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Abstract

Large Language Models (LLMs) have shown001
remarkable reasoning performance but struggle002
with multi-step deductive reasoning involving003
a series of rule application steps, especially004
when rules are presented non-sequentially. Our005
preliminary analysis shows that while LLMs006
excel in single-step rule application, their per-007
formance drops significantly in multi-step sce-008
narios due to the challenge in rule grounding. It009
requires anchoring the applicable rule and sup-010
porting facts at each step, amidst multiple input011
rules, facts, and inferred facts. To address this,012
we propose augmenting LLMs with external013
working memory and introduce a neurosym-014
bolic framework for rule application. The mem-015
ory stores facts and rules in both natural lan-016
guage and symbolic forms, enabling precise017
tracking. Utilizing this memory, our framework018
iteratively performs symbolic rule grounding019
and LLM-based rule implementation. The for-020
mer matches predicates and variables of sym-021
bolic rules and facts to ground applicable rules022
at each step. Experiments indicate our frame-023
work’s effectiveness in rule application and its024
robustness across various steps and settings.025

1 Introduction026

Large Language Models (LLMs) (OpenAI, 2023;027

Touvron et al., 2023; Team et al., 2023; Wei et al.,028

2022) have demonstrated impressive performance029

across diverse reasoning tasks. However, they still030

face challenges with multi-step deductive reason-031

ing (Creswell et al., 2022; Ling et al., 2024; Lee032

and Hwang, 2024), where LLMs are provided with033

a set of facts and logical rules, and need to derive034

an answer to the query through a sequence of rule035

application steps. Specifically, each step of rule036

application requires applying a specific rule to its037

supporting facts to deduce new conclusions. More-038

over, LLMs especially struggle when the surface039

patterns deviate from the sequential ordering of the040

rules (Chen et al., 2024; Berglund et al., 2023).041

[Sequential Input]
Facts: Nicole's grandfather, Harold, accompanied her to the basketball match. (F1) 
Beverly went car shopping with her husband Louis and her daughter Nicole. (F2)
Harold bought a new dress for his daughter Marie. (F3) 
Rules: If B is A’s daughter, and C is B’s grandfather, then C is the father of A. (R1) 
If B is the father of A, and C is the daughter of B, then C is the sister of A. (R2)

[Non-Sequential Input]
Facts: Harold bought a new dress for his daughter Marie. (F3) 
Nicole's grandfather, Harold, accompanied her to the basketball match. (F1)
Beverly went car shopping with her husband Louis and her daughter Nicole. (F2) 
Rules: If B is A’s father, and C is B’s daughter, then C is the sister of A. (R2)
If B is A’s daughter, and C is B’s grandfather, then C is the father of A. (R1) 

[Query] How is Marie related to Beverly?
[Rule Application Order]: R1→ (F2+F1) ⟹ F4;  R2 → (F4+F3) ⟹Answer
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Figure 1: Performance of GPT-4 using scratchpad
Chain-of-Thought (CoT) reasoning across various rule
application steps on CLUTRR (Sinha et al., 2019), with
an example of two-step rule application shown above.

We conduct a preliminary analysis of LLM per- 042

formance across various rule application steps, with 043

rules sequentially and non-sequentially input in 044

their application order. As shown in Figure 1, we 045

observe three phenomena: (1) LLMs are effective 046

at executing single-step rule application. (2) Their 047

performance declines as the number of rule applica- 048

tion steps increases. (3) Performance significantly 049

worsens when rules are presented non-sequentially 050

compared to sequentially, especially in long-term 051

reasoning. Overall, LLMs excel in single-step rule 052

application but face challenges in multi-step rule 053

application, that requires tracking long-term facts 054

and rules and determining appropriate rule and 055

facts for application at each step. 056

Each step of rule application typically consists of 057

two processes: rule grounding and rule implemen- 058
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tation. Rule grounding anchors the current applica-059

