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Abstract: Learning manipulation skills from human demonstration videos of-
fers a promising path toward generalizable and interpretable robotic intelli-
gence—particularly through the lens of actionable affordances. However, trans-
ferring such knowledge remains challenging due to: 1) a lack of large-scale
datasets with precise affordance annotations, and 2) insufficient exploration of
affordances in diverse manipulation contexts. To address these gaps, we introduce
HOVA-500K, a large-scale, affordance-annotated dataset comprising 500,000 im-
ages across 1,726 object categories and 675 actions. We also release a stan-
dardized benchmarking suite for multi-modal affordance reasoning. Built upon
HOVA-500K, we present GLOVER++, a global-to-local affordance training
framework that effectively transfers actionable affordance knowledge from human
demonstrations to downstream open-vocabulary reasoning tasks. GLOVER++
achieves state-of-the-art results on the HOVA-500K benchmark and demonstrates
strong generalization across diverse downstream robotic manipulation tasks. By
explicitly modeling actionable affordances, GLOVER++ facilitates robust trans-
fer across scenes, modalities, and tasks. We hope that HOVA-500K and the
GLOVER++ framework will serve as valuable resources for bridging the gap be-
tween human demonstrations and robotic manipulation capabilities. Code, dataset
and models are available at teleema.github.io/projects/GLOVER++.

Keywords: Actionable Affordance, Affordance Transfer, Vision-Language
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1 Introduction

Humans can naturally manipulate objects by following language instructions—distinguishing object
types, locating them, and choosing affordable parts based on the task in a generalizable way. Hence,
images and videos that depict human-object interaction and manipulation are prevalent [1, 2, 3],
as such scenarios are highly common in our daily life and easily collectible. What can these data
do for robotic manipulation? An intrinsic idea is absorbing the potential knowledge embodied in
daily human behaviors and transferring it to facilitate robotic manipulation. However, how such
knowledge can be learned and transferred remains unclear.

Some previous works [4, 5, 6, 7] focus on the policy of pretraining in human videos and finetun-
ing in downstream robotic tasks, which reveals limited generalizability and lacks robustness to scene
changes. Instead, recent works have paid attention to much more explicit and generalizable represen-
tations like affordance [8, 9, 10, 11], which refers to relational properties, or potentials for interac-
tion between the environment and the animal as introduced by James J. Gibson [12]. The affordance
embodies actionable human knowledge, reflecting the possibility of where and how to act. Previous
affordance-based methods can be mainly categorized as 3D radiance field modeling [13, 14, 15, 16],
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Figure 1: (a) GLOVER++ aims to learn generalizable affordance representation from human behav-
iors (e.g. open drawer). (b) The training pipeline of GLOVER++. We adopt a global-to-local de-
coding policy to balance global semantic decoding and local affordance decoding. (c) GLOVER++
is capable of transferring affordable knowledge to all kinds of distributions (simulation, sketch, car-
toon etc.) in an open-vocabulary manner. It also presents strong spatial reasoning ability as shown
in the bottom line. (d) By lifting inferred affordable points into 3D space, GLOVER++ provides
perceptive awareness for real-world manipulation tasks. (Red dots represent affordable points.)

object retrieval [9, 8], and vision-language model (VLM) reasoning [10, 11]. However, existing
methods have yet to adequately address how to distill actionable affordance knowledge from rich
human videos, and how to demonstrate the effective transfer as an explicit representation for a vari-
ety of manipulation tasks.

To that end, we introduce HOVA-500K, a large-scale affordance-annotated dataset constructed from
existing human videos and images. The HOVA-500K comprises 500,000 meticulously annotated
images spanning 1,726 object categories and 675 action categories, creating a comprehensive taxon-
omy of human-object interactions. HOVA-500K offers three key advantages: 1) its unprecedented
scale in terms of images and object/action categories enables large-scale affordance training, 2)
the diversity of scenarios and views ensures broad coverage of real-world interaction contexts, 3)
precise annotation of affordable points eliminates the ambiguity of the mask/region boundary and
aligns better with robotic execution. Additionally, we provide a benchmarking evaluation set for
standardized comparisons in multi-modal affordance reasoning.

Based on HOVA-500K, we present GLOVER++, an end-to-end framework that explores distilling
actionable affordance knowledge from raw human demonstrations for multiple robotic tasks as Fig. 1
shows. To achieve the balance between global semantic perception and local affordance learning, a
global-to-local affordance tuning policy is proposed to incorporate affordance reasoning capabilities
while preserving the semantic understanding of VLM. We aim to unleash the potential of the affor-
dance representation and push the boundaries of affordance transfer in diverse manipulation tasks.
Extensive experiments in both simulation and the real world are conducted to demonstrate the effec-
tiveness of GLOVER++, including functional zero-shot manipulation, multi-task imitation learning,
and serving as an effective perception module for long-horizon and bimanual manipulation.

Our contributions are summarized as follows: 1) We contribute a large-scale affordance-annotated
dataset—HOVA-500K, that provides the necessary scale and diversity to learn generalizable affor-
dance representations. 2) We present GLOVER++, a global-to-local paradigm of affordance train-
ing policy based on HOVA-500K, showing fine-grained affordance representation and generalizable
affordance reasoning capability. GLOVER++ achieves state-of-the-art performance in the HOVA-
500K evaluation benchmark. 3) Extensive applications in tasks like zero-shot manipulation, multi-
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task imitation learning, long-horizon and bimanual manipulation demonstrate the huge potential of
HOVA-500K and GLOVER++.

Figure 2: The distribution of primary
action categories (>1,000 samples)
and related objects in HOVA-500K.

Dataset Img Obj Act Format Ego. Exo. Ann.
UMD [17] 30K 17 7 RGBD ✗ ✓ Part
Sawatzky [18] 3K 17 7 RGBD ✗ ✓ Part
AGD20k [19] 26K 50 36 RGB ✓ ✓ Part
HANDAL [20] 200K 17 - RGBD ✗ ✓ Obj/Part
OPRA [21] 11K - 7 RGB ✓ ✓ Point
AED [22] 0.7K 13 8 RGB ✗ ✓ Part
3DOI [23] 10K - - RGB ✓ ✓ Point
PAD [24] 4K 72 31 RGB ✗ ✓ Obj
IIT-AFF [25] 8.8K 10 9 RGBD ✗ ✓ Part
ADE-Aff [26] 10K 150 7 RGB ✓ ✗ Scene
HOVA-500K 500K 1726 675 RGB ✓ ✓ Point

Table 1: Comparisons between HOVA-500K and previous
datasets. “Format”, “Ann.”, “Ego.” and “Exo.” refer to the
image format, egocentric, exocentric, and annotation type,
respectively. Our HOVA-500K annotates the action & ob-
ject categories, and the affordance with more precise afford-
able points.

