molecular AI highlight a fundamental paradigm shift from single-modality
models toward deeply integrated MLLMs, particularly focusing on the fusion of 1D (e.g., SMILES,
SELFIES) and 2D (e.g., molecular graphs, structure images) representations [11, 148, 78, 89, 70,
88, 34, 218, 94, 111, 167, 26, 121, 19, 124, 122]. This shift is motivated by the realization that 1D
string representations provide scalability and access to abundant chemical databases, but alone cannot
capture the rich spatial, topological, and functional information encoded in 2D modalities. Early
progress in the field centered around models leveraging 1D molecular strings, but these were soon
recognized as insufficient for tasks demanding a nuanced understanding of molecular connectivity and
spatial arrangement. Addressing this, recent works such as MolPROP [148] pioneered the fusion of
pretrained language models with GNN-based graph encoders, achieving significant gains in property
prediction. This line of research has since been extended by LLM-MPP [78], Mol-LLM [89], and
related models such as M3LLM [70], which employ advanced architectural innovations such as cross-
attention between SMILES, molecular graphs, and textual descriptions, large-scale instruction tuning,
and multi-level graph feature integration, resulting in strong and generalizable performance across
property prediction, reaction, and generation tasks. Modular and adapter-based approaches, including
MolX [88] and ChemLML [34], make it possible to flexibly combine graph encoders with LLMs and
rapidly adapt to new tasks with minimal parameter overhead. Meanwhile, tokenizer-based solutions
like UniMoT [218] unify 1D and 2D information at the token level, enabling seamless molecule-to-
text and text-to-molecule generation. Beyond graph representations, vision-enhanced models such
as ChemVLM [94], GIT-Mol [111], and Mol2Lang-VLM [167] incorporate 2D structure images
alongside textual and graph modalities, further boosting captioning and molecular understanding. On
the system level, frameworks like ModuLM [26] and nach0 [121] generalize the multimodal paradigm
by supporting arbitrary combinations of 1D, 2D, and even 3D encoders, while InstructMol [19] and
BioMedGPT [124] demonstrate the value of multi-stage instruction tuning and domain-specific
integration for high-stakes biomedical applications. Importantly, domain-specialized models such
as BioGPT [122] represent a milestone in biomedical molecular research. Pre-trained on large-
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scale PubMed literature, BioGPT achieves state-of-the-art results in biomedical text generation
and knowledge extraction, accelerating automated molecular discovery from unstructured data.
Collectively, these studies demonstrate that fusing 1D and 2D modalities not only consistently
improves accuracy and generalizability for property prediction, generation, and retrosynthesis tasks,
but also lowers the barrier for extending models to new modalities and domains. As such, the
evolution from 1D-only to 1D&2D-fused MLLMs marks a major leap for molecular AI, setting a new
foundation for interpretable, robust, and transferable molecular representation learning in chemistry,
biology, and drug discovery.

2.3 MLLMs with 3D Geometry Integration for Molecular Tasks
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Figure 3: Distribution of MLLMs for drug
and molecule tasks, presenting each model’s
release date, scale, architecture and applica-
tion.

Recent advances in MLLMs with 3D geometry in-
tegration can be broadly categorized by their tar-
get molecular tasks. For representation learning
and property prediction, MolBind [195] aligns sci-
entific language, 2D molecular graphs, 3D confor-
mations, and protein pockets into a unified repre-
sentation space via contrastive learning, enabling
cross-modal retrieval and zero-shot molecular prop-
erty prediction. Similarly, ModuLM [26] provides a
modular framework that flexibly combines 1D, 2D,
and 3D encoders with diverse LLM backbones, facil-
itating benchmarking and adaptation across a wide
range of molecular tasks. For reaction modeling,
RetroInText [82] integrates 3D geometry, 2D molec-
ular graphs, and in-context reaction text to enhance
multi-step retrosynthesis, particularly for long and
complex synthetic routes. For materials and polymer
science, PolyLLMem [224] couples Llama3-based
SMILES embeddings with Uni-Mol 3D embeddings
through a gated fusion mechanism, demonstrating
strong performance in polymer property prediction
under limited-data scenarios. Overall, these approaches reflect a growing trend toward fully multi-
modal MLLMs that combine complementary molecular representations (1D, 2D, and 3D) to achieve
improved accuracy, interpretability, and generalizability across chemical and biological domains

2.4 MLLMs for Chemistry-Focused Agents and Special Applications
(1) Chemistry-Focused Agents. Recent work has introduced chemistry-focused agents that cou-
ple MLLMs with domain-specific tools to automate molecular data processing and reason-
ing [13, 214, 211, 161, 80]. Examples include ChatMolData [214], which integrates modules
for literature mining, structure handling, and database operations; ChemCrow [13] and ChemToolA-
gent [211], which enhance LLMs for synthesis planning and property prediction; and ChemA-
gent [161] and ChemThinker [80], which introduce memory or multi-agent designs for more accurate
and interpretable reasoning. (2) Puzzle and Reaction Condition Recommendation. Beyond standard
benchmarks, chemistry also involves expert-level reasoning tasks that require integrating diverse data
sources. Puzzle-style problems [133, 1, 245, 48, 18], such as structure elucidation from spectroscopic
clues, test the limits of MLLMs; MolPuzzle [60] shows that while models like GPT-4o handle simple
cases, they still lag behind human experts. Similarly, tasks such as reaction condition recommenda-
tion and synthesis optimization demand advanced reasoning. MM-RCR [226] exemplifies progress
here by unifying textual, graph, and SMILES data, achieving state-of-the-art results and strong
generalization. Overall, MLLMs are moving from unimodal to fused 1D/2D/3D, agent-augmented
systems that boost property prediction, generation, retrosynthesis, and condition recommendation.
We believe key hurdles remain in rigorous reasoning, interpretability/reproducibility, and closed-loop
experimental and safety integration.
3 Conclusion
This work provides a comprehensive overview of recent advances in MLLMs for science, highlighting
representative architectures, datasets, and benchmarks, as well as their emerging applications in
science. Beyond cataloging progress, we also emphasize the growing role of diffusion-based LLMs in
multimodal generation and reasoning. Looking ahead, MLLMs hold the potential to reshape the way
scientists explore and integrate diverse data sources. Continued progress will require addressing open
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challenges in factual reliability, modality-specific reasoning, interpretability, and ethical deployment.
By synthesizing current advances and pointing toward future directions, this work aims to serve as
both a reference and a foundation for further research in multimodal scientific AI.
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[50] Amelia Glaese, Nat McAleese, Maja Trębacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth Rauh,
Laura Weidinger, Martin Chadwick, Phoebe Thacker, et al. Improving alignment of dialogue agents via
targeted human judgements. arXiv preprint arXiv:2209.14375, 2022.

[51] Vladimir Golkov, Marcin J Skwark, Atanas Mirchev, Georgi Dikov, Alexander R Geanes, Jeffrey
Mendenhall, Jens Meiler, and Daniel Cremers. 3d deep learning for biological function prediction from
physical fields. In 2020 International Conference on 3D Vision (3DV), pages 928–937. IEEE, 2020.

[52] Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An, Peilin
Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from autoregressive
models. arXiv preprint arXiv:2410.17891, 2024.

[53] Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to
sequence text generation with diffusion models. arXiv preprint arXiv:2210.08933, 2022.

7

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805


[54] Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and Yizhe
Zhang. Diffucoder: Understanding and improving masked diffusion models for code generation. arXiv
preprint arXiv:2506.20639, 2025.

[55] Google DeepMind. Gemini diffusion: Our state-of-the-art, experimental text diffusion model. Web page,
2025. May 20, 2025; experimental text diffusion model; accessed 2025-09-20.

[56] Daniele Grandi, Yash Patawari Jain, Allin Groom, Brandon Cramer, and Christopher McComb. Eval-
uating large language models for material selection. Journal of Computing and Information Science in
Engineering, 25(2):021004, 2025.

[57] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

[58] Alex Graves. Long short-term memory. Supervised sequence labelling with recurrent neural networks,
pages 37–45, 2012.

[59] Nate Gruver, Anuroop Sriram, Andrea Madotto, Andrew Gordon Wilson, C Lawrence Zitnick, and
Zachary Ulissi. Fine-tuned language models generate stable inorganic materials as text. arXiv preprint
arXiv:2402.04379, 2024.

[60] Kehan Guo, Bozhao Nan, Yujun Zhou, Taicheng Guo, Zhichun Guo, Mihir Surve, Zhenwen Liang,
Nitesh Chawla, Olaf Wiest, and Xiangliang Zhang. Can llms solve molecule puzzles? a multimodal
benchmark for molecular structure elucidation. Advances in Neural Information Processing Systems,
37:134721–134746, 2024.

[61] Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert Verkuil,
Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years of evolution with
a language model. Science, 387(6736):850–858, 2025.

[62] Haohuai He, Bing He, Lei Guan, Yu Zhao, Feng Jiang, Guanxing Chen, Qingge Zhu, Calvin Yu-Chian
Chen, Ting Li, and Jianhua Yao. De novo generation of sars-cov-2 antibody cdrh3 with a pre-trained
generative large language model. Nature Communications, 15(1):6867, 2024.

[63] Kai He, Rui Mao, Qika Lin, Yucheng Ruan, Xiang Lan, Mengling Feng, and Erik Cambria. A survey
of large language models for healthcare: from data, technology, and applications to accountability and
ethics. Information Fusion, page 102963, 2025.

[64] Megha Hegde, Jean-Christophe Nebel, and Farzana Rahman. Language modelling techniques for
analysing the impact of human genetic variation. arXiv preprint arXiv:2503.10655, 2025.

[65] Shion Honda, Shoi Shi, and Hiroki R Ueda. Smiles transformer: Pre-trained molecular fingerprint for low
data drug discovery. arXiv preprint arXiv:1911.04738, 2019.

[66] Edouardo Honig, Huixin Zhan, Ying Nian Wu, and Zijun Frank Zhang. Long-range gene expression
prediction with token alignment of large language model. arXiv preprint arXiv:2410.01858, 2024.

[67] Jie Hou, Badri Adhikari, and Jianlin Cheng. Deepsf: deep convolutional neural network for mapping
protein sequences to folds. Bioinformatics, 34(8):1295–1303, 2018.

[68] Wenpin Hou, Xinyi Shang, and Zhicheng Ji. Benchmarking large language models for genomic knowledge
with geneturing. bioRxiv, pages 2023–03, 2025.

[69] C Hsu, R Verkuil, J Liu, Z Lin, B Hie, T Sercu, A Lerer, and A Rives. Learning inverse folding
from millions of predicted structures. biorxiv (2022). URL https://api. semanticscholar. org/CorpusID,
248151599, 2022.

[70] Chengxin Hu, Hao Li, Yihe Yuan, Jing Li, and Ivor Tsang. Exploring hierarchical molecular graph
representation in multimodal llms. arXiv preprint arXiv:2411.04708, 2024.

[71] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

[72] Mengzhou Hu, Sahar Alkhairy, Ingoo Lee, Rudolf T Pillich, Dylan Fong, Kevin Smith, Robin Bachelder,
Trey Ideker, and Dexter Pratt. Evaluation of large language models for discovery of gene set function.
Nature methods, 22(1):82–91, 2025.

8



[73] Ming Hu, Chenglong Ma, Wei Li, Wanghan Xu, Jiamin Wu, Jucheng Hu, Tianbin Li, Guohang Zhuang,
Jiaqi Liu, Yingzhou Lu, Ying Chen, Chaoyang Zhang, Cheng Tan, Jie Ying, Guocheng Wu, Shujian
Gao, Pengcheng Chen, Jiashi Lin, Haitao Wu, Lulu Chen, Fengxiang Wang, Yuanyuan Zhang, Xiangyu
Zhao, Feilong Tang, Encheng Su, Junzhi Ning, Xinyao Liu, Ye Du, Changkai Ji, Cheng Tang, Huihui Xu,
Ziyang Chen, Ziyan Huang, Jiyao Liu, Pengfei Jiang, Yizhou Wang, Chen Tang, Jianyu Wu, Yuchen Ren,
Siyuan Yan, Zhonghua Wang, Zhongxing Xu, Shiyan Su, Shangquan Sun, Runkai Zhao, Zhisheng Zhang,
Yu Liu, Fudi Wang, Yuanfeng Ji, Yanzhou Su, Hongming Shan, Chunmei Feng, Jiahao Xu, Jiangtao Yan,
Wenhao Tang, Diping Song, Lihao Liu, Yanyan Huang, Lequan Yu, Bin Fu, Shujun Wang, Xiaomeng Li,
Xiaowei Hu, Yun Gu, Ben Fei, Zhongying Deng, Benyou Wang, Yuewen Cao, Minjie Shen, Haodong
Duan, Jie Xu, Yirong Chen, Fang Yan, Hongxia Hao, Jielan Li, Jiajun Du, Yanbo Wang, Imran Razzak,
Chi Zhang, Lijun Wu, Conghui He, Zhaohui Lu, Jinhai Huang, Yihao Liu, Fenghua Ling, Yuqiang Li,
Aoran Wang, Qihao Zheng, Nanqing Dong, Tianfan Fu, Dongzhan Zhou, Yan Lu, Wenlong Zhang, Jin
Ye, Jianfei Cai, Wanli Ouyang, Yu Qiao, Zongyuan Ge, Shixiang Tang, Junjun He, Chunfeng Song, Lei
Bai, and Bowen Zhou. A survey of scientific large language models: From data foundations to agent
frontiers, 2025.

[74] Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao, Saksham Singhal, Shuming Ma, and et al. Language
is not all you need: Aligning perception with language models. arXiv:2302.14045, 2023.

[75] Mingjia Huo, Han Guo, Xingyi Cheng, Digvijay Singh, Hamidreza Rahmani, Shen Li, Philipp Gerlof,
Trey Ideker, Danielle A Grotjahn, Elizabeth Villa, et al. Multi-modal large language model enables
protein function prediction. bioRxiv, pages 2024–08, 2024.

[76] Shuyi Jia, Chao Zhang, and Victor Fung. Llmatdesign: Autonomous materials discovery with large
language models. arXiv preprint arXiv:2406.13163, 2024.

[77] Lei Jiang, Shuzhou Sun, Biqing Qi, Yuchen Fu, Xiaohua Xu, Yuqiang Li, Dongzhan Zhou, and Tianfan
Fu. Chem3dllm: 3d multimodal large language models for chemistry, 2025.

[78] Chang Jin, Siyuan Guo, Shuigeng Zhou, and Jihong Guan. Effective and explainable molecular property
prediction by chain-of-thought enabled large language models and multi-modal molecular information
fusion. Journal of Chemical Information and Modeling, 2025.

[79] Qiao Jin, Yifan Yang, Qingyu Chen, and Zhiyong Lu. Genegpt: Augmenting large language models with
domain tools for improved access to biomedical information. Bioinformatics, 40(2):btae075, 2024.

[80] Jiaxin Ju, YIZHEN ZHENG, Huan Yee Koh, Can Wang, and Shirui Pan. Chemthinker: Thinking like a
chemist with multi-agent LLMs for deep molecular insights, 2024.

[81] John Jumper, Richard Evans, Alexander Pritzel, . . . , and Demis Hassabis. Highly accurate protein
structure prediction with alphafold. Nature, 596:583–589, 2021.

[82] Chenglong Kang, Xiaoyi Liu, and Fei Guo. Retrointext: A multimodal large language model en-
hanced framework for retrosynthetic planning via in-context representation learning. In The Thirteenth
International Conference on Learning Representations, 2025.

[83] Taushif Khan, Mohammed Toufiq, Marina Yurieva, Nitaya Indrawattana, Akanitt Jittmittraphap, Natha-
mon Kosoltanapiwat, Pornpan Pumirat, Passanesh Sukphopetch, Muthita Vanaporn, Karolina Palucka,
et al. Automating candidate gene prioritization with large language models: Development and bench-
marking of an api-driven workflow leveraging gpt-4. bioRxiv, pages 2024–12, 2024.

[84] Junyoung Kim, Kai Wang, Chunhua Weng, and Cong Liu. Assessing the utility of large language models
for phenotype-driven gene prioritization in the diagnosis of rare genetic disease. The American Journal
of Human Genetics, 111(10):2190–2202, 2024.

[85] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language
models are zero-shot reasoners. Advances in neural information processing systems, 35:22199–22213,
2022.

[86] Lingkai Kong, Yuanqi Du, Wenhao Mu, Kirill Neklyudov, Valentin De Bortoli, Dongxia Wu, Haorui
Wang, Aaron Ferber, Yi-An Ma, Carla P Gomes, et al. Diffusion models as constrained samplers for
optimization with unknown constraints. arXiv preprint arXiv:2402.18012, 2024.

[87] Mario Krenn, Florian Häse, Akshat Nigam, Pascal Friederich, and Alán Aspuru-Guzik. SELFIES: a
robust representation of semantically constrained graphs. Machine Learning: Science and Technology,
1(4):045024, 2020.

9



[88] Khiem Le, Zhichun Guo, Kaiwen Dong, Xiaobao Huang, Bozhao Nan, Roshni Iyer, Xiangliang Zhang,
Olaf Wiest, Wei Wang, and Nitesh V Chawla. Molx: Enhancing large language models for molecular
learning with a multi-modal extension. arXiv preprint arXiv:2406.06777, 2024.

[89] Chanhui Lee, Yuheon Song, YongJun Jeong, Hanbum Ko, Rodrigo Hormazabal, Sehui Han, Kyunghoon
Bae, Sungbin Lim, and Sungwoong Kim. Mol-llm: Generalist molecular llm with improved graph
utilization. arXiv preprint arXiv:2502.02810, 2025.

[90] Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Naumann,
Hoifung Poon, and Jianfeng Gao. LLaVA-Med: Training a large language-and-vision assistant for
biomedicine in one day. arXiv preprint arXiv:2306.00890, 2023.

