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ABSTRACT

The Solomon benchmark is a well-known resource for researching Capacitated
Vehicle Routing Problem with Time Windows (CVRPTW), and has been used by
many traditional methods. However, the limited scale of the Solomon benchmark
poses challenges to effective utilization by learning-based approaches. To address
this, we propose an expanded version with a large set of new instances, called
DER-Solomon benchmark, which follows a similar distribution as the Solomon
benchmark. First, we analyze the Solomon benchmark and use backward deriva-
tion to establish an approximate distribution, from which the DER-Solomon is
generated, thereby significantly expanding the size of the benchmark. Next, we
validate the distribution consistency between the DER-Solomon benchmark and
the original Solomon benchmark using traditional algorithms. We then demon-
strate the superiority and reliability of DER-Solomon compared to other similar
Solomon-like datasets using state-of-the-art Deep Reinforcement Learning (DRL)
algorithms. Finally, we train multiple DRL algorithms using the DER-Solomon
benchmark and compare them with the traditional algorithms. The results show
that the DRL algorithms trained on the DER-Solomon benchmark can achieve the
same level of solution quality as the traditional algorithms on the Solomon bench-
mark while reducing the computational time by over 1000 times on CVRPTW.
All the results demonstrate that the DER-Solomon benchmark is sufficiently ex-
cellent, serving as an extension of the Solomon benchmark, which offers valuable
tools and resources for further research and solutions to the CVRPTW problem.

1 INTRODUCTION

The Capacitated vehicle routing problem (CVRP) is a classical combinatorial optimization problem,
which aims to optimize the routes for a fleet of vehicles with capacity constraints to serve a set of
customers with demands (Dantzig et al., 1954; Li et al., 2021). Compared with the assumption of
customers is no service time requirement, the settings of customers with different time window con-
straints are more in line with the real-world practice, which leads to the CVRP with Time Windows
(CVRPTW) (Solomon, 1987; Desaulniers et al., 2016). The objective of the problem is to devise a
set of routes that efficiently serve each customer within their respective time windows and capacity
constraints for all vehicles, while minimizing the total traveling distance or the overall transporta-
tion cost (Bräysy & Gendreau, 2005; Schneider et al., 2014; Wang et al., 2021b). The CVRPTW is
a crucial aspect of logistics and transportation, attracting extensive research efforts to find effective
solutions. Numerous methods have been proposed to tackle this problem from conventional methods
to DRL-based methods.

The Solomon benchmark is a set of instances proposed by Solomon (1987). It is based on real-life
data and considers practical constraints, providing standardized CVRPTW instances. The Solomon
benchmark is complex enough to test all aspects of algorithms, and has been cited as a public test
dataset for a variety of algorithms in the CVRPTW field for years, ranging from heuristic algorithms
to evolutionary algorithms, from single-objective problems to multi-objective problems (Kuo et al.,
2022; Chen et al., 2021; Luo et al., 2018; 2016).
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Exact algorithms obtain or approximate optimal solutions by exhaustively enumerating all possibil-
ities (Yang, 2023; Desaulniers et al., 2014). Researchers have primarily focused on exact algorithms
for the CVRPTW using the Solomon benchmark as experimental data. These studies have produced
highly favorable outcomes. Various exact algorithms have been extensively researched, including
branch and bound, branch and price, and dynamic programming. Macedo proposed an iterative ex-
act algorithm for this problem, which depends on a pseudo-polynomial network flow model in which
nodes represent time points, and arcs represent feasible vehicle routes (Macedo et al., 2011). Costa
et al. emphasized the major methodological and modeling contributions over the years on branch
and price algorithms, whether general or specific to VRP variants (Costa et al., 2019). Baldacci et
al. surveyed methods based on linear and integer programming and compared the performance and
complexity of branch and price methods and branch and bound methods (Baldacci et al., 2012).

Heuristic algorithms are methods that continuously optimize the current solutions to search for better
solutions (Bräysy & Gendreau, 2005). Various heuristic algorithms for the CVRPTW problem have
been extensively researched and applied, including genetic algorithms (Berger & Barkaoui, 2004;
Putri et al., 2021), simulated annealing algorithms (Czech & Czarnas, 2002), tabu search algorithms
(Cordeau & Maischberger, 2012), ant colony algorithms (Razavi & Eshlaghy, 2015), etc. The com-
parison between these algorithms usually uses the Solomon benchmark as test data. Evolutionary
algorithms, which simulate the natural evolution process to search for optimal solutions in the solu-
tion space (González et al., 2018; Cybula et al., 2022), have also been widely studied and applied
to the CVRPTW problem, such as genetic algorithms (Liu & Jiang, 2019) and differential evolution
algorithms (Pitakaso et al., 2020). Marrouche et al. studied a population-based metaheuristic al-
gorithm, specifically Strength Pareto Evolutionary Algorithm 2 (SPEA2) with local search features
(Marrouche & Harmanani, 2021).

Due to the strong NP-completeness of the CVRPTW problem, traditional algorithms like exact and
heuristic algorithms have limitations such as high computational complexity, long execution time,
and poor portability (Zhang et al., 2022; Wang et al., 2021a). Data-driven approaches such as Deep
Reinforcement Learning (DRL) algorithms have become a breakthrough in overcoming the limi-
tations of traditional algorithms by improving the efficiency of solving combinatorial optimization
problems through learned experiences and strategies (Bello et al., 2017; Kool et al., 2019; Zong
et al., 2022). Still, they require a large number of instances during the training process (Lin et al.,
2021; Zhang et al., 2020; Liang et al., 2023). However, the Solomon benchmark only consists of
56 instances, which is a limited number for DRL algorithms to solve the CVRPTW problem. Cur-
rently, the majority of DRL algorithms for CVRPTW are trained using generated datasets similar
to the Solomon benchmark (referred to as the “Solomon-like benchmark” in this paper). However,
these generated datasets lack theoretical backward derivation and rely solely on estimated Gaussian
distributions to generate instances without undergoing similarity verification. Consequently, a sig-
nificant disparity exists when comparing these datasets with the original Solomon benchmark. As
a result, DRL algorithms are often evaluated on partial customer points or datasets resembling the
Solomon benchmark (Xu et al., 2021; Zhang et al., 2020), without directly on the original bench-
mark itself. Hence, an urgent requirement is to expand the number of instances matching the original
Solomon benchmark distribution.
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Figure 1: Schematic diagram of the DER-Solomon benchmark generation process. The goal is for
DRL methods, trained on DER-Solomon, to compete fairly with traditional methods on the Solomon
benchmark.