2 Related Works

Affordance Reasoning. Prior approaches to affordance inference can be categorized into three
paradigms: (1) human-object interaction analysis [27, 28, 29], (2) scene understanding through ge-
ometric and semantic cues [14, 30, 16], and (3) 3D point cloud grounding [31, 32, 33, 34]. To
achieve open-vocabulary affordance reasoning, recent advances have incorporated foundation mod-
els (LLMs/VLMs) to the model design [35, 10, 8, 36, 37, 38]. This integration approach with
LLMs/VLMs comprises two primary types. The first [8, 9] constructs a memory of object affor-
dances and reasons about the affordances of objects in novel scenes by retrieving from the affor-
dance memory with the help of CLIP [39]. On the other hand, methods like AffordanceLLM [10]
and GLOVER [11] fine-tune large VLMs [40] on affordance datasets, leveraging the world knowl-
edge and reasoning capability of foundation models. However, these approaches are constrained
by limited data availability and insufficient exploration of the VLM-based affordance fine-tuning
mechanism. We contribute the HOVA-500K dataset to mitigate data scarcity, while providing an
effective fine-tuning framework template, GLOVER++, to leverage such large-scale data.

Language-guided Zero-shot Manipulation. Integrating linguistic modalities into robotic ma-
nipulation tasks serves as a crucial approach for achieving zero-shot manipulation capabili-
ties [15, 41, 42, 43, 14]. Currently, the related methods can be categorized into multiple types like
visual-language-action (VLA) pretraining in robotic data [44, 45, 46, 47, 48], invoking LLMs/VLMs
for planning or in-context learning [49, 50, 15, 41], and using VLMs for object/scene representa-
tions [16, 51, 30, 14, 52]. We follow the manner of leveraging VLMs for providing semantic scene
understanding for the downstream manipulation tasks in this work. Different from the methods
that distill features from 2D foundation models for building 3D feature fields [14, 52] via neural
rendering [53, 54], we adopt a visual-linguistic affordance representation and project the inferred
affordance into 3D space without requiring full reconstruction.

3 HOVA-500K Benchmark

Data Collection. HOVA-500K is primarily derived from three key sources: (1) human demon-
stration videos, which provide real-world interaction sequences for natural and diverse affordance
learning (Ego4D [3], EPIC-KITCHEN [55]); (2) object-part segmentation masks, offering structural
mask annotations to bridge semantic parts with actionable regions (HANDAL [20]); and (3) existing
affordance datasets with labels of human-object affordable point (3DOI [23]). These datasets cover
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a broad range of scenarios, including both in-the-wild and household environments from ego/exo-
centric views. This intentional diversity ensures robust generalization across different spatial rela-
tionships and interaction modalities.
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Figure 3: Some examples of HOVA-
500K, showing action, object category,
and Gaussian-distributed mask of af-
fordable point.

Affordable Points Annotation. Unlike previous affor-
dance datasets that annotate object regions as segmenta-
tion masks [20], we reformulates affordance learning as a
dense keypoint prediction task, where the model predicts
a single maximum-probability interaction point per object
based on the functionality. This shift from region-level
to point-level representation offers two advantages: (1) it
eliminates the ambiguity of mask boundaries in precision-
sensitive tasks, and (2) it better aligns with robotic con-
trol, where end-effector contact requires millimeter-level
accuracy.

Locating Affordable Points in Human Videos. Our ap-
proach builds upon the OCT model [56], applying skin
segmentation [57] in the overlapping region between hand and object bounding boxes to obtain
contact points. We then compute homography matrices between adjacent frames via RANSAC,
enabling us to project contact points from the interaction frame back to the initial frame. This step
effectively eliminates occlusion caused by hands. This semi-automatic pipeline enables efficient and
scalable annotation of affordable points. The specific introduction and pipeline is shown in Sec. A.1
and Fig. 8.

Category & Action. For the existing uni-modal visual affordance datasets, we implement a semi-
automated labeling pipeline using Qwen-2.5-VL-7B [58] VLM to generate object categories and
actions. These automatically generated labels are subsequently verified by human annotators to
eliminate clearly incorrect entries. Representative actions and object categories are visualized in
Fig.2, and more details can be found in Fig. 9, 10, 11.

Benchmarking Testing Set. To comprehensively evaluate affordance prediction models, we con-
struct a diverse test set by selecting 6,000 images from HOVA-500K. Our evaluation framework
measures both prediction accuracy and functional realism. The metrics we used for evaluation in-
clude Kullback-Leibler Divergence (KLD), Similarity (SIM ), and Normalized Scanpath Saliency
(NSS). Moreover, we introduce SIMpart, a new metric that quantifies the practical plausibility of
predicted affordance regions in real-world settings. Detailed metric descriptions appear in Sec. A.2.

4 Method

In this section, we elaborate on the training policy for distilling actionable affordance knowledge
from human behaviors and aligning with human instructions. First, we briefly describe the task and
preliminary (Sec. 4.1). Then, we introduce the global-to-local affordance fine-tuning of GLOVER++
in Sec. 4.2. The potential application of GLOVER++ is elaborated in Sec. 4.3.

4.1 Task Description and Preliminaries

GLOVER++ aims to predict executable affordable points P2D in an open-vocabulary and end-to-
end manner. Given the input I = (IR, T ), where IR, T represent an RGB image and language
instructions, we expect the model to generate P2D. To achieve this, we first convert ground-truth
affordable points P2D

gt into Gaussian-distributed heatmaps M2D
gt that centered at P2D

gt to ensure
gradient continuity during training like annotations in Fig. 3. This translates discrete annotations
into continuous optimization targets as shown in Fig. 3. The resulting M2D

gt supervises the model
to generate affordance mask M2D

A , where each pixel value A2D in M2D
A represents the affordable

probability of the current position. We obtain P2D by selecting the pixel with the highest probability:
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P2D = argmax
P∈IR

M2D
A . This point is then projected into 3D space via camera intrinsics to yield P3D

for robotic execution.

4.2 Global-to-Local Affordance Tuning

Figure 4: Visualization of the decoded features by the global and local decoder (the intensity of
highlight scale with interest of regions). We can observe that the integration of the local decoder
effectively eliminates the background noise from the global decoding.

We illustrate the global-to-local pipeline in Fig. 1 & 12. The following provides detailed descriptions
of the components involved.

Multi-modal Encoding. To empower GLOVER++ with world knowledge and reasoning capability,
we leverage a VLM to encode the multi-modal inputs I into a hidden latent token for affordance rea-
soning. Following the Embedding-as-Mask paradigm in LISA [59], we add a new affordance token
<AFF> to encode combined visual and linguistic features with LLaVA-1.5 [40]. Given the language
instruction T and RGB image IR, we feed them into the LLaVA model FLLaV A to generate the
responsive hidden latents r, from where we detach the latent <AFF> token:

<AFF> ∈ r = FLLaV A(IR, T ). (1)

Global-to-Local Decoding. The <AFF> token aggregates global semantic context from IR, while
the affordance prediction requires local fine-grained reasoning. Hence, the core challenge lies in
balancing global semantic perception and precise local affordance representation learning. To this
end, we decompose the decoding process of <AFF> token into two stages: global decoding and
local decoding. In the first stage, the <AFF> token guides global semantic decoding to generate a
high-level semantic logits map that captures global contextual relationships. In the second stage, we
refine the prediction through localized decoding: the semantic map M2D

sem acts as a mask prompt to
condition attention on relevant regions. This enables accurate region-specific affordance prediction:

M2D
sem = Fglo

dec(<AFF>,v), M2D
A = Floc

dec(M2D
sem,v), (2)

where v denotes the visual features from the vision backbone. The effectiveness of the global-
to-local decoding mechanism is visually demonstrated in Fig. 4, and implementation details are
specified in Sec. B.1.