[91] Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Nau-
mann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision assistant for
biomedicine in one day. Advances in Neural Information Processing Systems, 36:28541–28564, 2023.

[92] Hao Li, Yizheng Sun, Viktor Schlegel, Kailai Yang, Riza Batista-Navarro, and Goran Nenadic. Arg-llada:
Argument summarization via large language diffusion models and sufficiency-aware refinement. arXiv
preprint arXiv:2507.19081, 2025.

[93] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597,
2023.

[94] Junxian Li, Di Zhang, Xunzhi Wang, Zeying Hao, Jingdi Lei, Qian Tan, Cai Zhou, Wei Liu, Yaotian
Yang, Xinrui Xiong, et al. Chemvlm: Exploring the power of multimodal large language models in
chemistry area. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages
415–423, 2025.

[95] Longyi Li, Liyan Dong, Hao Zhang, Dong Xu, and Yongli Li. spallm: enhancing spatial domain analysis
in multi-omics data through large language model integration. Briefings in Bioinformatics, 26(4):bbaf304,
07 2025.

[96] Mingchen Li, Yang Tan, Xinzhu Ma, Bozitao Zhong, Huiqun Yu, Ziyi Zhou, Wanli Ouyang, Bingxin
Zhou, Pan Tan, and Liang Hong. Prosst: Protein language modeling with quantized structure and
disentangled attention. Advances in Neural Information Processing Systems, 37:35700–35726, 2024.

[97] Peng-Hsuan Li, Yih-Yun Sun, Hsueh-Fen Juan, Chien-Yu Chen, Huai-Kuang Tsai, and Jia-Hsin Huang.
A large language model framework for literature-based disease–gene association prediction. Briefings in
Bioinformatics, 26(1):bbaf070, 2025.

[98] Yuesen Li, Chengyi Gao, Xin Song, Xiangyu Wang, Yungang Xu, and Suxia Han. Druggpt: A gpt-based
strategy for designing potential ligands targeting specific proteins. bioRxiv, pages 2023–06, 2023.

[99] Lungang Liang, Yulan Chen, Taifu Wang, Dan Jiang, Jishuo Jin, Yanmeng Pang, Qin Na, Qiang Liu,
Xiaosen Jiang, Wentao Dai, et al. Genetic transformer: An innovative large language model driven
approach for rapid and accurate identification of causative variants in rare genetic diseases. medRxiv,
pages 2024–07, 2024.

[100] Wang Liang. Llama-gene: A general-purpose gene task large language model based on instruction
fine-tuning, 2024.

[101] Wang Liang. Llama-gene: A general-purpose gene task large language model based on instruction
fine-tuning. arXiv preprint arXiv:2412.00471, 2024.

[102] Zijing Liang, Yanjie Xu, Yifan Hong, Penghui Shang, Qi Wang, Qiang Fu, and Ke Liu. A survey of
multimodel large language models. In Proceedings of the 3rd International Conference on Computer,
Artificial Intelligence and Control Engineering, pages 405–409, 2024.

[103] Xiaohan Lin, Zhenyu Chen, Yanheng Li, Xingyu Lu, Chuanliu Fan, Ziqiang Cao, Shihao Feng, Yi Qin
Gao, and Jun Zhang. Protokens: A machine-learned language for compact and informative encoding of
protein 3d structures. 2023.

[104] Yuxiang Lin, Ling Luo, Ying Chen, Xushi Zhang, Zihui Wang, Wenxian Yang, Mengsha Tong, and Rong-
shan Yu. St-align: A multimodal foundation model for image-gene alignment in spatial transcriptomics,
2024.

10



[105] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Robert
Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level protein structure
with a language model. Science, 379(6637):1123–1130, 2023.

[106] Bowen Liu, Bharath Ramsundar, Prasad Kawthekar, Jade Shi, Joseph Gomes, Quang Luu Nguyen,
Stephen Ho, Jack Sloane, Paul Wender, and Vijay Pande. Retrosynthetic reaction prediction using neural
sequence-to-sequence models. ACS central science, 3(10):1103–1113, 2017.

[107] Haoyang Liu, Yijiang Li, and Haohan Wang. Genomas: A multi-agent framework for scientific discovery
via code-driven gene expression analysis. arXiv preprint arXiv:2507.21035, 2025.

[108] Hongxuan Liu, Haoyu Yin, Zhiyao Luo, and Xiaonan Wang. Integrating chemistry knowledge in large
language models via prompt engineering. Synthetic and Systems Biotechnology, 10(1):23–38, 2025.

[109] Huaqing Liu, Shuxian Zhou, Peiyi Chen, Jiahui Liu, Ku-Geng Huo, and Lanqing Han. Exploring genomic
large language models: Bridging the gap between natural language and gene sequences. bioRxiv, pages
2024–02, 2024.

[110] Lei Liu, Xiaoyan Yang, Junchi Lei, Xiaoyang Liu, Yue Shen, Zhiqiang Zhang, Peng Wei, Jinjie Gu,
Zhixuan Chu, Zhan Qin, et al. A survey on medical large language models: Technology, application,
trustworthiness, and future directions. arXiv preprint arXiv:2406.03712, 2024.

[111] Pengfei Liu, Yiming Ren, Jun Tao, and Zhixiang Ren. Git-mol: A multi-modal large language model for
molecular science with graph, image, and text. Computers in biology and medicine, 171:108073, 2024.

[112] Shengchao Liu, Yanjing Li, Zhuoxinran Li, Anthony Gitter, Yutao Zhu, Jiarui Lu, Zhao Xu, Weili Nie,
Arvind Ramanathan, Chaowei Xiao, et al. A text-guided protein design framework. Nature Machine
Intelligence, pages 1–12, 2025.

[113] Shengchao Liu, Yanjing Li, Zhuoxinran Li, Anthony Gitter, Yutao Zhu, Jiarui Lu, Zhao Xu, Weili Nie,
Arvind Ramanathan, Chaowei Xiao, Jian Tang, Hongyu Guo, and Anima Anandkumar. A text-guided
protein design framework (proteindt). Nature Machine Intelligence, 2025. Advance online publication.

[114] Shengchao Liu, Weili Nie, Chengpeng Wang, Jiarui Lu, Zhuoran Qiao, Ling Liu, Jian Tang, Chaowei
Xiao, and Animashree Anandkumar. Multi-modal molecule structure–text model for text-based retrieval
and editing. Nature Machine Intelligence, 5(12):1447–1457, 2023.

[115] Siyu Liu, Tongqi Wen, Beilin Ye, Zhuoyuan Li, and David J. Srolovitz. Large language models for
material property predictions: elastic constant tensor prediction and materials design, 2024.

[116] Tianyu Liu, Tinglin Huang, Rex Ying, and Hongyu Zhao. spemo: Exploring the capacity of foundation
models for analyzing spatial multi-omic data. 2025.

[117] Tianyu Liu, Yijia Xiao, Xiao Luo, Hua Xu, W Jim Zheng, and Hongyu Zhao. Geneverse: A collection
of open-source multimodal large language models for genomic and proteomic research. arXiv preprint
arXiv:2406.15534, 2024.

[118] Xianggen Liu, Yan Guo, Haoran Li, Jin Liu, Shudong Huang, Bowen Ke, and Jiancheng Lv. Drugllm:
Open large language model for few-shot molecule generation. arXiv preprint arXiv:2405.06690, 2024.

[119] Xiaoran Liu, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, and Xipeng Qiu. Longllada:
Unlocking long context capabilities in diffusion llms. arXiv preprint arXiv:2506.14429, 2025.

[120] Zhiyuan Liu, An Zhang, Hao Fei, Enzhi Zhang, Xiang Wang, Kenji Kawaguchi, and Tat-Seng Chua.
Prott3: Protein-to-text generation for text-based protein understanding. arXiv preprint arXiv:2405.12564,
2024.

[121] Micha Livne, Zulfat Miftahutdinov, Elena Tutubalina, Maksim Kuznetsov, Daniil Polykovskiy, An-
nika Brundyn, Aastha Jhunjhunwala, Anthony Costa, Alex Aliper, Alán Aspuru-Guzik, et al. nach0:
multimodal natural and chemical languages foundation model. Chemical Science, 15(22):8380–8389,
2024.

[122] Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon, and Tie-Yan Liu. Biogpt:
generative pre-trained transformer for biomedical text generation and mining. Briefings in bioinformatics,
23(6):bbac409, 2022.

[123] Yizhen Luo, Jiahuan Zhang, Siqi Fan, Kai Yang, Yushuai Wu, Mu Qiao, and Zaiqing Nie. Biomedgpt:
Open multimodal generative pre-trained transformer for biomedicine. arXiv preprint arXiv:2308.09442,
2023.

11



[124] Yizhen Luo, Jiahuan Zhang, Siqi Fan, Kai Yang, Yushuai Wu, Mu Qiao, and Zaiqing Nie. Biomedgpt:
Open multimodal generative pre-trained transformer for biomedicine. arXiv preprint arXiv:2308.09442,
2023.

[125] Omer Luxembourg, Haim Permuter, and Eliya Nachmani. Plan for speed–dilated scheduling for masked
diffusion language models. arXiv preprint arXiv:2506.19037, 2025.

[126] Liuzhenghao Lv, Zongying Lin, Hao Li, Yuyang Liu, Jiaxi Cui, Calvin Yu-Chian Chen, Li Yuan, and
Yonghong Tian. Prollama: A protein large language model for multi-task protein language processing.
IEEE Transactions on Artificial Intelligence, 2025.

[127] Ali Madani, Ben Krause, Eric R. Greene, Subu Subramanian, Benjamin P. Mohr, James M. Holton,
Jose L. Olmos, Caiming Xiong, Zachary Z. Sun, Richard Socher, James S. Fraser, and Nikhil Naik. Large
language models generate functional protein sequences across diverse families. Nature Biotechnology,
41:1099–1106, 2023.

[128] Ali Madani, Ben Krause, Eric R Greene, Subu Subramanian, Benjamin P Mohr, James M Holton,
Jose Luis Olmos Jr, Caiming Xiong, Zachary Z Sun, Richard Socher, et al. Large language models
generate functional protein sequences across diverse families. Nature biotechnology, 41(8):1099–1106,
2023.

[129] Somshubra Majumdar, Vahid Noroozi, Mehrzad Samadi, Sean Narenthiran, Aleksander Ficek, Wasi Uddin
Ahmad, Jocelyn Huang, Jagadeesh Balam, and Boris Ginsburg. Genetic instruct: Scaling up synthetic
generation of coding instructions for large language models. arXiv preprint arXiv:2407.21077, 2024.

[130] Shentong Mo, Xi Fu, Chenyang Hong, Yizhen Chen, Yuxuan Zheng, Xiangru Tang, Zhiqiang Shen,
Eric P Xing, and Yanyan Lan. Multi-modal self-supervised pre-training for regulatory genome across cell
types. arXiv preprint arXiv:2110.05231, 2021.

[131] John Moult, Krzysztof Fidelis, Andriy Kryshtafovych, Torsten Schwede, and Anna Tramontano. Critical
assessment of methods of protein structure prediction (casp)—round xii. Proteins: Structure, Function,
and Bioinformatics, 86:7–15, 2018.

[132] Su Mu, Meng Cui, and Xiaodi Huang. Multimodal data fusion in learning analytics: A systematic review.
Sensors, 20(23):6856, 2020.

[133] Jorge Navaza and Pedro Saludjian. [33] amore: An automated molecular replacement program package.
In Methods in enzymology, volume 276, pages 581–594. Elsevier, 1997.

[134] Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-Rong
Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint arXiv:2502.09992, 2025.

[135] Erik Nijkamp, Jeffrey A Ruffolo, Eli N Weinstein, Nikhil Naik, and Ali Madani. Progen2: exploring the
boundaries of protein language models. Cell systems, 14(11):968–978, 2023.

[136] Irene MA Nooren and Janet M Thornton. Diversity of protein–protein interactions. The EMBO journal,
2003.

[137] OpenAI. Gpt-4 technical report. arXiv:2303.08774, 2023.

[138] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, and et al. Training language models to follow instructions with human feedback. In
Advances in Neural Information Processing Systems (NeurIPS), 2022.

[139] Qizhi Pei, Lijun Wu, Kaiyuan Gao, Xiaozhuan Liang, Yin Fang, Jinhua Zhu, Shufang Xie, Tao Qin, and
Rui Yan. Biot5+: Towards generalized biological understanding with iupac integration and multi-task
tuning. arXiv preprint arXiv:2402.17810, 2024.

[140] Qizhi Pei, Wei Zhang, Jinhua Zhu, Kehan Wu, Kaiyuan Gao, Lijun Wu, Yingce Xia, and Rui Yan. Biot5:
Enriching cross-modal integration in biology with chemical knowledge and natural language associations.
arXiv preprint arXiv:2310.07276, 2023.

[141] Edward O Pyzer-Knapp, Matteo Manica, Peter Staar, Lucas Morin, Patrick Ruch, Teodoro Laino, John R
Smith, and Alessandro Curioni. Foundation models for materials discovery–current state and future
directions. Npj Computational Materials, 11(1):61, 2025.

[142] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. https://cdn.openai.com/better-language-models/
language_models_are_unsupervised_multitask_learners.pdf, 2019. OpenAI Technical Re-
port.

12

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf


[143] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances in
neural information processing systems, 36:53728–53741, 2023.

[144] Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Peter Chen, John Canny, Pieter Abbeel,
and Yun Song. Evaluating protein transfer learning with tape. Advances in neural information processing
systems, 32, 2019.

[145] Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel, Tom Sercu, and
Alexander Rives. Msa transformer. In International conference on machine learning, pages 8844–8856.
PMLR, 2021.

[146] Guillaume Richard, Bernardo P de Almeida, Hugo Dalla-Torre, Christopher Blum, Lorenz Hexemer,
Priyanka Pandey, Stefan Laurent, Marie Lopez, Alexandre Laterre, Maren Lang, et al. Chatnt: A
multimodal conversational agent for dna, rna and protein tasks. bioRxiv, pages 2024–04, 2024.

[147] Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle
Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences. Proceedings of the National Academy
of Sciences, 118(15):e2016239118, 2021.

[148] Zachary A Rollins, Alan C Cheng, and Essam Metwally. Molprop: Molecular property prediction with
multimodal language and graph fusion. Journal of Cheminformatics, 16(1):56, 2024.

[149] Jeffrey A Ruffolo, Aadyot Bhatnagar, Joel Beazer, Stephen Nayfach, Jordan Russ, Emily Hill, Riffat
Hussain, Joseph Gallagher, and Ali Madani. Adapting protein language models for structure-conditioned
design. BioRxiv, pages 2024–08, 2024.

[150] Karen S Sarkisyan, Dmitry A Bolotin, Margarita V Meer, Dinara R Usmanova, Alexander S Mishin,
George V Sharonov, Dmitry N Ivankov, Nina G Bozhanova, Mikhail S Baranov, Onuralp Soylemez, et al.
Local fitness landscape of the green fluorescent protein. Nature, 533(7603):397–401, 2016.

[151] Karen S Sarkisyan, Dmitry A Bolotin, Margarita V Meer, Dinara R Usmanova, Alexander S Mishin,
George V Sharonov, Dmitry N Ivankov, Nina G Bozhanova, Mikhail S Baranov, Onuralp Soylemez, et al.
Local fitness landscape of the green fluorescent protein. Nature, 533(7603):397–401, 2016.

[152] Daan Schouten, Giulia Nicoletti, Bas Dille, Catherine Chia, Pierpaolo Vendittelli, Megan Schuurmans,
Geert Litjens, and Nadieh Khalili. Navigating the landscape of multimodal ai in medicine: a scoping
review on technical challenges and clinical applications. Medical Image Analysis, page 103621, 2025.

[153] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti,
Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale
dataset for training next generation image-text models. arXiv preprint arXiv:2210.08402, 2022.

[154] Zhang Shengyu, Dong Linfeng, Li Xiaoya, Zhang Sen, Sun Xiaofei, Wang Shuhe, Li Jiwei, Runyi Hu,
Zhang Tianwei, Fei Wu, et al. Instruction tuning for large language models: A survey. arXiv preprint
arXiv:2308.10792, 2023.

[155] Aleksei Shmelev, Artem Shadskiy, Yuri Kuratov, Mikhail Burtsev, Olga Kardymon, and Veniamin
Fishman. Genatator: de novo gene annotation with dna language model. In ICLR 2025 Workshop on AI
for Nucleic Acids.

[156] Richard W Shuai, Jeffrey A Ruffolo, and Jeffrey J Gray. Iglm: Infilling language modeling for antibody
sequence design. Cell Systems, 14(11):979–989, 2023.

[157] Yuerong Song, Xiaoran Liu, Ruixiao Li, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, and
Xipeng Qiu. Sparse-dllm: Accelerating diffusion llms with dynamic cache eviction. arXiv preprint
arXiv:2508.02558, 2025.

[158] Anuroop Sriram, Benjamin Miller, Ricky TQ Chen, and Brandon Wood. Flowllm: Flow matching for
material generation with large language models as base distributions. Advances in Neural Information
Processing Systems, 37:46025–46046, 2024.

[159] Jin Su, Chenchen Han, Yuyang Zhou, Junjie Shan, Xibin Zhou, and Fajie Yuan. Saprot: Protein language
modeling with structure-aware vocabulary. BioRxiv, pages 2023–10, 2023.

[160] Jin Su, Chenchen Han, Yuyang Zhou, Junjie Shan, Xibin Zhou, and Fajie Yuan. Saprot: Protein language
modeling with structure-aware vocabulary. BioRxiv, pages 2023–10, 2023.