This paper aims to generate an improved Solomon benchmark with a large number of instances for
CVRPTW, called the derived-Solomon (DER-Solomon) benchmark. To this end, we analyze the
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characteristics of the 56 instances of the Solomon benchmark in detail, and backward derive the dis-
tribution of the time windows. The process of backward deriving is shown as in Figure 1. By com-
paring the testing results of traditional algorithms on the original Solomon benchmark and the DER-
Solomon benchmark, we demonstrate that the data generated by our backward deriving method has a
similar distribution to the Solomon benchmark. Furthermore, we use the DER-Solomon benchmark
and the existing Solomon-like benchmark, respectively to train MARDAM(Bono et al., 2020), a
state-of-the-art DRL algorithm for CVRPTW. Subsequently, we evaluate the outcomes of the trained
models using the standard Solomon benchmark. The experimental results show that the dataset of
DER-Solomon generated by our method is closer to the Solomon benchmark compared to other sim-
ilar datasets. Finally, We successfully apply various advanced DRL methods to solve the CVRPTW
and train them with the DER-Solomon benchmark to achieve a fair comparison of the performance
between the DRL and traditional algorithms on the Solomon benchmark. The contributions of this
paper are as follows:

• By backward deriving, we establish the distribution model of the 56 instances in the
Solomon benchmark and generate the DER-Solomon benchmark, thus expanding the num-
ber of instances in the benchmark.

• We verify the distribution consistency between the DER-Solomon benchmark and the
Solomon benchmark using traditional algorithms. Moreover, we demonstrate the supe-
riority and reliability of the DER-Solomon benchmark in DRL algorithms, showing that it
is closer to the Solomon benchmark than other similar Solomon-like benchmark.

• We propose a method for scaling up the Solomon benchmark through backward deriving.
This method serves as a valuable reference for enlarging the scale of other combinatorial
optimization datasets, facilitating their further advancement.

• The DER-Solomon benchmark complements the number of instances in the Solomon
benchmark, facilitating fair comparisons between DRL-based CVRPTW solving algo-
rithms and traditional algorithms on the standard test instances of the Solomon bench-
mark. It also facilitates comparisons of various DRL-based CVRPTW solving algorithms
on DER-Solomon instances with the same complexity and sufficient quantity as Solomon
benchmark, promoting the development and improvement of related algorithms.

2 BACKWARD DERIVATION MODEL

For a data set X = {x1, x2, · · · , xn}, its frequency histogram is shown in Figure 2(a). To infer
the appropriate distribution function that matches the Solomon benchmark datasets, we begin by
assuming multiple forms of distribution functions. For each distribution function form, parameter
estimation is performed. The goodness of fit for each distribution function is evaluated by calculating
the Residual Sum of Squares (RSS). The distribution function with the smallest RSS is selected as
the best-fitting distribution, as evidenced by the fitting curve depicted in Figure 2(b). The entire
process is visually represented in Figure 3.

(a) (b)

Figure 2: Frequency histogram of data X (a) and its fitting distribution curve (b)

2.1 MODEL DERIVATION

The popular distribution function models include Normal, Exponential, Pareto, Weibull, t, General
extreme (GE), Gamma, log Normal, Beta, Uniform, and Log Gamma. Using these models to infer
the distribution of variables allows for coverage of the true distribution of variables in most cases.
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Figure 3: Backward derivation process of data set X’s distribution function. By using various pop-
ular distribution functions in statistical techniques, we can derive the data X to approximate its true
distribution. This is particularly suitable for scenarios with a small amount of data.

In the backward derivation of Solomon benchmark distribution, after experimental testing, three
distribution function forms were selected with the best fit: Weibull, GE, and Beta. Their distribution
function forms are given by formulae (1), (2), and (3). To facilitate parameter fitting, let y =
(x− loc)/scale, where loc and scale are the translation and scaling parameters of the independent
variable.

Weibull(x; c) =
c

2
|y|c−1e−|y|c , y ∈ R, c > 0. (1)

GE(x; c) =

{
e−e−y

e−y , c = 0

e−(1−cy)
1
c (1− cy)

1
c−1, c ̸= 0,

(2)

where −∞ < y ≤ 1
c if c < 0, and 1

c ≤ y <∞ if c > 0.

Beta(x; a, b) =
Γ(a+ b)ya−1(1− y)b−1

Γ(a)Γ(b)
, (3)

where

Γ(x) =

∫ +∞

0

ty−1e−tdt, 0 ≤ y ≤ 1, a > 0, b > 0. (4)

2.2 MODEL PARAMETERS ESTIMATION

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an
assumed probability distribution, given some observed data (Wikipedia contributors, 2023). For a
data set X = {x1, x2, · · · , xn}, whose distribution function form is assumed to be f(x; Θ) with
parameter Θ, its likelihood function is built as

L(Θ) = ln

{
n∏

i=1

f(xi; Θ)

} 1
n

=
1

n

n∑
i=1

ln(f(xi; Θ)). (5)

And then make it maximum to solve the Θ. Intuitively, this selects the parameter values that make
the observed data most probable.

To solve it, we firstly use MINIPACK (Moré et al., 1980), which is a FORTRAN program used to
solve nonlinear least squares problems. And the initial solution in MINIPACK of Θ is set to 1 with
the exception of loc and scale in it, which are set to the mean and variance, respectively, of X . The
solution obtained from MINPACK is then used as the initial values for further optimization using
the Nelder-Mead method (Gao & Han, 2012). The pseudocode for the Nelder-Mead algorithm is
shown in appendix.

2.3 RSS TEST

A goodness-of-fit test performed on a fitted distribution function can evaluate it. The Residual Sum
of Squares (RSS) describes the deviation between the predicted data from the distribution function
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and the real data. It quantity the gap between the fitted distribution function and the real distribution
function, with a smaller RSS indicating a closer fit between the model and the data. RSS is calculated
as

RSS =

n∑
i=1

(yi − f (xi))
2 (6)

where yi represents the actual data values, xi is the independent variable, and f (xi) is the predicted
value from the model. The fitting performances of different distribution functions to the data are
evaluated by performing a goodness-of-fit test using RSS. Subsequently, by comparing and ranking
the RSS values, the distribution function with the smallest RSS is chosen as the best theoretical
distribution for the data.

3 DERIVATION OF SOLOMON BENCHMARK DISTRIBUTION

This section explores the analysis of the Solomon benchmark and presents the derivation process
and results of the Solomon benchmark in conjunction with the mathematical model discussed in the
previous section.