Training Objective. Besides the sigmoid focal loss [60] used in GLOVER [11], we introduce an ad-
ditional Kullback-Leibler Divergence (KLD) loss to constrain the predicted affordance distribution.

Figure 5: Explicit affordance
representation for imitation
learning in RLBench [61].

This KLD term aligns the predicted heatmap M2D
A with the

Gaussian-distributed ground truth M2D
gt , encouraging distributional

consistency. The overall training objective becomes:

L = LFL(M2D
A ,M2D

gt ) + LKL(M2D
A ,M2D

gt ), (3)

More details about the training objective are specified in Sec. B.2.

4.3 Unleash the Potential of Affordance Representation

Zero-shot Manipulation. GLOVER++ is capable of reasoning
about affordance in an open-vocabulary way to acquire 3D gras-
pable points, which inherently addresses zero-shot grasping chal-
lenges. The inferred affordable points A3D can be combined with all kinds of pose estimators
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(e.g. GraspNet [62], AnyGrasp [63], FoundationPose [64]) or geometric-constraints estimation (e.g.
superquadric recovery [65, 66, 11]) to generate the grasping pose (A3D, τ3D), where τ3D is the ro-
tation of the end-effector. For motion planning, we use Inverse Kinematics (IK) by default to reach
A3D.

Imitation Learning. Instead of the previous pretraining-finetuning paradigm that transfers pre-
trained weights in human videos to downstream imitation-learning tasks [5, 6, 7], we adopt the rea-
soned affordance representation as an explicit knowledge prior to dynamically modulate attention
weights, enabling the model to focus on task-relevant regions, as shown in Fig. 5. This represen-
tation serves as a structured guidance signal, making the learning process more interpretable and
effective compared to implicit methods. The pipeline is shown in Fig. 14, and training details are
specified in Sec. C.2.

5 Experiments

We evaluate the performance of GLOVER++ from four perspectives: vision-language affordance
reasoning (Sec. 5.1), zero-shot manipulation (Sec. 5.2), imitation learning (Sec. 5.3), and extended
capabilities (Sec. 5.4), including long-horizon manipulation with VLM planner and bimanual ma-
nipulation.

Figure 6: Comparison with Qwen-2.5-VL, GLOVER++ generates more physically plausible and
functionally grounded prediction results, aligning better with real-world interaction constraints.

5.1 Vision-Language Affordance Reasoning

Training Details. GLOVER++ is trained on 8 NVIDIA A6000 GPUs for 10 epochs with a batch
size of 32 per GPU. We employ AdamW [67] optimizer with a weight decay of 5e-4. The learning
rates for the global decoder and local decoder are set to 5e-5 and 5e-4 to achieve a balance between
preserving open-vocabulary knowledge and affordance learning. For more details, please refer to
Sec. C.1.

Methods KLD ↓ SIM ↑ SIMpart ↑ NSS ↑
3DOI [23] 5.978 0.007 0.006 -0.311

AffordanceLLM [10] 5.041 0.018 0.161 1.665
GLOVER [11] 4.874 0.016 0.254 2.876
GLOVER++ 3.411 0.141 0.563 5.296

Ablations

w/o global-to-local 3.465 0.101 0.483 4.925
w/o KLD 4.307 0.030 0.409 4.005

10→5 epoch 3.615 0.121 0.533 5.197

Table 2: Affordance reasoning results and ablations in
the benchmarking dataset.

Results. Table 2 shows the quantita-
tive results of affordance reasoning on
the HOVA-500K benchmark. The met-
rics specified in the benchmarking testing
set (Sec. 3) are adopted to evaluate. We
compare GLOVER++ with three meth-
ods, 3DOI [23], AffordanceLLM [10], and
GLOVER [11]. The three methods are all
based on affordance pretraining. Specif-
ically, 3DOI relies solely on visual in-
puts. In contrast, both AffordanceLLM
and GLVOER are pretrained models that
integrate visual-language information for affordance learning. GLOVER++ significantly outper-
forms all baselines across all metrics, owing to its global-to-local decoding scheme and KLD-based
optimization, which jointly enhance both affordance center prediction and distributional alignment.

We also benchmark against Qwen-2.5-VL-7B [58], a powerful VLM with strong spatial understand-
ing via Rotary Positional Embedding (RoPE). As shown in Fig. 6, while Qwen-2.5-VL exhibits
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decent localization, GLOVER++ provides affordance predictions that are more physically plausible
and functionally grounded, despite using a comparable model size (∼7B).

Ablations. To assess the contribution of key components, we evaluate ablations by removing the
global-to-local module, the KLD loss, and varying the training length (Table 2). Notably, remov-
ing global-to-local decoding or KLD optimization results in a 28.4% and 78.7% drop in the SIM
metric, respectively, underscoring their importance. We also show the visualization of reasoned af-
fordance in Fig. 16, where the effectiveness of model components is evident. Additional ablations
are provided in Sec. C.3.

5.2 Zero-shot Manipulation

Setup. We perform extensive experiments in both the simulated and real-world set-
tings. For simulation, we use IsaacGym [68] with GAPartNet [69] object sets,

Object AVG
Task O C O C O P O /

VRB [70] 4 60 4 56 20 24 16 26.3
Robo-ABC [8] 28 44 32 32 20 32 16 29.1

RAM [9] 36 64 40 60 24 36 32 41.7
GLOVER++ 40 60 40 68 32 44 44 46.9

Table 3: Success rates of different methods in Isaac-
Gym. O, C, P represent Open, Close, Pickup, respec-
tively.

involving a 7-DoF Franka Panda arm for
zero-shot manipulation. 50 objects across
5 categories (Box, Pot, Drawer, TrashCan,
Cabinet) are used. Actions are listed in
Table 3, with success defined as articula-
tion joint or height exceeding a predefined
threshold. Each task is tested 25 times
with varied initial poses. For real-world
experiments, we deploy a 7-DoF UFactory
xArm, evaluated over five trials per task
using RGB-D input from an Orbbec Femto Bolt (1280× 960 resolution). Object categories and ac-
tions are provided in Table 4. Note that the “Press Button” task involves discriminating the correct
color one and pressing it.

Object AVG
Task O P O P PR P /

RAM [9] 3/5 1/5 2/5 3/5 1/5 4/5 46.7
GLOVER [11] 3/5 2/5 3/5 3/5 3/5 4/5 60.0
GLOVER++ 4/5 4/5 2/5 4/5 4/5 4/5 73.3

Table 4: Success rates of different methods in
real-world experiments. O, P, PR means Open,
Pickup, Press, respectively.