13



[161] Xiangru Tang, Tianyu Hu, Muyang Ye, Yanjun Shao, Xunjian Yin, Siru Ouyang, Wangchunshu Zhou,
Pan Lu, Zhuosheng Zhang, Yilun Zhao, et al. Chemagent: Self-updating library in large language models
improves chemical reasoning. arXiv preprint arXiv:2501.06590, 2025.

[162] Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for science.
arXiv preprint arXiv:2211.09085, 2022.

[163] Igor V. Tetko, Pavel Karpov, Ruud Van Deursen, and Gaston Godin. State-of-the-art augmented NLP
transformer models for direct and single-step retrosynthesis. Journal of Chemical Information and
Modeling, 60(12):5744–5752, 2020.

[164] Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang
Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine, 29(8):1930–1940,
2023.

[165] Jie Tian, Martin Taylor Sobczak, Dhanush Patil, Jixin Hou, Lin Pang, Arunachalam Ramanathan, Libin
Yang, Xianyan Chen, Yuval Golan, Xiaoming Zhai, Hongyue Sun, Kenan Song, and Xianqiao Wang. A
multi-agent framework integrating large language models and generative ai for accelerated metamaterial
design, 2025.

[166] Mohammed Toufiq, Darawan Rinchai, Eleonore Bettacchioli, Basirudeen Syed Ahamed Kabeer, Taushif
Khan, Bishesh Subba, Olivia White, Marina Yurieva, Joshy George, Noemie Jourde-Chiche, et al.
Harnessing large language models (llms) for candidate gene prioritization and selection. Journal of
translational medicine, 21(1):728, 2023.

[167] Duong Tran, Nhat Truong Pham, Nguyen Nguyen, and Balachandran Manavalan. Mol2lang-vlm: Vision-
and text-guided generative pre-trained language models for advancing molecule captioning through
multimodal fusion. In Proceedings of the 1st Workshop on Language+ Molecules (L+ M 2024), pages
97–102, 2024.

[168] Michel van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Cameron LM Gilchrist,
Johannes Söding, and Martin Steinegger. Foldseek: fast and accurate protein structure search. Biorxiv,
pages 2022–02, 2022.

[169] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems (NeurIPS), volume 30, pages 5998–6008, 2017.

[170] Chao Wang, Hehe Fan, Ruijie Quan, Lina Yao, and Yi Yang. Protchatgpt: Towards understanding proteins
with hybrid representation and large language models. In Proceedings of the 48th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 1076–1086, 2025.

[171] Chong Wang, Mengyao Li, Junjun He, Zhongruo Wang, Erfan Darzi, Zan Chen, Jin Ye, Tianbin
Li, Yanzhou Su, Jing Ke, et al. A survey for large language models in biomedicine. arXiv preprint
arXiv:2409.00133, 2024.

[172] Dandan Wang and Shiqing Zhang. Large language models in medical and healthcare fields: applications,
advances, and challenges. Artificial Intelligence Review, 57(11):299, 2024.

[173] Jike Wang, Rui Qin, Mingyang Wang, Meijing Fang, Yangyang Zhang, Yuchen Zhu, Qun Su, Qiaolin
Gou, Chao Shen, Odin Zhang, et al. Token-mol 1.0: tokenized drug design with large language models.
Nature Communications, 16(1):1–19, 2025.

[174] Peng Wang, Wenpeng Lu, Chunlin Lu, Ruoxi Zhou, Min Li, and Libo Qin. Large language model for
medical images: A survey of taxonomy, systematic review, and future trends. Big Data Mining and
Analytics, 8(2):496–517, 2025.

[175] X Wang, Z Zheng, F Ye, D Xue, S Huang, and Q Gu. Dplm-2: a multimodal diffusion protein language
model. arxiv. arXiv preprint arXiv:2410.13782, 2024.

[176] Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu. Diffusion
language models are versatile protein learners. arXiv preprint arXiv:2402.18567, 2024.

[177] Yue Wang and Xueying Tian. Qwendy: Gene regulatory network inference enhanced by large language
model and transformer. arXiv preprint arXiv:2503.09605, 2025.

14



[178] Zeyuan Wang, Qiang Zhang, Keyan Ding, Ming Qin, Xiang Zhuang, Xiaotong Li, and Huajun Chen.
Instructprotein: Aligning human and protein language via knowledge instruction. arXiv preprint
arXiv:2310.03269, 2023.

[179] Zhenzhong Wang, Haowei Hua, Wanyu Lin, Ming Yang, and Kay Chen Tan. Crystalline material
discovery in the era of artificial intelligence. arXiv preprint arXiv:2408.08044, 2024.

[180] Zhizheng Wang, Chi-Ping Day, Chih-Hsuan Wei, Qiao Jin, Robert Leaman, Yifan Yang, Shubo Tian,
Aodong Qiu, Yin Fang, Qingqing Zhu, et al. Knowledge-guided contextual gene set analysis using large
language models. arXiv preprint arXiv:2506.04303, 2025.

[181] Zifeng Wang, Zichen Wang, Balasubramaniam Srinivasan, Vassilis N Ioannidis, Huzefa Rangwala, and
Rishita Anubhai. Biobridge: Bridging biomedical foundation models via knowledge graphs. arXiv
preprint arXiv:2310.03320, 2023.

[182] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

[183] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models. arXiv
preprint arXiv:2206.07682, 2022.

[184] David Weininger. Smiles, a chemical language and information system. 1. introduction to methodology
and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36, 1988.

[185] Zichen Wen, Jiashu Qu, Dongrui Liu, Zhiyuan Liu, Ruixi Wu, Yicun Yang, Xiangqi Jin, Haoyun Xu,
Xuyang Liu, Weijia Li, et al. The devil behind the mask: An emergent safety vulnerability of diffusion
llms. arXiv preprint arXiv:2507.11097, 2025.

[186] Daniel S Wigh, Jonathan M Goodman, and Alexei A Lapkin. A review of molecular representation
in the age of machine learning. Wiley Interdisciplinary Reviews: Computational Molecular Science,
12(5):e1603, 2022.

[187] Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song Han,
and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache and parallel
decoding. arXiv preprint arXiv:2505.22618, 2025.

[188] Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng Wan, and Philip S Yu. Multimodal large language
models: A survey. In 2023 IEEE International Conference on Big Data (BigData), pages 2247–2256.
IEEE, 2023.

[189] Kevin E Wu, Kathryn Yost, Bence Daniel, Julia Belk, Yu Xia, Takeshi Egawa, Ansuman Satpathy, Howard
Chang, and James Zou. Tcr-bert: learning the grammar of t-cell receptors for flexible antigen-binding
analyses. In Machine Learning in Computational Biology, pages 194–229. PMLR, 2024.

[190] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu,
Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning. Chemical
science, 9(2):513–530, 2018.

[191] Zhenxing Wu, Odin Zhang, Xiaorui Wang, Li Fu, Huifeng Zhao, Jike Wang, Hongyan Du, Dejun Jiang,
Yafeng Deng, Dongsheng Cao, et al. Leveraging language model for advanced multiproperty molecular
optimization via prompt engineering. Nature Machine Intelligence, pages 1–11, 2024.

[192] Hanguang Xiao, Feizhong Zhou, Xingyue Liu, Tianqi Liu, Zhipeng Li, Xin Liu, and Xiaoxuan Huang.
A comprehensive survey of large language models and multimodal large language models in medicine.
Information Fusion, page 102888, 2024.

[193] Hanguang Xiao, Feizhong Zhou, Xingyue Liu, Tianqi Liu, Zhipeng Li, Xin Liu, and Xiaoxuan Huang.
A comprehensive survey of large language models and multimodal large language models in medicine.
Information Fusion, 117:102888, 2025.

[194] Hongwang Xiao, Wenjun Lin, Xi Chen, Hui Wang, Kai Chen, Jiashan Li, Yuancheng Sun, Sicheng Dai,
Boya Wu, and Qiwei Ye. Stella: Towards protein function prediction with multimodal llms integrating
sequence-structure representations. arXiv preprint arXiv:2506.03800, 2025.

[195] Teng Xiao, Chao Cui, Huaisheng Zhu, and Vasant G Honavar. Molbind: Multimodal alignment of
language, molecules, and proteins. arXiv preprint arXiv:2403.08167, 2024.

15



[196] Teng Xiao, Chao Cui, Huaisheng Zhu, and Vasant G Honavar. Molbind: Multimodal alignment of
language, molecules, and proteins. arXiv preprint arXiv:2403.08167, 2024.

[197] Yijia Xiao, Edward Sun, Yiqiao Jin, Qifan Wang, and Wei Wang. Proteingpt: Multimodal llm for protein
property prediction and structure understanding. arXiv preprint arXiv:2408.11363, 2024.

[198] Zhen Xiong, Yujun Cai, Zhecheng Li, and Yiwei Wang. Unveiling the potential of diffusion large language
model in controllable generation. arXiv preprint arXiv:2507.04504, 2025.

[199] Hanwen Xu, Addie Woicik, Hoifung Poon, Russ B Altman, and Sheng Wang. Multilingual translation for
zero-shot biomedical classification using biotranslator. Nature Communications, 14(1):738, 2023.

[200] Yingxue Xu, Yihui Wang, Fengtao Zhou, Jiabo Ma, Cheng Jin, Shu Yang, Jinbang Li, Zhengyu Zhang,
Chenglong Zhao, Huajun Zhou, Zhenhui Li, Huangjing Lin, Xin Wang, Jiguang Wang, Anjia Han,
Ronald Cheong Kin Chan, Li Liang, Xiuming Zhang, and Hao Chen. A multimodal knowledge-enhanced
whole-slide pathology foundation model, 2025.

[201] Keqiang Yan, Xiner Li, Hongyi Ling, Kenna Ashen, Carl Edwards, Raymundo Arróyave, Marinka Zitnik,
Heng Ji, Xiaofeng Qian, Xiaoning Qian, et al. Invariant tokenization of crystalline materials for language
model enabled generation. Advances in Neural Information Processing Systems, 37:125050–125072,
2024.

[202] Sherry Yang, Simon Batzner, Ruiqi Gao, Muratahan Aykol, Alexander Gaunt, Brendan C McMorrow,
Danilo Jimenez Rezende, Dale Schuurmans, Igor Mordatch, and Ekin Dogus Cubuk. Generative hi-
erarchical materials search. Advances in Neural Information Processing Systems, 37:38799–38819,
2024.

[203] Xiaodong Yang, Guole Liu, Guihai Feng, Dechao Bu, Pengfei Wang, Jie Jiang, Shubai Chen, Qinmeng
Yang, Hefan Miao, Yiyang Zhang, et al. Genecompass: deciphering universal gene regulatory mechanisms
with a knowledge-informed cross-species foundation model. Cell Research, 34(12):830–845, 2024.

[204] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V Le. Xlnet:
Generalized autoregressive pretraining for language understanding. arXiv preprint arXiv:1906.08237,
2019.

[205] Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, Xin Jiang, Zhenguo Li, and Lingpeng Kong. Beyond
autoregression: Discrete diffusion for complex reasoning and planning. arXiv preprint arXiv:2410.14157,
2024.

[206] Jiacheng Ye, Shansan Gong, Liheng Chen, Lin Zheng, Jiahui Gao, Han Shi, Chuan Wu, Xin Jiang,
Zhenguo Li, Wei Bi, et al. Diffusion of thought: Chain-of-thought reasoning in diffusion language models.
Advances in Neural Information Processing Systems, 37:105345–105374, 2024.

[207] Jiarui Ye and Hao Tang. Multimodal large language models for medicine: A comprehensive survey. arXiv
preprint arXiv:2504.21051, 2025.

[208] Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
multimodal large language models. National Science Review, 11(12), November 2024.

[209] Hyunwoo Yoo. Can large language models predict antimicrobial resistance gene? arXiv preprint
arXiv:2503.04413, 2025.

[210] Zebin You, Shen Nie, Xiaolu Zhang, Jun Hu, Jun Zhou, Zhiwu Lu, Ji-Rong Wen, and Chongxuan Li. Llada-
v: Large language diffusion models with visual instruction tuning. arXiv preprint arXiv:2505.16933,
2025.

[211] Botao Yu, Frazier N Baker, Ziru Chen, Garrett Herb, Boyu Gou, Daniel Adu-Ampratwum, Xia Ning, and
Huan Sun. Tooling or not tooling? the impact of tools on language agents for chemistry problem solving.
arXiv preprint arXiv:2411.07228, 2024.

[212] Runpeng Yu, Qi Li, and Xinchao Wang. Discrete diffusion in large language and multimodal models: A
survey. arXiv preprint arXiv:2506.13759, 2025.

[213] Runpeng Yu, Xinyin Ma, and Xinchao Wang. Dimple: Discrete diffusion multimodal large language
model with parallel decoding. arXiv preprint arXiv:2505.16990, 2025.

[214] Yi Yu, Huien Wang, Libin Zong, Bo Chen, Yaqin Li, and Xiaohui Yu. Chatmoldata: A multimodal agent
for automatic molecular data processing. Advanced Intelligent Systems, page 2401089, 2024.

16



[215] Haolong Zeng, Chaoyi Yin, Chunyang Chai, Yuezhu Wang, Qi Dai, and Huiyan Sun. Cancer gene
identification through integrating causal prompting large language model with omics data–driven causal
inference. Briefings in Bioinformatics, 26(2), 2025.

[216] Zheni Zeng, Bangchen Yin, Shipeng Wang, Jiarui Liu, Cheng Yang, Haishen Yao, Xingzhi Sun, Maosong
Sun, Guotong Xie, and Zhiyuan Liu. Chatmol: interactive molecular discovery with natural language.
Bioinformatics, 40(9):btae534, 2024.

[217] Heming Zhang, Tim Xu, Dekang Cao, Shunning Liang, Lars Schimmelpfennig, Levi Kaster, Di Huang,
Carlos Cruchaga, Guangfu Li, Michael Province, et al. Omnicelltosg: The first cell text-omic signaling
graphs dataset for joint llm and gnn modeling. arXiv preprint arXiv:2504.02148, 2025.

[218] Juzheng Zhang, Yatao Bian, Yongqiang Chen, and Quanming Yao. Unimot: Unified molecule-text
language model with discrete token representation. arXiv preprint arXiv:2408.00863, 2024.

[219] Ningyu Zhang, Zhen Bi, Xiaozhuan Liang, Siyuan Cheng, Haosen Hong, Shumin Deng, Jiazhang Lian,
Qiang Zhang, and Huajun Chen. Ontoprotein: Protein pretraining with gene ontology embedding. arXiv
preprint arXiv:2201.11147, 2022.

[220] Ningyu Zhang, Zhen Bi, Xiaozhuan Liang, Siyuan Cheng, Haosen Hong, Shumin Deng, Jiazhang Lian,
Qiang Zhang, and Huajun Chen. Ontoprotein: Protein pretraining with gene ontology embedding. arXiv
preprint arXiv:2201.11147, 2022.

[221] Ningyu Zhang, Zhen Bi, Xiaozhuan Liang, Siyuan Cheng, Haosen Hong, Shumin Deng, Qiang Zhang,
Jiazhang Lian, and Huajun Chen. Ontoprotein: Protein pretraining with gene ontology embedding. In
International Conference on Learning Representations (ICLR), 2022.

[222] Qiang Zhang, Keyan Ding, Tianwen Lv, Xinda Wang, Qingyu Yin, Yiwen Zhang, Jing Yu, Yuhao Wang,
Xiaotong Li, Zhuoyi Xiang, et al. Scientific large language models: A survey on biological & chemical
domains. ACM Computing Surveys, 57(6):1–38, 2025.

[223] Qiang Zhang, Keyang Ding, Tianwen Lyv, Xinda Wang, Qingyu Yin, Yiwen Zhang, Jing Yu, Yuhao Wang,
Xiaotong Li, Zhuoyi Xiang, Kehua Feng, Xiang Zhuang, Zeyuan Wang, Ming Qin, Mengyao Zhang,
Jinlu Zhang, Jiyu Cui, Tao Huang, Pengju Yan, Renjun Xu, Hongyang Chen, Xiaolin Li, Xiaohui Fan,
Huabin Xing, and Huajun Chen. Scientific large language models: A survey on biological & chemical
domains, 2024.

[224] Tianren Zhang and Dai-Bei Yang. Multimodal machine learning with large language embedding model
for polymer property prediction. arXiv preprint arXiv:2503.22962, 2025.

[225] Yu Zhang, Xiusi Chen, Bowen Jin, Sheng Wang, Shuiwang Ji, Wei Wang, and Jiawei Han. A compre-
hensive survey of scientific large language models and their applications in scientific discovery. arXiv
preprint arXiv:2406.10833, 2024.

[226] Yu Zhang, Ruijie Yu, Kaipeng Zeng, Ding Li, Feng Zhu, Xiaokang Yang, Yaohui Jin, and Yanyan
Xu. Text-augmented multimodal llms for chemical reaction condition recommendation. arXiv preprint
arXiv:2407.15141, 2024.

[227] Yuanhe Zhang, Fangzhou Xie, Zhenhong Zhou, Zherui Li, Hao Chen, Kun Wang, and Yufei Guo.
Jailbreaking large language diffusion models: Revealing hidden safety flaws in diffusion-based text
generation. arXiv preprint arXiv:2507.19227, 2025.

[228] Zuobai Zhang, Chuanrui Wang, Minghao Xu, Vijil Chenthamarakshan, Aurélie Lozano, Payel Das, and
Jian Tang. A systematic study of joint representation learning on protein sequences and structures. arXiv
preprint arXiv:2303.06275, 2023.

[229] Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025.

[230] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv preprint
arXiv:2303.18223, 1(2), 2023.

[231] Kangjie Zheng, Siyu Long, Tianyu Lu, Junwei Yang, Xinyu Dai, Ming Zhang, Zaiqing Nie, Wei-Ying
Ma, and Hao Zhou. Esm all-atom: multi-scale protein language model for unified molecular modeling.
arXiv preprint arXiv:2403.12995, 2024.