ble rule with supporting facts from the input, while060

rule implementation infers new facts based on the061

identified rule and facts. The before-mentioned062

challenges primarily arise from rule grounding us-063

ing LLMs. Specifically, complex reasoning in-064

volves multiple input facts, rules, and intermedi-065

ate inferred facts, making it difficult to accurately066

track long-term rule and facts (especially inferred067

ones) for each step using LLMs’ internalized rea-068

soning (Lanchantin et al., 2024). Additionally, as069

rules are often provided in a non-sequential order or070

include irrelevant ones, rule grounding requires ref-071

erencing back and forth across all rules to identify072

the applicable one at each step, posing challenges073

for auto-regressive LLMs (Chen et al., 2024).074

For precise tracking in multi-step rule applica-075

tion, we propose augmenting LLMs with an exter-076

nal working memory, inspired by humans’ exten-077

sive use of memory for intelligence tasks (Hardman078

and Cowan, 2016). It explicitly stores an unlimited079

list of facts and rules, facilitating easy access dur-080

ing rule grounding, and the writing of new facts081

after intermediate rule implementation. Besides, it082

stores rules and facts in a non-ordered manner, min-083

imizing the influence of the input order on LLMs084

reasoning. We implement this working memory to085

store rules and facts in both natural language and086

their symbolic forms (i.e., in Prolog), thus support-087

ing precise symbolic reference.088

Building on working memory, we propose a neu-089

rosymbolic framework for rule application. This090

framework uses working memory for symbolic091

rule grounding and LLMs for rule implementa-092

tion, leveraging LLMs’ effectiveness in single-step093

rule application. This combination is more flexi-094

ble than purely symbolic execution and more pre-095

cise than fully LLM-driven methods. The work-096

flow begins by writing all input facts and rules into097

working memory. It then proceeds with multiple098

steps of rule application, each involving symbolic099

rule grounding followed by LLM-based rule imple-100

mentation. Specifically, symbolic rule grounding101

performs predicate and variable matching within102

the symbolic forms of facts and rules, checking for103

conflicts to determine the applicable rule with sup-104

porting facts. In rule implementation, LLMs infer105

new facts based on the grounded rule and facts, and106

the new inferred facts with their symbolic notations107

are written into the working memory. This cycle108

continues until the inferred facts solve the query or109

a maximum number of steps is reached.110

We conduct experiment on four datasets involv- 111

ing multi-step rule application: CLUTRR and 112

ProofWriter for logical reasoning, AR-LSAT for 113

constraint satisfaction and Boxes for object state 114

tracking. Results show that our framework out- 115

performs CoT-based and symbolic-based baselines 116

using GPT-4 and GPT-3.5, and exhibits robustness 117

across various rule application steps and settings. 118

2 Preliminary 119

2.1 Problem Definition 120

We consider reasoning tasks involving deductive 121

rule application in natural language, which take a 122

context and a query as input. The context includes 123

all necessary facts and rules for solving the query, 124

though they may be non-sequentially provided in 125

their application order and include irrelevant dis- 126

tractors. The model needs to apply specific rules 127

to both the given and intermediate inferred facts to 128

deduce new facts and ultimately output the answer. 129

2.2 External Working Memory 130

To enhance LLMs for precise long-term tracking in 131

multi-step rule application, we introduce an exter- 132

nal working memory to explicitly store rules and 133

facts, as illustrated in Figure 2.

Rules Base

Working Memory

Fact Base

Natural LanguageSymbolic

Thomas is the grandson of James.grandson_of(Thomas, James)

Dolores is the sister of Thomas.sister_of(Dolores, Thomas)

Gary is blue.blue(Gary)

The cow sees the squirrel.see(cow, squirrel)

Natural LanguageSymbolic
If B is the grandson of A, and C is sister
of B, then C is the granddaughter of A.

granddaughter_of(C, A):-
grandson_of(B, A), sister_of(C, B)

All blue, smart people are rough.rough(A):- blue(A), smart(A)

If someone sees the squirrel then they 
need the cow.need(A, cow):- see(A, squirrel)

Memory Schema

grandson_of, sister_of, granddaughter_of, 
blue, smart, rough, see, needPredicates

Thomas, James, Dolores, Gary, cow, squirrelObjects

Figure 2: An illustration of the working memory.

134

Working Memory Composition The working 135

memory consists of three components: a fact base, 136

a rule base and a memory schema. The fact base 137

stores a list of facts from the input context and in- 138

termediate reasoning, while the rule base saves a 139

list of input rules. The facts and rules are stored 140
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in both natural language and their symbolic forms141