Baselines & Results. We compare
GLOVER++ with three baselines. VRB [70]
predicts contact points by learning from human
demonstrations. Both Robo-ABC [8] and
RAM [9] retrieve affordance from the pre-built
memory and transfer it to new scenes via esti-
mated similarity of CLIP [39]. For simulation
and real-world experiments, we use the success
rate (SR) as metric. Table 3 and 4 show the
simulated and real-world results, respectively. We can see that GLOVER++ achieves favorable
performance among the baseline methods in both the IsaacGym and real-world environments,
yielding an average success of 46.9% and 73.3%, respectively. Compared to GLOVER++, RAM is
limited in its ability to distinguish object properties (such as buttons of different colors) due to the
retrieval mechanism based on object-level similarity. In contrast, GLOVER++ generalizes to novel
objects and scenarios by directly grounding actionable affordance points from language instructions
alone.

5.3 Imitation Learning

Setup. We validate affordance knowledge transfer in language-guided multi-task imitation learn-
ing using RLBench [61]. RLBench is a robot manipulation benchmark built on CoppelaSim [71]
and PyRep [72]. We follow the protocols of PerAct [73] to test the model on 18 tasks in RLBench
by controlling a Franka Panda robot with a parallel gripper. Each policy is trained on 100 demon-
strations using RGB-D observations from four views (front, left shoulder, right shoulder, wrist) at
128× 128 resolution. Tasks are tested 25 times per trial. Additional details are in Sec. C.2.

Baselines & Results. We compare with two imitation-learning baselines. RVT [74] utilizes a
multi-view Transformer model to extract visual features from multi-view images rendered based
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Models put in
drawer

drag
stick

turn
tap

slide
block

open
drawer

put in
cupboard

sort
shape

put in
safe

push
buttons

close
jar

RVT 92.0 100.0 100.0 76.0 76.0 52.0 40.0 84.0 96.0 92.0
RVT-AFF 92.0 100.0 96.0 64.0 76.0 76.0 40.0 88.0 96.0 96.0

RVT2 96.0 100.0 100.0 88.0 68.0 68.0 32.0 96.0 100.0 100.0
RVT2-AFF 92.0 100.0 100.0 92.0 72.0 68.0 36.0 100.0 100.0 100.0

Models stack
blocks

place
wine

sweep to
dustpan

meat off
grill

screw
bulb

place
cups

insert
peg

stack
cups

Averaged
Success Rate

RVT 24.0 88.0 64.0 88.0 48.0 0 0 0 62.2
RVT-AFF 32.0 92.0 88.0 96.0 56.0 4.0 8.0 8.0 67.1(+4.9)

RVT2 80.0 92.0 100.0 96.0 88.0 36.0 40.0 72.0 80.7
RVT2-AFF 76.0 100.0 100.0 96.0 92.0 44.0 52.0 80.0 83.3(+2.6)

Table 5: Success rate of 18 tasks in RLBench. With explicit affordance representation, both
RVT [74] and RVT-2 [75] show improvements in the multiple imitation-learning tasks.

on point clouds, and predicting end-effector poses via deep-learning-based Q-function estimation.
RVT-2 [75] learns more precise manipulations via zooming into the region of interest.

As shown in Table 5, GLOVER++ improves RVT and RVT-2 by +4.9% and +2.6%, respectively.
Gains are particularly evident in tasks requiring precise control (e.g., insert peg, stack cups,
blue highlight in Table 5). The affordance representation constrains attention to task-relevant spa-
tial and semantic features, improving policy effectiveness. The experiments demonstrate that the
explicit representation like affordance is capable of transferring knowledge learned from human
demonstrations to enhance robotic imitation learning performance.

5.4 Extended Capabilities

Figure 7: Left: GLOVER++ serves as a perceptual module for the VLM planner to complete long-
horizon tasks. Right: GLOVER++ enables bimanual tasks by reasoning affordances for both left
and right hands with spatial relationships.

Long-horizon Manipulation with VLM planner. GLOVER++ can serve as a perceptual backbone
for a high-level VLM planner. We integrate it with Qwen-2.5-VL [58], which decomposes long-
horizon instructions into subgoals. As shown in Fig.7-left, Qwen-2.5-VL split the task “Put the
jar into the top drawer” into steps like “Open top drawer”, “Pick up jar”, “Move to top drawer”
etc., and invoking GLOVER++ when affordance grounding is required (①, ②, ③). This hybrid
system combines semantic planning and precise affordance prediction, enabling robust multi-stage
manipulation. Full flow is shown in Fig.22.

Bimanual Manipulation. Thanks to its spatial reasoning capabilities, GLOVER++ can interpret
positional cues (e.g., “left/right”, “top/bottom”) to enable dual-arm affordance reasoning. It gen-
erates graspable regions for both arms while maintaining spatial separation and feasibility (Fig.7,
right). We execute dual-arm motions using obstacle-avoidance IK on the Unitree G1 humanoid
robot (Fig.19).

6 Conclusion

In this work, we address the critical challenges of transferring actionable affordance knowledge from
human demonstrations to robotic tasks by introducing HOVA-500K, a large-scale dataset with pre-
cise affordance annotations, and GLOVER++, a global-to-local framework for affordance reasoning.
We demonstrate the potential of affordance representation and GLOVER++ in diverse tasks, includ-
ing zero-shot manipulation, imitation learning, long-horizon and bimanual manipulation. We aim
to foster future research in the explicit, interpretable and transferable representation learning for
robotic manipulation from human behaviors.
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7 Limitations

While HOVA-500K provides a large-scale affordance dataset, its annotations are primarily derived
from static images, limiting coverage of dynamic interactions (e.g., tool-use trajectories or force-
sensitive affordances). GLOVER++’s reliance on vision-language models may inherit biases from
pre-trained VLMs, occasionally leading to over-generalized affordance predictions for novel object-
action combinations. Additionally, GLOVER++ relies on imitation learning or an extra VLM plan-
ner to complete long-horizon manipulation tasks, lacking the ability to plan the grasping pose and
trajectories by itself. Future work to address these issues includes: enlarging the HOVA-500K with
annotated trajectories of human behaviors, empowering GLOVER++ with trajectory planning abil-
ity via finetuning, and training multiple versions of GLOVER++ based on different large VLMs. We
also discuss the failure cases in Sec. C.7.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 62306257) and
the Guangzhou-HKUST(GZ) Joint Funding Program (Grant No.2023A03J0008), Education Bureau
of Guangzhou Municipality.

References
[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierar-

chical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

[2] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola,
T. Green, T. Back, P. Natsev, et al. The kinetics human action video dataset. arXiv preprint
arXiv:1705.06950, 2017.

[3] K. Grauman, A. Westbury, E. Byrne, Z. Chavis, A. Furnari, R. Girdhar, J. Hamburger, H. Jiang,
M. Liu, X. Liu, et al. Ego4d: Around the world in 3,000 hours of egocentric video. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
18995–19012, 2022.

[4] X. Lin, J. So, S. Mahalingam, F. Liu, and P. Abbeel. Spawnnet: Learning generalizable visuo-
motor skills from pre-trained network. In 2024 IEEE International Conference on Robotics
and Automation (ICRA), pages 4781–4787. IEEE, 2024.