3.1 SOLOMON BENCHMARK

The Solomon benchmark, proposed by Solomon (1987), serves as a public test dataset for the
CVRPTW algorithm. It consists of six series: C1, C2, R1, R2, RC1, RC2, each containing 8 to
12 different instances. Each instance includes 101 data points, consisting of customer point num-
bers, x and y coordinates, demand, time window start time, time window end time, and service
duration. The first data point (NO. 0) corresponds to the depot node. The maximum capacity Q of
vehicles is the same within the same series, and the corresponding Q values for each series are: 200,
700, 200, 1000, 200, and 1000.

In different instances within the same series, such as C101 and C102, the customer points with
identical numbers have the same x and y coordinates, demand, and service duration. The only
difference is their time window. Therefore, to generate a large number of data similar to the Solomon
benchmark distribution for DRL algorithm training, DRL algorithms can be trained separately in
each series so as to keep the x and y coordinates, demand, and service duration the same as the
corresponding series of Solomon benchmark, only randomly generating the time windows according
to the Solomon benchmark distribution.

3.2 TIME WINDOW DENSITY

In the Solomon benchmark, the time window density may vary for different instances. Time win-
dow density indicates the percentage that the number of customer points subject to time window
constraints among the total number of customer points. There are four levels of time window den-
sity: 25%, 50%, 75%, and 100%. Analysis reveals that instances with densities of 25%, 50%, and
75% are low-density versions of an instance in the same series with a density of 100%. For example,
in the C1 series, the time windows for C102, C103, and C104 are versions with densities of 75%,
50%, and 25%, respectively, compared to C101. This means that they use the same time windows as
C101, but only a portion (75%, 50% and 25% respective) of customer points of them need to satisfy
the time window constraints.

3.3 TIME WINDOW WIDTH

The generation of time windows depends on two factors: the center values and the width of the time
windows (Solomon, 1987), rather than the start time and the end time. The center values represents
the intermediate time between the start time and the end time. The width represents the duration
from the start time to the end time. In the Solomon benchmark, the center values of time windows
for R and RC series are uniformly and randomly generated within range [ENTER0+distance(0, i),
LEAVE0−distance(0, i)−SERVICEi], where ENTER0 and LEAVE0 are the time window of the
depot point, distance (0, i) is the travel time between customer point i and the depot, and SERVICEi

represents the time required to serve customer point i. As for the C series, the center values of time
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windows are obtained by solving the CVRP problem without time window constraints using the
3-opt route method, which provides the arrival times for each customer point as the center values.
In other words, the center values of time windows for the Solomon benchmark instances are fixed
(series C) or have a known distribution function (R and RC). Therefore, the Solomon benchmark
distribution’s derivation only involves the distribution of time window width. For ease of use in
code, this paper deduces the distribution of half-widths of time windows.

3.4 BACKWARD DERIVATION

To backward derive a distribution function of an instance, taking C101 as an example, following the
process illustrated in Figure 3, we first assume multiple distribution forms for the width, such as
Normal, Exponential, Pareto, Weibull, t, GE, Gamma, log Normal, Beta, Uniform, and log Gamma.
Then, we estimate parameters for all distribution forms. Taking the Beta function shown in formula
(3) as an example, we construct the maximization objective function for the maximum likelihood
estimation according to the formula (5). Let Θ = [a, b, loc, scale]T, and we have

L(Θ) =
1

100

100∑
i=1

ln(Beta(x = xi; Θ)), (7)

where the xi represents the half-width of the time window of the ith customer node of C101. We
then use MINIPACK to minimize −L(Θ) preliminarily and obtain Θ = [3.48, 5.33, 17.13, 33.55]T.
Based on this, we set the initial values of Nelder-Mead to 1 + σ times the Θ on each parameter, i.e.,
Θ5 = Θ, and Θ1,Θ2,Θ3,Θ4 are [3.48×1.05, 5.33, 17.13, 33.55]T, · · · , [3.48, 5.33, 17.13, 33.55×
1.05]T. After 600 iterations, we obtain Θ = [4.06, 5.95, 16.05, 35.34]T, indicating that the distri-
bution function is Beta(a = 4.06, b = 5.95, loc = 16.05, scale = 35.34), corresponding to the
distribution curve in Figure 2(b).

To test the fitting distribution functions, we conduct the RSS goodness-of-fit test. In Figure 2(b), the
frequencies of histogram bin centers are {0.0154, 0.0246, · · · , 0.00308}. The predicted values of
the distribution function beta(a = 4.06, b = 5.95, loc = 16.05, scale = 35.34) at the bin centers
are {0.0108, 0.0378, · · · , 0.00552}. The RSS is calculated as the sum of the squared differences
between the frequencies and the predicted values, giving RSS = (0.0154− 0.0108)2 + (0.0246−
0.0378)2 + · · ·+ (0.00308− 0.00552)2 = 8.18e− 4.

Similarly, the RSS values for the remaining commonly used distribution forms, i.e., Normal,
Exponential, Pareto, Weibull, t, GE, Gamma, log Normal, Uniform, and log Gamma, are es-
timated as follows: 9.20e − 4, 8.73e − 3, 8.73e − 3, 3.16e − 3,9.20e − 4, 8.24e − 4, 8.56e −
4, 8.61e − 4, 5.07e − 3, 9.30e − 4. Among all distribution forms, the Beta distribution has the
smallest RSS value of 8.18e − 4, indicating that it is the best theoretical distribution, namely Beta
(a = 4.06, b = 5.95, loc = 16.05, scale = 35.34) distribution.

The detailed derivation results for 56 instances are shown in Table 3 of appendix, and the distribution
functions used for generating data for each series are listed in Table 4 of appendix.

4 EXPERIMENTS

To verify the effectiveness of the proposed DER-Solomon benchmark in comparison to the Solomon
benchmark, we conduct four groups of experiments. In the first group of experiments, we use tra-
ditional algorithms to solve the DER-Solomon benchmark and Solomon benchmark to verify the
consistency between the two datasets. In the second group of experiments, we train the state-of-
the-art DRL algorithm designed for CVRPTW using the DER-Solomon and Solomon-like bench-
marks, respectively, and test it on the Solomon benchmark to demonstrate the superiority of the
DER-Solomon benchmark. In the third group of experiments, we apply various advanced DRL al-
gorithms originally solving CVRP to solve CVRPTW and train them with the DER-Solomon bench-
mark, then compare them with three traditional algorithms on the Solomon benchmark to show their
performance on such fair comparison. In the fourth group of experiments, we show the time cost of
those two sets of algorithms on a large number of CVRPTW instances to demonstrate the advantages
of DRL algorithms in terms of computing efficiency.
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4.1 SIMILARITY BETWEEN DER-SOLOMON AND SOLOMON BENCHMARK WITH
TRADITIONAL ALGORITHMS

To verify the DER-Solomon benchmark and the Solomon benchmark have a similar effect on algo-
rithms, we used the following three traditional algorithms to test these two datasets and compared
the mean and standard deviation of the test results. These three traditional algorithms are: LKH3
(Helsgaun, 2017), a famous heuristic solver that achieves state-of-the-art performance on various
routing problems; OR-Tools (Perron & Furnon, 2019), a mature and widely used routing problem
solver based on meta-heuristics; GA (Ombuki et al., 2006), an advanced routing problem solver
based on genetic algorithm.

