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What’s in aQuery: Polarity-aware Distribution-based Fair
Ranking

Anonymous Author(s)

Abstract

Machine learning-driven rankings, where individuals (or items) are

ranked in response to a query, mediate search exposure or atten-
tion in a variety of safety-critical settings. Thus, it is important to

ensure that such rankings are fair. Under the goal of equal oppor-

tunity, attention allocated to an individual on a ranking interface

should be proportional to their relevance across search queries. In

this work, we examine amortized fair ranking – where relevance

and attention are cumulated over a sequence of user queries to

make fair ranking more feasible. Unlike prior methods that oper-

ate on expected amortized attention for each individual, we define

new divergence-based measures for attention distribution-aware

fairness in ranking (DistFaiR), characterizing unfairness as the

divergence between the distribution of attention and relevance cor-

responding to an individual over time. This allows us to propose

new definitions of unfairness, which are more reliable at test time

and outperform prior fair ranking baselines. Second, we prove that

group fairness is upper-bounded by individual fairness under this

definition for a useful sub-class of divergence measures, and ex-

perimentally show that maximizing individual fairness through an

integer linear programming-based optimization is often beneficial

to group fairness. Lastly, we find that prior research in amortized

fair ranking ignores critical information about queries, potentially

leading to a fairwashing risk in practice by making rankings appear

more fair than they actually are.
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}#1 Good dentist, #2 Long wait times
Positive

Negative

Equivalent Under Prior Amortized Fairness Definitions

(a) (b)

Figure 1: Past work in amortized fair ranking minimizes
the differences between an individual’s expected cumulative
attention and relevance over a sequence of queries, where
queries are considered exchangeable. Critical information
about the distributions of attention and properties of queries
(such as query polarity) are missing in such a formulation.
Our approach, DistFaiR, aims to overcome this. The exam-
ple shown here considers two search queries with opposite
polarities, and a setup where both individuals are equally
relevant, but have different attention distributions.

1 Introduction

Automated ranking systems are widely employed in several high-

impact settings, such as ordering job candidates, guiding health-

related decisions, and influencing purchasing decisions for safety-

critical products [10, 17, 52, 59]. These systems directly influence

access to critical resources, such as employment opportunities,

healthcare, and safe consumer products, all of which significantly

affect health and economic outcomes [25, 46], among others. How-

ever, prior work has shown that some automated rankings may be

biased against someminoritized groups of individuals [8, 26]: for ex-

ample, women are less likely to occupy higher positions in rankings

corresponding to searches made in some online hiring contexts [15].

The increased adoption of large language models (LLMs) as effi-

cient and performant text rankers [24, 30, 47, 63] has the potential

to increase the prevalence of automated rankings. However, this

expanded usage risks amplifying existing biases in the distribution

of user attention and economic opportunity. Mitigating such risks

is a critical step towards building a responsible web-based system

such as search engines whose performative power to amplify bias

has been demonstrated [39].

One domain where automated ranking systems are ubiquitous is

search [4]. Previous works have proposed several interventions and

metrics [7, 21, 41, 62] to ensure that user attention during search is

fairly distributed. In these frameworks, ranking algorithms are con-

sidered to be mediators of exposure to searchers [33, 48], where ex-

posure is defined as the likelihood of visual attention from searchers.

A common intervention to achieve fair ranking is distributing rank-

ings, and thereby attention, as a function of relevance [8, 49].
1
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Notably, fair exposure is impossible in a single ranking where

attention decays quicker than relevance, for instance, when all

individuals have equal relevance and rankings have position bias

w.r.t. attention (see Section 3). As a result, many proposed fairness

interventions primarily focus on achieving fair exposure on the

aggregate, i.e., over a sequence of queries (e.g., “good dentist", “good

optometrists", ...) [8, 49]. Additionally, fairness is amortized over a

sequence, e.g., query #1 and #2 in Figure 1.

We identify two key limitations in current definitions of fair

attention-based amortized ranking: (1) existing methods primarily

focus on differences between the mean of attention and relevance

distributions across queries, which fails to account for discrepancies

in higher-order moments, such as variance or skewness, that may

impact fairness (see Figure 1 and Figure 3 in Appendix for intu-

ition), and (2) these methods assume that all attention is inherently

positive, overlooking cases where unfairness arises due to dispro-

portionate attention for negative or harmful queries compared to

equally relevant counterparts, e.g., Figure 4 in Appendix).

Our approach, distribution-aware fairness in ranking (DistFaiR),
overcomes these limitations. Our contributions are as follows:

• We formalize a definition of amortized ranking fairness

that accounts for differences (beyond means) in the distri-

butions of cumulative relevance and cumulative exposure

for individuals over a sequence of queries.

• We identify a set of measures that enable attention and

relevance distribution-aware fairness in ranking (DistFaiR).

We also consider a worst-case definition of fairness. Specif-

ically, we demonstrate theoretically and empirically that,

for these measures, individual fairness upper bounds group

fairness for the identified set of DistFaiR measures. Also, we

show empirically that individual and group fairness are not

at odds, i.e., improving individual fairness often improves

group fairness.

• We demonstrate fairwashing, a phenomenon where a rank-

ing appears to be more fair than it is when the polari-

ties of queries are not accounted for. We propose polarity-

dependent modifications to our newly proposed and exist-

ing fairness metrics address this issue of fairwashing.

2 Background and Related Work

Fair Ranking Metrics and Interventions. Rankings with high

ranking quality may be unfair at a group or individual level [8,

12, 16, 19, 40, 49, 60]. Previous works have proposed various tech-

niques to quantify and mitigate unfairness by allocating exposure

or visual attention proportionally to relevance at a group or in-

dividual level [8, 12, 16, 19, 29, 40, 49, 57, 60]. Some of these are

in-processing (i.e., during ranking generation ) [12, 49, 50, 56], while

some are post-processing [8] interventions. In some cases, relevance

scores used to produce the ranking are jointly estimated along

with fairness optimization [12, 40, 50]. Extensive work has also

focused on proportion-based ranking, instead of exposure-based

ranking [26, 28]. We direct the interested reader to [44] for a de-

tailed review of fairness metrics. While prior papers have proposed

some distribution-based measures [19, 25], these have been for fair-

ness under stochastic ranking policies for a single query [27, 28, 49].

In contrast, we focus on the multi-query amortized setup, and con-

sider distributions driven by attention over a sequence of queries,

and not (only) due to the stochastic nature of rankings.

Trade-offs between Group and Individual Fairness. Prior work
has proposed algorithms to optimize individual fairness without

violating group fairness or other constraints such as item diver-

sity [23, 25, 27, 27, 28, 28, 46]. Bower et al. [12] showed empirically

that improving individual fairness is beneficial to improving group

fairness in in-processing fair ranking. To the best of our knowledge,

no work has theoretically analyzed the relation between group

and individual fairness in the amortized setting (e.g., if one bounds

the other). In this work, we concretely show that under the pro-

posed definitions of fairness, group unfairness is upper bounded

by individual unfairness.

Impact of Queries in Ranking. To the best of our knowledge,

no prior fairness metrics or interventions utilize information about

the query itself in measuring fairness. Closest to our finding is

recent work by Patro et al. [42], where the authors observe that
“user attention may not directly translate to provider utility due

to missing context-specific factors" [42]. We expand on this ob-

servation, and empirically show that attention-based metrics may

fail specifically in a cross-query amortization setup. Our finding is

also a generalization of a recent finding [18], where it was shown

that search results can be manipulated in an amortized setting. Our

findings also broadly highlight the risk of fairwashing – maybe due

to search engine manipulation – when not considering query po-

larity. Lastly, while notions of multisided exposure fairness, group

over-exposure, and under-exposure [13, 53, 55] are also related to

our problem (where the impact of queries or users are considered in

fairness formulation), they still assume that all attention is positive.

In our work, we propose a method to integrate real-valued query

properties such as sentiment polarity into the fairness definition

without making these assumptions.

3 Amortized Fair Ranking

Given a query 𝑞 at time 𝑡 (𝑞𝑡 ), we consider a ranking task where

the goal is to obtain a relevance score 𝑟𝑡
𝑖
∈ R for each individual

𝑖 and order individuals in decreasing order of relevance to the

query [45]. The task typically consists of three components: (i)

the “query", (ii) the set of individuals to be ranked, and (iii) the

relevance scores. Due to position bias, individuals gain exposure

based on their position in the ranking, which directly influences

the attention they receive [8, 34]. Under the normative principle of

equal opportunity, the objective of exposure-based fair ranking is to

assign rankings such that the attention allocated to each individual

is proportional to their merit [5, 50, 60, 61]. In practical terms, merit

is operationalized as a value proportional to relevance.