[5] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual represen-
tation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

[6] T. Xiao, I. Radosavovic, T. Darrell, and J. Malik. Masked visual pre-training for motor control.
arXiv preprint arXiv:2203.06173, 2022.

[7] J. Zhou, T. Ma, K.-Y. Lin, Z. Wang, R. Qiu, and J. Liang. Mitigating the human-robot domain
discrepancy in visual pre-training for robotic manipulation. arXiv preprint arXiv:2406.14235,
2024.

[8] Y. Ju, K. Hu, G. Zhang, G. Zhang, M. Jiang, and H. Xu. Robo-abc: Affordance generaliza-
tion beyond categories via semantic correspondence for robot manipulation. arXiv preprint
arXiv:2401.07487, 2024.

[9] Y. Kuang, J. Ye, H. Geng, J. Mao, C. Deng, L. Guibas, H. Wang, and Y. Wang. Ram: Retrieval-
based affordance transfer for generalizable zero-shot robotic manipulation. arXiv preprint
arXiv:2407.04689, 2024.

[10] S. Qian, W. Chen, M. Bai, X. Zhou, Z. Tu, and L. E. Li. Affordancellm: Grounding affordance
from vision language models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7587–7597, 2024.

9



[11] T. Ma, Z. Wang, J. Zhou, M. Wang, and J. Liang. Glover: Generalizable open-vocabulary
affordance reasoning for task-oriented grasping. arXiv preprint arXiv:2411.12286, 2024.

[12] J. Gibson. The theory of affordances. Perceiving, acting and knowing: Towards an ecological
psychology/Erlbaum, 1977.

[13] Y. Zheng, X. Chen, Y. Zheng, S. Gu, R. Yang, B. Jin, P. Li, C. Zhong, Z. Wang, L. Liu, et al.
Gaussiangrasper: 3d language gaussian splatting for open-vocabulary robotic grasping. arXiv
preprint arXiv:2403.09637, 2024.

[14] A. Rashid, S. Sharma, C. M. Kim, J. Kerr, L. Y. Chen, A. Kanazawa, and K. Goldberg. Lan-
guage embedded radiance fields for zero-shot task-oriented grasping. In 7th Annual Conference
on Robot Learning, 2023.

[15] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei. Voxposer: Composable 3d value
maps for robotic manipulation with language models. arXiv preprint arXiv:2307.05973, 2023.

[16] R.-Z. Qiu, Y. Hu, G. Yang, Y. Song, Y. Fu, J. Ye, J. Mu, R. Yang, N. Atanasov, S. Scherer,
et al. Learning generalizable feature fields for mobile manipulation. arXiv preprint
arXiv:2403.07563, 2024.

[17] A. Myers, C. L. Teo, C. Fermüller, and Y. Aloimonos. Affordance detection of tool parts
from geometric features. In 2015 IEEE International Conference on Robotics and Automation
(ICRA), pages 1374–1381. IEEE, 2015.

[18] J. Sawatzky, A. Srikantha, and J. Gall. Weakly supervised affordance detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2795–2804, 2017.

[19] H. Luo, W. Zhai, J. Zhang, Y. Cao, and D. Tao. Learning affordance grounding from exo-
centric images. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2252–2261, 2022.

[20] A. Guo, B. Wen, J. Yuan, J. Tremblay, S. Tyree, J. Smith, and S. Birchfield. Handal: A
dataset of real-world manipulable object categories with pose annotations, affordances, and
reconstructions. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 11428–11435. IEEE, 2023.

[21] K. Fang, T.-L. Wu, D. Yang, S. Savarese, and J. J. Lim. Demo2vec: Reasoning object affor-
dances from online videos. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2139–2147, 2018.

[22] G. Li, N. Tsagkas, J. Song, R. Mon-Williams, S. Vijayakumar, K. Shao, and L. Sevilla-Lara.
Learning precise affordances from egocentric videos for robotic manipulation. arXiv preprint
arXiv:2408.10123, 2024.

[23] S. Qian and D. F. Fouhey. Understanding 3d object interaction from a single image. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pages 21753–21763,
2023.

[24] H. Luo, W. Zhai, J. Zhang, Y. Cao, and D. Tao. One-shot affordance detection. arXiv preprint
arXiv:2106.14747, 2021.

[25] A. Nguyen, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis. Object-based affordances
detection with convolutional neural networks and dense conditional random fields. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5908–
5915. IEEE, 2017.

[26] C.-Y. Chuang, J. Li, A. Torralba, and S. Fidler. Learning to act properly: Predicting and
explaining affordances from images. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 975–983, 2018.

10



[27] M. Hassan and A. Dharmaratne. Attribute based affordance detection from human-object
interaction images. In Image and Video Technology–PSIVT 2015 Workshops: RV 2015, GPID
2013, VG 2015, EO4AS 2015, MCBMIIA 2015, and VSWS 2015, Auckland, New Zealand,
November 23-27, 2015. Revised Selected Papers 7, pages 220–232. Springer, 2016.

[28] Z. Hou, B. Yu, Y. Qiao, X. Peng, and D. Tao. Affordance transfer learning for human-object
interaction detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 495–504, 2021.

[29] H. Luo, W. Zhai, J. Zhang, Y. Cao, and D. Tao. Learning affordance grounding from exo-
centric images. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2252–2261, 2022.

[30] G. Lu, S. Zhang, Z. Wang, C. Liu, J. Lu, and Y. Tang. Manigaussian: Dynamic gaussian
splatting for multi-task robotic manipulation. arXiv preprint arXiv:2403.08321, 2024.

[31] Y. Geng, B. An, H. Geng, Y. Chen, Y. Yang, and H. Dong. Rlafford: End-to-end affordance
learning for robotic manipulation. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 5880–5886. IEEE, 2023.

[32] C. Ning, R. Wu, H. Lu, K. Mo, and H. Dong. Where2explore: Few-shot affordance learning
for unseen novel categories of articulated objects. Advances in Neural Information Processing
Systems, 36, 2024.

[33] R. Wu, K. Cheng, Y. Zhao, C. Ning, G. Zhan, and H. Dong. Learning environment-aware
affordance for 3d articulated object manipulation under occlusions. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

[34] K. Mo, L. J. Guibas, M. Mukadam, A. Gupta, and S. Tulsiani. Where2act: From pixels to
actions for articulated 3d objects. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6813–6823, 2021.

[35] D. Hadjivelichkov, S. Zwane, L. Agapito, M. P. Deisenroth, and D. Kanoulas. One-shot transfer
of affordance regions? affcorrs! In Conference on Robot Learning, pages 550–560. PMLR,
2023.

[36] Y. Song, P. Sun, Y. Ren, Y. Zheng, and Y. Zhang. Learning 6-dof fine-grained grasp detection
based on part affordance grounding. arXiv preprint arXiv:2301.11564, 2023.