Table 1 shows the mean and standard deviation of the test results for GA, LKH, and OR-Tools on
the Solomon benchmark and DER-Solomon benchmark, respectively, and the mean and standard
deviation Gap between the test results on the two datasets. It can be observed that the Gap in mean
does not exceed 5%, and the Gap in standard deviation does not exceed 3%. The experimental re-
sults indicate that DER-Solomon benchmark and Solomon benchmark show significant consistency
in terms of the mean and standard deviation of solutions achieved by multiple algorithms, demon-
strating that DER-Solomon benchmark can serve as an extension of the Solomon benchmark for
training algorithms based on both traditional and DRL methods. The LKH and OR-Tools test codes
are released 1, as well as GA 2 (Please note that underscores may change to other symbols when
pasted into the browser’s address bar).

Table 1: Performance of traditional algorithms on DER-Solomon and Solomon benchmark.

LKH OR-Tools GA

Solomon DER-
Solomon

Gap Solomon DER-
Solomon

Gap Solomon DER-
Solomon

Gap

mean

C1 827.3 824.8 0.30 % 919.5 920.4 0.10 % 833.7 836.0 0.27 %
C2 590.0 588.4 0.26 % 631.6 616.4 2.40 % 591.5 588.6 0.50 %
R1 1187.2 1131.4 4.70 % 1235.9 1199.6 2.94 % 1194.9 1159 3.01 %
R2 882.0 869.6 1.41 % 963.0 965.1 0.23 % 903.1 889.4 1.52 %
RC1 1352.1 1292.0 4.45 % 1439.5 1384.1 3.84 % 1373.5 1310.9 4.56 %
RC2 1010.7 1002.0 0.86 % 1124.6 1108.1 1.46 % 1018.5 1022.7 0.41 %

std

C1 1.44 0.13 0.16 % 88.41 65.44 2.50 % 13.00 14.18 0.14 %
C2 1.57 0.24 0.23 % 36.32 35.30 0.16 % 11.37 4.52 1.16 %
R1 204.29 174.09 2.54 % 168.94 143.79 2.03 % 208.68 187.14 1.80 %
R2 129.44 111.83 2.00 % 142.18 119.70 2.33 % 118.56 111.69 0.76 %
RC1 191.03 155.24 2.65 % 128.73 128.08 0.04 % 173.36 151.89 1.56 %
RC2 172.39 148.12 2.40 % 174.13 163.59 0.94 % 158.58 149.27 0.91 %

The “Gap” is calculate as abs(std or mean on Solomon − std or mean on DER-Solomon)
mean on Solomon , which represent the difference be-

tween Solomon and DER-Solomon. This is a deeper representation of the difference in data using the
performance results of various algorithms, rather than simply comparing through the surface features of
the data. The bold text indicates where DER-Solomon and Solomon show the greatest Gap.

4.2 IMPROVEMENT OF DRL ALGORITHMS USING DER-SOLOMON BENCHMARK

In the experiment, we used the open-source MARDAM (Bono et al., 2020) algorithm for CVRPTW
to demonstrate the effectiveness of DER-Solomon benchmark. We compare the performance on the
Solomon benchmark of the algorithm training with the original data and training with DER-Solomon
benchmark, respectively, as shown in Figure 4. The 56 instances on the x-axis correspond to the c1,
c2, r1, r2, rc1, and rc2 series’ instances from left to right. The MARDAM code is released 1.

As we can seen from Figure 4, the performance of MARDAM trained with DER-Solomon bench-
mark is significantly better than the one trained with the original training data. The DRL algorithm
outperforms the optimal values in some Solomon benchmark instances, which is due to the original

1https://anonymous.4open.science/r/DER-Solomon MARDAM-5E47
2https://anonymous.4open.science/r/DER-Solomon GA-62F2
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Figure 4: Effect of training with different data. MARDAM trained with DER-Solomon is much
better than trained with the original data.

MARDAM model using soft time window constraints. In hard time window constraint problems,
the arrival time of a customer point cannot exceed the latest allowable time ARRIVEi < LEAVEi.
However, in soft time window problems, there is no such restriction. Instead, soft time win-
dow problems involve penalty values α(LEAVEi − ARRIVEi), where cost = DISTANCE +∑

i∈[1,101] α(LEAVEi − ARRIVEi), and α is the penalty coefficient, and DISTANCE is the to-
tal path length. From this, we can see that DER-Solomon benchmark outperforms other similar
Solomon-like benchmark.

4.3 COMPARISON BETWEEN DRL AND TRADITIONAL ALGORITHMS

To enable a fair comparison between DRL algorithms and traditional algorithms on the public test
instances of the Solomon benchmark, we trained AM (Kool et al., 2019), MDAM (Xin et al., 2021),
and POMO (Kwon et al., 2020) using DER-Solomon benchmark and compared them to traditional
algorithms GA, LKH, and OR-Tools on the Solomon benchmark.

When it comes to CVRP problems, the DRL algorithms of AM, MDAM, and POMO are widely ac-
knowledged to be effective. Even though their creators did not offer models specifically for solving
CVRPTW, we have adapted their models for CVRP problems to fit the requirements of CVRPTW,
and they continue to display strong performance.

Figure 5: Performance comparison of algorithms on the Solomon benchmark.

Figure 5 extracts the optimal values of the three DRL algorithms, and the worst values and the
optimal values of the three traditional algorithms (curves with square, circle, and triangle marks,

8



Under review as a conference paper at ICLR 2024

respectively) on various instances of the Solomon benchmark. And the detailed values of these
algorithms are shown in Table 5 of appendix. In Figure 5, the curves “Gap to max” represents
the gap between the optimal value of DRL and the worst value of the traditional algorithm. In
contrast, the curves “Gap to min” represents the gap between that of DRL and the optimal value
of the traditional algorithm. As seen from the figure, in more than half of the Solomon benchmark
instances, DRL algorithms outperformed the worst values of traditional algorithms, and the gaps
are within 10% even compared with the optimal values of traditional algorithms, demonstrating
that DRL algorithms can achieve a similar level of solution quality as traditional algorithms on the
Solomon benchmark. This suggests that training DRL algorithms using DER-Solomon benchmark
generated based on the Solomon distribution backward derivation can lead to a fair comparison
between DRL algorithms and traditional algorithms on the public test instances of the Solomon
benchmark. The code of AM, MDAM, and POMO for solving CVRPTW are released3.