The concept of amortized fair ranking in existing literature seeks

to find a sequence of ranking assignments that minimize the dis-

crepancy between the average cumulative attention and the average

cumulative relevance of individuals (or groups) over time. Said dif-

ferently, relevance and attention are accumulated over a sequence

of queries, and the goal is to ensure fairness over this horizon. In

this section, we introduce the notations, definitions, and limitations

associated with amortized fair ranking for fair attention allocation.

2
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Furthermore, we introduce our distribution and polarity-aware gen-

eralization of amortized fair ranking, which results in a more robust

solution to the normative goal of equal opportunity.

3.1 Notation

Consider a datasetD of𝑛 individuals. Note that we use the term “in-

dividual" here interchangeably with any item or entity being ranked

throughout the paper. Each individual 𝑖 belongs to a group 𝑔 ∈ G,
where G represents the set of𝐺 possible groups. Let 𝑔𝑘 denote the

𝑘𝑡ℎ group in G where 𝑘 ≤ 𝐺 and denote group membership as

𝑖 ∈ 𝑔𝑘 where 𝑔𝑘 ⊂ D – note that each individual belongs to exactly

one group. Denote 𝑞 to be a sequence of queries, where queries 𝑞𝑡
are submitted at discrete time steps 𝑡 ∈ T and T = 1, 2, . . . ,𝑇 . A

ranking system accepts each of these 𝑇 queries independently and

returns a distinct ranking of 𝑛 individuals for each query 𝑞𝑡 ∈ Q,
where Q denotes the space of all queries.

For each individual 𝑖 at time 𝑡 , let the binary random variables𝑋 𝑡
𝑖

and𝑌 𝑡
𝑖
denote the attention and relevance, respectively. Specifically,

𝑋 𝑡
𝑖
∼ Bernoulli(𝑎𝑡

𝑖
) denotes whether individual 𝑖 receives attention

at time 𝑡 , and 𝑌 𝑡
𝑖
∼ Bernoulli(𝑟𝑡

𝑖
) denotes targets for the attention-

distribution based on whether individual 𝑖 is relevant to 𝑞𝑡 , the

query at time 𝑡 . We assume that 𝑋 𝑡
𝑖
and 𝑋 𝑡

𝑗
are independent ∀𝑡

when 𝑖 ≠ 𝑗 . That is, under the attention models we study, the

likelihood of attention is independent of other individuals being

ranked, similar to prior work in fair ranking [8, 32]. We also assume

that queries are independent. Crucially, for each time step 𝑡 , the

total attention and relevance are constrained such that∑︁
𝑖∈𝑛

𝑎𝑡𝑖 = 1 and

∑︁
𝑖∈𝑛

𝑟𝑡𝑖 = 1,

such that attention and relevance for individuals are normalized

with respect to 𝑛 individuals at each time step.

Furthermore, denote the cumulative attention and relevance

distributions for individual 𝑖 over the full sequence of queries (all

time steps)

𝑋𝑖 =
∑︁
𝑡 ∈T

𝑋 𝑡𝑖 and 𝑌𝑖 =
∑︁
𝑡 ∈T

𝑌 𝑡𝑖 ,

respectively.

Theorem 3.1. Let 𝑋 𝑡
𝑖
∼ Bernoulli(𝑝𝑡

𝑖
) and

𝑋𝑖 =
∑︁
𝑡 ∈T

𝑋 𝑡𝑖 .

Then, for any 𝛿 > 0, we have the following:

𝑃 ( |𝑋𝑖 − E[𝑋𝑖 ] | ≥ 𝛿E[𝑋𝑖 ]) ≤ 2 exp

(
−𝛿

2E[𝑋𝑖 ]
2 + 𝛿

)
.

Remark 3.2. Note that Theorem 3.1’s bound depends solely on the
expected value of the cumulative attention (and relevance), not the
number of queries observed.

Theorem 3.1 bounds the likelihood of observing a given deviation

𝛿 from the true cumulative attention for an individual over time 𝑡 .

We can apply the same exact bound for cumulative relevance.

In our setup, the ranking quality at each timestep 𝑡 is evaluated

using the Discounted Cumulative Gain (DCG) at rank 𝐾 , denoted

as DCG@K [31]. The DCG@K score measures the quality of the

top-𝐾 ranked individuals based on their relevance, adjusting for

the rank position using a logarithmic discount factor:

𝐾∑︁
𝑘=1

𝑟𝑡
rank(𝑘 )

𝑙𝑜𝑔2 (𝑘 + 1) ,

where rank(𝑘) returns the index of the individual at rank 𝑘 .

3.2 Motivation For Amortized Fairness Across Differ-
ent Queries

This work focuses on a class of attention weights where user at-

tention only depends on their ranking position. We assume that

attention is proportional to position and follows a distribution in-

formed by domain knowledge. For example, one such distribution

used in several prior works is the log-decaying attention distribu-

tion [14, 49]. Under this distribution, at time 𝑡 , if an individual 𝑖 is

at position 𝑗 , their attention score 𝑎𝑡
𝑖
∝ 1

𝑙𝑜𝑔𝑗
.

Individual 𝑖’s attention 𝑋 𝑡
𝑖
is distributed as 𝐴𝑡

𝑖
= Bernoulli(𝑎𝑡

𝑖
),

where 𝑎𝑡
𝑖
is normalized. Ideally, the probability of an individual

receiving attention is proportional to their relevance score 𝑟𝑡
𝑖
, where

relevance scores are 0 − 1 normalized across all individuals for a

given query. Under a fair ranking, individual 𝑖’s attention should

be similarly distributed as their relevance, i.e., 𝑎𝑡
𝑖
≈ 𝑟𝑡

𝑖
. However,

as mentioned above, the rate at which attention decays across

positions in a ranking is usually very different from the variation

in relevance across individuals. This makes it difficult to match the

attention distribution to that of relevance within a single ranking.

Thus, it may be impossible to achieve the targeted fair attention

distribution within a single deterministic ranking [8, 19].

Alternatively, we compare cumulative and amortized attention

and relevance over time. We also assume a more realistic multi-

query setup since search systems typically process many queries

over time. That is, we consider online ranking where a sequence of

queries (with corresponding relevance score per individual) arrive

over time.We post-process the ranking corresponding to each query

(without knowledge of the future queries) to improve fairness.

3.3 Current Limitations

Current amortized fairness metrics have two primary limitations:

Insufficient measures of distributional differences between cumu-
lated attention and relevance. Current definitions compare expected
(average) attention (

∑
𝑡 ∈T 𝑎

𝑡
𝑖
) to expected (average) relevance (

∑
𝑡 ∈T 𝑟

𝑡
𝑖
)

across rankings, which leads to less reliably fair solutions for atten-

tion and relevance distributions where first moments (means) are

not sufficient statistics (see Appendix 3).

Failure to capture the impact of query polarity: All fairness defini-
tions in the literature currently assume that all attention is good.

However, increased attention in the context of queries with nega-

tive connotations relative to other similarly relevant individuals can

lead to unfairness (see Appendix ??). Hence, incorporating query
polarity is necessary to model the real-world impact of unfair rank-

ings.

3
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3.4 Problem Statement

We consider (un)fairness to be a function:

𝑓 : P(X) × P(Y) × R𝑇 ↦−→ R (1)

where 𝐴 ∈ P(X) denotes a distribution of cumulative attention

and 𝑅 ∈ P(Y) denotes a distribution of cumulative relevance for

an individual. 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 is a vector containing the polarity of each

of 𝑇 queries over which attention and relevance are cumulated. A

lower value is desired.

Our task is to find a class of such functions such that:

𝑓 (𝐴, 𝑅, polarity) = 0 =⇒ set of rankings is fair (2)

We define 𝑓 to take the form of a scoring function for distribution-

aware fairness in ranking (DistFaiR) and identify compatible mea-

sures for cumulative attention and relevance distributions in Sec-

tion 4. We then show that these measures can be modified to depend

on query polarity in measurement (Section 5). Lastly, we test the

sensitivity of current fair ranking metrics to various query proper-

ties such as polarity. This is an important step to assess fairwashing
effects in rankings [3]. That is, whether fairness measured using

query polarity is higher than that measured using query polarity.