to support precise symbolic reference and verbal-142

ized utilization during multi-step rule application.143

The memory schema maintains a unified vocabu-144

lary of all involved predicates and objects in each145

instance, avoiding semantic duplication. For ex-146

ample, if “father_of” or “located_in” are in the147

schema, then “father-in-law_of” or “located_at”148

will not excluded. The symbolic facts and rules149

in the memory are constituted using these predi-150

cates and objects from the schema.151

The working memory supports two operations:152

read and write. The read operation retrieves neces-153

sary facts and rules from the memory. The write154

operation involves adding new rules or facts to the155

memory, or updating existing facts. The decision to156

add or update facts depends on whether the context157

involves fact updating, such as an object’s location158

changing over time. If new facts conflict with ex-159

isting ones, updating occurs; otherwise, new facts160

are added. In contrast, for static information like161

the kinship relationship between individuals, new162

inferred facts will never conflict with existing ones,163

allowing them to be directly added.164

Symbolic Formulation Facts and rules are sym-165

bolically represented using Prolog notations (Apt166

et al., 1997). Specifically, a fact is a predicate167

expression with several arguments, formatted as168

predicate(arg1, arg2, ...), where args are specific169

objects. For example, the fact “Dolores is the170

sister of Thomas.” can be formulated as “sis-171

ter_of(Dolores, Thomas)”. A rule typically takes172

the form conclusion:-premises, interpreted as If173

premises, then conclusion. Both the conclusion174

and premises are composed of atomic facts, where175

args including both abstract variable symbols like176

A, B, C and specific objects. For example, “If B is177

the grandson of A, and C is sister of B, then C is the178

granddaughter of A” can be represented as grand-179

daughter_of(C, A):-grandson_of(B, A), sister_of(C,180

B). More examples are in Figure 2.181

Memory Schema A key challenge in managing182

working memory is ensuring no duplication caused183

by different expressions conveying the same seman-184

tic meaning. This is essential for updating facts185

and identifying applicable rules based on support-186

ing facts. To address this, we establish a memory187

schema for maintaining canonical predicates and188

objects. Symbolic facts and rules are formulated189

using predicates and objects from this schema.190

The schema is dynamically constructed through-191

out the symbolic formulation process. Initially, the 192

schema is empty. When formulating each fact or 193

rule, the process first looks up whether the exist- 194

ing memory schema can accommodate the neces- 195

sary predicates and objects to encode that piece 196

of information. If it can, symbolic formulation is 197

conducted directly based on the memory schema. 198

If it cannot, new predicates or objects are created 199

and added to the memory schema, and the sym- 200

bolic formulation proceeds using these additions. 201

The dynamic construction process of the memory 202

schema can be viewed in Appendix A. 203

3 Framework 204

Complex reasoning often necessitates multi-step 205

rule application amid non-sequential and irrelevant 206

rules and fact. To address this, we propose a two- 207

stage paradigm for each rule application step: rule 208

grounding and rule implementation. Rule ground- 209

ing anchors the applicable rules and supporting 210

facts at each step. Rule implementation then infers 211

new facts based on the grounded rules and facts. 212

Following this paradigm, we introduce a work- 213

ing memory-based neurosymbolic framework for 214

rule application. It first initializes the working 215

memory with all facts and rules from the input 216

context. It then iteratively performs multi-step 217

rule application, each step involving symbolic rule 218

grounding based on symbolic formulations of facts 219

and rules, followed by LLMs-based rule implemen- 220

tation. This process continues until the query is 221

solved or a maximum number of steps is reached. 222

The detailed workflow is shown in Figure 3. 223

3.1 Working Memory Initialization 224

To comprehensively initialize the working mem- 225

ory from the input context, we first decompose the 226

context into multiple sentences. Then we prompt 227

LLMs to list existing facts and rules for each sen- 228

tence within the context. This involves extracting 229

the natural language expressions and simultane- 230

ously parsing their symbolic formulations based on 231

the memory schema. Both the natural language and 232

symbolic representations of all facts and rules are 233

then written into the working memory. Any new 234

predicates and objects beyond the memory schema 235

are also incorporated into the working memory. 236

The detailed prompt can be found in Appendix B. 237

3.2 Symbolic Rule Grounding 238

At each step of rule application, we first ground the 239

current applicable rules and corresponding support- 240
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[Step#1]: Based on the rule “2. If B is the wife of A, and C is the 
daughter of B, then C is the daughter of A.”, and the facts “Beverly 
is the wife of Louis.” and “Nicole is the daughter of Beverly.” , we 
can infer “Nicole is the daughter of Louis.”

15

Facts: Nicole's grandfather, Harold, accompanied her to the basketball match. Beverly went car shopping with her husband Louis and her daughter 
Nicole. Harold bought a new dress for his daughter Marie.
Rules: If B is the father of A, and C is the daughter of B, then C is the sister of A. If B is the wife of A, and C is the daughter of B, then C is the 
daughter of A. If B is the daughter of A, and C is the grandfather of B, then C is the father of A.
Query: How is Marie related to Louis?

Working Memory

Fact Base

grandfather_of(Harold, Nicole), granddaughter_of(Nicole,Harold)

wife_of(Beverly, Louis), husband_of(Louis, Beverly)

daughter_of(Nicole, Beverly), daughter_of(Marie, Harold) …

daughter_of(Nicole, Louis), father_of(Harold, Beverly)

father_of(Harold, Louis), sister_of(Marie, Beverly)

sister_of(Marie, Louis) Answer: Marie is the sister of Louis. 

Rule Base

sister_of(C, A):- father_of(B, A), daughter_of(C, B)

daughter_of(C, A):-wife_of(B, A), daughter_of(C, B)

father_of(C,A):-daughter_of(B, A), grandfather_of(C, B)

Working Memory 
Initialization

Memory Schema

[Step#1]: Based on the rule “3. If B is the daughter of A, and C is 
the grandfather of B, then C is the father of A.”, and the facts 
“Nicole is the daughter of Beverly.” and “Harold is the grandfather 
of Nicole.” , we can infer “Harold is the father of Beverly.”