4.4 COMPARISON OF TIME COST

Apart from the competitive solution quality, the computational speed of DRL algorithms is much
higher than traditional algorithms. We solved the same 1024 DER-Solomon instances using DRL
algorithms (AM, MDAM, POMO) and traditional algorithms (LKH, OR-Tools, GA), and the time
taken for each algorithm to solve the instances are shown in Table 2. The experimental results
indicate that the computational time of DRL algorithms is significantly lower than that of traditional
algorithms, with efficiency improvements exceeding 1000 times. The shorter computational time
demonstrates the tremendous potential of DRL algorithms for large-scale CVRPTW planning. Thus,
it is worthwhile to explore DRL algorithms further. And facilitating a fair comparison between DRL
algorithms and traditional algorithms by training DRL using DER-Solomon is an important part of
this.

Table 2: Time taken for algorithms to solve 1024 instances.

C1 C2 R1 R2 RC1 RC2

Tradition
LKH 25m36s 47m36s 46m41s 1h47m6s 2h15m40s 1h44m15s
OR-Tools 2h44m36s 4h1m48s 3h43m2s 4h16m12s 3h4m47s 4h16m27s
GA 4h59m46s 1h42m29s 1h9m54s 5h11m34s 55m15s 4h38m52s

DRL
AM 1.3s 1.2s 1.3s 1.2s 1.2s 1.6s
MDAM 13.3s 11.8s 12.8s 12.3s 12.3s 11.6s
POMO 4.4s 4.6s 4.4s 4.3s 4.6s 4.4s

The bold text indicates that LKH and AM are the fastest algorithms in the traditional and DRL algorithms,
respectively.

5 CONCLUSION

In this study, we use the backward derivation method to fit the distribution of Solomon benchmark
and generate DER-Solomon benchmark with a sufficient number of instances and similar complexity
to Solomon benchmark. These instances are suitable for training and testing traditional algorithms
and DRL algorithms. The DER-Solomon benchmark has demonstrated superior performance com-
pared to other similar Solomon-like benchmarks. The DRL algorithms trained on DER-Solomon
benchmark can achieve solutions of equal quality on par with traditional algorithms on the Solomon
benchmark, while improving solving time over 1000 times in CVRPTW with a large number of
instances compared to traditional algorithms.

The proposed backward derivation method can provide references for generating a large number of
simulation instances for other CVRP-related tasks with a limited number of actual instances. DER-
Solomon expands the number of Solomon benchmark instances, enabling fair comparisons between
DRL algorithms and traditional algorithms.

3https://anonymous.4open.science/r/DER-Solomon DRLs-8AA1/
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A APPENDIX

A.1 NELDER-MEAD ALGORITHM

In the Nelder-Mead algorithm1, parameter is set as follows: {σ, T, α, β, γ, δ} =
{0.05, 600, 1, 2, 0.5, 0.5}. Θ is a column vector with a number of rows equal to the variable n
in the algorithm and the number of parameters in the distribution function. For example, in the case
of the beta distribution,n = 4, and Θ = [a, b, loc, scale]T .

When Initialization, En is a unit matrix. For Θ0 = [3.48, 5.33, 17.13, 33.55]T, Θ1,Θ2,Θ3,Θ4 =
[3.48× 1.05, · · · ]T, · · · , [· · · , 33.55× 1.05]T.

A.2 THE DERIVATION RESULTS OF SOLOMON BENCHMARK DISTRIBUTION

The distribution functions of the 56 instances in the Solomon benchmark are listed in Table 3. In
cases with multiple distribution functions, it indicates that the half-widths of time windows for the
100 customer points may follow different distributions.

A.3 DISTRIBUTION FOR THE DER-SOLOMON GENERATION

The distribution used to generate DER-Solomon is slightly different in form from that of the 56
instances of the Solomon benchmark due to repetition, density variations, etc., and the specific
distribution used is shown in Table 4. A total of 1,280,000 instances were generated for training
purposes, taking the C1 series as an example, it contains 6 groups of instances with different dis-
tributions: Beta(4.06,. . . ), Beta(3.66,. . . ), Gamma(1.52,. . . ), Beta(3.73,. . . ), Constant 90 and Con-
stant 180. Among them, the number of instances with time window half-widths distribution of
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Algorithm 1 Nelder-Mead
Input: Θ0 ← MINIPACK(−L(Θ))
Parameter: σ, T, α, β, γ, δ = 0.05, 600, 1, 2, 0.5, 0.5
Output: Θ

Initialize Θ1,Θ2, · · · ,Θn ← (1 + σ)EnΘ0.
Θn+1 ← Θ0.
Let function L← −L
Sort all Θi s.t. L(Θ1) < L(Θ2) < · · · < L(Θn+1).
for step← 1, 2, · · · , T do
Θ̄← (Θ1 +Θ2 + · · ·+Θn)/n
Θr ← Θ̄ + α(Θ̄−Θn+1)
if L(Θ1) ≤ L(Θr) < L(Θn) then

Θn+1 ← Θr

else if L(Θr) < L(Θ1) then
Θe ← Θ̄ + β(Θr − Θ̄)
if L(Θe) < L(Θr) then

Θn+1 ← Θe

else
Θn+1 ← Θr

end if
else if L(Θn) ≤ L(Θr) < L(Θn+1) then
Θoc ← Θ̄ + γ(Θr − Θ̄)
if L(Θoc) ≤ L(Θr) then

Θn+1 ← Θoc

end if
else if L(Θr) ≥ L(Θn+1) then
Θic ← Θ̄− γ(Θr − Θ̄)
if L(Θic) < L(Θn+1) then

Θn+1 ← Θic

end if
end if
for i← 1, 2, · · · , n+ 1 do
Θi ← Θ1 + δ(Θi −Θ1)

end for
Sort all Θi s.t. L(Θ1) < L(Θ2) < · · · < L(Θn+1)

end for
return Θ← Θ1

Beta(4.06,. . . ) accounts for 3/8 of the total number of instances, that is, 480000 instances. This part
of the instances is divided equally by time windows with densities of 25%, 50%, 75%, and 100%,
respectively. Therefore, the instances with time window constraint density of 25% account for 1/4
of them, which is 120000 instances. The value range [22.17, 39.39] means that for the instances
distributed as Beta(4.06,. . . ), the time window half-widths are randomly generated according to the
probability density of Beta(4.06,. . . ) only in the range of [22.17, 39.39], and the probability outside
the range is zero. In the RC series, “Within Instances, Generated Proportionally” means that for
the same instance within 100 customer points, different customer points may have different time
window half-widths. Taking RC1 as an example, in the same instance, the time window half-widths
of 1/4 of the customer points, that is, 25 customer points, are 5, and the 25 customer points are 60,
and the remaining 60 customer points are of distribution Beta(1.94,87.21,8.89,663.77).