4 Distribution-aware Fairness in Ranking (Dist-
FaiR)

We propose new distribution-based definitions of amortized fair-

ness. We denote 𝐴𝑖 and 𝑅𝑖 to be the distribution of an individual 𝑖’s

cumulative attention and relevance till time 𝑇 respectively. This is

in contrast with prior definitions [8, 40, 49], where only the mean of

the attention distribution over queries is considered for individuals

and groups. We start by defining a class of amortized individual

and group unfairness (DistFaiR) and then theoretically characterize

a relationship between the two for a class of discrepancy measures.

4.1 Defining Amortized Fairness

Definition 4.1 (DistFaiR-Divergence). Given two probability
distributions 𝑃 and 𝑄 over a common sample space Ω, a divergence
𝐷 (𝑃 ∥𝑄) is a function with the following properties:

(1) Non-negativity: 𝐷 (𝑃 ∥𝑄) ≥ 0

(2) Positivity: 𝐷 (𝑃 ∥𝑄) = 0 if and only if 𝑃 = 𝑄

Lemma 4.2. Define the following:

𝐷𝐿1 (𝑃 ∥𝑄) = |𝜇𝑃 − 𝜇𝑄 |

𝐷𝐿1 satisfies definition 4.1 for 𝑃 and 𝑄 when 𝜇𝑃 and 𝜇𝑄 are suf-
ficient statistics for their respective distributions. Additionally, it is
jointly convex, subadditive, positively homogeneous, and scales under
averages.

4.1.1 Individual Fairness

Definition 4.3 (Amortized Individual Unfairness). Amor-
tized Individual Unfairness for a set of individuals is defined as the
maximum distance between the distributions of cumulative relevance

and cumulative attention over a sequence of queries up to time 𝑇 .
Specifically, the unfairness is given by:

Unfairness = max

𝑖∈{1,2,...,𝑛}
𝐷 (𝐴𝑖 , 𝑅𝑖 ),

where 𝑖 indexes the individuals to be ranked, and 𝐷 is a divergence.

Notably, this definition differs from past definitions of amortized

fairness [8, 34, 44] as follows: (1) the distribution-based fairness

definition allows for distributions attention and relevance that are

not fully specified by their means, (2) considers a worst-case notion

of individual unfairness. For example, in [8], unfairness is defined to

be the 𝐿1 distance of difference between cumulative relevance and

cumulative exposure scores allocated to a set of 𝑛 individuals over

𝑇 queries. In our framework, this is equivalent to choosing a metric

𝑑 (𝑃,𝑄) = |E[𝑃] −E[𝑄]] |, or the absolute difference in expectations

of the two distributions. However, this only captures discrepancies

between distributions 𝑃,𝑄 where means are sufficient statistics, e.g.,

Guassians with fixed variances or Exponential with rate parameters

reciprocal to the mean. Appendix B demonstrates that divergences,

which capture properties of distributional difference beyond means,

give a more robust and realistic definition of unfairness.

4.1.2 Group Fairness
We extend the previous definition to group level by defining the

relevance and attention of a group as the average relevance and

attention of individuals belonging to that group, respectively. The

attention and relevance of a group 𝑔𝑘 ⊂ [𝑛] at time 𝑡 respectively

are random variables:

𝑋 𝑡𝑔𝑘 =
1

|𝑔𝑘 |
∑︁

𝑖∈𝑔𝑘
𝑋 𝑡𝑖 and 𝑌 𝑡𝑔𝑘 =

1

|𝑔𝑘 |
∑︁

𝑖∈𝑔𝑘
𝑌 𝑡𝑖 , (3)

where |𝑔𝑘 | denotes the number of individuals in group 𝑔𝑘 . We can

also apply Theorem 3.1 to quantify the tail probability of group

level relevance and attention.

The relevance distribution and attention in a group 𝑔𝑘 ⊂ [𝑛]
throughout time 𝑡 ∈ T are respectively:

𝑋𝑔𝑘 =
∑︁

𝑡 ∈T 𝑋
𝑡
𝑔𝑘

and 𝑌𝑔𝑘 =
∑︁

𝑡 ∈T 𝑌
𝑡
𝑔𝑘
. (4)

Denote 𝐴𝑔𝑘 and 𝑅𝑔𝑘 as the distributions of cumulative attention

and relevance from which 𝑋𝑔𝑘 and 𝑌𝑔𝑘 are generated.

Definition 4.4 (Amortized Group Unfairness). Amortized
Group Unfairness for a set of 𝐺 groups is defined as the maximum
distance between the distributions of cumulative relevance and cumu-
lative attention scores across a sequence of queries up to time 𝑇 for
each group. Each individual is assumed to belong to exactly one of
the 𝐺 groups. Formally, group unfairness is expressed as:

Group Unfairness = max

𝑔𝑘 ∈G
𝐷 (𝐴𝑔𝑘 ∥𝑅𝑔𝑘 ),

where 𝐷 represents a divergence, 𝑔𝑘 denotes the 𝑘-th group, and
𝐴𝑔𝑘 and 𝑅𝑔𝑘 represent the distributions of cumulative attention and
cumulative relevance for group 𝑔𝑘 , respectively.

We refer our definitions of amortized individual and group un-

fairness above as DistFaiR.
4
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4.2 Individual Fairness v.s. Group Fairness

Theorem 4.5. For any jointly convex DistFaiR divergence that
is subadditive, positively homogeneous, and scales under averages,
amortized group fairness is upper-bounded by amortized individual
fairness. Specifically, we have the following inequality:

max

𝑔𝑘 ∈G
𝐷 (𝐴𝑔𝑘 ∥𝑅𝑔𝑘 ) ≤ max

𝑖∈D
𝐷 (𝐴𝑖 ∥𝑅𝑖 ) ∀𝑔𝑘 ∈ G (5)

Proof provided in Appendix E.3.

Theorem 4.5 shows that improving individual fairness does not

adversely affect group fairness for a sub-class of divergence mea-

sures — optimizing for individual fairness can improve group fair-

ness. Although individual fairness is good criteria, it may not always

be possible to ensure individual fairness for some divergence mea-

sures (e.g., due to computational infeasibility). This also indicates

that group fairness constraints could be considered weaker versions

of individual fairness, and could be be used more broadly.

4.3 Amortized Fairness Re-ranking with Quality Con-
straints

Theorem 4.5 motivates optimizing for individual (un)fairness. Ac-

cordingly, we design an objective function corresponding to indi-

vidual unfairness to be minimized, similar to Biega et al. [8].

min𝑀𝑡
𝑖,𝑗

max𝑖∈𝑛 𝐷 (𝐴𝑖 ∥𝑅𝑖 ) (individual fairness) (6)

s.t.

∑︁𝑘

𝑗=1

∑︁𝑛

𝑖=1

2
𝑟𝑡
𝑖 − 1

log
2
( 𝑗 + 1)𝑀

𝑡
𝑖, 𝑗 ≥ 𝜃 ∗ 𝜌 (𝑡) for each 𝑡 ∈ T

(7)

𝑀𝑡
𝑖, 𝑗 ∈ {0, 1} ∀𝑖, 𝑗 (8)∑︁
𝑖
𝑀𝑡
𝑖, 𝑗 = 1 ∀𝑗 (9)∑︁

𝑗
𝑀𝑡
𝑖, 𝑗 = 1 ∀𝑖 (10)

where 𝐴𝑖 and 𝑅𝑖 denote cumulative attention and relevance for in-

dividual 𝑖 till time 𝑡 ,𝑀𝑡
𝑖, 𝑗

is a binary variable indicating if individual

𝑖 is present at rank 𝑗 for the query at time 𝑡 . 𝜌 (𝑡) indicates the DCG
(quality) of the ranking at time 𝑡 . Constraint (5) ensures that the

quality of the updated ranking does not decrease beyond a given

threshold 𝜃 . Additionally, constraints (7) and (8) ensure that each

individual can be ranked only once in a ranking and no positions

are empty, respectively. Given the large size of the variable space,

when 𝑛 is large, we pre-filter the rankings and set𝑀𝑡
𝑖, 𝑗

to be fixed

when 𝑗 > 𝐾 for some known 𝐾 ∈< 𝑛. Thus, we only re-order the

top-𝐾 within each ranking.