[37] Y. Lu, Y. Fan, B. Deng, F. Liu, Y. Li, and S. Wang. Vl-grasp: a 6-dof interactive grasp pol-
icy for language-oriented objects in cluttered indoor scenes. In 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 976–983. IEEE, 2023.

[38] K. Xu, S. Zhao, Z. Zhou, Z. Li, H. Pi, Y. Zhu, Y. Wang, and R. Xiong. A joint modeling
of vision-language-action for target-oriented grasping in clutter. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 11597–11604. IEEE, 2023.

[39] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages 8748–8763. PMLR, 2021.

[40] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. arXiv preprint arXiv:2304.08485,
2023.

[41] W. Huang, C. Wang, Y. Li, R. Zhang, and L. Fei-Fei. Rekep: Spatio-temporal reasoning of
relational keypoint constraints for robotic manipulation. arXiv preprint arXiv:2409.01652,
2024.

[42] N. Di Palo and E. Johns. Dinobot: Robot manipulation via retrieval and alignment with vision
foundation models. arXiv preprint arXiv:2402.13181, 2024.

11



[43] P. Liu, Y. Orru, C. Paxton, N. M. M. Shafiullah, and L. Pinto. Ok-robot: What really matters
in integrating open-knowledge models for robotics. arXiv preprint arXiv:2401.12202, 2024.

[44] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to
robotic control. arXiv preprint arXiv:2307.15818, 2023.

[45] Q. Vuong, S. Levine, H. R. Walke, K. Pertsch, A. Singh, R. Doshi, C. Xu, J. Luo, L. Tan,
D. Shah, et al. Open x-embodiment: Robotic learning datasets and rt-x models. In Towards
Generalist Robots: Learning Paradigms for Scalable Skill Acquisition@ CoRL2023, 2023.

[46] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov, E. Foster,
G. Lam, P. Sanketi, et al. Openvla: An open-source vision-language-action model. arXiv
preprint arXiv:2406.09246, 2024.

[47] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna,
T. Kreiman, C. Xu, et al. Octo: An open-source generalist robot policy. arXiv preprint
arXiv:2405.12213, 2024.

[48] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, A. Wahid, J. Tompson, Q. Vuong,
T. Yu, W. Huang, et al. Palm-e: An embodied multimodal language model. 2023.

[49] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, et al. Do as i can, not as i say: Grounding language in robotic affordances.
arXiv preprint arXiv:2204.01691, 2022.

[50] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code
as policies: Language model programs for embodied control. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 9493–9500. IEEE, 2023.

[51] J. Kerr, C. M. Kim, K. Goldberg, A. Kanazawa, and M. Tancik. Lerf: Language embedded ra-
diance fields. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 19729–19739, 2023.

[52] W. Shen, G. Yang, A. Yu, J. Wong, L. P. Kaelbling, and P. Isola. Distilled feature fields enable
few-shot language-guided manipulation. arXiv preprint arXiv:2308.07931, 2023.

[53] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf:
Representing scenes as neural radiance fields for view synthesis. Communications of the ACM,
65(1):99–106, 2021.

[54] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

[55] D. Damen, H. Doughty, G. M. Farinella, A. Furnari, E. Kazakos, J. Ma, D. Moltisanti,
J. Munro, T. Perrett, W. Price, et al. Rescaling egocentric vision: Collection, pipeline and
challenges for epic-kitchens-100. International Journal of Computer Vision, pages 1–23, 2022.

[56] S. Liu, S. Tripathi, S. Majumdar, and X. Wang. Joint hand motion and interaction hotspots
prediction from egocentric videos. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3282–3292, 2022.

[57] F. Saxen and A. Al-Hamadi. Color-based skin segmentation: An evaluation of the state of the
art. In 2014 IEEE International Conference on Image Processing (ICIP), pages 4467–4471.
IEEE, 2014.

[58] S. Bai, K. Chen, X. Liu, J. Wang, W. Ge, S. Song, K. Dang, P. Wang, S. Wang, J. Tang, et al.
Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923, 2025.

12



[59] X. Lai, Z. Tian, Y. Chen, Y. Li, Y. Yuan, S. Liu, and J. Jia. Lisa: Reasoning segmentation via
large language model. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9579–9589, 2024.

[60] T. Lin. Focal loss for dense object detection. arXiv preprint arXiv:1708.02002, 2017.

[61] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &
learning environment. IEEE Robotics and Automation Letters, 5(2):3019–3026, 2020.

[62] H.-S. Fang, C. Wang, M. Gou, and C. Lu. Graspnet-1billion: A large-scale benchmark for
general object grasping. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 11444–11453, 2020.

[63] H.-S. Fang, C. Wang, H. Fang, M. Gou, J. Liu, H. Yan, W. Liu, Y. Xie, and C. Lu. Anygrasp:
Robust and efficient grasp perception in spatial and temporal domains. IEEE Transactions on
Robotics, 2023.

[64] B. Wen, W. Yang, J. Kautz, and S. Birchfield. Foundationpose: Unified 6d pose estimation and
tracking of novel objects. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 17868–17879, 2024.

[65] A. Leonardis, A. Jaklic, and F. Solina. Superquadrics for segmenting and modeling range data.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(11):1289–1295, 1997.

[66] D. Paschalidou, A. O. Ulusoy, and A. Geiger. Superquadrics revisited: Learning 3d shape
parsing beyond cuboids. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10344–10353, 2019.

[67] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[68] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, et al. Isaac gym: High performance gpu-based physics simulation for
robot learning. arXiv preprint arXiv:2108.10470, 2021.

[69] H. Geng, H. Xu, C. Zhao, C. Xu, L. Yi, S. Huang, and H. Wang. Gapartnet: Cross-category
domain-generalizable object perception and manipulation via generalizable and actionable
parts. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 7081–7091, 2023.

[70] S. Bahl, R. Mendonca, L. Chen, U. Jain, and D. Pathak. Affordances from human videos as a
versatile representation for robotics. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13778–13790, 2023.

[71] E. Rohmer, S. P. Singh, and M. Freese. V-rep: A versatile and scalable robot simulation
framework. In 2013 IEEE/RSJ international conference on intelligent robots and systems,
pages 1321–1326. IEEE, 2013.

[72] S. James, M. Freese, and A. J. Davison. Pyrep: Bringing v-rep to deep robot learning. arXiv
preprint arXiv:1906.11176, 2019.

[73] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-Actor: A multi-task transformer for robotic
manipulation. In CoRL, 2022.

[74] A. Goyal, J. Xu, Y. Guo, V. Blukis, Y.-W. Chao, and D. Fox. Rvt: Robotic view transformer
for 3d object manipulation. In Conference on Robot Learning, pages 694–710. PMLR, 2023.

[75] A. Goyal, V. Blukis, J. Xu, Y. Guo, Y.-W. Chao, and D. Fox. Rvt-2: Learning precise manipu-
lation from few demonstrations. arXiv preprint arXiv:2406.08545, 2024.

13



[76] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In Computer Vision–
ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006.
Proceedings, Part I 9, pages 404–417. Springer, 2006.