[Step#3]: Based on the rule “1. If B is the father of A, and C is the 
daughter of B, then C is the sister of A.”, and the facts “Harold is the 
father of Louis.” and “Marie is the daughter of Harold.” , we can 
infer “Marie is the sister of Louis.”

[Step#2]: Based on the rule “3. If B is the daughter of A, and C is 
the grandfather of B, then C is the father of A.”, and the facts 
“Nicole is the daughter of Louis.” and “Harold is the grandfather of 
Nicole” , we can infer “Harold is the father of Louis.”

Symbolic Rule Grounding
Predicate Matching
Variable Matching

write
read

LLM-based Rule Implementation 

[Step#2]: Based on the rule “3. If B is the father of A, and C is the 
daughter of B, then C is the sister of A.”, and the facts “Harold is the 
father of Beverly.” and “Marie is the daughter of Harold.” , we can 
infer “Marie is the sister of Beverly.”

Figure 3: The workflow of our neurosymbolic rule application framework based on working memory. Details of the
memory schema and natural language expressions of facts and rules are omitted in the memory for simplicity.

ing facts from the working memory. We adopt a241

symbolic predicate and variable matching strategy242

between facts and rules for precise grounding.243

• Predicate Matching checks if the predicates of244

selected facts match those of the rule’s premises.245

This exact string matching can be further relaxed246

using approximate string or model-based seman-247

tic matching to accommodate parsing inconsis-248

tencies for more flexible grounding.249

• Variable Matching verifies whether the argu-250

ments of facts can instantiate the variables in251

rule premises without conflicts (i.e., each vari-252

able is instantiated by the same argument), or253

can match the objects in rule premises.254

Detailed examples are illustrated in Figure 4. We255

observe that the predicates of facts F1 and F2 do256

not match with rule R, while the arguments of F2257

and F4 cannot instantiate the variable B in rule258

R. After this symbolic rule grounding, rule R is259

applicable to its supporting facts F2 and F3.260

Specifically, we adopt different rule grounding261

approaches for various tasks types. For tasks like262

logical reasoning, where facts have no inherent263

chronological order and a single fact never in-264

volves updating, we adopt exhaustive enumeration265

for rule grounding. We enumerate all combinations266

of facts for each rule according to the number of267

R: brother_of(C, A) :- sister_of(B, A), brother_of(C, B)
F1: grandson_of(John, James) F2: sister_of(Mary, John)    predicate unmatched
F2: sister_of(Mary, John)     F3: brother_of(James, Mary)     predicate matched

R: brother_of(C, A) :- sister_of(B, A), brother_of(C, B)
F2: sister_of(Mary, John)  F3: brother_of(James, Mary)         variable matched
F2: sister_of(Mary, John) F4: brother_of(Clarence, Timmy) variable unmatched

Figure 4: Examples of predicate and variable matching.

premise facts, and check all rules. We perform both 268

predicate and variable matching, deeming a rule 269

applicable if no conflicts arise with the correspond- 270

ing facts. Notably, each set of supporting facts for 271

the current step’s applicable rules must include the 272

newly inferred facts from the previous round to 273

avoid repeating rule implementation. For particular 274

constraint satisfaction tasks where all rules need to 275

be satisfied with diverse constraint predicates, we 276

only conduct variable matching to rank the most 277

applicable rule at each step. 278

For tasks like object state tracking, where facts 279

follow an inherent sequential order due to tem- 280

poral operations, causing single facts to update 281

over time, we perform rule grounding according to 282

the chronological order of given operational facts. 283

For the operational fact at each step, we identify 284

the most applicable rule based on both predicate 285

matching and variable matching. 286
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3.3 LLM-based Rule Implementation287