A.4 PERFORMANCE OF ALGORITHMS ON SOLOMON BENCHMARK

Table 5 shows the length of routings solved by DRL algorithms and traditional algorithms on
Solomon benchmark.
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Table 3: The distribution of each instance.

Instances Distribution functions Instances Distribution functions

C101 Beta(4.06,5.95,16.05,35.34) R202 75% of R201
C102 75% of C101 R203 50% of R201
C103 50% of C101 R204 25% of R201
C104 25% of C101 R205 constant 120
C105 Beta(3.66,5.33,33.51,67.03) R206 75% of R205
C106 Gamma(1.52,12.49,43.03) R207 50% of R205
C107 constant 90 R208 25% of R205
C108 Beta(3.73,5.23,66.20,133.38) R209 Beta(1.30,2.27,44.52,359.15)
C109 constant 180 R210 Beta(0.90,1.76,36.50,457.83)
C201 constant 80 R211 GE(0.22,222.49,34.74)
C202 75% of C201 RC101 constant 15
C203 50% of C201 RC102 75% of RC101
C204 25% of C201 RC103 50% of RC101
C205 constant 160 RC104 25% of RC101
C206 Beta(3.67,5.20,133.29,266.06) RC105 1/4 constant 5, 1/4 constant 60,
C207 Beta(0.86,1.41,88.50,547.94) 1/2 Beta(1.94,87.21,8.89,663.77)
C208 constant 320 RC106 constant 30
R101 constant 5 RC107 1/2 Beta(2.88,8.24,19.28,40.81),
R102 75% of R101 1/2Beta(12.26,10.26,16.42,78.39)
R103 50% of R101 RC108 Beta(9.90,5.49,-27.18,129.57)
R104 25% of R101 RC201 constant 60
R105 constant 15 RC202 75% of RC201
R106 75% of R105 RC203 50% of RC201
R107 50% of R105 RC204 25% of RC201
R108 25% of R105 RC205 1/4 constant 30, 1/4 constant 240,
R109 GE(0.23,27.77,4.35) Weibull(2.05, 92.65, 31.63)
R110 Beta(1.23,1.82,11.32,79.54) RC206 constant 120
R111 Beta(0.77,1.25,9.50,88.05) RC207 Beta(1.30, 2.27, 44.52, 359.15)
R112 GE(0.24,55.60,8.57) RC208 GE(0.22, 222.48, 34.73)
R201 GE(0.22,51.24,17.33)

A.5 FURTHER APPLICATION ON HOMBERGER BENCHMARK

Compared to the Solomon benchmark, which is a commonly used public test set of instances in the
CVRPTW field with a general customer size, the Homberger benchmark is another public test set of
instances in the CVRPTW field with a larger customer size, ranging from 200 to 1000. We expanded
its instances using the method proposed in this paper, as shown in Table 6. Correspondingly, we
trained the DRL algorithm using the expanded instances, and compared the resulting model with
traditional algorithms on Homberger benchmark. The experimental results are shown in Table 7.

A.6 VISUALIZATION OF GENERATED INSTANCES

To better provide some visualizations of the generated instances, a comparison of the time window
half-width distribution between the original benchmark and the expanded data is presented in Figure
6, which include both frequency histograms and frequency curves. All instances from all series are
merged together for statistics. The number of instances in the expanded data used for comparison
is the same as the number of instances in the original benchmark. Instances with a constant time
window half-width are not included . For instances where the widths of some customer points are
constant, those customer points are also not included.
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Table 4: The distribution of each series for generating DER-Solomon.

Series Distribution functions Value ranges Percentage

C 1

Beta(4.06,5.95,16.05,35.34) [22.17, 39.39] 3/8(25%,· · · ,100% )
Beta(3.66,5.33,33.51,67.03) [44.49, 78.79] 1/8
Gamma(1.52,12.49,43.03) [20.38, 182.43] 1/8
Beta(3.73,5.23,66.20,133.38) [88.87, 157.46] 1/8
constant 90 and 180 90,180 1/4(90 and 180 )

C 2

constant 80 80 1/2(25%,· · · ,100% )
constant 160 and 320 160,320 1/4(160 and 320 )
Beta(3.67,5.20,133.29,266.06) [177.81, 315.13] 1/8
Beta(0.86,1.41,88.50,547.94) [100.08, 561.94] 1/8

R 1

constant 5 5 1/4(25%,· · · ,100% )
constant 15 15 1/4(25%,· · · ,100% )
GE(0.23,27.77,4.35) [22.35, 37.11] 1/8
Beta(1.23,1.82,11.32,79.54) [15.38, 77.68] 1/8
Beta(0.77,1.25,9.50,88.05) [10.91, 87.51] 1/8
GE(0.24,55.60,8.57) [44.82, 73.69] 1/8

R 2

GE(0.22,51.24,17.33) [29.68, 88.83] 3/8(25%,· · · ,100% )
constant 120 120 1/4(25%,· · · ,100% )
Beta(1.30,2.27,44.52,359.15) [61.63, 322.55] 1/8
Beta(0.90,1.76,36.50,457.83) [45.57, 403.76] 1/8
GE(0.22,222.49,34.74) [179.26,297.74] 1/8

RC1

constant 15 15 1/2(25%,· · · ,100% )
Within instances, generated proportionally:

1/81/4constant 5, 5
1/4constant 60, 60
1/2Beta(1.94,87.21,8.89,663.77) [22.52, 39.25]

constant 30 30 1/8
Within instances, generated proportionally:

1/2Beta(2.88,8.24,19.28,40.81), [22.52,39.25] 1/8
1/2Beta(12.26,10.26,16.42,78.39) [45.65,72.19]

Beta(9.90,5.49,-27.18,129.57) [29.53, 79.97] 1/8

RC2

constant 60 60 1/2(25%,· · · ,100% )
Within Instances, Generated Proportionally:

1/81/4constant 30, 30
1/4constant 240, 240
Weibull(2.05, 92.65, 31.63) [45.15, 140.14]

constant 120 120 1/8
Beta(1.30, 2.27, 44.52, 359.15) [61.63, 322.55] 1/8
GE(0.22, 222.48, 34.73) [179.26, 297.74] 1/8
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Table 5: Performance of DRL algorithms and traditional algorithms on Solomon benchmark.