[77] S. Yang, T. Qu, X. Lai, Z. Tian, B. Peng, S. Liu, and J. Jia. Lisa++: An improved baseline for
reasoning segmentation with large language model. arXiv preprint arXiv:2312.17240, 2023.

[78] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, et al. Segment anything. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4015–4026, 2023.

[79] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He. Deepspeed: System optimizations enable
training deep learning models with over 100 billion parameters. In Proceedings of the 26th
ACM SIGKDD international conference on knowledge discovery & data mining, pages 3505–
3506, 2020.

A HOVA-500K

A.1 Locate Affordable Points in Human Videos.

Our approach builds upon the OCT model [56]. For a given contact frame C, we initially apply
skin segmentation [57] in the overlapping region between hand and object bounding boxes to obtain
contact points P = {p1, ..., p2}. Subsequently, we sample 10 preceding frames as observation
key frames O = {o1, ..., o10} (where o10 is temporally adjacent to C). We aim to calculate a set of
transformation matrices that link all observation frames to C by computing the homography between
consecutive frames. To estimate those homographies, we mask out dynamic elements like detected
hands and objects from each frame. Then, we establish feature correspondences in the unmasking
regions using SURF descriptor [76]. The homography is computed by applying RANSAC algorithm
to the established feature correspondences. Finally, we project the contact points back to the initial
frame o1 based on estimated tomography to acquire affordable points. The pipeline is shown in
Fig. 8.

Figure 8: The pipeline of locating affordable points from the human videos following OCT [56]. We
initially apply skin segmentation [57] in the overlapping region between hand and object bounding
boxes to obtain contact points, and compute the homography between each pair of successive frames.
We project the contact points back to the initial frame based on the homography.

A.2 Benchmark Evaluation Metrics

We utilize four metrics to evaluate the models’ performance in the HOVA-500K benchmark, includ-
ing KLD,SIM,NSS, and SIMpart. Specifically, these metrics can be formulated as:

KLD(M2D
A ,M2D

gt ) =
∑
i

M2D
gt i

log (ϵ+
M2D

gt i

ϵ+M2D
A i

) (4)

SIM(M2D
A ,M2D

gt ) =
∑
i

min(M2D
gt i

,M2D
A i) (5)
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NSS(M2D
A ,M2D

gt ) =
1

N

∑
i

M̂2D
A ×M2D

gt (6)

where N =
∑

i M2D
gt i

, M̂2D
A =

M2D
A −µ(M2D

A )

σ(M2D
A )

, µ(M2D
A ) and σ(M2D

A ) are the mean and standard
deviation, respectively.

The formula for SIMpart is the same as that of SIM , except that the meaning of M2D
gt differs. For

an object with a handle, its graspable part is actually the entire handle. Thus, any point falling within
the handle region after affordance argmax should be considered valid. Therefore, in SIMpart, we
use the binary mask of the handle region as the ground truth for calculation.

A.3 Dataset Taxonomy

Our dataset consists of 1,726 object categories and 675 verb categories. The object categories can be
referenced in the right panel of Figure 9, with examples including hammer, screwdriver, adjustable
wrenches, combinational wrenches, spatula, etc. Some verb categories are shown in the left panel
of Figure 9, with examples such as pick up, interact with, put, take, hold, move, etc. Figures 10 and
11 display the logarithmic frequency distribution histograms for object categories with more than
1,000 instances and verb categories with more than 100 instances, respectively.
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Figure 9: Left: The distribution of primary actions and related object categories in HOVA-500K
(>100 data samples). Right: Word cloud of primary object categories in HOVA-500K.

Figure 10: The distribution of primary object categories in HOVA-500K (>1000 data samples)

A.4 Manual Verification

For affordance point rationality, we randomly sampled 100 images and had three external individuals
rate annotations on a 1-5 scale (1: highly unreasonable, 5: highly reasonable). The average score
was 4.897, demonstrating high quality.
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Figure 11: The distribution of primary action categories in HOVA-500K (>100 data samples)

B GLOVER++ Model

B.1 Model Pipeline

We show the detailed pipeline of GLOVER++ in Fig. 12. We utilize the pretrained vision backbone
and LLaVA model from the LISA++ [77] to inherit the open-vocabulary reasoning knowledge from
it. The vision backbone and LLaVA model are frozen during the training. We follow the SAM [78]
to design the decoders, and both the global and local decoder comprises two layers of bi-directional
Transformer layers.

The first global decoder processes the <AFF> token to generate a semantic-aware logits map, where
the token aggregates vision-language features from the input to encode high-level image semantics.
While this global understanding captures contextual relationships, it inevitably introduces back-
ground noise—irrelevant regions activated by broad semantic correlations (e.g., ”cut” may falsely
highlight all sharp objects). Such noise conflicts with the localized nature of affordance learning,
which demands precise spatial grounding of action-relevant object parts.

To resolve this discrepancy, we propose a cascaded local decoder that refines the global decoder’s
output. The local decoder treats the initial semantic logits map as a mask prompt, dynamically
focusing on regions where language instructions align with local object geometries. This hierarchi-
cal design synergizes global semantic priors with local affordance specificity: the global decoder
provides object-level awareness, while the local decoder resolves part-level actionable regions. We
show the effectiveness of this global-to-local mechanism in Fig. 13. Also, in this process, we hope
to preserve the world knowledge and open-vocabulary reasoning capability of the LLaVA in the
first global decoding, thus distributing a relatively small learning rate to update the global decoder.
For the local decoder, a large learning rate is set to ensure the thorough learning of the affordance
representation.

Compared with GLOVER [11], GLOVER++ introduces negligible additional trainable parameters,
as shown in Table 6, while achieving much better affordance reasoning performance.

Methods Trainable #param Ratio KLD ↓ SIM ↑ SIMpart ↑ NSS ↑
GLOVER [11] 4.1M 0.0526% 7.441 0.025 0.206 0.900
GLOVER++ 8.1M 0.1050% 3.411 0.120 0.506 5.151

Table 6: Trainable parameters and their ratio to the total parameters. Our model surpasses GLOVER
in performance with only a marginal increase in trainable parameters.
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Figure 12: The pipeline of GLOVER++.

Figure 13: More visualization of the decoded features by the global and local decoder

B.2 Training Objective

The final training objective consists of two parts: the sigmoid focal loss and the Kullback-Leibler
Divergence (KLD) loss. Here, α, γ denotes the focusing and balancing parameters in the focal loss,
respectively. Additionally, αt, pt represent the soft versions of α, p in focal loss formulation. gi, pi
correspond to the ground truth and predicted affordance value, respectively.

L = −λSigmoid

∑
i

αt(1− pt)
γLCE + λKL

∑
i

gi log
gi
pi

(7)

LCE = −gi log pi (8)
αt = αgi + (1− α)(1− gi) (9)
pt = pigi + (1− pi)(1− gi) (10)

C Experiments

C.1 GLOVER++ Training Details.