LLMs are effective at single-step rule application.288

After symbolic rule grounding that identifies the289

applicable rules and corresponding supporting facts290

from the working memory at the current step, we291

leverage LLMs to perform parallel rule implemen-292

tation for all rules. Concurrently, we input each rule293

with its supporting facts and prompt LLMs to infer294

new facts in both natural language and symbolic295

formulations (also check for rule-facts conflicts for296

constraint satisfaction). The inferred facts are then297

written into the working memory accordingly. For298

each new inferred fact, we determine whether it299

solve the query. If all inferred facts in this step can-300

not solve the query, the process will proceed to the301

next iteration. The cycle continues until the query302

is resolved or a maximum step count is reached. If303

the query remains unsolved, we employ a backup304

CoT method to output the final answer. Detailed305

prompts are provided in Appendix B.306

4 Experiments307

4.1 Setup308

Datasets We conduct experiments on four rea-309

soning datasets that involve multi-step of deduc-310

tive rule application, including CLUTRR (Sinha311

et al., 2019), ProofWriter (Tafjord et al., 2020), AR-312

LSAT (Zhong et al., 2021) and Boxes (Kim and313

Schuster, 2023), detailed as follows:314

• CLUTRR and ProofWriter are two logical315

reasoning datasets, involving the application of316

commonsense and predefined logical rules. For317

CLUTRR, we select 235 test instances requiring318

2-6 steps of rule application. For ProofWriter,319

we select instances necessitating 3-5 of reason-320

ing steps from the open-world assumption sub-321

set, totaling 300 instances with balanced labels.322

• AR-LSAT is a constraint satisfaction dataset323

sourced from the Law School Admission Test,324

and requires applying all conditional rules to325

find satisfactory solutions. Since multiple in-326

stances in the original dataset share the same327

context, which may deviate the evaluation, we328

select all instances with unique contexts from329

both the development and test sets, resulting in330

80 examples for our evaluation.331

1The results we report of Logic-LM on ProofWriter are
lower than the performance stated in its paper. This is because
we re-implement it on our sampled subset (reasoning depths 3-
5), which is more challenging than the original depth-5 subset
that actually includes reasoning depths from 0 to 5.

• Boxes requires reasoning about objects’ states 332

after multiple operations, where apply inferen- 333

tial rules for these operations can enhance rea- 334

soning. We collect all 135 instances involving 335

6-7 operations to ensure evaluation difficulty. As 336

rules are not provided, we manually curate the 337

corresponding rule for each operation. 338

Baseline We compare our framework with two 339

types of baselines: CoT-based methods and 340

symbolic-based methods. The CoT-based meth- 341

ods include: (1) Scratchpad-CoT (Nye et al., 2021; 342

Wei et al., 2022) performs chain-of-thought reason- 343

ing in a scratchpad manner after the entire input; 344

(2) Self-Consistency CoT (SC-CoT) (Wang et al., 345

2022) samples three reasoning paths and takes the 346

majority vote as the final predication. Specifically, 347

we shuffle input order for the first three tasks and 348

adopt different temperatures (i.e., 0, 0.5, 1.0) for 349

the last task for sampling; (3) Self-Notes (Lan- 350

chantin et al., 2024) prompts the model to generate 351

multiple internal reasoning notes interleaving with 352

the input. We adopt one-shot prompting strategy 353

for these baselines. The symbolic-based methods 354

include: (4) Logic-LM (Pan et al., 2023) utilizes 355

LLMs to parses natural language problems into 356

symbolic formulations and then performs deter- 357

ministic inference with symbolic solvers, like Z3 358

theorem prover (De Moura and Bjørner, 2008); and 359

(5) SymbCoT (Xu et al., 2024) fully utilizes LLMs 360

to parse language facts and rules into symbolic ex- 361

pressions and solve problems step-by-step by CoT. 362

Our working memory-based neurosymbolic 363

framework is named WM-Neurosymbolic, and 364

is implemented based on two different backbone 365

LLMs: GPT-4 (gpt-4-turbo-0409 for CLUTRR, 366

ProofWriter and Boxes, gpt-4o for AR-LSAT) and 367

GPT-3.5 (gpt-3.5-turbo-0125), to test its effective- 368

ness with various abilities of symbolic semantic 369

parsing and one-step rule application. More imple- 370

mentation details can be found in Appendix C. 371

4.2 Overall Performance 372

The overall results are presented in Table 1. For 373

symbolic-based methods, which may fail to return 374

an answer caused by symbolic formulation errors, 375

we use Scratchpad-CoT as a backup. We have the 376

following observations: 377

(1) Our method significantly outperforms all base- 378

lines across all datasets, including the ex- 379

tremely challenging AR-LSAT dataset, demon- 380

strating the superiority of our working memory- 381
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Method
CLUTRR ProofWriter AR-LSAT Boxes

GPT-4 GPT-3.5 GPT-4 GPT-3.5 GPT-4 GPT-3.5 GPT-4 GPT-3.5

CoT-base Methods

Scratchpad-CoT 83.83% 57.02% 61.33% 49.67% 41.25% 30.00% 91.85% 15.60%
SC-CoT 85.53% 59.57% 62.00% 54.00% 45.00% 31.25% 93.33% 17.04%

Self-Notes 74.04% 55.74% 62.00% 52.67% 47.50% 23.75% 92.59% 18.52%

Symbolic-based Methods

Logic-LM / / 62.33% 52.00% 50.00% 31.25% / /
SymbCoT / / 65.67% 51.33% 60.00% 21.25% / /

WM-Neurosymbolic 92.34% 78.72% 77.33% 58.00% 70.00% 35.00% 100% 34.29%

Table 1: Experimental results (accuracy %) of different methods using GPT-4 and GPT-3.5-turbo1.