[232] Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model for
text generation. arXiv preprint arXiv:2302.05737, 2023.

17



[233] Yanxin Zheng, Wensheng Gan, Zefeng Chen, Zhenlian Qi, Qian Liang, and Philip S Yu. Large language
models for medicine: a survey. International Journal of Machine Learning and Cybernetics, 16(2):1015–
1040, 2025.

[234] Hanjing Zhou, Mingze Yin, Wei Wu, Mingyang Li, Kun Fu, Jintai Chen, Jian Wu, and Zheng Wang.
Protclip: Function-informed protein multi-modal learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pages 22937–22945, 2025.

[235] Hongjian Zhou, Fenglin Liu, Boyang Gu, Xinyu Zou, Jinfa Huang, Jinge Wu, Yiru Li, Sam S Chen,
Peilin Zhou, Junling Liu, et al. A survey of large language models in medicine: Progress, application, and
challenge. arXiv preprint arXiv:2311.05112, 2023.

[236] Jiaming Zhou, Hongjie Chen, Shiwan Zhao, Jian Kang, Jie Li, Enzhi Wang, Yujie Guo, Haoqin Sun,
Hui Wang, Aobo Kong, et al. Diffa: Large language diffusion models can listen and understand. arXiv
preprint arXiv:2507.18452, 2025.

[237] Peng Zhou, Pengsen Ma, Jianmin Wang, Xibao Cai, Haitao Huang, Wei Liu, Longyue Wang, Lai Hou Tim,
and Xiangxiang Zeng. Large language and protein assistant for protein-protein interactions prediction.
In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 11312–11327, 2025.

[238] Xibin Zhou, Chenchen Han, Yingqi Zhang, Jin Su, Kai Zhuang, Shiyu Jiang, Zichen Yuan, Wei Zheng,
Fengyuan Dai, Yuyang Zhou, et al. Decoding the molecular language of proteins with evolla. bioRxiv,
pages 2025–01, 2025.

[239] Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-2: Efficient
foundation model and benchmark for multi-species genome. arXiv preprint arXiv:2306.15006, 2023.

[240] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
vision-language understanding with advanced large language models. arXiv:2304.10592, 2023.

[241] Yi-Heng Zhu, Chengxin Zhang, Dong-Jun Yu, and Yang Zhang. Integrating unsupervised language
model with triplet neural networks for protein gene ontology prediction. PLOS Computational Biology,
18(12):e1010793, 2022.

[242] Xiang Zhuang, Keyan Ding, Tianwen Lyu, Yinuo Jiang, Xiaotong Li, Zhuoyi Xiang, Zeyuan Wang, Ming
Qin, Kehua Feng, Jike Wang, et al. Instructbiomol: Advancing biomolecule understanding and design
following human instructions. arXiv preprint arXiv:2410.07919, 2024.

[243] Le Zhuo, Zewen Chi, Minghao Xu, Heyan Huang, Heqi Zheng, Conghui He, Xian-Ling Mao, and Wentao
Zhang. Protllm: An interleaved protein-language llm with protein-as-word pre-training. arXiv preprint
arXiv:2403.07920, 2024.

[244] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv preprint
arXiv:1909.08593, 2019.

[245] Peter H Zwart, Pavel V Afonine, Ralf W Grosse-Kunstleve, Li-Wei Hung, Thomas R Ioerger, Airlie J
McCoy, Erik McKee, Nigel W Moriarty, Randy J Read, James C Sacchettini, et al. Automated structure
solution with the PHENIX suite. Springer, 2008.

18



Appendix

Table of Contents
A MLLMs for Protein Science 20

A.1 LLMs for Protein Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.2 MLLMs for Protein Sequence–Language Integration . . . . . . . . . . . . . . . 20
A.3 MLLMs for Protein Structure–Sequence–Language Integration . . . . . . . . . 21
A.4 MLLMs for Protein Interactions and Specialized Applications . . . . . . . . . . 21

B MLLMs for Genomics and Gene 23
B.1 LLMs for Genomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
B.2 MLLMs for Genomics and Gene Function Prediction . . . . . . . . . . . . . . . 23

C MLLMs for Material Science 24
C.1 LLMs for Material Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
C.2 MLLMs for Material Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . 24

D MLLMs Bridging Molecular Science and Biomedicine 25
D.1 LLMs for Biomedicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
D.2 MLLMs for Cross-Modal Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 25
D.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

E General Overview for LLMs and MLLMs 27

F Emerging Hot Topics and Future Directions 30
F.1 Emerging Hot Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
F.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

G Selected Benchmarking Evaluation 35
G.1 Molecular Property Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
G.2 Protein Property Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

H Summary Model Tables 37

I Summary Dataset Tables of MLLMs for Science 39

19



A MLLMs for Protein Science
As protein-related tasks increasingly involve diverse data modalities, including natural language
descriptions (1D), amino acid sequences (1D), protein graph (2D), and protein geometric struc-
tures (3D), MLLMs have emerged as a powerful framework for integrating these heterogeneous
sources of information [112, 61, 237]. Unlike unimodal models, MLLMs can jointly reason across
multiple biological representations, enabling more expressive learning and flexible interaction with
biological data. In this section, we review recent advances in MLLMs across three major categories:
(1) we examine models that integrate protein sequences with textual information, supporting tasks
such as protein captioning, design, and function prediction. (2) we discuss models that incorporate
geometric representations alongside sequence and text, enabling structure-aware learning for en-
hanced prediction and generation. (3) we highlight MLLMs developed for specialized tasks, including
protein–protein and free-text-based biological translation. Table H2, Table I3, Table I4 and Figure 4
summarize models, datasets, and the research landscape. We also present the benchmarking results
of protein function prediction in Appendix G.

A.1 LLMs for Protein Science
We likewise begin by providing an overview of LLMs in protein science for readers to contextualize
the broader advances in this domain. Large language models have revolutionized protein science,
enabling efficient and scalable solutions for major challenges in protein property prediction, function
annotation, structure prediction, and protein engineering [6, 42, 147, 81, 127]. In property prediction,
models such as UniRep [6] and ProtTrans [42] leverage large-scale pretraining to achieve state-of-
the-art accuracy on tasks including stability, solubility, and fluorescence. For function annotation,
transformer-based models like ESM-1b [147], MSA Transformer [145], TCR-BERT [189], and
ProteinBERT [14] have significantly improved label prediction, enzyme classification, and TCR-
antigen binding. In structure prediction, advances such as AlphaFold2 [81], ESMFold [105], and
ESM-IF [69] have enabled end-to-end and inverse folding, approaching experimental-level 3D
accuracy. Models like GearNet [228], SaProt [159], and OntoProtein [221] integrate structural
knowledge and ontologies, further enhancing performance on structure-aware tasks. For protein
engineering and generation, ProGen [127], ProtGPT2 [46], and ProGen2 [135] apply autoregressive
and conditional generation to produce novel, functional, and diverse proteins. Specialized models
such as IgLM [156] and PALM-H3 [62] address antibody and virus-specific design. Collectively,
these advances establish Protein LLMs as powerful engines for biological discovery and rational
protein design, expanding the reach of AI-driven protein science [147, 81, 127, 14, 105].

A.2 MLLMs for Protein Sequence–Language Integration
Recent advancements in MLLMs that integrate protein sequences with textual descriptions have
led to significant progress in protein-related tasks [112, 120, 234, 37, 219, 123, 243, 126, 178, 98,
231, 140, 139, 162, 181, 75, 237, 23]. ProteinDT [112] combines protein sequences with textual
prompts for protein design, achieving high accuracy in generating novel proteins. ProtT3 [120]
excels in generating text descriptions from protein sequences using a Q-Former encoder, specifically
targeting protein captioning and QA tasks. ProtCLIP [234] enhances protein function prediction by
integrating protein sequences with textual knowledge graphs, further improving prediction accuracy.
BioMedGPT [123] expands this by incorporating both protein sequences and textual knowledge for
biomedical question answering, enabling improved understanding and reasoning in the biomedical
domain. PROTLLM [243] and ProLLaMA [126] bridge protein sequence understanding and gener-
ation tasks, with ProLLaMA excelling in multi-task learning, particularly in protein structure and
function prediction. InstructProtein [178] aligns protein sequences with natural language through
knowledge-guided instructions, improving task handling.

Other models such as DrugGPT [98] and ESM-AA [231] target drug design and molecular modeling,
tackling ligand generation and protein interaction analysis. BioT5 [140] and BioT5+ [139] integrate
molecular properties with text for multi-task protein understanding. OntoProtein [219] fuses Gene
Ontology with sequences to improve function prediction (e.g., GO-CC/GO-BP). Galactica [162]
trains on a curated scientific corpus for multimodal reasoning, outperforming GPT-3 on LaTeX and
PubMedQA. For multimodal protein tasks, BioBRIDGE [181] links unimodal biomedical models
via knowledge graphs to predict drug–target and protein–protein interactions. xTrimoPGLM [23]
unifies protein understanding and generation, achieving state-of-the-art results. ProteinChat [75]
conditions on sequences and text prompts to describe protein functions in free-form and classification
settings. LLaPA [237] combines sequences, PPI networks, and instructions for multi-label PPI and
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multi-protein affinity prediction. Lastly, MProt-DPO [37] employs Direct Preference Optimization to
surpass the ExaFLOPS barrier in protein design, improving efficiency. Collectively, these models
showcase the power of MLLMs that couple sequences with text for protein design, function prediction,
and interaction analysis.

A.3 MLLMs for Protein Structure–Sequence–Language Integration
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Figure 4: Distribution of MLLMs for protein
tasks, presenting each model’s release date,
scale, architecure and application.

Given the critical role of geometric information in
understanding protein behavior, recent research has
increasingly focused on integrating structural modal-
ities into MLLMs [61, 175, 49, 96, 103, 160, 170,
197, 194, 242, 238, 149]. Several representative
models—including ESM3 [61], DPLM2 [175], Fold-
Token [49], ProTokens [103], Saprot [160], and
ProSST [96]—incorporate protein structural infor-
mation using various tokenization strategies. Com-
pared to other models, ESM3 [61] incorporates ad-
ditional functional tokens designed to support spe-
cific protein function design tasks. DPLM2 [175]
leverages a GVP-based encoder and an IPA-based
decoder to learn structural tokens, fine-tuned from
DPLM [176], and achieves strong performance in
generative tasks. ProTokens [103] employs an SE(3)-
invariant transformer to obtain latent structural repre-
sentations, which are then quantized into discrete to-
kens that capture structural features. FoldToken [49],
identifies the limitations of classical quantization ap-
proaches and proposes three custom-designed quan-
tizers, whose effectiveness is validated through experimental evaluation. Saprot [160] constructs
structure-aware tokens with the aid of Foldseek [168] and performs well across various downstream
tasks. ProSST [96] differs from previous models by constructing a local structure codebook that
captures contextual information beyond individual residues and introducing a sequence–structure
disentangled attention mechanism, which is validated through ablation studies.

Beyond tokenization-based approaches, other MLLMs integrate structural information primarily
through encoders and align the resulting representations with corresponding sequences or textual
data. Models such as ProtChatGPT [170], ProteinGPT [197], STELLA [194], InstructBioMol [242],
Evolla [238], and ProseLM [149] exemplify this strategy. The overall architectures of ProtChat-
GPT [170], STELLA [194], InstructBioMol [242], and ProteinGPT [197] are similar, as they all
utilize protein structure encoders. However, ProtChatGPT uniquely incorporates a second protein
structure encoder to enhance structural feature extraction, while InstructBioMol adds an additional
molecular encoder to integrate molecular information. ProseLM [149] employs a causal encoder that
integrates structural and functional contexts, successfully designing a PD-1 binder with a binding
affinity of 2.2 nM. Evolla [238] also integrates structural information through protein encoders;
however, its distinguishing feature is the use of Direct Preference Optimization (DPO) [143] as a
post-pretraining method. The model is primarily designed for protein-related question answering
tasks.

A.4 MLLMs for Protein Interactions and Specialized Applications

Understanding protein–protein interactions (PPIs) [136] is critical for elucidating protein function,
and several MLLMs have been developed for this task. LLaPA [237] integrates protein and graph
encoders with a language model in a multimodal fusion framework, while BioBRIDGE [181] links
diverse biological modalities through a knowledge graph, both achieving strong PPI performance.
Although BioT5 [140] and BioT5+ [139] were not explicitly designed for interaction prediction, they
still perform competitively on PPI benchmarks. Beyond interaction tasks, multimodal translation
is another emerging direction: MolBind [196] supports protein-related zero-shot cross-modal re-
trieval, and BioTranslator [199] converts free-text descriptions into biological representations across
modalities, enabling more flexible interaction with scientific data.
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Collectively, these advances highlight the growing potential of MLLMs to unify heterogeneous
protein modalities, enabling more accurate prediction, versatile design, and broader applications in
protein science.
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B MLLMs for Genomics and Gene
MLLMs and LLMs are rapidly advancing genomics by enabling tasks such as sequence modeling,
gene function prediction, functional annotation, and knowledge retrieval. Compared to traditional
computational approaches, these models offer greater flexibility, interpretability, and the ability to
integrate heterogeneous biological data [27, 72, 79]. In this section, we review recent progress
from two perspectives. First, we introduce LLMs for genomics, covering their applications in
molecular and drug design, functional annotation, gene and variant prioritization, regulatory network
modeling, and sequence-level protein or gene tasks. Second, we focus on MLLMs for genomics
and gene function prediction, highlighting how multimodal integration of sequences, biological data,
and language enables richer reasoning, interpretable predictions, and generalist genomic analysis.
Table H3, Table I5, Table I6 and Figure 5 summarize models, datasets, and the research landscape.

B.1 LLMs for Genomics
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Figure 5: Distribution of MLLMs for gene
and materials, presenting each model’s re-
lease date, scale, and architecture.

LLMs are rapidly transforming bioinformatics and
genomics, with applications spanning molecular
and drug design, functional annotation, gene and
variant prioritization, regulatory network model-
ing, sequence analysis, and synthetic data genera-
tion [27, 72, 22, 79, 68, 166]. In molecular de-
sign, models such as GexMolGen [27] align gene
expression features with chemical structures to en-
able gene-guided de novo molecule generation. For
functional annotation and knowledge retrieval, LLMs
are evaluated on summarizing gene sets [72], dis-
covering gene–disease associations [22], and aug-
menting biomedical search with APIs [79], while
GeneTuring [68] provides systematic benchmarks.
In gene and variant prioritization, LLM-based ap-
proaches [166, 99, 97] integrate literature, biological
data, and phenotypes to rank causative genes, with
automated pipelines supported by API-driven work-
flows [84, 83]. For network modeling, LLMs aid
cancer driver gene discovery [215] and reconstruct
regulatory networks from single-cell and multi-omics
data [177]. In sequence-level tasks, models like ProGen [128] generate functional proteins, while
others annotate genes and structures directly from sequence data [39, 241, 109, 3, 155]. Beyond
these, LLMs support antimicrobial resistance prediction [209], variant effect modeling [64], and
even generate synthetic training data for fine-tuning and benchmarking [129]. Together, these studies
highlight the broad and transformative role of LLMs in genomics, offering new levels of automation,
accuracy, and creativity for precision medicine.

B.2 MLLMs for Genomics and Gene Function Prediction
The integration of MLLMs into genomics has introduced a transformative paradigm for gene function
prediction, gene expression modeling, and broader biological tasks [117, 36, 11, 146, 66, 130].
Traditional methods based on sequence homology, ontology classification, or narrow supervised
models often lack flexibility and interpretability. In contrast, MLLMs enable free-form reasoning
and cross-modal understanding. For example, GeneChat [36] reframes gene function prediction as a
language generation task, combining DNABERT-2 [239] as a gene encoder with Vicuna-13B [30]
as a decoder to produce rich natural-language descriptions from raw DNA input. Extending this
idea, Geneverse [117] provides a suite of open-source models tailored to genomic and proteomic
data, demonstrating strong results in gene/protein function summarization and spatial transcrip-
tomics. ChatNT [146], built on the Nucleotide Transformer [32], supports unified instruction-based
inference across DNA, RNA, and protein tasks, making advanced analyses more accessible. Other
methods, such as GTA [66] and GeneBERT [130], further improve regulatory modeling by aligning
sequence features with language embeddings or leveraging multimodal pretraining. Despite ongoing
challenges—such as limited annotations and multimodal heterogeneity—these advances highlight
the potential of MLLMs as generalist, interpretable, and conversational engines for genomics and
molecular biology [11].
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C MLLMs for Material Science
The use of MLLMs in materials science is still at an early stage but shows strong potential. By
integrating text (1D), images (2D), and geometric structural data (3D), these models promise to
accelerate material discovery, property prediction, and design optimization [12, 4, 16, 141]. In
this section, we review progress from two angles: (1) we discuss LLMs for material discovery,
highlighting their role in crystal structure generation, property prediction, and inverse design. (2) we
turn to MLLMs for material discovery, where multimodal fusion of textual, visual, and structural
representations further enhances property estimation, data extraction, and design pipelines. Table H4
and Figure 5 summarize models and the research landscape.