Integer Linear Programming Formulation We solve the above

optimization problem using integer linear programming and/or

integer quadratic programming. We rely on an open-source toolkit,

Gurobi [1] to perform all optimizations where minimizing our objec-

tive yields amortized fairness. We study online optimization where

a new query arrives at each time 𝑡 , and hence𝑀𝑡
𝑖, 𝑗

is optimized at

each time step, with knowledge of prior assignments [8]. Further

details can be found in Appendix F.

Table 1: Summary statistics of all datasets. The relevance
score in the rateMDs dataset and the query utility score in the
FairTREC2021 datasets are generated using pre-trained LLMs.

Dataset #Individuals #Queries #Attr. Relevance Polarity

synth-binary 200 15 2 Binary {−1, 1}
synth-cont 200 15 2 Cont. {−1, 1}
rateMDs 6.2k 60 2 Cont. {−1, 1}
FairTREC 2021 13.5k 49 5 Binary [−1, 1]

5 Accounting for Query Polarity

Prior work in fair ranking assumes that all attention is positive [46]

and query independent, implying that achieving a higher rank is

universally desirable. However, individuals should not be given

higher attention for queries with negative connotations than those

with similar relevance. Consequently, we extend our fairness defi-

nition to account for query properties such as sentiment polarity
by introducing a context function associated with each query.

In this work, we focus on the scalar sentiment polarity associated

with each query. Alternative properties may include the clarity of

the query, the perceived economic value associated with being

highly ranked for the query, etc. This variable will be influenced

— at least partially — by the information contained in the query,

and may be positive or negative, determining if a higher or lower

ranking is more favorable. We also show how this context function

can be extended beyond scalar outputs to include a vector of query

properties.

Let 𝑋 𝑡
𝑖
represent a random variable denoting attention allocated

to individual 𝑖 at time t that incorporates query polarity. Assuming

that polarity is searcher-independent (no personalization), it can

be decomposed into: (1) the real-world value associated with the

attention allocated in response to a query at time 𝑡 and (2) individ-

ual attention. Similar to previous works on fair ranking, we may

assume that searcher attention can be modeled well with models

like position bias [11].

We denote the context function 𝜂 (𝑞𝑡 ) as the polarity associated

with query at time 𝑡 . Query polarity-aware attention and relevance

allocated to individual 𝑖 at time 𝑡 is then:

𝑋 𝑡𝑖 = 𝑋 𝑡𝑖 · 𝜂 (𝑞𝑡 ) and 𝑌 𝑡𝑖 = 𝑌 𝑡𝑖 × 𝜂 (𝑞𝑡 ), (11)

where each corresponds to a cumulative distribution 𝐴𝑖 and 𝑅𝑖 ,

respectively. This formulation is free of two assumptions inherent

to the exposure-based fairness metrics: (1) the contribution of ex-

posure to amortized ranking is now dependent on properties of the

query and (2) exposure can be any real-valued number. Notably,

𝜂 (𝑞𝑡 ) ∈ R, including negative values and zero, unlike previous

work. Then, amortized fairness under DistFaiR can be computed

over time, with all notations following from the previous section.

We refer to fairness measures defined in the prior section as query
polarity-agnostic, and those relying on 𝜂 (𝑡) as query polarity-aware.

Theorem 5.1. Let 𝑋 𝑡
𝑖

∼ Bernoulli(𝑝𝑡
𝑖
) and 𝜂 (𝑞𝑡 ) ∈ [𝑎𝑡 , 𝑏𝑡 ];

𝑎𝑡 , 𝑏𝑡 ∈ R. With a slight abuse of notation, let 𝑋 𝑡
𝑖
= 𝑋 𝑡

𝑖
· 𝜂 (𝑞𝑡 ) ∈

[𝑎𝑡 , 𝑏𝑡 ] and
𝑋𝑖 =

∑︁
𝑡 ∈T

𝑋 𝑡𝑖 ,
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Then, for any 𝛿 > 0, we have the following:

𝑃

(
|𝑋𝑖 − E[𝑋𝑖 ] | ≥ 𝛿

)
≤ 2 exp

(
− 2𝛿2∑

𝑡 ∈T (𝑏𝑡 − 𝑎𝑡 )2

)
.

Remark 5.2. Unlike in Theorem 3.1, the bounds in Theorem 5.1
now depend on both the expected value of the cumulative attention
(and relevance) as well as the number of queries observed.

Thereom 3.1 bounds the likelihood of observing a given devi-

ation 𝛿 from the true polarity-aware cumulative attention for an

individual over time 𝑡 . We can apply the same exact bound for

polarity-aware cumulative relevance.

6 Experiments: Online Fair Ranking

Our experiments are focused on an online fair ranking setup, similar

to [8]. We assume a realistic setup where a new query arrives at

each time 𝑡 , and we re-rank the system-produced ranking at time 𝑡

to improve fairness. We assume knowledge of attention allocated to

individuals in rankings till time 𝑡 to produce this new fair ranking

(i.e., a running memory of cumulative attention per individual).

6.1 Experimental Setup

Datasets We utilize two synthetic datasets which represent the

setting described in the example shown in Figure 4 where female in-

dividuals are allocated attention four out of eight rankings, all with

negative polarity and two real-world fair ranking datasets [20, 51];

a summary is provided in Table 1 and further details are provided in

Appendix D. Our empirical study focuses on post-processing fair-

ness interventions, where individual relevance – or “groundtruth"

– scores are known [28].

Query PropertiesWe experiment with polarity as the query prop-

erty. The polarity score is synthetically generated for synth-binary
and synth-cont and manually annotated for rateMDs. For the
FairTREC 2021 dataset, a pre-trained sentiment classificationmodel

is used to generate polarity [6] (see Appendix D).

Distance Functions We consider three (pseudo) divergences met-

rics for measuring unfairness under DistFaiR:

• L1 distance is defined as the difference between the mean of

two distributions: 𝐷𝐿1 (𝐴∥𝑅) = |E𝑋∼𝐴 [𝑋 ] − E𝑌∼𝑅 [𝑌 ] |.
– This distance function has been studied in [8], where fair-

ness is computed as the sum of distance values across

individuals and is referred to as the inequity of amortized

attention (IAA). We note that this function is generally not

a proper divergence. However, for distributions 𝐴 and 𝑅

whose first moments are sufficient statistics, 𝐷𝐿1 satisfies

definition 4.1.

• Lvar2 distance is defined as the difference in mean and variance

of two distributions:

𝐷𝐿var
2

(𝐴∥𝑅) = (E𝑋∼𝐴 [𝑋 ] − E𝑌∼𝑅 [𝑌 ])2

+ (𝜎𝑋∼𝐴 [𝑋 ] − 𝜎𝑌∼𝑅 [𝑌 ])2 .

We note that 𝐷𝐿var
2

benefits from𝑊2, a proper divergence, for

two Gaussians, which has the properties for Theorem 4.5.

• W1 distance is defined as the Wasserstein distance between

the distribution of expected attention ({𝑎𝑡
𝑖
}T
𝑡=1

) and distribution

of expected relevance ({𝑟𝑡
𝑖
}T
𝑡=1

) for an individual. 𝐷𝑊1
(𝐴∥𝑅) =

1

𝑇

∑𝑇
𝑘=1

|𝑎 (𝑘 )
𝑖

− 𝑟 (𝑘 )
𝑖

|, where (𝑘) denotes the 𝑘th order statistic

of empirical measures 𝐴𝑖 and 𝑅𝑖 from which each 𝑎𝑡
𝑖
and 𝑟𝑡

𝑖
is

sampled.

6.2 Evaluation

We utilized the following fairness criteria.

Individual Unfairness: We use three different distance measures

defined in Section 6.1 to measure the unfairness as: DistFaiR(𝐿1)

(IAA), DistFaiR(𝐿var
2

), and DistFaiR(𝑊1). The amortized fairness de-

fined by DistFaiR(𝐿1) is similar to the fairness measure studied by

[8]. However, we consider theworst-case distance between attention
and relevance distributions, while [8] consider the average differ-

ence across all individuals, which may hide heightened unfairness

in some individuals. Our work also generalizes amortized fairness

to include appropriate measurements of discrepancies between dis-

tributions that require higher-order moments to be specified, i.e.,

with 𝐿var
2

and𝑊1 distances.

Group Unfairness: In addition to the group unfairness metrics

directly induced by the three distance metrics using Definition 4.4,

we consider a standard exposure-based group unfairness definitions:

Exposed Utility Ratio (EUR). [40, 49] define the EUR difference as

the absolute difference in the ratios of average exposure and average

relevance between groups. We also measure an attention parity

metric: Demographic Parity[40] (DP).