based neurosymbolic framework.382

(2) Our framework is effective on top of differ-383

ent LLM backbones with varying abilities in384

symbolic parsing and one-step rule application.385

Specifically, GPT-3.5-based framework shows386

significant improvement on formally expressed387

problems (CLUTRR, Boxes) while GPT-4 ex-388

cels at more naturalistic problems (ProofWriter,389

AR-LSAT). This suggests our framework are390

more effective as backbone LLMs advance.391

(3) Compared to previous symbolic-based meth-392

ods that perform both rule grounding and im-393

plementation either symbolically or by LLMs,394

our framework exhibits improvement, demon-395

strating flexibility and robustness by disentan-396

gling rule grounding and implementation, re-397

spectively symbolically and through LLMs.398

4.3 Ablation Study399

To investigate the effectiveness of different stages400

in our framework, we conduct an ablation study tak-401

ing GPT-4 as the backbone on the CLUTRR and402

ProofWriter datasets2. We substitute decomposed-403

based memory initialization with scratchpad-CoT404

initialization, symbolic rule grounding with LLM-405

based grounding, and LLM-based rule implemen-406

tation with symbolic implementation, respectively.407

Scratchpad-CoT initialization involves formulat-408

ing all facts and rules within the entire context at409

once via scratchpad-CoT. LLM-based grounding410

prompts LLMs to iteratively determine the applica-411

ble rules with associated facts at each steps (similar412

to SELECTION-INFERENCE method (Creswell413

et al., 2022)). Symbolic implementation is a deter-414

ministic process defined by ourselves.415

2To save computational costs, we select instances from
ProofWriter that require 5 reasoning steps for analysis.

Method CLUTRR ProofWriter

WM-Neurosymbolic 92.34% 74.67%
→ Scratchpad Initialization 86.81% 66.67%
→ LLM-based Grounding 82.98% 73.33%
→ Symbolic Implementation 90.64% 52.00%
Scratchpad-CoT 83.83% 53.33%

Table 2: Ablation study based on GPT-4. The arrows
denote the replacement of corresponding stages in our
framework with specified components.

As shown in Table 2, all substitutions lead to 416

significant performance drops, underscoring the ef- 417

fectiveness of our framework design. Compared 418

to scratchpad-CoT initialization, the decomposed- 419

based strategy simplifies fact and rule formula- 420

tion by breaking down the context into individ- 421

ual sentences, achieving more comprehensive ini- 422

tialization and improved reasoning. LLM-based 423

rule grounding even performs worse than the base- 424

line on CLUTRR, revealing LLMs’ deficiency in 425

determining rule application order and tracking 426

long-term facts in multi-step reasoning. However, 427

it shows only a slight drop on ProofWriter, be- 428

cause its reasoning involves a single object, reduc- 429

ing complexity for LLMs. Symbolic implementa- 430

tion causes a greater decline in ProofWriter than in 431

CLUTRR, indicating that advanced LLMs are more 432

robust at one-step rule application for more natu- 433

ralistic, complex problems than symbolic solvers. 434

5 Further Analysis 435

5.1 Varying Rule Application Steps 436

To evaluate the effectiveness of our framework 437

across different steps of rule application, we report 438

the performance of various GPT-4-based methods 439
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Figure 5: Performance across varying steps of rule application.

on the CLUTRR and ProofWriter datasets, which440

involves 2-6 steps and 3-5 steps. As shown in Fig-441

ure 5, our framework consistently performs the best442

across all steps. As problem complexity increases443

with more steps, our advantage remains significant.444

Moreover, Self-Consistency CoT outperforms the445

baseline CoT on fewer steps, but this advantage446

diminishes with more steps due to the increased447

likelihood of generating discrepancies. This can be448

mitigated by executing more sampling.449

5.2 Different Rule Settings450

In real-world questions, rules are presented in vari-451

ous ways as follows. (1) Ordered Rules: rules are452

arranged in their application order. (2) Shuffled453

Rules: rules are provided in a random order. (3)454

Noisy Rules: rules are shuffled and include irrele-455

vant ones. This setup closely aligns with real-world456

retrieved-based scenarios where logical rules are re-457

trieved from external sources and may contain dis-458

tractors. We discuss these three rules settings using459

the CLUTRR dataset (focusing on 5-6 rule appli-460

cation steps) and compare our framework to CoT-461

based baselines on GPT-4. Since self-consistency462

CoT involves shuffling input order, we do not re-463

port its performance. For noisy rules, we manually464

add two irrelevant rules to distract each instance.

Rule Settings Ordered Shuffled Noisy

Scratchpad-CoT 66% 64% 58%
Self-Notes 68% 54% 50%

WM-Neurosymbolic 74% 74% 76%

Table 3: Performance on different rule settings.