Solomon DRL Tradition

instances Optimal AM MDAM POMO GA LKH OR-Tools HGS

C101 827.3 828.9 828.9 829.7 827.3 828.9 917.6 827.3
C102 827.3 942.5 958.9 898.5 858.4 828.9 1008.6 827.3
C103 826.3 987.4 987 928.6 857.4 828.1 974.6 826.3
C104 822.9 993 959.5 875.4 822.9 824.8 1084 822.9
C105 827.3 828.9 828.9 829.7 827.3 828.9 893.4 827.3
C106 827.3 828.9 828.9 829.7 827.3 829.4 904.8 827.3
C107 827.3 828.9 830.5 831.2 827.3 828.9 829.7 827.3
C108 827.3 828.9 876.7 832.7 827.3 829.4 831.7 827.3
C109 827.3 833.2 871.4 835.2 828.4 828.9 830.9 827.3
C201 589.1 744.2 753.4 591.6 589.1 591.6 591.6 589.1
C202 589.1 810.5 838.3 675.6 589.1 591.6 664.2 589.1
C203 588.7 817.4 874.3 673.5 588.7 591.6 624.5 588.7
C204 588.1 814.2 823.7 684.8 621.4 591.2 664.3 588.1
C205 586.4 728.8 764.9 588.9 586.4 588.9 631.1 586.4
C206 586 730.5 760.1 588.9 586 588.5 592.3 586
C207 585.8 697.3 750.5 588.9 585.8 588.5 591.4 585.8
C208 585.8 719.8 768.5 588.9 585.8 588.3 594.3 585.8
R101 1637.7 1786.4 1754.2 1695.9 1673.6 1617.2 1583.8 1637.7
R102 1466.6 1618.6 1625.2 1538 1472.6 1458.9 1432.6 1466.6
R103 1208.7 1315.4 1382.2 1303.2 1220.6 1219.4 1219.5 1208.7
R104 971.5 1073.5 1095.2 1060.7 989.2 1003.9 1097.6 971.5
R105 1355.3 1493.7 1476.4 1447.2 1369.3 1360.6 1411.5 1355.3
R106 1234.6 1344.6 1393.5 1305.9 1242.7 1245 1303.4 1234.6
R107 1064.6 1180 1180.1 1170.2 1080.5 1084.5 1124.7 1064.6
R108 932.1 1041.7 1035 992.6 970.0 952.5 1016 932.1
R109 1146.9 1270.9 1299 1231.1 1168.9 1151.3 1238.7 1146.9
R110 1068 1185.6 1230 1158.5 1128.9 1099 1196.9 1068
R111 1048.7 1162.7 1212.8 1150.1 1058.8 1082.8 1132.5 1048.7
R112 948.6 997.1 1079.5 1026.2 963.8 971 1073.1 948.6
R201 1143.2 1272.1 1294.1 1237.9 1163.0 1143.2 1215.6 1143.2
R202 1029.6 1199.9 1214 1144.6 1036.6 1031.7 1139.3 1029.6
R203 870.8 998 1061.5 964.2 913.3 877.5 955.3 870.8
R204 731.3 824.4 881.4 763.4 765.3 735.9 802.3 731.3
R205 949.8 1045.1 1074.4 1007.8 981.4 955 1003.4 949.8
R206 875.9 1006.7 1047.5 967.4 915.6 888.4 1019.9 875.9
R207 794 891.2 982.2 877.5 825.4 816.9 917.4 794
R208 701 769 778 740.4 754.9 707.5 795.2 701
R209 854.8 951.9 1001.2 943.3 872.3 866.3 955.9 854.8
R210 900.5 1045.3 1080.7 984.7 923.8 916.1 956.8 900.5
R211 746.7 837.6 845.4 806.3 782.7 763.2 824.3 746.7
RC101 1619.8 1754.1 1822.4 1715.1 1638.3 1650.4 1666.8 1619.8
RC102 1457.4 1592.3 1670.2 1578.7 1492.9 1482.2 1527.6 1458
RC103 1258 1441.9 1508.8 1323.3 1318.5 1282.9 1364.1 1258
RC104 1132 1240.7 1224.8 1201.9 1201.9 1136.8 1313.9 1132.3
RC105 1513.7 1652 1699 1621.2 1586.0 1518 1519.6 1513.7
RC106 1372.7 1519.6 1580.5 1467.6 1391.0 1404.2 1461 1372.7
RC107 1207.8 1306.1 1422.7 1292 1217.6 1206.6 1380.4 1207.8
RC108 1114.2 1220 1276.3 1196.2 1141.5 1135.4 1282.2 1114.2
RC201 1261.8 1359 1366.9 1343.5 1272.8 1274.5 1368.9 1261.8
RC202 1092.3 1212.5 1249.9 1169 1114.7 1104.3 1157.5 1092.3
RC203 923.7 1071.6 1083.8 996.1 961.3 942.6 1043.1 923.7
RC204 783.5 925.5 920 873.2 803.2 787.5 850 783.5
RC205 1154 1279.8 1270.4 1218.6 1159.3 1163.1 1322.7 1154
RC206 1051.1 1164.8 1208 1140.6 1078.7 1053.6 1179.4 1051.1
RC207 962.9 1083.3 1136.9 1067.3 966.6 968.9 1018 962.9
RC208 776.1 838.6 916.8 866.9 791.6 790.7 912.3 776.1
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Table 6: The distribution of each series for the generation of Homberger extension instances.