Performance We measure the ranking quality via the DCG@K

score, which is the sum of the relevance of the top-K individuals,

with a logarithmic discount based on their position:

𝐾∑︁
𝑘=1

𝑟𝑡
rank(𝑘 )

𝑙𝑜𝑔2 (𝑘 + 1) ,

where rank(𝑘) returns the index of the individual at rank 𝑘 . After re-
ranking, the DCG@K is normalized by the DCG@K of the previous

(ideal) ranking to produce a normalized DCG@K between 0 and 1.

6.3 Baselines: Fair Re-ranking

We compare the re-ranking performance under DistFaiR metrics to

the following baselines: Fairness of Exposure (FoE) [49], Inequity

of Amortized Attention (IAA) [8], and Ranking for Individual and

Group Fairness Simultaneously (FIGR) [27]. In all cases, the per-

centage change relative to the original unconstrained relevance-

ordered rankings are reported (where a positive sign in change

indicates a reduction in unfairness post-re-ranking). We perform

online optimization in each case, except in FIGRwhere optimization

is on a per query basis (i.e., not amortized).

IAA: Themethod to reduce inequity of amortized attention (IAA)

was introduced by Biega et al.[8]. An ILP is solved to reduce the

absolute difference in the mean of the cumulative attention and

cumulative relevance distributions, summed across all individuals.

In contrast, our method focuses on worst-case minimization.
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Table 2: Individual fairness improves with DistFaiR re-ranking intervention, but the difference depends on the divergence
measure used. We show relative improvement in fairness post- fair ranking intervention with respect to the original ranking.
The columns (i.e., Δ measure) correspond to different fairness measures, while each row corresponds to a fair re-ranking
method. We find that post-processing the rankings with DistFaiR improves distribution-based ranking fairness across datasets.
Group fairness also improves with DistFaiR in most cases. FoE did not produce an optimal solution on FairTREC2021, and hence
is not reported. Arrows indicate direction of better performance, with best performance bolded for each fairness metric. Note
that the criterion of the fairness scores varies across cross-columns, so cross-column comparisons are incorrect.

Dataset Method Relative Change in Individual Fairness (↑) Relative Change in Group Fairness (↑)

Δ DistFaiR (𝐿1) Δ DistFaiR (𝐿𝑣𝑎𝑟
1

) Δ DistFaiR (𝑊1) Δ DistFaiR (𝐿1) Δ DistFaiR (𝐿𝑣𝑎𝑟
1

) Δ DistFaiR (𝑊1)

synth-binary

IAA 82.50% 90.89% 68.18% 19.75% 12.58% 0.80%

FoE 9.17% 14.65% 7.58% 20.81% 16.83% 1.85%

FIGR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

DistFaiR(𝐿1) 82.50% 90.89% 68.18% 35.94% 39.97% 3.58%

DistFaiR(𝐿𝑣𝑎𝑟
2

) 76.38% 90.89% 65.02% 16.57% 56.26% 7.41%
DistFaiR(𝑊1) 77.07% 90.70% 68.18% 66.17% 51.47% 5.02%

synth-cont

IAA 61.75% 65.12% 39.05% -4.16% 36.38% 34.66%

FoE 2.92% 5.36% 0.24% -72.97% -64.87% 1.71%

FIGR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

DistFaiR(𝐿1) 61.83% 62.41% 38.34% 11.00% 73.88% 65.97%
DistFaiR(𝐿𝑣𝑎𝑟

2
) 56.93% 63.81% 35.67% 16.59% 66.77% 57.78%

DistFaiR(𝑊1) 50.23% 59.74% 39.39% -38.68% 43.62% 58.88%

FairTREC2021

IAA 0.00% 0.00% -1.19% 29.06% 75.62% 10.39%

FIGR -1.29% -29.44% -1.29% -164.50% -405.80% -1.29%

DistFaiR(𝐿1) 0.15% 1.27% -1.19% 0.88% 12.70% 11.33%

DistFaiR(𝐿𝑣𝑎𝑟
2

) 0.15% 1.27% -0.58% 18.33% 66.23% 2.46%

DistFaiR(𝑊1) 0.15% -16.11% 0.15% 25.05% 73.92% 16.93%

rateMDs

IAA 46.60% 48.73% -2.36% 50.00% 73.30% 12.77%

FoE 15.39% 19.40% 16.44% 10.68% 19.62% -18.29%

FIGR -50.07% -245.38% -41.29% -3.93% -44.50% -14.99%

DistFaiR(𝐿1) 60.96% 69.39% -0.48% 41.74% 64.99% 21.96%

DistFaiR(𝐿𝑣𝑎𝑟
2

) 54.15% 71.05% -3.97% 61.64% 79.38% 26.35%
DistFaiR(𝑊1) 36.01% 24.89% 35.80% 64.38% 86.60% 24.40%

FoE: [49] solve a linear program and sample ranking assign-

ments with Birkhoff Von Neumann decomposition [36] to ensure

fairness of exposure (FoE). In this algorithm, the quality of rank-

ings is maximized, with the constraint that cumulative attention

to relevance ratio is the same for all individuals. We prefilter and

re-rank only top-k individuals in each ranking.

FIGR [27]: This method jointly aims to reduce “underranking"

(which is closely related to individual fairness) in rankings that are

post-processed with group fairness constraints. Unlike the other

baselines, this is a proportion-based re-ranker, does not explicitly

consider attention distributions, and only considers binary groups.

6.4 Hyperparameter Tuning

We stratified all datasets into two subsets: 50% tuning and 50% test

sets, so no individuals are present in both splits. We re-run each

method across two (fairTREC2021) or three (all other datasets)

such random splits and the average results. All parameters (e.g.,

𝜃 ) are tuned using the tuning split and tested on the test split. We

run all optimization algorithms on a 3.2 GHz CPU with 16 GB

RAM for ≤ 60 minutes. We set K=10 while measuring ranking

quality and assume logarithmic discounts in attention till K=10 and

zero otherwise. We also only re-rank and optimize for maximum

divergence among the top k [8] (here, either 50 or 500) individuals

in each ranking. In the online ranking setting, this means that

even when the maximum divergence measure across all individuals

cannot be reduced by only re-ranking the top-k individuals for a

given ranking, we still re-rank to reduce the next possible highest

divergence value.

Our experimental flow is as follows: first, we implement our fair

ranking definitions (DistFaiR) and compare to baselines. Second,

we test if fairness metrics are affected by query polarity. Third, we

perform several ablations for, e.g., the fairwashing effect.

7 Results

We measure the percentage change in unfairness pre- and post-

re-ranking. A positive change – decrease in unfairness – is desired.

DistFaiR Improves Worst-Case Fairness Table 2 shows that

our re-rankings reduce individual unfairness, when unfairness is

measured as the worst-case divergence measure between the atten-

tion and relevance distributions across individuals. On all datasets,

DistFaiR outperforms or performs on par with IAA. FIGR – which

solves a different notion of "underranking" per individual – wors-

ens performance as measured by our metrics. Further, as expected,

optimizing the divergence measure itself leads to highest decrease

in unfairness (for example, DistFaiR(𝑊1) has highest improvement

in fairness for the Δ DistFaiR(𝑊1) individual fairness measurement.

Additionally, as seen in Table 3 DistFaiR underperforms IAA-

based re-ranking on the IAA metric. This makes sense because

DistFaiR focuses on reducing worst-case divergence, while IAA

focuses on the average across individuals. Thus, there appear to

be tradeoffs between average and worst-case performance. Such
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Figure 2: (a) and (b) show the difference between fairness metrics measured with and without query polarity. Query polarity
impacts all amortized fairness metrics, as they differ from zero as seen in the plots. (rightmost) We plot the re-ranking perfor-
mance of polarity agnostic and aware re-rankings under different permissible performance loss changes for the synth-cont
dataset (DistFaiR(𝐿1), where we can see polarity agnostic re-ranking underperforms polarity aware re-ranking.

observations have also been made in other fairness contexts [58].

Lastly, from Table 3, DistFaiR improves or retains EUR.

Distance Function is an Important Design Choice. Our results
show that the distance is an important design choice. We find that

the performance of 𝐿1 and 𝐿
var

2
are close (e.g., synth-binary). We

hypothesize that the optimization with𝑊1 is more difficult, due to

which performance improvements are smaller. Note that 𝐿var
2

is the

𝑊2 solution under assumptions of gaussianity. Hence, it is possible

that using the 𝐿var
2

measure could be an easier objective, but we

can remove the distribution assumption for the general𝑊2.