465

Table 3 shows that CoT-based baselines are sus-466

ceptible to perturbations from rule order and noise,467

especially the Self-Notes method. In contrast, our468

framework exhibits robust effectiveness across all469

rule settings, even with noisy distractors. Notably, 470

our framework outperforms CoT-based baselines 471

even in the ordered rule setting, underscoring its en- 472

hanced ability to precisely track facts at each step 473

and iteratively perform multi-step rule application. 474

5.3 Symbolic Investigation 475

Symbolic-based methods inevitably lead to execu- 476

tion failures due to syntax or semantic errors during 477

symbolic formulation, even performed by an LLM 478

parser. To mitigate this, our framework decouples 479

the symbolic rule application process into execut- 480

ing rule grounding symbolically and rule imple- 481

mentation based on LLMs. To illustrate our frame- 482

work’s flexibility and efficacy, we report its execu- 483

tion success rate and accuracy across all datasets. 484

Specifically, the execution rate denotes the propor- 485

tion of instances that can be directly solved by our 486

neurosymbolic framework without backup, and ac- 487

curacy is calculated for these executable instances. 488

Executable GPT-4 GPT-3.5
Statistics Rate Accuracy Rate Accuracy

CLUTRR 68.94% 100.00% 57.02% 97.76%
ProofWriter 67.00% 85.57% 67.67% 85.22%
AR-LSAT 56.25% 93.33% 12.50% 70.00%

Boxes 100.00% 100.00% 100.00% 34.29%

Table 4: Execution rate and accuracy statistics for our
framework based on GPT-4 and GPT-3.5.

489

As depicted in Table 4, our framework success- 490

fully executes over 50% of instances for all datasets 491

on both GPT-4 and GPT-3.5, except for the com- 492

plex AR-LSAT dataset on GPT-3.5. Additionally, 493

it achieves high accuracy on executable instances. 494

In contrast, Logic-LM executes fewer than 10% 495

of ProofWriter instances, with 33.75% and 8.75% 496

of AR-LSAT instances executable based on GPT-4 497
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and GPT-3.5, respectively.3 This demonstrates the498

flexibility of our rule application framework, com-499

bining matching-based grounding with LLM-based500

implementation for a softer symbolic approach.501

While SymbCoT achieves 100% execution success,502

it shows limited accuracy, highlighting the preci-503

sion of our framework by symbolic grounding.504

5.4 Error Analysis505

We further analyze the cases where our framework506

incorrectly answers and summarize the major error507

types. (1) Incomplete and inaccurate initialization508

of the working memory. This primarily occurs509

when each sentence describes multiple facts or con-510

tains coreference, or each instance has inconsistent511

expressions of predicates with the same meaning512

even using the memory schema. This issue can be513

mitigated by utilizing more in-context demonstra-514

tions, initializing by sliding every two sentences,515

or using softer string matching strategies. (2) Lim-516

ited number of LLM-based rule implementation.517

Since there may be multiple applicable rules at518

each step, we adopt a pruning method to restrict519

the maximum numbers of rule implementation at520

each step to reduce computational costs, making521

it insufficient to answer some instances. This can522

be improved by running more rule implementation523

rounds at each step. (3) Inaccurate LLM-based rule524

implementation, especially for challenging tasks525

like AR-LSAT. This requires employing backbone526

LLMs with more advanced reasoning capabilities.527

6 Related Work528

LLMs with External Memory LLMs (Touvron529

et al., 2023; Abdin et al., 2024) have demonstrated530

remarkable performance across tasks, but struggle531

with complex reasoning that involves memorizing532

or grounding long-term information from context533

or interaction history. Beyond extending LLMs’534

context length (Lee et al., 2024; Lu et al., 2024),535

recent advancements augment LLMs with exter-536

nal memory. Park et al. (2023); Guo et al. (2023)537

equip LLMs agents with external memory mod-538

ules to store and reference long-term dialogue his-539

tory for better interaction. For knowledge-intensive540

tasks, Yue et al. (2024); Wang et al. (2024b) en-541

code long-form context into memory for retrieval542

and utilization. However, previous working mem-543

ory mainly stores natural language or parametric544

entries, making accurate referencing and updating545

3These figures are obtained from our re-implementation.