C.1 LLMs for Material Discovery
Recent advancements show that LLMs can significantly aid materials discovery by generating crystal
structures, predicting properties, and supporting inverse design [33, 8, 59, 108, 76, 25, 202, 158,
201, 179, 56]. CrystaLLM [8] autoregressively generates CIF sequences to produce plausible crystal
structures. MatterGPT [25] targets properties such as formation energy and band gap and enables
multi-property inverse design, demonstrating control over both lattice-insensitive and lattice-sensitive
attributes [25]. LLMatDesign [76] provides an agentic, iterative framework where LLMs propose ma-
terial modifications, while domain-aware prompt engineering further boosts property prediction [108].
FlowLLM [158] couples LLMs with Riemannian Flow Matching to refine representations and gener-
ate stable, novel materials. CrystaltextLLM [59] fine-tunes LLMs by encoding atomistic data as text
and using energy calculations for stability prediction. ChatGPTMaterial [33] demonstrate ChatGPT’s
ability to suggest compositions and processing routes, accelerating design. GenMS [202] combines
language conditioning with diffusion to generate low-energy crystal structures, and Mat2Seq [201]
offers SE(3)- and periodic-invariant crystal sequences for robust LM generation. Finally, studies
on material selection show that prompt-refined LLMs can assist decisions by comparing expert
recommendations [56]. Collectively, these advances expand the searchable chemical space and
strengthen data-driven materials design.

C.2 MLLMs for Material Discovery
The integration of MLLMs into materials science is advancing rapidly for discovery and property
prediction [12, 4, 16, 141]. A key direction is multimodal fusion of text, images, and molecular
representations; for example, LLM-Fusion [12] flexibly ingests SMILES/SELFIES/fingerprints
to enhance property prediction over unimodal baselines. Cephalo [16] applies vision–language
integration to bio-inspired materials, combining images and text from documents and experiments for
property estimation and design optimization. MaCBench [4] identifies current limitations—especially
spatial reasoning and cross-modal synthesis—highlighting the need for stronger multimodal reasoning.
Recent work also targets automatic extraction of materials data from literature and visual content
to enable scalable prediction [141]. Overall, these multimodal approaches are poised to transform
materials discovery by enabling robust, data-driven design pipelines for both research and industrial
applications.
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D MLLMs Bridging Molecular Science and Biomedicine

The biomedical field encompasses a vast array of disciplines, from fundamental biological research to
complex clinical applications [171], and naturally involves a variety of data modalities, amog which
analyses of molecules, proteins, genes, and cells play a crucial role. MLLMs have opened new possi-
bilities for integrating heterogeneous biomedical data, enabling not only multi-molecular data fusion
[117, 100] but also the combination of microscopic-level data(e.g., molecular or cellular information)
with macroscopic-level data such as pathology images [104, 200], offering valuable insights into
disease machanisms and improving diagnostic accuracy. In this section, we primarily focus on the
recent surge of studies employing MLLMs to integrate molecular science with biomedicine,along
with their methodological approaches. Table H5 summarizes the models discussed in this section.
Based on existing advancements, we discuss the limitations identified and outline future directions
for further integrating molecular science into biomedicine.

D.1 LLMs for Biomedicine

Genomic, epigenetic, and transcriptomic analyses such as gene pathway finding, gene expression anal-
ysis, and so on, greatly facilitate our understanding of biological processes and mechanisms in both
normal organism development and disease [180]. These sequences modalities are escpecially suitable
for LLMs to process. Some methods [180, 2] integrates domain knowledge and study context into
LLMs to enable gene analysis at different levels of granularity. Specifically, [180] focuses on gene set
enrichment analysis to explicitly consider gene interactions and regulatory relationships within gene
sets, while [2] aims to infer gene regulatory networks (GRNs). Together, these approaches facilitate
the characterization of caner-related pathways and the elucidation of disease mechanisms, ultimately
aiding the idendification of effective treatments. In more recent applications, GenoMAS [107] orches-
trating six specialized LLM agents, each contributing complementary strengths to a shared analytic
canvas, is applied to gene expression analysis which exposes biologically plausible gene-phenotype
associations corroborated by the literature.

D.2 MLLMs for Cross-Modal Tasks

With the advent of MLLMs, it has become possible to analyze biomedical problems from multiple
perspectives — not only at the macroscopic level (e.g., images and audio) but also at the molecular
level. Unlike traditional multimodal fusion approaches [152, 20, 132], which rely on human-designed
summarization, MLLMs can autonomously provide highly interpretable insights and handle cross-
modal tasks such as visual question answering and report generation.

(1) Multi-omics Fusion Models. Combining omics data into biomedical research has achieved some
success [40]. Current research primarily focuses on developing methods to effectively harmonize
diverse omics modalities [207]. One line of research leverages the intrinsic capability of MLLMs to
directly fuse heterogeneous omics data, such as genes, molecules, and proteins. Geneverse [117] fine-
tunes LLaVA by incorporating protein structural information, gene expression profiles, and functional
descriptions as inputs. BioMedGPT [123] further integrates a broader range of biomedical modalities
with different encoders, unifies the feature spaces of molecules, proteins, and natural language through
encoding and alignment. Another line of research first transforms different modalities into a shared
representation before feeding them into MLLMs. LLaMA-Gene [101] trains a single BPE (Byte Pair
Encoding) tokenizer to encode genes, proteins, and natural language sequences without additional
markers and further converts gene-related task data into a unified format for instruction fine-tuning,
constructing a unified model for diverse gene tasks. Collectively, these works support downstream
applications such as protein identification and marker gene discovery with the potential to greatly
accelerate the discovery of new drugs and therapeutic targets.

(1) Richer Multimodal Fusion in Biomedicine. At the same time, beyond exploring modality fusion
within a specific domain or dimension, there have been growing efforts to integrate a broader range
of modalities. For example, multi-omics data are fused with cell even organ type data, offering more
subtle information about the condition. OmniCellTOSG [217] encodes textual annotations with
an LLM and leverages a graph neural network (GNN) to capture the topology of signaling(TOSG)
networks labeled with annotations like organ, cell subtype, and quantitative gene and protein data. By
integrating these two representations, it constructs patient-specific single-cell TOSG maps, thereby
enabling precise cell classification, cancer cell state prediction, and other clinically relevant tasks
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transforming research in life sciences, healthcare, and precision medicine. SpaLLM [95] combines
LLM representations from single-cell transcriptomics with spatially resolved multi-omics data (e.g.,
RNA, chromatin accessibility, proteins), enabling precise identification of functionally specialized
cell types, providing essential molecular and spatial references for disease diagnosis. Recently,
another popular direction in MLLM-based research has been to leverage spatial transcriptomics
(ST) technologies, which provide both molecular signatures and the spatial localization of cells
within tissues. ST-ALign [104] leverages ST technology to achieve fine-grained alignment between
histological morphology and molecular features, including image–gene alignment at both the spot and
niche levels, following by an Attention-Based Fusion Network used to fuse visual and genetic features.
Extending spatial transcriptomics to pathology, mSTAR and spEMO [200, 116] integrate microscopic
slides, macroscopic reports, and gene expression via multi-level alignment into a pathology foundation
model, enabling tasks such as diagnosis, molecule prediction, survival analysis, and report generation.
Furthermore, spEMO introduces the novel task of multimodal alignment, offering a new perspective
to evaluate information retrieval ability and guide the development of future pathology foundation
models.

D.3 Outlook

Although MLLMs have begun to explore the integration of multiple modalities, current progress
remains at an early stage. For instance, while some models [157, 117, 101] have been trained on
multi-omics data simultaneously, few are capable of jointly processing image-based data, largely
due to the weak consistency across such heterogeneous modalities. integrating more diverse data
types thus remains challenging. A few models, such as [200, 116], have attempted to combine
pathological images with genomic information for disease diagnosis, but such approaches are still
limited. There remains a clear need for more comprehensive methods that effectively integrate diverse
multimodal data in the future. A promising direction for sustainable progress is to curate large-scale,
comprehensive multimodal benchmarks and datasets to facilitate the development of future methods.
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E General Overview for LLMs and MLLMs

In this section, we aim to provide readers with a coherent background framework by reviewing the
foundational components and architectural innovations of LLMs and their multimodal counterparts
(MLLMs). By systematically discussing their core components, training paradigms, multi-modal
extensions, we establish a clear understanding of how these models function. We also present a
high-level overview of the framework for the LLMs and MLLMs in Figure 6. This overview sets
the stage for the the main paper, where we turn to the specific applications of MLLMs in scientific
domains.

Figure 6: The overview of the architecture for LLMs and MLLMs. The figure illustrates three
major LLM paradigms (encoder-only, encoder-decoder, and decoder-only) with their pretraining
and fine-tuning tasks(IT means Instruction tuning, and RLHF means Reinforcement Learning from
Human Feedback). LLMs serve as the foundation of MLLMs. The latter integrate modality-specific
encoders to extract representations from diverse data modalities. These representations are then
projected or injected into the language embedding space via projection layers or perceivers, followed
by fusion of multi-modal embeddings to generate the final output.

Core Components of LLMs. The backbone of modern LLMs is the Transformer architecture [169],
which revolutionized natural language processing by introducing self-attention mechanisms. At
the input stage, text is first processed into tokens through a tokenizer. Depending on the domain,
these tokens may correspond to words, subwords, or characters, while specialized tokenizers are
designed for structured domains such as DNA sequences or chemical molecules. Each token is then
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mapped into a dense vector representation by the embedding layer, where positional embeddings
(absolute or relative type)inject sequence order information into the otherwise permutation-invariant
architecture. The central component of LLMs consists of stacked Transformer blocks. Based on the
original Transformer architecture, three mainstream LLM architectures have emerged: encoder-only,
represented by the BERT [43] family; decoder-only, exemplified by LLaMA [101]; and encoder-
decoder, represented by models such as GLM [38]. Specifically, each block(often referred to as an
LM layer) contains multi-head self-attention layers, feed-forward networks, normalization steps, and
residual connections, which together enable the model to capture long-range dependencies across
large contexts. Finally, the model is equipped with an output layer: generative models project hidden
representations to vocabulary probabilities, while encoder-based models connect to task-specific heads
for classification, retrieval, or regression. These components collectively determine the expressive
power and adaptability of LLMs across tasks.

Training Objectives and Techniques. The objectives used in training LLMs directly shape their
behavior and suitability for downstream tasks. Autoregressive models, exemplified by the GPT
family [142], learn to predict the next token in a sequence, which makes them particularly effective for
text generation. In contrast, masked language modeling (MLM), popularized by BERT [35], involves
randomly masking tokens and training the model to recover them, producing strong bidirectional
representations useful for understanding tasks. Other approaches, such as XLNet [204], introduce
permutation-based objectives to combine the strengths of both autoregressive and masked methods.
Beyond these pretraining objectives, finetuning strategies are used for models to better perform
on downstream tasks or align better with human preferences. alignment with human preferences
has become increasingly important. By training LLMs on a dataset consisting of instruction and
output pairs or using reinforcement learning with human feedback, instruction tuning bridges the gap
between the next-word prediction objective and users’ objective of having LLMs adhere to human
instructions [154, 138]. These techniques have been critical to the deployment of interactive models
like ChatGPT and GPT-4.

Multimodal Large Language Models (MLLMs). While LLMs excel in language tasks, many
real-world applications demand reasoning across multiple modalities such as text, images, audio, or
structured scientific data. MLLMs extend LLMs by introducing architectures capable of integrating
heterogeneous inputs. Typically, they first leverage modality-specific encoders which are aligned
with the text modality via contrastive learning to transform non-textual modalities into language-
aligned embeddings , such as pretrained CLIP visual encoder [91]. Textual inputs are processed in a
manner similar to LLMs. These embeddings may be then projected into the language space through
a projection layer or a perceiver module,followed by the adoption of various fusion strategies to
integrate information across modalities. Early-fusion approaches combine embeddings from different
modalities at the input stage, often through direct concatenation [240]. In contrast, late-fusion
architectures encode each modality independently and combine their outputs only at the reasoning or
decision stage. The strategy has become less common as LLM capabilities have advanced. More
sophisticated Fusion strategy can occur in the mid stage. for example, cross-attention architectures
allow one modality to attend to features from another, exemplified by models such as Flamingo [5]
and BLIP-2 [93], which achieve strong results in vision-language tasks. To address the prohibitive
cost of retraining entire LLMs for multimodal tasks, adapter-based techniques such as LoRA [71]
introduce lightweight, trainable components into frozen models. These advances make MLLMs more
efficient and practical for specialized multimodal scenarios.

Pretraining Datasets and Modalities. The performance of LLMs and MLLMs is intimately tied
to the scale and diversity of their pretraining datasets. For text, models typically rely on large and
diverse corpora such as Wikipedia, Common Crawl, PubMed, and patent databases. In the multimodal
domain, paired datasets such as LAION-5B [153] provide billions of image-text pairs for training
vision-language systems. Scientific and technical applications require more specialized resources.
Biological sequence data (e.g., UniProt), molecular graphs (e.g., ChEMBL), and crystallographic
structures are increasingly integrated into pretraining. Moreover, structured ontologies and knowledge
graphs such as the Gene Ontology (GO) or UMLS are used to augment factual reasoning and reduce
hallucinations. The combination of unstructured and structured data creates rich environments for
pretraining models capable of bridging multiple domains.

Common Use Cases Across Domains. The versatility of LLMs and MLLMs is reflected in their
broad range of use cases. One major paradigm is zero- or few-shot inference, where models solve
novel tasks with little to no labeled data by leveraging their pretraining knowledge. When higher
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domain specificity is needed, fine-tuning can adapt general-purpose LLMs to specialized applications
such as drug discovery, clinical prediction, or materials design. Increasingly, LLMs are being used
as tool-augmented systems. By integrating with external APIs, databases, or scientific engines such
as AlphaFold DB, models can dynamically expand their capabilities beyond what is encoded in
their parameters. A further evolution of this idea is the emergence of agent-based workflows, where
models orchestrate multi-step reasoning, execute code, and autonomously coordinate experiments or
data analysis pipelines.
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F Emerging Hot Topics and Future Directions

In this section, we (1) examine several emerging hot topics, with a particular focus on diffusion-based
paradigms that are reshaping large language models and their multimodal extensions, and (2) discuss
future directions in scientific applications of MLLMs, covering domain-specific challenges and
opportunities across molecular science, protein modeling, materials discovery, and genomics.

F.1 Emerging Hot Topics

The rapid progress of large language models has spurred a new wave of research into alternative
training and decoding paradigms, as well as extensions to multimodal understanding and generation.
In this section, we highlight two directions that have recently gained considerable momentum. The
first is diffusion large language models (dLLMs), which replace the conventional autoregressive
decoding strategy with an iterative mask–denoise process and have shown promising advances
in reasoning, controllability, and efficiency. The second is diffusion multimodal large language
models (dMLLMs), which extend this paradigm to vision, audio, and other modalities, enabling more
flexible cross-modal reasoning and structured generation. Together, these emerging topics illustrate
how diffusion-based methods are shaping the future landscape of language and multimodal modeling.

F.1.1 Diffusion Large Language Models

dLLMs replace the traditional left-to-right next-token prediction paradigm with a mask-and-denoise
process over discrete tokens. Instead of generating text sequentially with unidirectional atten-
tion, dLLMs begin from a heavily masked (or absorbed) sequence and iteratively denoise it using
bidirectional attention. This design enables parallel decoding of many tokens at once, providing
explicit trade-offs between quality, latency, and controllability through adjustable steps and schedul-
ing [212, 53, 232, 157, 119]. Compared with autoregressive (AR) models, which suffer from rigidity
in mid-sequence editing and lack global structural control, diffusion-based decoding offers greater
flexibility and coherence.

(1) Core Mechanics. The forward process in dLLMs typically applies random masking or absorbing
states, while the reverse process learns to reconstruct clean tokens from noisy inputs. Recent
advances, such as reparameterized discrete diffusion (RDM), reduce training variance and enable
confidence-aware decoding by prioritizing high-confidence tokens during generation [232]. Training
objectives span from NLL-equivalent token prediction to reweighting strategies at the token or
sequence level. For example, multi-granularity diffusion (MGDM) emphasizes difficult tokens and
subgoals to enhance complex reasoning [205]. At inference, specialized schedulers such as dilated
unmasking explicitly minimize conditional entropy in each round, thereby reducing the number of
iterations [125].

(2) Scaling Strategies. Two main approaches have emerged for scaling dLLMs. The first is training
from scratch, exemplified by LLaDA, which pre-trains an 8B-parameter diffusion LLM on 2.3T tokens
and demonstrates competitive or superior performance to comparable AR baselines, particularly
on reversal-style tasks that reveal AR brittleness [134]. The second strategy adapts pretrained AR
models by gradually relaxing the causal mask and shifting prediction targets, yielding variants such
as DiffuGPT & DiffuLLaMA that achieve strong zero/few-shot and fill-in-the-middle abilities with
significantly reduced training cost [52].

(3) Capabilities and Directions. Diffusion decoding has opened new research avenues across multiple
fronts: (i) Reasoning and planning. Diffusion-of-Thought supports parallelized chain-of-thought
and multi-step self-correction [206], while MGDM reports substantial improvements on tasks such
as Countdown, Sudoku, and SAT [205]. Recent work like d1 combines supervised fine-tuning with
a diffusion-compatible policy-gradient method (diffu-GRPO), further improving math, logic, and
coding performance [229]. (ii) Program synthesis and structured generation. DiffuCoder introduces
analysis tools for “AR-ness” of dLLMs and a coupled-GRPO RL procedure, matching or beating
similar-sized AR coders on several leaderboards [54]. For controllable outputs (JSON/tables), the
S3 scaffolding method uses schema templates and null tokens to achieve high structural validity
without retraining [198]. (iii) Seq2Seq and one-step generation. DiffuSeq extends diffusion to
conditional text generation [53]. DLM-One distills iterative denoising into a single forward pass via
score-based distillation—reporting up to 500× speedups on classic Seq2Seq tasks at near-teacher
quality [24]. (iv) Systems & efficiency. At inference, dilated unmasking reduces rounds from O(B) to
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roughly O(logB) per block [125]; Fast-dLLM adds block-wise KV caching plus confidence-gated
parallel decoding, reporting up to 27.6× speedups with minimal accuracy loss [187]. Block diffusion
interleaves AR across blocks with diffusion within blocks, closing perplexity gaps while preserving
parallelism [9]. (v) Industrial interest. Google DeepMind’s Gemini Diffusion signals growing
product-level exploration of text diffusion [55].