Our training is conducted on 8 NVIDIA 48G A6000 GPUs for 10 epochs. The training scripts are
based on deepspeed engine[79]. We employ AdamW[67] optimizer(β1 = 0.9, β2 = 0.95) with a
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weight decay of 0.0005. The learning rates for the mask decoder and affordance decoder are set
to 5e-5 and 5e-4, respectively. We use WarmupDecayLR as the learning rate scheduler, with 188
warmup steps. The KL Loss and Focal Loss are both weighted at 0.1. Additionally, the batch size per
GPU is configured as 32. The mask decoder is initialized with pretrained weights from LISA++[77],
while the affordance decoder adopts weights from SAM [78].

C.2 Imitation Learning in RLBench

Multi-View 
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Multi-View 
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Gripper & 
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Figure 14: The pipeline of using actionable affordance as prior to guide the attention of multi-task
language-guided manipulation.

We aim to demonstrate that explicit affordance representation can effectively guide imitation learn-
ing networks to focus on action-critical regions in visual inputs. We adopt RLBench [61] as a
testbed to demonstrate. RLBench is a high-fidelity simulated environment built on PyRep (PyBullet
wrapper) [72] with stable physics.

Our training closely follows RVT [74], utilizing cube-view re-rendered images generated from 3D
point clouds. To ensure efficiency, the replay buffer of extracted keyframes is adopted to train
the agent rather than all frames from episodes. For data augmentation, we adopt PerAct’s [73]
approach, applying random perturbation of translations within ±0.125m and rotations along z-axis
within ±45◦. We train the RVT and RVT-AFF for 5 epochs with a batch size of 24 and a learning
rate of 1e-4. For the RVT2 and RVT2-AFF, we train the models for 100 epochs with a batch size of
24 and a learning rate of 1.25e-5.

Task Language Template # of Variations Avg. Keyframes

open drawer “open the drawer” 3 3.0
slide block “slide the block to target” 4 4.7
sweep to dustpan “sweep dirt to the dustpan” 2 4.6
meat off grill “take the off the grill” 2 5.0
turn tap “turn tap” 2 2.0
put in drawer “put the item in the drawer” 3 12.0
close jar “close the jar” 20 6.0
drag stick “use the stick to drag the cube onto the target” 20 6.0
stack blocks “stack blocks” 60 14.6
screw bulb “screw in the light bulb” 20 7.0
put in safe “put the money away in the safe on the shelf” 3 5.0
place wine “stack the wine bottle to the of the rack” 3 5.0
put in cupboard “put the in the cupboard” 9 5.0
sort shape “put the in the shape sorter” 5 5.0
push buttons “push the button, [then the button]” 50 3.8
insert peg “put the peg in the spoke” 20 5.0
stack cups “stack the other cups on top of the cup” 20 10.0
place cups “place cups on the cup holder” 3 11.5

Table 7: Tasks we used in RLBench.
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C.3 Ablations

We show more visualization of ablative studies to further demonstrate the effectiveness of the pro-
posed components. The loss curves in Fig. 15 (a) show that global-to-local decoding leads to ef-
fective convergence of the total loss function, which conforms to better performance in Table 2.
Also, the Fig. 15 (b) reveals the advantage of extending the training scheme in the GLOVER++’s
fine-tuning.

Figure 15: The loss curves of training. (a): The yellow and blue curve represents model w/o and
w/ global-to-local decoding module, respectively. (b):The blue loss curve reflects a 5-epoch scheme
of training, while the black one reflects a 10-epoch one.

Figure 16: Visualization of the effectiveness of GLOVER++’s components in affordance reasoning.

The Fig. 16 illustrates the affordance reasoning visualization for ablative comparisons. Clearly, KLD
loss and global-to-local decoding optimize local affordance representation learning for GLOVER++.
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C.4 More Comparisons with Qwen-2.5

We show more comparisons between GLOVER++ and Qwen-2.5-VL-7B [58] model in Fig. 17.
Compared to Qwen-2.5-VL, GLOVER++ demonstrates superior capability in generating task-
compliant grasp points by explicitly modeling action-object semantics in language instructions.
While Qwen-2.5-VL primarily relies on visual-language alignment for object localization, it often
fails to disambiguate action-specific affordances to infer reasonable grasping regions.

Figure 17: More visualization of comparison with Qwen-2.5-VL [58]. We show the inferred grasp-
ing point of GLOVER++ by argmaxing the affordance regions.

C.5 Real-world Experiments Setting

In the real-world experiments, we adopt two systems for manipulation tasks as Fig. 18 shows. The
first system is based on a 7-DoF UFACTORY xAarm 7, equipped with DH-PGI gripper. We utilize
an Orbbec Femto Bolt RGB-D camera for visual observations, with the image size of 1280 × 960
by default. The inverse kinematics (IK) to resolve the trajectory planning.

On the other hand, we leverage a Unitree G1 humanoid robot with two Inspire dexterous hands
RH56DFX to construct a system for dexterous and bimanual grasping. We use the original head-
mounted Intel394 RealSense D435i in Unitree G1 to capture RGB-D images with the size of 640×
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Figure 18: The real-world experiments settings.

Figure 19: The illustration of the obstacle-avoidance IK we use to avoid self-collision.

480. For the motion planning, we use the obstacle-avoidance IK to avoid the self-collision as shown
in Fig. 19.

C.6 Inference Speed Analysis

We have conducted a thorough inference time comparison on an Nvidia RTX4090, with an image
size of 1280×960. As shown in Table 8, GLOVER++ significantly outperforms retrieval-based
methods, achieving approximately 6× faster inference due to the elimination of the retrieval process.
Compared to GLOVER, the additional inference time is negligible.

RAM [9] GLOVER [11] GLOVER++ LLaVA-7B in GLOVER++

6.78s 1.12s 1.21s 1.05s

Table 8: Comparison of inference speed between methods.

C.7 Failure Case

We illustrate the failure cases in the aspect of both affordance reasoning and real-world experiments.

Affordance Reasoning. The failure cases in the affordance reasoning includes two aspects as far
as we know. First, when the viewpoint is excessively distant, GLOVER++ struggles to infer precise
grasping regions and can only predict coarse object-level locations, as shown in Fig. 20 (a). Second,
since the affordance reasoning is performed in 2D space, GLOVER++ sometimes struggles to dis-
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Figure 20: The failure cases of affordance reasoning, including: (a) distance viewpoint leads to
inaccurate affordable regions, (b) failure to distinguish between overlapping objects sometimes, and
results in background noise.

(a) (b) (c)

Figure 21: Failure cases in real-world experiments, including (a) collision problem, (b) z-axis inac-
curacy, (c) imperfect grasping pose.

tinguish between overlapping objects at the pixel level, leading to noisy probability maps, although
the highest-probability grasp points remain correct. The Fig. 20 (b) shows the circumstance.

Real-world Experiments. In the real-world experiments, the failure cases result from three primary
reasons: (1) The collision caused by the imperfect rollout planning. (2) The projected affordable
points may exhibit z-axis distance inaccuracies with one RGB-D camera, leading to the grasping
failure. (3) The imperfect grasping pose of high-DoF dexterous hands leads to task failure. We
show the above three cases in the Fig. 21.
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Figure 22: An example of prompting Qwen-2.5-VL-7B to decompose the long-horizon task for
GLOVER++.
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