Individual Fairness Not at Odds with Group Fairness. We

also find that reducing individual unfairness under DistFaiR leads

to reductions in group unfairness in most cases (Table 2). While

group unfairness does increase in some cases, the degree of change

cannot exceed a specific limit (upto individual unfairness) as per our

theoretical findings. We also see similar trends on standard group

fairness of EUR [40] (see Table 3 in Appendix) for three datasets.

Online vs Offline Optimization. In Figure 6(c) in the Appendix,

we observe that fully offline optimization reduces unfairness in a

batch of rankings more effectively than fully online. This is mean-

ingful because even if the full set of queries may not be known

apriori, a batch of likely queries may be known. Additionally, vari-

ance in online fairness is lower when optimizing for divergence

including higher order moments (e.g.𝑊1; see Appendix Figure 7).

Fairness Metrics are Sensitive to Query Polarity. In Figure 2

(a) and (b), we compute the difference between fairness metrics

measured with and without query polarity. When the difference

is positive, this indicates fairwashing, where rankings seem more

fair than they actually are. In all cases, we compute the percentage

in change. We observe that all fairness metrics, for both individual

and group fairness, are sensitive to query polarity. If one relies

on the query polarity agnostic metrics, conclusions regarding the

unfairness of the rankings would be incorrect. That is, fairwashing

may occur.

Ranking Quality and Fairness Tradeoff.We plot the variation

in fairness across thresholds of allowable ranking quality loss (𝜃 ).

Lower unfairness is observed at lower 𝜃 for the polarity-aware

re-ranking (Figure 2 (c)), indicating a ranking quality and fairness

tradeoff. Additionally, we plot the polarity agnostic re-ranking per-

formance in Figure 2(c), which leads to higher (worse) unfairness

than using query polarity. This matches our discussion that fair-

ness metrics are sensitive to query polarity, and polarity agnostic

re-ranking may harm the actual (un)fairness. Higher standard devi-

ation is observed in polarity-aware re-ranking.

Importantly, in many real-world applications, different queries

may have multiple differing real-world properties beyond polarity.

Accordingly, we generalize our distribution-aware fairness defini-

tion to allow multiple query properties as a vector, where multiple

queries form a high-dimensional distribution. Initial results with

this setup for the synthetic datasets are in the Appendix K.

8 Conclusions

In this paper, we propose a new distribution-aware distance-based

metric, DistFaiR, for amortized fairness measurement. We identify

metrics under DistFaiR with the useful property that group and

individual fairness are not at odds. Accordingly, we propose an inte-

ger linear programming-based re-ranking to improve fairness based

on prior work by [8] while maintaining similar ranking quality. We

find optimizing our objective improves both group and individual

fairness. We also highlight query properties that have been ig-

nored so far in fair-ranking literature, where not considering these

properties can lead to fairwashing. We empirically demonstrate

fairwashing effects due to a lack of query polarity consideration

and propose/evaluate a method to mitigate this effect. Future work

includes a formulation of a fully differentiable approach.

We make normative assumptions that the distribution of atten-

tion should be close to that of relevance. However, a different link

function may be more appropriate [46]. Additionally, scores al-

lotted to minority groups may be under-estimates of their true

value [35, 43] and may need to be pre-processed [37]. Importantly,

there may not be purely technical fixes for operationalizing real-

world fair ranking [22]. Our approach, we believe, is a step towards

reducing the scale of such issues.
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Figure 3: Critical information about the distributions of rele-
vance and attention (e.g., the variance) may be missing in such
formulations.

A Overview Figure

B Information Loss with Expectation-only Ap-
proaches

We observe that critical information about distributions of attention

may be missing from prior formulations e.g., as shown in Figure 3,

where the mean attention may match the mean relevance scores for

an individual, but the distributions may be very dissimilar. Consider

two distributions 𝐴 and 𝑅 defined as follows

𝐴 = N(0, Σ) and 𝑅 = 0.5N(−𝜇, Σ) + 0.5N(𝜇, Σ) .

Also, define

𝑅 = N(0, Σ)

Clearly 𝜇𝐴−𝜇𝑅 = 𝜇𝐴−𝜇𝑅 = 0. However, the distribution between

attention and relevance is clearly not the same. Particularly, suppose

𝜇 = 3. Then Var(𝐴) < Var(𝑅), and attention is spread out much less

broadly across individuals as relevance. Thus, attention is much

more concentrated for some individuals, while relevance is not

concentrated within the same individuals. Importantly, fairness

metrics that only consider means would consider this setting fair.

Let Σ = 𝐼 and

Γ(𝑥) =
©«

exp

(
−𝑥2

2

)
0.5 exp

(
− (𝑥+𝜇 )2

2

)
+ 0.5 exp

(
− (𝑥−𝜇 )2

2

) ª®®¬ .
Then

𝐷KL (𝐴∥𝑅) =
∫ ∞

−∞

1

√
2𝜋

exp

(
−𝑥

2

2

)
log Γ(𝑥)𝑑𝑥. (12)

Clearly, 𝐷KL (𝐴∥𝑅) = 0 < 𝐷KL (𝐴∥𝑅), better measuring the dis-

crepancy between cumulative attention and relevance, unlike mean

distance measures in previous work.

C Example of Fairwashing

As shown in Figure 4, past formulations of amortized fair ranking

may be prone to fairwashing.

GroupIndividual

A Female

B Male

C Male

"Rude" "Bad Dentist" "Good Dentist""Short Wait"

1
2

3

t

Figure 4: Past work in amortized fair ranking has ignored the
impact of query polarity. Here, if all individuals are equally rele-
vant, and expected attention scores for ranks 1,2,3 are {0.5, 0.5, 0}
respectively, the sequence of queries appear fair because an in-
dividual’s expected attention accumulated over the four queries
is proportional to their relevance. However, we observe that the
female doctor is allocated attention only for the queries with
negative polarity (“rude",“bad dentist"). This leads to fairwash-
ing.

D Datasets

We utilize four datasets used in our experiments. In each dataset,

relevance scores are normalized to form a distribution within a

ranking. fairtrec2021 is licensed under the CC BY-SA 3.0 license.

rateMDs is released as a part of open-sourced research publica-

tion [51].

D.1 Synthetic Hiring Datasets

Two synthetic datasets are generated, to mimic the example shown

in Figure 4. The sensitive attribute is this dataset is the sex of

the individual being ranked. We generate two versions, one with

binary relevance scores, and one where in one case the relevance is

continuous. In the binary relevance dataset (synth-hiring1) the
relevance for individuals is either 1.01 or 0.99, with male individuals

having a relevance score of 1.01 for queries with positive polarity,

and 0.99 for queries with negative polarity. In the continuous dataset

(synth-hiring2), the relevance in each group is sampled from

a uniform distribution, with range [1, 1.1] for the less priortized
group, and [1, 1.2] for the more prioritized group per query. Each

query in the dataset has a polarity value ∈ {−1, 1}.

D.2 RateMDs

We also utilize a healthcare dataset [51] for ranking doctors cor-

responding to a text query. The sensitive attribute is sex. Each

ranking corresponds to a text query such as “best dentist". The

ranking is produced by using a pre-trained LLM model
1
to match

the text to reviews of doctors, and order the doctors in decreas-

ing order of ranking score. Each query is associated with a utility

∈ {−1, 1}, which is annotated based on the sentiment polarity of

the query (positive sentiment: 1, negative sentiment: -1). Note that

some queries were specific to a speciality: e.g., “best dentist", and

relevance scores were produced for all doctors in the dataset (i.e.,

including doctors who have a different specialty). Thus, our results

produced are highly influenced by the correctness of the LLM-

driven scores. Ideally, the scores allocated to doctors from different

1
https://huggingface.co/cross-encoder/ms-marco-TinyBERT-L-2
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specialties will be low. We leave experiments with varying how the

relevance score is produced to future work.

D.3 FairTREC2021

In this dataset, the items correspond to Wikipedia articles, and the

query is the corresponding article domain [20]. This is a standard

dataset used in multi-query ranking tasks. The sensitive attribute is

geographic location(s) referred to in the data, which we categorize

into one of five groups. The query utility score is a continuous score

∈ [−1, 1], and is produced by a pre-trained sentiment classification

model [6]. Specifically, the utility score is the sum of the sentiment

polarity of the query – where -1 denotes negative, 0 denotes neutral,

and 1 denotes positive – weighted by predicted probabilities of each

polarity class.