(4) Safety Outlook. The novel dynamics of dLLMs introduce distinct safety challenges. Parallel
decoding and mask-aware mechanisms create new attack surfaces, and recent jailbreak methods
such as PAD and DIJA achieve high success rates across multiple diffusion models [227, 185].
These results suggest that AR-based defenses cannot be directly applied, underscoring the need for
diffusion-native alignment and guardrails.

(5) Takeaway. dLLMs combine parallelism, global coherence, and fine-grained controllability, posi-
tioning them as a promising alternative—and in some regimes, a superior paradigm—to autoregressive
models [212]. With both training-from-scratch and AR-adaptation paths maturing, and with rapidly
improving inference-time efficiency, dLLMs are evolving from niche prototypes to competitive
large-scale systems.

(6) Open Problems and Future Directions. Key challenges remain: (i) establishing theoretical founda-
tions for scheduling, convergence, and optimality; (ii) developing scalable diffusion-native alignment
and RLHF methods [229]; (iii) hybridizing diffusion with AR, retrieval, and external tools [9, 205];
(iv) designing standardized evaluation protocols for latency–quality trade-offs and structural va-
lidity; (v) advancing security via mask-aware defenses and robust red-teaming [227, 185]; and
(vi) optimizing serving systems for KV-cache consistency, adaptive decoding, and distributed/edge
deployment [187, 125].

F.1.2 Diffusion Multi-modal Large Language Models.

dMLLMs are also attracting increasing attention in the multimodal domain. Compared to autore-
gressive approaches, iterative mask–denoise refinement provides global context modeling, parallel
token prediction, and natural support for structure priors (e.g., layouts, JSON schemas) as well as
fill-in-the-middle editing. These properties make diffusion particularly suitable for vision–language,
audio–language, and other structured multimodal tasks, while offering explicit quality–latency trade-
offs through the choice of denoising steps [212].

(1) Representative Models. Several recent systems demonstrate the potential of diffusion in mul-
timodal scenarios. (i) Vision–language. Llada-v extends LLaDA with visual instruction tuning
while retaining diffusion-style parallel decoding, enabling visual question answering and multimodal
dialogue [210]. Dimple adopts a two-stage training paradigm: an initial AR phase aligns vision and
text representations and supports instruction following, after which diffusion decoding is reinstated
to recover parallelism and structural control. At inference, Dimple incorporates confident decoding
and explicit structure priors (e.g., JSON length control), achieving state-of-the-art results with fewer
denoising steps (often less than one-third of the response length) [213]. (ii) Audio–language. DIFFA
freezes Whisper and a diffusion LLM backbone, training only lightweight dual adapters (semantic
and acoustic). This adapter-based design yields strong performance across multiple audio–language
benchmarks at modest data and compute cost, highlighting the efficiency of multimodal diffusion
tuning [236]. (iii) Broader ecosystem. Beyond academic prototypes, Gemini Diffusion illustrates
early integration of diffusion-style generation into large-scale product pipelines, signaling practical
interest in retrieval- and tool-augmented multimodal agents [55].

(2) Capabilities and Engineering Patterns. Diffusion multimodal models inherit many of the strengths
of their text-only counterparts. (i) Controllability and structure. By conditioning on scaffolds such as
schemas or layouts, these models substantially reduce format errors and hallucination in chart/table
reasoning and structured generation; S3-style prompting can be readily reused in multimodal con-
texts [213, 198]. (ii) Throughput and latency. Inference accelerations developed for dLLMs, including
KV-cache reuse, confidence-gated parallel decoding, and dilated scheduling, transfer cleanly to vi-
sion and audio modalities [187, 125]. (iv) Applications. Iterative refinement proves beneficial for
fact-faithful summarization (Arg-LLaDA) and for constrained scientific design/optimization where
diffusion acts as a constrained sampler over feasible manifolds [92, 86]. Other applications in-
clude controllable user-facing content generation such as poll/question generation with attribute
control [28].
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(3) Risks and Challenges. Despite these advances, several challenges remain open. (i) Security.
Mask-aware, parallel denoising can amplify multimodal jailbreak attacks, including cross-modal
prompt mixing and masked injection; diffusion-native safeguards are still underdeveloped [227, 185].
(ii) Long-context efficiency. Processing long videos or extended speech raises issues of memory and
cache consistency across denoising steps, requiring more principled architectural solutions [187, 125].
(iii) Data and alignment. High-quality multimodal instruction data remain scarce; balancing frozen-
backbone adapters (e.g., DIFFA) with full-parameter training (e.g., Dimple) is still an open question
for efficient scaling [236, 213].

(4) Future Directions. Promising research avenues include: (i) designing unified diffusion agents that
couple vision, audio, and text with retrieval and tool use; (ii) developing verifiable generation under
hard structure/layout constraints; (iii) scalable alignment via multimodal preference modeling and
reinforcement learning for diffusion; (iv) building diffusion-native defenses and safety benchmarks;
and (v) systems co-design for efficient step-adaptive serving, block-wise diffusion, and distributed or
edge inference [9, 198, 187, 125].

F.2 Future Directions

MLLMs have profoundly transformed the research landscape across domains including molecular
science, protein science, material discovery, genomics, medicine, and beyond [123, 112, 36, 12].
Despite these advances, there remain substantial gaps between the current state of the art and the
long-term vision of autonomous, trustworthy, and general-purpose scientific agents. To bridge this
gap, we identify future directions that can be broadly categorized into domain-specific challenges
and cross-disciplinary opportunities, with the goal of guiding research toward impactful advances.

F.2.1 MLLMs for Molecular Design.

Molecular design demands models that can faithfully capture the geometry, dynamics, and physical
constraints of molecules. At this juncture, we identify several promising research avenues that merit
particular attention. (1) Physical-constraint modeling. Current MLLMs primarily rely on sequence-
or graph-based representations, but often fail to enforce fundamental physical constraints such as
atomic distance limits, bond angles, or quantum-level properties. Embedding such priors into the
modeling pipeline can significantly improve robustness and interpretability. (2) Modeling dynamics.
Most existing approaches treat molecules as static entities, whereas real-world properties depend
heavily on dynamic behavior. Extending MLLMs to incorporate temporal molecular dynamics would
open new opportunities in reaction prediction, drug discovery, and material synthesis. (3) Complex
data integration. Molecular research spans diverse modalities, including spectroscopy, microscopy,
and quantum simulation data. Designing models capable of integrating such heterogeneous data
while respecting inter-modality constraints (e.g., protein–ligand interactions) is a key challenge. (4)
Quantum-aware representations. A promising direction is to develop encoders grounded in quantum
chemistry and physics, moving beyond atomistic descriptors toward foundation models that operate
directly at the quantum level.

F.2.2 MLLMs for Protein Science

Proteins present distinctive challenges for MLLMs owing to their rugged, high-dimensional confor-
mational landscapes and the tight coupling between structure, dynamics, and function. Progress in
this area will likely hinge on advances along three fronts: (1) Protein dynamics. Most current LLM-
based approaches operate on static snapshots (e.g., single structures or sequences), whereas many
biological functions are mediated by ensembles, transitions, and rare events. Incorporating temporal
information—through trajectory-aware representations, coarse-to-fine dynamical priors, or learned
surrogates of molecular simulation—remains underexplored yet essential for capturing allostery,
binding pathways, and conformational selection. (2) All-atom modeling. To achieve biochemical
fidelity, models must scale beyond residue- or coarse-grained abstractions toward all-atom resolution
when warranted. This entails addressing substantial challenges in data volume and quality, long-range
interactions, and computational cost. Promising directions include hybrid granularity (coarse-to-fine
decoding), equivariant architectures, and teacher–student distillation from physics-based engines to
amortize expensive detail into lightweight predictors. (3) Physical priors. Ensuring physical plausibil-
ity requires embedding biophysical constraints into both learning and inference. Constraints such as
steric exclusion, hydrogen bonding patterns, rotamer preferences, electrostatics, and solvation effects
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can be introduced via energy-inspired regularization, constraint-aware decoding, or differentiable
scoring functions. Such priors improve sample quality, stabilize training, and facilitate interpretation
of model hypotheses.

F.2.3 MLLMs for Material Science

Materials science is inherently multiscale: atomic arrangements and compositional motifs give rise
to mesoscale structures and ultimately emergent macroscopic properties. This hierarchy creates
both challenges and opportunities for MLLMs. We outline three research directions that, in our
view, are especially promising: (1) Embedding physical priors. Robust generalization in materials
requires models that respect conservation laws, crystallographic symmetries, and periodic boundary
conditions. Incorporating such priors can be achieved via symmetry-/equivariance-aware archi-
tectures (e.g., SE(3)- or space-group–equivariant layers), periodic convolutions or attention with
fractional translations, and energy-/constraint-informed objectives that penalize unphysical predic-
tions. Physics-informed learning not only improves accuracy and sample efficiency but also enhances
interpretability and reliability for downstream design. (2) Graph and 3D-aware encodings. Faithful
structure–property learning hinges on representations that capture local coordination, long-range
interactions, and periodicity. Promising approaches include crystal graphs with edge features for bond
topology and lattice geometry, voxelized or point-cloud 3D tensors coupled with SE(3)-equivariant
networks, and hybrid representations that combine composition-aware language tokens with geomet-
ric encoders. For polycrystalline or amorphous systems, hierarchical encodings that bridge atomic
neighborhoods to microstructural descriptors (e.g., grains, phases, defects) are critical. (3) Modeling
material dynamics. Many target properties (e.g., conductivity, elasticity, phase stability) are path-
and state-dependent. Integrating molecular/mesoscale dynamics with MLLMs—via differentiable
simulators, learned surrogates of MD/DFT, or sequence-of-states generation with uncertainty calibra-
tion—can enable predictive modeling of time-dependent behavior and rare events. Coarse-to-fine
multiscale schemes (linking atomic MD to continuum models) and step-adaptive inference further
reduce cost while retaining fidelity.

F.2.4 MLLMs for Genomics and Gene Modeling

Genomic modeling with LLMs remains nascent, yet it holds substantial promise for both biomed-
ical research and clinical translation. We highlight six directions that, in our view, are especially
consequential: (1) Domain-specific architectures. Genomic sequences obey grammars distinct from
natural language (e.g., reverse-complement symmetry, motif locality, long-range regulatory dependen-
cies). Dedicated encoders—such as k-mer or PWM-based tokenization, reverse-complement–aware
embeddings, and DNABERT-style pretraining—should be scaled with explicit inductive biases for
strand orientation, periodicity, and promoter/enhancer motif composition. Long-context modeling
(chromatin-scale windows) and equivariant or positionally robust attention schemes are likely pre-
requisites for capturing distal regulation. (2) Precision medicine. Clinically useful systems must
generalize to rare variants and patient-specific contexts while quantifying uncertainty. Promising
approaches include: (i) variant-centric pretraining with functional assays and curated pathogenicity
labels; (ii) multi-omics conditioning (genome, transcriptome, epigenome, proteome) with cohort-level
normalization; and (iii) calibration- and causality-aware objectives (counterfactual augmentation,
conformal prediction) to support safe decision-making and evidence grading. (3) Multimodal rea-
soning. Many phenotypes emerge from interactions between sequence, expression, imaging, and
clinical narratives. MLLMs that fuse DNA/RNA with single-cell profiles, spatial transcriptomics,
radiology/pathology images, and EHR text require alignment objectives across modalities (contrastive
or cycle-consistent learning), privacy-preserving training (federated or DP-SGD), and representations
that remain stable across batches, platforms, and tissues. Such models could enable end-to-end
gene–phenotype mapping and mechanism-aware hypothesis generation. (4) Ontology-grounded
learning. Embedding structured biological knowledge—e.g., Gene Ontology (GO) and Human Phe-
notype Ontology (HPO)—into pretraining and inference can improve interpretability and biological
fidelity. Practical instantiations include knowledge-graph–regularized objectives, constraint-aware de-
coding that enforces ontology consistency, and retrieval-augmented generation over curated databases
to reduce hallucinations and promote traceable evidence. (5) Clinical deployment. Translation
to practice demands robust interfaces and governance. Key components are validated APIs that
interoperate with established resources (e.g., Ensembl, ClinVar), auditable provenance and versioning,
shift detection and post-deployment monitoring, and standardized reporting of model confidence
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and limitations. Attention to data governance, consent, and reproducibility is essential for regulatory
acceptance and safe adoption. (6) 3D genome modeling. Gene regulation depends on 3D chromatin
organization (loops, TADs, compartments). Moving beyond linear sequence requires integrating
Hi-C/Micro-C and imaging-derived contact maps via geometric encoders (graph transformers with
chromatin contacts, SE(3)-aware models) or discrete “3D structure tokens”. Joint sequence–structure
pretraining with constraint-aware objectives (e.g., enforcing topological consistency) may unlock
more accurate prediction of enhancer–promoter interactions and context-specific expression.

F.2.5 Key Opportunities of dLLMs and dMLLMs for Scientific Discovery

Diffusion models can fill many tokens in parallel, keep the whole output consistent, and follow
templates or rules. Multimodal diffusion extends this to images, spectra, micrographs, 3D structures,
and time series. In molecules/drug discovery, proteins, genomics, and materials, this leads to the
following concrete wins: (1) Structured outputs you can use immediately. With mask–denoise
decoding and JSON/table templates, the model can produce ELN/LIMS-ready content: steps with
timestamps and units, property tables with ranges and confidence, and provenance fields. If you
change a solvent or temperature, a quick refinement updates stoichiometry and safety notes without
breaking the rest. (2) Design that respects hard scientific rules. Encode required constraints (e.g.,
valence/sterics, space groups and site occupancy, rotamers and clashes) as scaffolds. Each denoising
round proposes candidates; fast scorers or small simulators (QSAR, DFT, MD, energy terms)
accept/reject and feed back. You get a ranked set of synthesizable molecules, stable crystal prototypes,
or robust protein variants. (3) Plan–execute–revise instead of one-shot generation. Parallel chain-of-
thought drafts multiple synthesis routes or assay protocols at once. Confidence-aware unmasking
keeps strong steps and rewrites weak ones. The system can insert checks (yield, hazard class,
cost) and suggest plan B/C with different reagents or instruments so labs can pick what fits their
resources and risk. (4) Tight loops with retrieval and domain tools. At each diffusion step, call
literature/patent search, databases, and tools (reaction predictors, DFT/MD, docking). Write the
numbers back—conditions, peaks/bands, formation energies—then refine once more to keep text,
tables, and figures consistent. This helps gene–function summaries, materials reports, and chemistry
writeups line up with evidence. (5) Handles long and streaming data. Block-wise or step-adaptive
diffusion can summarize microscopy videos, time-lapse experiments, or audio lab logs as they
arrive. It flags anomalies (phase change, crack start, contamination) with timestamps and follow-up
suggestions, and maintains a running, unit-checked report for shift handover. (6) Built-in safety and an
audit trail. Before unmasking sensitive content, apply mask rules (e.g., banned reagents or protocols),
schedule randomization, and uncertainty gates. Every run records sources used, constraints triggered,
and candidates rejected, creating a clear, reproducible record for compliance and peer review.
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G Selected Benchmarking Evaluation

G.1 Molecular Property Prediction

Experiment setting. We evaluate on the MoleculeNet benchmark [190], which comprises three
single-modal binary classification datasets for assessing the expressiveness of pretrained molecular
representation methods. Performance is reported as the area under the receiver operating characteristic
curve (AUROC).

Table G1: ROC-AUC (%) results on molecular property prediction tasks (BACE, BBBP, HIV) from
the MoleculeNet benchmark [190]. For non-MLLM models, we adopt the results reported in the
InstructMol paper [19].

Method BACE ↑
1513

BBBP ↑
2039

HIV ↑
41127

Specialist Models
ChemBERTa v2 73.5 69.8 79.3
DMP(TF+GNN) 89.4 77.8 81.4
KV-PLM 78.5 70.5 71.8
GraphCL 75.3 69.7 78.5
GraphMVP-C 81.2 72.4 77.0
MoMu 76.7 70.5 75.9
MolFM 83.9 72.9 78.8
Uni-Mol 85.7 72.9 80.8

LLM Based Generalist Models
Galactica-6.7B 58.4 53.5 72.2
Vicuna-v1.5-13b-16k (4-shot) 49.2 52.7 50.5
Vicuna-v1.3-7B* 68.3 60.1 58.1
LLaMA-2-7B-chat* 74.8 65.6 62.3
MolCA(1D) 79.3 70.8 –
MolCA(1D + 2D) 79.8 70.0 –

Instruct-G 84.3 (±0.6) 68.6 (±0.3) 74.0 (±0.1)
Instruct-GS 82.1 (±0.1) 72.4 (±0.3) 68.9 (±0.3)

MoleculeSTM (Graph) 80.77 (±1.34) 69.98 (±0.52) 76.93 (±1.84)
MoleculeSTM (Smiles) 81.99 (±0.41) 70.75 (±1.90) 76.23 (±0.80)
Token-Mol (averaged across five runs) 89.52 (±1.32) 91.67 (±0.98) 82.40 (±0.17)

Benchmarking Models. We identify several MLLMs, including InstructMol [19], MoleculeSTM
(Graph) [114], MoleculeSTM (Smiles) [114], GIT-Mol [111], Token-Mol [173], and M3LLM [70],
which target the downstream task of molecular property prediction. For non-MLLM models, we
adopt the results reported in the InstructMol paper [19]. Since the model weights of InstructMol,
M3LLM, and GIT-Mol are not publicly available, we rely on the reported results of InstructMol from
the original paper, while M3LLM and GIT-Mol are excluded from our evaluation. For the remaining
models, we rerun the experiments ourselves.