Series Distribution functions Value ranges Percentage

C 1

Weibull(1.2911, 29.761, 4.3503) [21.46, 38.06] 2/5(25%,· · · ,100%)
logNorm(0.025096, -345.58, 405.81) [43.83, 77.34] 1/10
Beta(2.698, 5.0564, -8.1061, 252.09) [19.04, 152.02] 1/10
constant 90 90 1/10
logGamma(823.03, -3770.5, 579.59) [86.47, 152.95] 1/10
constant 180 180 1/10
logNorm(0.017227, -2387.4, 2625.6) [164.85, 313.67] 1/10

C 2

constant 80 80 2/5(25%,· · · ,100%)
constant 160 160 1/10
t(80.569, 248.69, 44.064) [175.36, 322.01] 1/10
logGamma(1500.3, -39813, 5486.5) [76.62, 542.66] 1/10
constant 320 320 1/10
Beta(4.7071, 7.5232, -129.09, 1410.8) [118.92, 740.22] 1/10
constant 440 440 1/10

R 1

constant 5 5 2/5(25%,· · · ,100%)
constant 15 15 2/5(25%,· · · ,101%)
Beta(19.967, 21.871, -31.535, 129.45) [14.05, 46.60] 1/10
Beta(43.76, 63.152, -68.136, 314.14) [36.28, 85.22] 1/10

R 2

Beta(17.91, 23.268, -50.954, 255.94) [28.65, 93.00] 2/5(25%,· · · ,100%)
constant 120 120 2/5(25%,· · · ,101%)
Beta(3.5593, 6.148, -29.968, 587.98) [52.94, 337.54] 1/10
Gamma(7620.6, -2395.3, 0.34582) [190.60, 289.91] 1/10

RC1

constant 15 15 2/5(25%,· · · ,100%)
Beta(3.7284, 7.0289, -3.7358, 100.58) [9.90, 55.75] 1/10
constant 30 30 1/10
GE(0.25447, 39.379, 14.724) [20.74, 70.07] 1/10
t(8580.8, 59.812, 14.947) [35.22, 84.40] 1/10
constant 60 60 1/10
constant 75 75 1/10

RC2

constant 60 60 2/5(25%,· · · ,100%)
Beta(2.0915, 5.6153, -5.7556, 524.29) [26.75, 283.33] 1/10
constant 120 120 1/10
t(21377, 184.78, 85.286) [44.50, 325.07] 1/10
Norm(238.07, 88.745) [92.10, 384.05] 1/10
constant 240 240 1/10
constant 300 300 1/10

We found that the distribution of instances of different customer sizes in Homberger is very close. There-
fore, we have integrated the data of all customer point sizes in the same series to backward derive the
distribution of time window half-widths of this series. Function Weibull, Beta and GE are given by formu-
lae (1)-(3), other are given as follows:
logNorm(x; s, loc, scale) = 1

sy
√
2π

exp(− log2(y)

2s2
).

logGamma(x; c, loc, scale) = exp(cy−exp(y)
Γ(c)

, where Γ is the gamma function as formulae (4).

Gamma(x; a, loc, scale) = ya−1e−y

Γ(a)
.

t(x; v, loc, scale) = Γ((v+1)/2)√
πvΓ(v/2)

(1 + x2/v)−(v+1)/2.

Norm(x; loc, scale) = exp(−y2/2)√
2π

.
Where y = x−loc

scale
.

17



Under review as a conference paper at ICLR 2024

Table 7: Performance of a DRL algorithm and traditional algorithms on part Homberger benchmark.

Homberger Optimal DRL Tradition

instances POMO GA LKH OR-Tools HGS

C1 2 1 2698.6 2706.6003 2713.2 2704.6 4296.2 2698.6
C1 2 2 2694.3 2794.6006 2738.4 2917.9 4245.5 2694.3
C1 2 3 2675.8 2819.4006 2740.7 2707.3 4217 2675.8
C1 2 4 2625.6 4150.2012 2723.1 2643.3 4145.2 2625.6
C1 2 5 2694.9 2712.2002 2694.9 2702 4197.4 2694.9
C1 2 6 2694.9 2707.8 2694.9 2701 4185 2694.9
C1 2 7 2694.9 2703.6003 2694.9 2701 4244.5 2694.9
C1 2 8 2684 2722.2998 2687.7 2775.5 4505.7 2684
C1 2 9 2639.6 2722.2998 2650.3 2687.8 4281.7 2639.6
C1 2 10 2624.7 2703.5994 2670.6 2643.5 4302.5 2624.7
C1 4 1 7138.8 7177.1055 7633.8 7152 9723.9 7138.8
C1 4 2 7113.3 7548.7051 7165.4 7687.4 9672.6 7113.3
C1 4 3 6929.9 7504.103 7204.1 7065.6 9804.2 6930.3
C1 4 4 6777.7 7279.2017 7161.5 6803.1 9397.8 6799.4
C1 4 5 7138.8 7155.4067 7337.3 7152 9483.9 7138.8
C1 4 6 7140.1 7161.3062 7167.4 7153.4 9855.9 7140.1
C1 4 7 7136.2 7172.4038 7298.5 7417.9 10120.3 7136.2
C1 4 8 7083 7179.5054 7172.1 7365.2 10253.3 7084.9
C1 4 9 6927.8 7170.3047 7270.5 7068.5 9820.1 6942.5
C1 4 10 6825.4 7130.7041 7245.5 6863.6 9756.2 6826.7
C1 6 1 14076.6 15025.4014 17103.9 14095.5 17705 14076.6
C1 6 2 13948.3 15126.9971 14907.5 14163.1 17247.2 13953
C1 6 3 13756.5 14865.7939 14739.2 13777.6 17286.9 13834.1
C1 6 4 13538.6 14441.3945 14654.6 13607.9 17559.4 13604.4
C1 6 5 14066.8 15145.1045 14532.7 14085.6 17561.7 14067.7
C1 6 6 14070.9 15768.3008 14360.7 infeasible 18030 14070.9
C1 6 7 14066.8 14857.4043 14556.9 infeasible 18184 14067.7
C1 6 8 13991.2 14340.5 14578.9 14815.3 18110.6 13999.8
C1 6 9 13664.5 14302.7031 14523.3 13719.7 17765.1 13720.7
C1 6 10 13617.5 14405.3994 14859.2 13664.6 18258.5 13666.4
C1 10 1 42444.8 47295.2031 43785.5 42444.8
C1 10 2 41337.8 46488.2148 43926 41723.5
C1 10 3 40064.4 45299.0117 41619.2 40792.8
C1 10 4 39434.1 43110.4922 39675.3 40147.4
C1 10 5 42434.8 47927.582 45555.5 42434.8
C1 10 6 42437 50163.0938 47451.2 42437
C1 10 7 42420.4 46748.2969 45130 42422.4
C1 10 8 41652.1 44636.8086 47819.4 42251.4
C1 10 9 40288.4 44079.2031 44383 41243.9
C1 10 10 39816.8 44048.0273 44279.1 40644.8
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(a) Solomon and DER-Solomon

(b) Homberger and Homberger expension

Figure 6: Frequency comparison between origin benchmark and expanded data
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