E Individual vs Group Fairness

E.1 Tail Probability Bounds forCumulativeAttention
and Relevance

Theorem E.1. Let 𝑋 𝑡
𝑖
∼ Bernoulli(𝑝𝑡

𝑖
) and

𝑋𝑖 =
∑︁
𝑡 ∈T

𝑋 𝑡𝑖 .

The expected value of 𝑋𝑖 is given by:

E[𝑋𝑖 ] =
∑︁
𝑡 ∈T

𝑝𝑡𝑖 .

Then, for any 𝛿 > 0, we have the following:

P ( |𝑋𝑖 − E[𝑋𝑖 ] | ≥ 𝛿E[𝑋𝑖 ]) ≤ 2 exp

(
−𝛿

2E[𝑋𝑖 ]
2 + 𝛿

)
.

Proof. Assume that 𝑋 𝑡
𝑖
’s are independent for different 𝑡 and ob-

serve that the domain of random variable 𝑋 𝑡
𝑖
is {0, 1}, i.e., bounded

and non-negative. Using Chernoff bounds for the sum of indepen-

dent Bernoulli random variables we have upper and tail bounds,

respectively:

𝑃 (𝑋𝑖 ≥ (1 + 𝛿)E[𝑋𝑖 ]) ≤ exp

(
−𝛿

2E[𝑋𝑖 ]
2 + 𝛿

)
,

𝑃 (𝑋𝑖 ≤ (1 − 𝛿)E[𝑋𝑖 ]) ≤ exp

(
−𝛿

2E[𝑋𝑖 ]
2

)
.

Applying a union bound for both the upper and lower tails, we

have:

𝑃 ( |𝑋𝑖 − E[𝑋𝑖 ] | ≥ 𝛿E[𝑋𝑖 ]) ≤ 2 exp

(
−𝛿

2E[𝑋𝑖 ]
2 + 𝛿

)
.

□

E.2 Proof of Lemmas

Lemma E.2. Define the following:

𝐷𝐿1 (𝑃 ∥𝑄) = |𝜇𝑃 − 𝜇𝑄 |

𝐷𝐿1 satisfies definition 4.1 for 𝑃 and 𝑄 when 𝜇𝑃 and 𝜇𝑄 are suf-
ficient statistics for their respective distributions. Additionally, both
are jointly convex.

Proof. We prove that 𝐷𝐿1 (𝑃 ∥𝑄) = |𝜇𝑃 − 𝜇𝑄 | satisfy the follow-

ing properties:

1. Non-negativity:
For 𝐷𝐿1 (𝑃 ∥𝑄), the expressions involve absolute values, which are

non-negative by definition. Thus,

𝐷𝐿1 (𝑃 ∥𝑄) = |𝜇𝑃 − 𝜇𝑄 | ≥ 0. (13)

2. Positivity:
For 𝐷𝐿1 (𝑃 ∥𝑄) = |𝜇𝑃 − 𝜇𝑄 |, we have 𝐷𝐿1 (𝑃 ∥𝑄) = 0 if and only if

𝜇𝑃 = 𝜇𝑄 . Since 𝜇𝑃 and 𝜇𝑄 are sufficient statistics, 𝜇𝑃 = 𝜇𝑄 implies

𝑃 = 𝑄 , and conversely, if 𝑃 = 𝑄 , then 𝜇𝑃 = 𝜇𝑄 .

3. Joint convexity:
Let 𝑃𝜆 = 𝜆𝑃1+ (1−𝜆)𝑃2 and𝑄𝜆 = 𝜆𝑄1+ (1−𝜆)𝑄2, where 𝜆 ∈ [0, 1].
The mean is a linear functionals of the distributions, so:

𝜇𝑃𝜆 = 𝜆𝜇𝑃1 + (1 − 𝜆)𝜇𝑃2 .

For 𝐷𝐿1 (𝑃 ∥𝑄) = |𝜇𝑃 − 𝜇𝑄 |, we use the convexity of the absolute

value function:

|𝜇𝑃𝜆 − 𝜇𝑄𝜆
| ≤ 𝜆 |𝜇𝑃1 − 𝜇𝑄1

| + (1 − 𝜆) |𝜇𝑃2 − 𝜇𝑄2
|.

Thus, 𝐷𝐿1 (𝑃𝜆 ∥𝑄𝜆) ≤ 𝜆𝐷𝐿1 (𝑃1∥𝑄1) + (1 − 𝜆)𝐷𝐿1 (𝑃2∥𝑄2).
4. Subadditivity: For 𝐷𝐿1 (𝑃 ∥𝑄), we need to verify:

𝐷𝐿1 (𝑃 ∥𝑅) ≤ 𝐷𝐿1 (𝑃 ∥𝑄) + 𝐷𝐿1 (𝑄 ∥𝑅)

This becomes:

|𝜇𝑃 − 𝜇𝑅 | ≤ |𝜇𝑃 − 𝜇𝑄 | + |𝜇𝑄 − 𝜇𝑅 |

This is the standard triangle inequality for absolute values, so sub-

additivity holds.

5. Scaling over averages: For 𝐷𝐿1 (𝑃 ∥𝑄), scaling over averages

refers to how the divergence behaves when comparing averages

(means) of distributions. It requires:

𝐷𝐿1

(
𝑃1 + 𝑃2

2

∥𝑄1 +𝑄2

2

)
≤
𝐷𝐿1 (𝑃1∥𝑄1) + 𝐷𝐿1 (𝑃2∥𝑄2)

2

This becomes:���� 𝜇𝑃1 + 𝜇𝑃2
2

−
𝜇𝑄1

+ 𝜇𝑄2

2

���� ≤ |𝜇𝑃1 − 𝜇𝑄1
| + |𝜇𝑃2 − 𝜇𝑄2

|
2

Again, this holds due to the triangle inequality for absolute values.

6. Positive homogeneity: For 𝐷𝐿1 (𝑃 ∥𝑄):

𝐷𝐿1 (𝛼𝑃 ∥𝛼𝑄) = |𝛼𝜇𝑃 − 𝛼𝜇𝑄 | = 𝛼 |𝜇𝑃 − 𝜇𝑄 | = 𝛼𝐷𝐿1 (𝑃 ∥𝑄)

Thus, positive homogeneity holds.

□

E.3 Individual Fairness Upper-Bounds Group Fair-
ness

Theorem E.3. For any jointly convex DistFaiR divergence that
is subadditive, positively homogeneous, and scales under averages,
amortized group fairness is upper-bounded by amortized individual
fairness. Specifically, we have the following inequality:

max

𝑔𝑘 ∈G
𝐷 (𝐴𝑔𝑘 ∥𝑅𝑔𝑘 ) ≤ max

𝑖∈D
𝐷 (𝐴𝑖 ∥𝑅𝑖 ) , (14)

12
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where 𝐴 and 𝑅 are distributions that denote attention and relevance,
respectively, individuals 𝑖 ∈ {1, . . . , 𝑛}, and 𝑔𝑘 denotes the set of
individuals 𝑖 that belong to group 𝑘 .

Proof. Let 𝐴𝑖 , 𝑅𝑖 denote the distributions of random variables

𝑋𝑖 , 𝑌𝑖 , respectively.

Assume 𝐷 is subadditive, positively homogeneous, and
scales under averages.

Denote

𝑋𝑔𝑘 =
1

|𝑔𝑘 |
∑︁
𝑖∈𝑔𝑘

𝑋𝑖 and 𝑌𝑔𝑘 =
1

|𝑔𝑘 |
∑︁
𝑖∈𝑔𝑘

𝑌𝑖 , (15)

such that, by scaling property of 𝐷 ,

𝑋𝑔𝑘 ∼ 𝐴𝑔𝑘 and 𝑌𝑔𝑘 ∼ 𝑅𝑔𝑘 . (16)

Denote

𝑋 ′
𝑖 =

1

|𝑔𝑘 |
𝑋𝑖 and 𝑌 ′

𝑖 =
1

|𝑔𝑘 |
𝑌𝑖

s.t.

𝑋 ′
𝑖 ∼ 𝐴

′
𝑖 and 𝑌 ′

𝑖 ∼ 𝑅′𝑖 .

𝐴𝑔𝑘 = 𝐴′
1
◦𝐴′

2
◦ . . . ◦𝐴′

|𝑔𝑘 | and 𝑅
′
𝑔𝑘

= 𝑅′
1
◦𝑅′

2
◦ . . . ◦𝑅′|𝑔𝑘 | , where

◦ denotes convolution. Recall that 𝑋𝑖 ’s and 𝑌𝑖 ’s are independent.