Observations. Overall, as show in Table G1, the results show that MLLM-based models achieve
competitive performance in molecular property prediction, but they generally lag behind strong
specialist models such as Uni-Mol and MolFM. Among the evaluated MLLMs, Token-Mol and
MoleculeSTM (Smiles/Graph) consistently perform comparably, while other generalist LLM-based
methods (e.g., Galactica and Vicuna variants) exhibit significantly weaker performance across all
tasks. InstructMol demonstrates strong results as reported in the original paper, though its lack of
released weights prevents direct reproducibility. Notably, Token-Mol achieves results that are on par
with MoleculeSTM, indicating that specialized adaptation of MLLMs can substantially narrow the
performance gap with task-specific molecular models.
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G.2 Protein Property Prediction

Experiment setting. In our study, we evaluate protein property prediction across six benchmark tasks
derived from the TAPE suite [144]. (1) Secondary structure prediction (SS). This task operates at the
amino-acid (token) level, aiming to assign a secondary structural label (e.g., helix, strand, or coil) to
each residue. We report results for both three-class (SS-Q3) and eight-class (SS-Q8) formulations.
(2) Homology prediction. Following [67, 47], this task requires identifying the fold type of a given
protein sequence. Accuracy serves as the evaluation metric for this task and the two secondary
structure tasks. The evaluation metric is accuracy for these three tasks. (3) Contact prediction.
Following prior work [7, 131, 150], this task aims to determine whether a pair of amino acids in
a protein sequence are in spatial contact, defined as having a distance less than 8 Å. Evaluation is
performed using the precision of the top L/2 predicted contacts, where L denotes the sequence length,
focusing on medium- and long-range interactions. (4) Fluorescence prediction. Based on [151], this
regression task predicts the logarithm of a protein’s fluorescence intensity. (5) Stability prediction.
As proposed by Graves [58], this task estimates a proxy for protein stability. Both fluorescence and
stability prediction are evaluated using Spearman’s rank correlation coefficient (ρ).

Observations. As shown in Table G2, traditional baselines such as LSTM, the TAPE Transformer, and
ResNet yield only moderate performance, whereas specialist models like ProtBERT and OntoProtein
achieve notably stronger results. The ProteinDT-ProteinCLAP variants further improve performance
across most tasks, with the EBM-NCE objective providing a slight advantage on both contact
prediction and homology detection.

Table G2: Benchmark Results covers six protein property prediction tasks from the TAPE [144]
benchmark. For non-MLLM models, we adopt the results reported in OntoProtein [220] and Pro-
teinDT [112].

Method Structure Evolutionary Engineering

SS-Q3 ↑ SS-Q8 ↑ Contact ↑ Homology ↑ Fluorescence ↑ Stability ↑
LSTM 0.75 0.59 0.26 0.26 0.67 0.69
TAPE Transformer 0.73 0.59 0.25 0.21 0.68 0.73
ResNet 0.75 0.58 0.25 0.17 0.21 0.73
MSA Transformer - 0.73 0.49 - - -

ProtBERT 0.81 0.67 0.59 0.29 0.61 0.82
OntoProtein 0.82 0.68 0.56 0.24 0.66 0.75
ProteinDT-ProteinCLAP-InfoNCE 0.8354 0.6912 0.6011 0.3109 0.6047 0.8110
ProteinDT-ProteinCLAP-EBM-NCE 0.8310 0.6941 0.6023 0.2865 0.6127 0.7978
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H Summary Model Tables

Table H1: Summary of recent representative MLLMs for drug and molecule representation, property
prediction, and chemistry-focused tasks.

Model Year Modality Architecture Size Category Main Task

MolPROP [148] 2024/05/22 SMILES, Graph Encoder-Only 46M Property Prediction Molecular property prediction
LLM-MPP [78] 2025/05/20 SMILES, Graph, Text Decoder-Only 8B Property Prediction Property prediction

interpretability
ModuLM [26] 2025/06/01 1D, 2D, 3D, Text Modular/Encoder 14B Property Prediction Flexible property prediction
GIT-Mol [111] 2023/08/14 Graph, Image, Text Encoder-Decoder 700M Property Prediction Property prediction

generation
PolyLLMem [224] 2025/03/29 Polymer, Structure, Text Encoder-Only 8B Polymer Informatics Polymer property prediction
Molbind [195] 2024/03/13 Structure, Protein, Text Encoder-Only 150M Property Prediction Binding affinity prediction

BioMedGPT [124] 2023/08/18 Protein, Text Encoder-Decoder 10B General-purpose Biomedical QA
multi-modal tasks

InstructMol [19] 2023/11/27 Graph, Text Encoder-Decoder 2.2B General-purpose Instruction following
generation

UniMoT [218] 2024/08/01 Graph, Text Encoder-Decoder 7B General-purpose Generation
multi-task

Mol-LLM [89] 2025/01/01 SMILES, Graph, Text Encoder-Decoder 7B General-purpose Generation
multi-task

ChemVLM [94] 2024/08/14 Graph, Image, Text Encoder-Decoder 20B General-purpose Vision-language tasks
Token-Mol [173] 2024/07/10 SMILES, 2D/3D Decoder-Only N/A General-purpose Generative modeling
M3LLM [70] 2025/08/03 Graph, Text Encoder-Decoder 1.28B General-purpose Generation

granularity study

ChemCrow [13] 2023/04/11 Text, Tools Agent (LLM+Tools) 100B-1T Agents & Special Tasks Chemistry agent
ChatMolData [214] 2024/11/19 Text, Molecular Data Agent (LLM+Modules) 100B-1T Agents & Special Tasks Data analysis

retrieval
ChemToolAgent [211] 2024/11/11 Text, Tools Agent (LLM+Tools) 100B-1T Agents & Special Tasks Tool-use agent
ChemAgent [161] 2025/01/11 Text, Memory Agent (LLM+Memory) 100B-1T Agents & Special Tasks Agent with memory
ChemThinker [80] 2024/09/28 Text, Tools, Agents Multi-Agent 70B Agents & Special Tasks Multi-agent reasoning
MolPuzzle [60] 2024/01/01 Multimodal Special Task N/A Puzzle Task Structure elucidation

reasoning
MM-RCR [226] 2024/07/21 Text, Graph, SMILES Encoder-Decoder 7B Reaction Condition Reaction condition recommendation
Chem3DLLM [77] 2025/08/14 Text, 3D structure Encoder-Decoder ∼ 7B Drug discovery Generation

Table H2: Summary of recent representative MLLMs for protein representation, prediction, and
design tasks.

Model Date Modality Architecture Size Category Main Task

ProteinDT [112] 2023/02/09 Sequence, Text Encoder-Decoder 220M Sequence-Text Protein Design
ProtT3 [120] 2024/05/21 Sequence, Text Encoder-Decoder ∼1.3B Sequence-Text QA tasks,

Protein captioning
ProtCLIP [234] 2024/12/28 Sequence, Text Encoder-Only 770M Sequence-Text Function prediction
OntoProtein [219] 2022/01/23 Sequence, Graph Encoder-Only 220M Sequence-Text Multi prediction tasks
BioMedGPT [123] 2023/05/26 Sequence, Text, Graph Encoder-Decoder 10B Sequence-Text Different QA tasks
ProtLLM [243] 2024/02/28 Sequence, Text Encoder-Decoder 7B Sequence-Text Protein understanding,

Generation tasks
ProLLaMA [126] 2024/02/26 Sequence, Text Encoder-Decoder 7B Sequence-Text Protein understanding,

Generation tasks
InstructProtein [178] 2023/10/05 Sequence, Text, Graph Decoder-Only 1.3B / 7B Sequence-Text Protein design,

Prediction tasks
ESM-AA [231] 2024/03/05 Sequence, SMILES Encoder-Only 35M Sequence-Text Classification,

Property prediction tasks
BioT5 [140] 2023/10/11 Sequence, SMILES, Text Encoder-Decoder 252M Sequence-Text Diversity prediction,

Generation tasks
BioT5+ [139] 2024/02/27 Sequence, SMILES, Text Encoder-Decoder 252M Sequence-Text Diversity prediction,

Generation tasks
Galactica [162] 2022/11/16 Sequence, Text Decoder-Only 120B Sequence-Text Prediction,

QA tasks
ProteinChat [75] 2024/08/19 Sequence, Text Encoder-Decoder 14B Sequence-Text Function prediction,

categories

ESM3 [61] 2025/01/16 Sequence, Text, Structure Encoder-Decoder 1.4/7/98B Geometric-Sequence-Text Design,
Generation tasks

proseLM-XL [149] 2024/08/03 Sequence, Structure Encoder-Decoder 6.5B Geometric-Sequence-Text Protein Design
SaProt [160] 2023/10/01 Sequence, Structure Encoder-Only 650M Geometric-Sequence-Text Prediction tasks
FoldToken [49] 2024/02/04 Sequence, Structure Encoder-Decoder 280M Geometric-Sequence-Text Reconstruction,

Antibody Design
Evolla [238] 2025/01/05 Sequence, Text, Structure Encoder-Decoder 80B Geometric-Sequence-Text Diverse QA tasks
DPLM-2 [175] 2024/10/17 Sequence, Structure Encoder-Decoder 150/650M Geometric-Sequence-Text Protein generation,

Folding
ProTokens [103] 2023/11/27 Sequence, Structure Encoder-Decoder 7B Geometric-Sequence-Text Protein Design
ProSST [96] 2024/04/15 Sequence, Structure Encoder-Decoder 110M Geometric-Sequence-Text Prediction tasks
ProteinGPT [197] 2024/08/21 Sequence, Text, Structure Encoder-Decoder 10B Geometric-Sequence-Text Protein QA

Protein understanding
ProtChatGPT [170] 2024/02/15 Sequence, Text, Structure Encoder-Decoder 13B Geometric-Sequence-Text Protein QA,

Protein understanding
STELLA [194] 2025/06/04 Sequence, Text, Structure Encoder-Decoder ∼9B Geometric-Sequence-Text Structure understanding,

QA tasks
InstructBioMol [242] 2024/10/10 Sequence, Text, SMILES, Structure Encoder-Decoder ∼7B Geometric-Sequence-Text Protein Design,

QA tasks

BioBRIDGE [181] 2023/10/05 Sequence, Graph, Text Encoder-Only ∼3B Special-case PPI Prediction
LLaPA [237] 2024/09/26 Sequence, Graph, Text Encoder-Decoder ∼10B Special-case PPI Prediction
MolBind [196] 2024/03/13 Text, SMILES, Graph, Structure Encoder-Only N/A Special-case Retrieval tasks
BioTranslator [199] 2023/02/10 Text, Gene, Sequence, Graph Encoder-Only 230M Special-case Modal Translator
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Table H3: Representative MLLMs for gene function prediction, regulatory genomics, and multimodal
biological tasks.

Model Date Modality Architecture Size Category Main Task

GeneChat [36] 2025/06/05 DNA, Text DNABERT-2 + Adaptor ∼13B Function Prediction Free-text gene function generation
+ Vicuna-13B

ChatNT [146] 2024/04/30 DNA, RNA, Nucleotide Transformer + ∼7B Multi-task Genomics Multimodal sequence
Protein, Text Perceiver + Vicuna-7B Language Q&A

Gene classification
Structure prediction

LLaMA-Gene [101] 2024/11/30 DNA, Protein, LLaMA3-7B ∼7B Multi-task Genomics MSA
Text Function prediction

Regression
OmniCellTOSG [217] 2025/04/02 RNA, Text DeBERTa+DNAGPT+ ∼16B Multi-task Genomics Predict cellular states

ProtGPT2+GAT Predict cell types
Geneverse [117] 2024/07/21 DNA, Protein, Multi-model ∼7/8/13B Multi-task Genomics Multi-modal gene/protein tasks

Text, Figure LLM/MLLM collection

GenoMAS [107] 2025/07/08 DNA, RNA, LLM Agents N/A Gene Expression Analysis (Un)conditional GTA
Text Report Generation

cGSA [180] 2025/06/04 DNA, Text LLaMA 3.1-70B ∼70B Gene Expression Analysis Gene pathway finding
GTA [66] 2024/10/02 DNA, Text Sei Encoder + Token Alignment ∼8B Gene Expression Analysis Long-range gene expression modeling

+ Llama3-8B

LLM4GRN [2] 2024/10/21 RNA, Text LLaMA3.1-70B ∼70B Regulatory Genomics Gene regulatory network discovery
GeneBERT [130] 2021/10/11 DNA (1D), BERT+ ∼110M Regulatory Genomics Multi-modal self-supervised pre-training

TF-Region (2D) Swin Transformer
GeneCompass [203] 2023/09/28 RNA, Text Transformer N/A Regulatory Genomics GRN inference

Table H4: Summary of recent representative LLMs and MLLMs for material discovery, property
prediction, and design tasks.

Model Date Modality Architecture Size Category Main Task

CrystaLLM [8] 2023/07/10 Text Decoder-Only 25/200M Crystal Structure Generate crystal structures
LLMatDesign [76] 2024/06/19 Text LLM Agent N/A Autonomous Discovery Autonomous materials discovery
FlowLLM [158] 2024/10/30 Text LLM+RFM N/A Material Design Generate stable novel materials
GenMS [202] 2024/09/10 Text, Graph LLM+Diffusion N/A Crystal Generation Low-energy crystal structure generation
Mat2Seq [201] 2024/12/01 Text, Graph Encoder-Decoder 25/200M Property Prediction Crystal sequence representation
CrystaltextLLM [59] 2024/02/06 Text Encoder-Decoder ∼70B Stability Prediction Generate stable materials
ChatGPTMaterial [33] 2024/02/12 Text Decoder-Only 11B Material Design Suggest material compositions
ICGPT [108] 2024/04/22 Text Transformer N/A Property Prediction Accurate material property prediction
ELLM [56] 2024/04/23 Text Encoder-Decoder N/A Material Selection Expert recommendations for materials
ElaTBot [115] 2024/11/19 Text, Quantitative Data Llama2-7B ∼7B Material Discovery (Details TBD)
CrossMatAgent [165] 2025/03/25 Text,Image Agent N/A Material Discovery Multi-agent material design framework
AutoMEX [45] 2025/03/– Text,3D Document Agent N/A Material Selection Autonomous material extrusion workflow

Structure Data

LLM-Fusion [12] 2024/12/19 Text, SMILES, Fingerprints Encoder-Decoder N/A Property Prediction Multimodal property prediction
Cephalo [16] 2024/05/29 Image, Text VLM ∼600M Bio-Inspired Design Analyze bio-inspired materials
MaCBench [4] 2024/10/08 Text, Image VLM N/A Material Discovery Evaluate multimodal models’ performance
FMMD [141] 2024 Text, Image Fusion Model N/A Material Prediction Scalable property prediction
MatterGPT [25] 2024/08/14 Text Transformer 80M Property Prediction Generate solid-state materials

Table H5: Representative MLLMs for biomedical science.
Model Date Modality Architecture Size Main Tasks

GenoMAS [107] 2025/07/08 DNA, RNA, Text LLM agents N/A Gene expression analysis
cGSA [180] 2025/06/04 DNA, Text LlaMA 3.1-70B ∼70B Gene pathway findiing
LLM4GRN [2] 2024/10/21 RNA, Text LLaMA3.1-70B ∼70B Gene regulatory networks discovery
GeneCompass [203] 2023/09/28 RNA, Text Transformer N/A Gene Regulatory Network inference

Geneverse [117] 2024/07/21 DNA, Protein Multi-model LLM/MLLM collection ∼7/8/13B Multi-modal gene/protein tasks
Text, Figure

Natural Language BioMedGPT-LM+ Protein Question Answering
BioMedGPT [123] 2024/11/25 Molecular Graphs Multimodal encoder ∼10B Molecule Question Answering

Protein Sequences
Gene classification

LLaMA-Gene [101] 2024/11/30 DNA, Protein, Text LLaMA3-7B ∼7B Gene structure prediction
Multiple sequence analysis

Function prediction
OmniCellTOSG [217] 2025/04/02 RNA, Text DeBERTa+DNAGPT ∼16B Cellular States Prediction

+ProtGPT2+GAT Cell Type Prediction
Survival prediction

mSTAR [200] 2024/07/22 pathological images, CLIP Varies Diagnosis
RNA-seq, Text Molecule prediction

Report generation
ST-ALign [104] 2024/11/25 pathological images, gene Image encoder + Gene encoder N/A Spatial clustering identification

Spot Gene Expression Prediction
Pathological images Spatial domain identification

spEMO [116] 2025/01/13 spatial multi omics PFM+LLM N/A Disease Prediction
Report Generation

SpaLLM [95] 2025/07/03 Single-cell transcriptome data, LLM+omics encoder+GNN N/A Region Identification
Multi-omics data
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I Summary Dataset Tables of MLLMs for Science

Table I1: Summary of pretraining / instruction-tuning datasets for MLLMs in molecular tasks.
Datasets Year Modality Tasks Source Application Stage

PubChem (77M SMILES) – SMILES, Text MLM, MTR, caption/retrieval Source

[148]
[111]
[88]
[19]
[218]
[121]
[26]
[78]

Pretraining

ChEBI-20 2021 SMILES, Text Captioning, generation Source

[111]
[218]
[89]
[19]

Pretraining

ZINC – SMILES Language modeling, generation Source [121] Pretraining

USPTO (full/50k) 2012/2017 Reaction SMILES, Text FS/RS/RP reaction modeling
Source (full)
Source (full)
Source (50k)

[89]
[218] Pretraining/Instr.