𝐷 (𝐴𝑔𝑘 ∥𝑅𝑔𝑘 ) ≤
∑︁
𝑖∈𝑔𝑘

𝐷 (𝐴′
𝑖 ∥𝑅

′
𝑖 ) (17)

=
1

|𝑔𝑘 |
∑︁
𝑖∈𝑔𝑘

𝐷 (𝐴𝑖 ∥𝑅𝑖 ) (18)

≤ max

𝑖∈𝑔𝑘
𝐷 (𝐴𝑖 ∥𝑅𝑖 ) (19)

≤ max

𝑖∈D
𝐷 (𝐴𝑖 ∥𝑅𝑖 ), (20)

where Equation 17 is a result of subadditivity and Equation 18 is

a result of positive homogeneity.

Taking the max over all groups,

𝑚𝑎𝑥𝑔𝑘 ∈G𝐷
(
𝐴𝑔𝑘 ∥𝑅𝑔𝑘

)
≤ max

𝑖∈D
𝐷 (𝐴𝑖 ∥𝑅𝑖 ), (21)

completes the proof.

□

E.4 Tail Probability Bounds for Polarity-Aware Cu-
mulative Attention and Relevance

Theorem E.4. Let 𝑋 𝑡
𝑖

∼ Bernoulli(𝑝𝑡
𝑖
) and 𝜂 (𝑞𝑡 ) ∈ [𝑎𝑡 , 𝑏𝑡 ];

𝑎𝑡 , 𝑏𝑡 ∈ R. With a slight abuse of notation, let 𝑋 𝑡
𝑖
= 𝑋 𝑡

𝑖
· 𝜂 (𝑞𝑡 ) ∈

[𝑎𝑡 , 𝑏𝑡 ] and
𝑋𝑖 =

∑︁
𝑡 ∈T

𝑋 𝑡𝑖 ,

The expected value of 𝑋𝑖 is given by:

E[𝑋𝑖 ] =
∑︁
𝑡 ∈T

𝜂 (𝑞𝑡 ) · 𝑝𝑡𝑖 .

Then, for any 𝛿 > 0, we have the following:

𝑃

(
|𝑋𝑖 − E[𝑋𝑖 ] | ≥ 𝛿

)
≤ 2 exp

(
− 2𝛿2∑

𝑡 ∈T (𝑏𝑡 − 𝑎𝑡 )2

)
.

Proof. Assume that 𝑋 𝑡
𝑖
’s are independent for different 𝑡 and

observe that each 𝑋 𝑡
𝑖
∈ [𝑎𝑡 , 𝑏𝑡 ], i.e., bounded. Using Hoeffding’s

inequality for the sum of independent bounded random variables,

we have:

𝑃

(
𝑋𝑖 ≥ E[𝑋𝑖 ] + 𝛿

)
≤ exp

(
− 2𝛿2∑

𝑡 ∈T (𝑏𝑡 − 𝑎𝑡 )2

)
,

𝑃

(
𝑋𝑖 ≤ E[𝑋𝑖 ] − 𝛿

)
≤ exp

(
− 2𝛿2∑

𝑡 ∈T (𝑏𝑡 − 𝑎𝑡 )2

)
.

By applying a union bound for the upper and lower tails, we get:

𝑃

(
|𝑋𝑖 − E[𝑋𝑖 ] | ≥ 𝛿

)
≤ 2 exp

(
− 2𝛿2∑

𝑡 ∈T (𝑏𝑡 − 𝑎𝑡 )2

)
.

□

F Integer Linear Programming Formulation

The solver for each optimization relies on the branch-and-bound

linear programming [54] algorithm wherein the linear program-

ming relaxation (i.e., without integrality constraints) is first solved.

Then, a tree-based search is performed to find feasible solutions,

valid upper bounds (best found objective) and the best possible

bound. The gap between the best found objective and best possible

bound – referred to as the optimality gap [9] – is measured during

each search iteration. The Gurobi solver also uses routines of pre-

solve [2], cutting planes [38], etc. to make the optimization more

efficient.

G Individual Fairness Bounds Group Fairness
under DistFaiR.

Theorem 4.5 shows that group (un)fairness is upper-bounded by

individual (un)fairness for some classes of distance functions. In

Figure 5(a), we experimentally validate this by computing group

and individual unfairness for the𝑊1 divergence measure.

synth-cont synthetic rateMDs FairTREC2021
Dataset
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Figure 5: Individual Fairness Bounds Group Fairness under
DistFaiR (here, 𝐷𝑖𝑠𝑡𝐹𝑎𝑖𝑅(𝑊1))
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H Note on Query Polarity Aware Ranking

Note that we can also utilize normalized versions of query utility

𝑈 (𝑡), e.g., with softmax-based normalization. However, normal-

ization in this manner ensures may convert queries with negative

polarity to positive – thus we use unnormalized scores in our ex-

periments.

I Additional Results: Impact of Re-ranking on
Group Fairness

Re-ranking interventions optimized to improve individual fairness

tend to improve or retain EUR as seen in Table 3. Importantly, Dist-

FaiR underperforms IAA on the IAA individual fairness measure-

ment which makes sense because DistFaiR focuses on worst-case

distance between individuals, while IAA focuses on average across

individuals. Thus, there are tradeoffs between average and worst-

case performance as seen in other fairness contexts [58]. Note that

we set degree of permissible performance loss (i.e., least possible

nDCG) to 80%, which all methods exceed. However, IAA does have

higher performance on FairTREC2021.

Table 3: DistFaiR also improve IAA and EUR in a major-
ity of cases (here, positive, higher is better). However, there
are some distance function-dependent variations. We show
difference in group unfairness, when compared to the un-
constrained ranking. IAA outperforms DistFaiR on the IAA
fairness measurement

Dataset Baseline Fairness nDCG@10

IAA EUR

synth-binary

IAA 68.88% 19.75% 100%

FoE 12.89% 20.81% 100%

DistFaiR(𝐿1) 57.62% 35.94% 100%

DistFaiR(𝐿𝑣𝑎𝑟
2

) 39.30% 16.57% 100%

DistFaiR(𝑊1) 45.91% 66.17% 100%

synth-cont

IAA 46.44% -4.16% 91%

FoE 3.56% -72.97% 99%

DistFaiR(𝐿1) 29.62% 11.00% 88%

DistFaiR(𝐿𝑣𝑎𝑟
2

) 34.81% 16.59% 88%

DistFaiR(𝑊1) -4.10% -38.68% 86%

FairTREC2021

IAA 0.88% 21.96% 96%
DistFaiR(𝐿1) -3.49% 30.66% 82%

DistFaiR(𝐿𝑣𝑎𝑟
2

) -2.47% -5.95% 84%

DistFaiR(𝑊1) -2.36% 38.23% 84%

rateMDs

IAA 11.63% 50.00% 91%

FoE -1.01% 10.68% 93%
DistFaiR(𝐿1) -2.95% 41.74% 86%

DistFaiR(𝐿𝑣𝑎𝑟
2

) 1.24% 61.64% 87%

DistFaiR(𝑊1) -13.16% 64.38% 83%

J Fairness Over Time

We observe that variance in online fairness is generally lower for

divergence measures that use higher order moments as seen in

Figure 7.

K Multiple properties per query

We empirically conduct experiments where each query in the syn-

thetic dataset contains three total properties. We define fairness as

the sum of fairness metrics with each component separately.

synth-cont synthetic rateMDs FairTREC20210.00
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Figure 6: Online fair ranking – where queries arrive one after
the other for ranking – underperforms offline fair ranking
where the whole set of queries is known apriori. However,
the degree of difference is small.
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Figure 7: Online fair ranking fairness on rateMDs.

Table 4: Impact of fair ranking

Pre-intervention Post-intervention

Dataset Measure

synth-binary IAA 12.80 3.98

DistFaiR(𝐿1) 0.80 0.14

DistFaiR(𝑊1) 0.11 0.03

synth-cont IAA 7.58 3.82

DistFaiR(𝐿1) 0.40 0.14

DistFaiR(𝑊1) 0.06 0.04

We observe that online optimization reduces unfairness from

across metrics in the synth-binary and synth-cont datasets in

Table 4.

L Online vs Offline Optimization

We observe that online optimization underperforms fully offline

fairness optimization, but only by a small margin.
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