Mol-Instructions 2023 Text, SMILES, Graph FS, RS, RP, caption-guided gen Source [89]
[218] Instruction

SMolInstruct 2024 Text, SMILES, Graph FS, RS, RP, generation Source [89] Instruction
PCdes – Molecule, Text Retrieval (M2T/T2M) Source [218] Instruction
MoMu 2022 Molecule, Text Cross-modal retrieval Source [218] Instruction

Molecule3D 2021 3D Conformations Graph–3D alignment Source
Source [195] Pretraining

GEOM 2020 3D Conformations Graph–3D alignment Source [195] Pretraining
PDBBind 2016 Protein pockets, 3D Conf.–Protein alignment Source [195] Pretraining
CrossDock 2019 Protein pockets, 3D Conf.–Protein alignment Source [195] Pretraining
DrugBank – SMILES, Text (properties) Molecular relational learning Source [26] Pretraining
L+M-24 2024 Image, Text Captioning (Mol2Lang) Source [167] Pretraining
Chem Exam 2024–2025 Image, Text OCR, VQA, Chem QA Source [94] Pretraining
Chem OCR 2024–2025 Image, Text OCR, VQA, Chem QA Source [94] Pretraining
Web-Chem 2024–2025 Image, Text OCR, VQA, Chem QA Source [94] Pretraining
PubMed abstracts – Text (biomedical) Domain LM pretraining Source [122] Pretraining
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Table I2: Summary of downstream task datasets for MLLMs in molecular tasks.
Datasets Year Modality Tasks Source Application Stage

ESOL (LogS) 2012 SMILES, Graph Regression (solubility) source

[148]
[78]
[89]
[88]

Downstream

FreeSolv 2014 SMILES, Graph Regression (hydration free energy) source
[148]
[78]
[26]

Downstream

Lipophilicity (Lipo) 2016 SMILES, Graph Regression (logD/logP) source
[148]
[78]
[89]

Downstream

QM7 2011 SMILES, Graph Regression (atomization energy) source [148]
[78] Downstream

QM9 2014 SMILES, Graph Regression (HOMO/LUMO etc.) source [19]
[89] Downstream

BBBP 2018 SMILES, Graph Classification (BBB) source

[148]
[78]
[89]
[88]

Downstream

BACE 2016 SMILES, Graph Classification (binding) source

[148]
[78]
[89]
[88]

Downstream

ClinTox 2018 SMILES, Graph Classification (toxicity) source

[148]
[78]
[89]
[88]

Downstream

Tox21 2014 SMILES, Graph Multi-task toxicity source
[111]
[218]
[88]

Downstream

ToxCast 2013 SMILES, Graph Multi-task toxicity source [111]
[218] Downstream

HIV 2014 SMILES, Graph Classification (anti-HIV) source [89]
[88] Downstream

SIDER 2015 SMILES, Graph Multi-label side effects source
[111]
[89]
[88]

Downstream

MUV 2013 SMILES, Graph Virtual screening source [88] Downstream

ChEBI-20 2021 SMILES, Text Captioning, generation source

[111]
[89]
[218]
[88]

Downstream

L+M-24 2024 Image, Text Captioning source [167] Downstream
PubChem Captions – Image, SMILES, Text Captioning, Image→SMILES source [111] Downstream

USPTO-50k 2017 Reaction SMILES, Text FS, RS, RP source [89]
[19] Downstream

RetroBench 2024 Reaction network Multi-step retrosynthesis source [82] Downstream
ORDERly 2024 Reactions OOD reaction evaluation source [89] Downstream
AqSolDB 2019 SMILES OOD solubility evaluation source [89] Downstream
ChEMBL-02 2020 Pairwise molecules Molecule optimization source [88] Downstream
PCdes – Molecule, Text Retrieval (M2T/T2M) source [218] Downstream
MoMu 2022 Molecule, Text Cross-modal retrieval source [218] Downstream
ZhangDDI 2017 SMILES, Graph Drug–drug interaction source [26] Downstream
ChChMiner 2018 SMILES, Graph Drug–drug interaction source [26] Downstream
DeepDDI 2018 SMILES, Graph Drug–drug interaction source [26] Downstream
TWOSIDES 2012 SMILES, Graph Drug–drug interaction source [26] Downstream
MNSol 2020 SMILES, Graph Solute–solvent interaction source [26] Downstream
CompSol 2017 SMILES, Graph Solute–solvent interaction source [26] Downstream
Abraham 2010 SMILES, Graph Solute–solvent interaction source [26] Downstream
CombiSolv 2021 SMILES, Graph Solute–solvent interaction source [26] Downstream
CombiSolv-QM 2021 SMILES, Graph (QM) Solute–solvent interaction source [26] Downstream
Chromophore 2020 SMILES, Graph Chromophore–solvent interaction source [26] Downstream

40

http://deepchem.io.s3-website-us-west-1.amazonaws.com/datasets/delaney-processed.csv
https://github.com/MobleyLab/FreeSolv
https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/Lipophilicity.csv
http://www.quantum-machine.org/datasets/
http://www.quantum-machine.org/datasets/
https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/BBBP.csv
https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/bace.csv
https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/clintox.csv
https://tripod.nih.gov/tox21/challenge/
https://www.epa.gov/comptox-tools/exploring-toxcast-data
https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/HIV.csv
http://sideeffects.embl.de/download/
https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/muv.csv
https://www.ebi.ac.uk/chebi/
https://github.com/language-plus-molecules/LPM-24-Dataset
https://huggingface.co/datasets/AI4Industry/MolCap
https://github.com/wengong-jin/nips17-rexgen
https://github.com/SongtaoLiu0823/FusionRetro
https://github.com/sustainable-processes/ORDerly
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OVHAW8
https://github.com/BenevolentAI/guacamol
https://www.nature.com/articles/s41467-022-28494-3
https://arxiv.org/abs/2209.05481
https://www.pingzhang.net/bak/ddi.html
https://snap.stanford.edu/biodata/datasets/10001/10001-ChCh-Miner.html
https://bitbucket.org/kaistsystemsbiology/deepddi/src/master/
https://nsides.io/
https://conservancy.umn.edu/items/c3db00cf-d573-461b-adf5-389ff929d918
https://aip.figshare.com/articles/dataset/Compsol_database_revised_2024_/26871184
https://bmcchem.biomedcentral.com/articles/10.1186/s13065-015-0080-9
https://www.sciencedirect.com/science/article/abs/pii/S1385894721008925
https://www.sciencedirect.com/science/article/abs/pii/S1385894721008925
https://figshare.com/articles/dataset/DB_for_chromophore/12045567


Table I3: Summary of pretraining / instruction-tuning datasets for MLLMs in protein tasks.
Datasets Year Modality Tasks Source Application Stage

SwissProt 2000 Sequence, Text Sequence–text alignment, Captioning Source

[113]
[120]
[234]
[75]
[238]

Pretraining

TrEMBL 2000 Sequence, Text Sequence–text alignment Source [234]
[238] Pretraining

ProtAnno-S 2024 Sequence, Text Contrastive alignment (sparse, curated) Source [234] Pretraining
ProtAnno-D 2024 Sequence, Text Contrastive alignment (dense, auto) Source [234] Pretraining

ProteinKG25 2022 Sequence, Graph, Text KG-enhanced pretraining Source [221]
[120] Pretraining

PrimeKG 2023 Graph, Text Biomedical KG bridging Source [181] Pretraining
UniRef50 2007 Sequence Language modeling corpus Source [126] Pretraining
UniRef90 2007 Sequence Language modeling corpus Source [175] Pretraining

AlphaFold DB 2022 Structure (3D) Structure-aware pretraining Source
[160]
[231]
[61]

Pretraining

PDB 2000 Structure (3D) Structure and token pretraining Source [175]
[103] Pretraining

PDBbind (v2019) 2019 Structure, Binding Binding-aware pretraining Source [231] Pretraining
S2ORC 2020 Text (scholarly) Biomedical text pretraining Source [123] Pretraining

PubMed abstracts 1996 Text (biomedical) Biomedical text pretraining Source
[123]
[243]
[139]

Pretraining

bioRxiv 2013 Text (preprints) Biomedical text pretraining Source [139] Pretraining

PubChem 2004 SMILES, Text Chem–structure pretraining Source [140]
[139] Pretraining

ChEMBL 2012 SMILES, Bioactivity Chem–structure pretraining Source [231]
[140] Pretraining

ZINC (ZINC15) 2015 SMILES Generative pretraining Source [140]
[139] Pretraining

InterPT (instruction set) 2024 Sequence, Text Protein–text instruction pretraining Source [243] Instruction
ProteinChat Corpus 2024 Sequence, Text Instruction/QA pretraining Source [75] Instruction
SwissProtCLAP 2023 Sequence, Text Sequence–text alignment Source [113] Pretraining
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Table I4: Summary of downstream task datasets for MLLMs in protein tasks.
Datasets Year Modality Tasks Source Application Stage

TAPE 2019 Sequence, Structure SS, Contact, Homology, Fluorescence, Stability Source

[113]
[221]
[243]
[231]
[178]
[149]
[160]

Downstream

DeepLoc 2017 Sequence, Text Subcellular localization Source [234]
[178] Downstream

Solubility (DeepSol) 2017 Sequence Solubility prediction Source [140] Downstream
Localization 2017 Sequence Membrane/soluble classification Source [140] Downstream

SwissProt 2000 Sequence, Text Function description classification Source [178]
[75] Downstream

CASP15 2022 Structure Protein folding Source [61] Downstream

CB513 1999 Sequence Secondary structure prediction Source [160]
[96] Downstream

SCOPe 2014 Structure Fold/superfamily classification Source
[126]
[149]
[96]

Downstream

TAPE Stability 2019 Sequence Stability prediction Source [149] Downstream

TAPE Contact 2019 Structure Contact map prediction Source [160]
[178] Downstream

STRING 2021 Graph (PPI) PPI classification Source

[221]
[243]
[178]
[181]
[237]

Downstream

SHS27k 2019 Sequence, Graph PPI classification Source

[221]
[243]
[178]
[181]

Downstream

SHS148k 2019 Sequence, Graph PPI classification Source

[221]
[243]
[178]
[181]

Downstream

BioGRID 2003 Graph PPI classification Source [237] Downstream
PPI (Yeast, Human) 2019 Sequence, Graph PPI classification Source [140] Downstream
BioSNAP 2018 Sequence, Graph DTI, PPI prediction Source [140] Downstream
DMS (β-lac, AAV, Thermo, Flu, Sta) 2018 Sequence Mutational effect prediction Source [234] Downstream

ProteinGym 2023 Sequence Mutational effect prediction Source
[61]
[160]
[96]

Downstream

PubMedQA 2019 Text Biomedical QA Source
[123]
[162]
[199]

Downstream

MedMCQA 2022 Text Biomedical QA Source [123]
[162] Downstream

USMLE 2020 Text Medical exam QA Source [123]
[162] Downstream

UniProtQA 2023 Sequence, Text Protein QA Source
[123]
[162]
[199]

Downstream

ProteinQA benchmark 2024 Sequence, Text Protein QA Source

[75]
[197]
[170]
[194]

Downstream

PDB-QA 2024 Structure, Text Protein QA Source [120] Downstream
MMLU-bio 2021 Text Multitask biomedical QA Source [162] Downstream

ChEBI-20 2019 Molecule, Text Molecule QA, Captioning Source [123]
[140] Downstream

ChemProt 2019 Text Relation extraction Source [140] Downstream

BindingDB 2007 Sequence, SMILES Binding prediction Source
[231]
[140]
[196]

Downstream

MoleculeNet 2018 Molecule Property prediction Source [231]
[162] Downstream

USPTO 2019 SMILES, Text Reaction prediction Source [162] Downstream
PubChem BioAssay 2014 SMILES, Text Retrieval Source [196] Downstream
SAbDab 2014 Structure Antibody design Source [49] Downstream
Inverse folding sets 2019 Sequence, Structure Inverse folding Source [103] Downstream

Protein design benchmarks 2024 Sequence, Structure Protein generation, Design Source
[61]
[238]
[242]

Downstream
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Table I5: Summary of pretraining / instruction-tuning datasets for MLLMs in gene tasks.
Datasets Year Modality Tasks Source Application Stage

NCBI Gene 2005 DNA, Text Function modeling source [36] Pretraining
NT 2023 DNA Sequence classification source [146] Pretraining
BEND 2022 DNA Regulatory element classification source [146] Pretraining
AgroNT 2023 DNA Plant genomics tasks source [146] Pretraining
ChromTransfer 2022 DNA Regulatory element transfer source [146] Pretraining
ATAC-seq fetal atlas 2020 DNA, TF-region Chromatin accessibility source [130] Pretraining
Sei 2022 DNA, Chromatin Epigenomic feature extraction source [66] Pretraining
SwissProt 1986 Protein Protein sequence modeling source [101] Pretraining
TrEMBL 1996 Protein Protein sequence modeling source [101] Pretraining
S2ORC 2020 Text Scientific text modeling source [101] Pretraining
scCompass-126M 2024 RNA Cross-species modeling source [203] Pretraining
Ensembl GRCh38 2013 DNA Genomic sequences source [117] Pretraining
GTEx v8 2015 RNA Expression profiles source [117] Pretraining
UniProt 2023 Protein Protein sequences source [117] Pretraining
PubMed abstracts 1996 Text Biomedical language modeling source [117] Pretraining

Table I6: Summary of downstream task datasets for MLLMs in gene tasks.
Datasets Year Modality Tasks Source Application Stage

NCBI Gene 2005 DNA, Text Function prediction source [36] Downstream
NT 2023 DNA Sequence classification source [146] Downstream
BEND 2022 DNA Regulatory element classification source [146] Downstream
AgroNT 2023 DNA Plant genomics tasks source [146] Downstream
ChromTransfer 2022 DNA Regulatory element transfer source [146] Downstream
DeepSTARR 2019 DNA Enhancer activity prediction source [146] Downstream
APARENT2 2022 RNA Polyadenylation prediction source [146] Downstream
Saluki 2022 RNA RNA degradation prediction source [146] Downstream
GM12878 2012 RNA Expression prediction source [66] Downstream
Geuvadis 2013 RNA Expression prediction source [66] Downstream
GenoTEX 2025 DNA, RNA Gene–trait association source [107] Downstream
GEO 2002 RNA Expression prediction source [107] Downstream
TCGA 2008 RNA, DNA Expression prediction source [107] Downstream
Curated gene sets (102) 2025 Gene sets Pathway enrichment source [180] Downstream
Case studies (melanoma, breast cancer) 2025 RNA, Text Disease-specific analysis source [180] Downstream
UniProt 2023 Protein Function prediction source [101] Downstream
Pfam 1997 Protein Domain classification source [101] Downstream
InterPro 2000 Protein Domain classification source [101] Downstream
PBMC-ALL 2017 RNA GRN inference source [2] Downstream
PBMC-CTL 2017 RNA GRN inference source [2] Downstream
BoneMarrow 2019 RNA GRN inference source [2] Downstream
OmniCellTOSG 2025 scRNA-seq, Text Cellular state prediction source [217] Downstream
HCA 2017 scRNA-seq Cross-species GRN inference source [203] Downstream
MCA 2018 scRNA-seq Cross-species GRN inference source [203] Downstream
Tabula Sapiens 2022 scRNA-seq Cross-species GRN inference source [203] Downstream
GO annotation 2000 DNA, Text Function prediction source [117] Downstream
UniProt 2002 Protein Protein classification source [117] Downstream
GTEx v8 2015 RNA Expression prediction source [117] Downstream
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the paper’s scope as a comprehensive
survey plus selected benchmarking of open-source MLLMs for science; the contributions
enumerated in the introduction match what is delivered in the body and appendices (survey
across domains and benchmarking in Appendix G).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper explicitly discusses risks, open challenges, and limitations of
current (multi)modal LLMs (e.g., security, long-context efficiency, data/alignment gaps) and
provides forward-looking caveats in Appendix F.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This work is a survey with benchmarking and does not present new theorems
or proofs; hence formal theoretical assumptions and proofs are not applicable.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [No]

Justification: Appendix G specifies tasks, datasets, and metrics, and notes where results are
taken from prior work due to unavailable weights; however, detailed training configurations
(e.g., full hyperparameters, seeds, environment) and runnable artifacts are not fully disclosed
for exact reproduction.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The paper lists an anonymized project homepage and provides dataset
sources/links in the appendix, but it does not include a public code release or step-by-
step reproduction scripts for the benchmarking.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines for more
details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Appendix G describes the evaluation tasks/datasets (e.g., MoleculeNet and
TAPE), metrics (e.g., AUROC, accuracy, Spearman ρ), and clarifies which baselines are
adopted from prior work vs. rerun by the authors, which is sufficient to interpret the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Benchmark tables include mean ± standard deviation for several models
(e.g., Token-Mol and MoleculeSTM variants), and note averaging across five runs where
applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: The appendix describes datasets/metrics and baseline sourcing, but does not
specify hardware, memory, or runtime requirements for the rerun experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The work surveys literature and benchmarks on publicly available datasets
without collecting new human data; dataset sources are cited/linked in the appendix.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The introduction highlights the promise of MLLMs for accelerating scientific
discovery, while Appendix F discusses risks/challenges (e.g., security and alignment issues)
relevant to potential negative impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No new high-risk models or datasets are released; the work is a survey plus
benchmarking of existing models/datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [No]
Justification: Dataset creators and sources are cited with links in the appendix, but explicit
license names/terms are not listed within the paper itself.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided.
• For existing datasets that are re-packaged, both the original license and the license of

the derived asset (if it has changed) should be provided.
• If this information is not available online, the authors are encouraged to reach out to

the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new datasets or code assets are introduced beyond the model implementa-
tion; no new dataset is released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This research does not involve human subjects or crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not applicable; there are no experiments involving human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No large language model is used as an important or original component of the
core methodology; LLMs may only have been used for minor writing/editing assistance.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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