challenging. Symbolic memory is further proposed 546

to address this issue. ChatDB (Hu et al., 2023) uses 547

databases as symbolic memory for precise infor- 548

mation recording and processing, but is limited to 549

product inventory. Statler (Yoneda et al., 2023) in- 550

troduces symbolic world memory to maintain robot 551

states for embodied reasoning. Our work leverages 552

external memory to store both natural language 553

and symbolic facts and rules, enabling more pre- 554

cise rule grounding for multi-step rule application. 555

Rule Application for Reasoning Rules are well- 556

established principles abstracted from broad real- 557

world observations (Wang et al., 2024a; Zhu et al., 558

2023), or predetermined constraints designed for 559

specific situations (Qiu et al., 2023). They serve 560

as a crucial basis for drawing inferences in com- 561

plex contexts by applying them to known facts to 562

derive new conclusions. For example, logical rea- 563

soning (Sun et al., 2023; Chen et al., 2023) involves 564

applying rules to contextual facts to answer queries, 565

with Olausson et al. (2023); Pan et al. (2023) op- 566

erating in a symbolic manner. Constraint satisfac- 567

tion (Zhong et al., 2021) applies rules to find solu- 568

tions meeting all restrictions. Complex reasoning 569

requires multi-step deductive rule application, each 570

step involving rule grounding and rule implementa- 571

tion for more faithful reasoning (Sanyal et al., 2022; 572

Creswell et al., 2022). We propose to iteratively 573

perform these two processes in a neurosymbolic 574

manner based on working memory. 575

7 Conclusion 576

In this paper, we augment LLMs with an exter- 577

nal working memory and propose a neurosymbolic 578

framework for multi-step rule application to en- 579

hance LLMs’ reasoning capabilities. The mem- 580

ory stores facts and rules in both natural language 581

and symbolic forms, facilitating accurate retrieval 582

during rule application. After writing all input 583

facts and rules into the working memory, the frame- 584

work iteratively performs symbolic rule grounding 585

based on predicate and variable matching, followed 586

by LLM-based rule implementation. It effectively 587

combines the strengths of both symbolic and LLM 588

methods. Our experiments demonstrate the frame- 589

work’s superiority over CoT-based and symbolic- 590

based baselines, and show its robustness across 591

various rule application steps and settings. In the 592

future, we will extend our framework to incorpo- 593

rate more backbone LLMs and datasets, especially 594

on more complex and long-term reasoning tasks. 595
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Limitations596

Limitation on Experimented Datasets Due to597

computational costs, our work mainly experiments598

with four datasets, focusing on logical reasoning,599

constraint satisfaction and object state tracking600

tasks. Future work will include a broader range601

of tasks and datasets to further validate our frame-602

work’s effectiveness.603

Limitation on Backbone LLMs We build our604

framework upon GPT-4 and GPT-3.5 to demon-605

strate its effectiveness with various abilities of sym-606

bolic semantic parsing and one-step rule applica-607

tion. We will expand our scope to take more back-608

bone LLMs, including open-source models.609

Risk of Environmental Impact A significant610

risk associated with our framework is the poten-611

tial increase in computational costs and environ-612

mental burden due to the extensive use of LLMs613

APIs. This impact can be mitigated by adopting ad-614

vanced open-source models like Llama-3-70B that615

are more efficient with less environmental impact.616
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A Memory Schema Update784

An example of the memory schema construction785

process is illustrated in Figure 6. Before each sym-786

bolic formulation, the process first looks up the787

memory schema to determine whether its main-788

tained predicates and objects can cover the current789

fact or rule to be formulated. If it can, symbolic for-790

mulation is conducted directly based on the mem-791

ory schema. If it cannot, new predicates or objects792

are created and added to the memory schema, and793

the symbolic formulation proceeds based on the up-794

dated memory schema. Then new formulated facts795

and rules are written into the working memory.796

B Framework Prompts797

Table 5, 6 and 7 show the example prompts for fact798

initialization, rule initialization, and LLM-based799

rule implementation in the CLUTRR dataset. Ta-800

ble 8, 9 and 10 show the example prompts for the801

ProofWriter dataset. Table 11, 12 and 13 show the802

example prompts for the AR-LSAT dataset. Ta-803

ble 14 and 15 show the example prompts for the804

Boxes dataset.805

C Implementation Details806

We implement our framework based on two dif-807

ferent backbone LLMs: GPT-4 (gpt-4-turbo-0409808

for CLUTRR, ProofWriter and Boxes, gpt-4o for809

AR-LSAT) and GPT-3.5 (gpt-3.5-turbo-0125), to810

test its effectiveness with different capabilities of811

symbolic semantic parsing and one-step rule ap-812

plication. For fair comparison, we re-implement813

all baseline methods using corresponding LLMs.814

All CoT-based baselines utilize the same in-context815

demonstrations. The generation temperature is set816

to 0.0 by default. The maximum number of steps817

in our framework is set to 4, 6, 8 for actual 2, 3-4,818

and 5-6 steps in CLUTRR and ProofWriter. For819

AR-LSAT, the maximum steps are set according820

to the number of rules, and for Boxes, they are set821

according to the number of operational facts.822
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Figure 6: An example construction process of our working memory schema alongside the memory initialization.

Prompt for Fact Initialization (CLUTRR)

Please list all explicitly mentioned facts from the context.
Each fact should be presented on a separate line under the header "Facts:". Format each fact as "Person A is the
Relationship of Person B." and follow it with its symbolic triplet formatted as "[predicate(A, B)]".
For each fact, also provide the corresponding reverse fact. For example, if the fact is “Person A is the Relationship of
Person B”, the reverse fact is “Person B is the Reverse_Relationship of Person A”.
Please try to use the objects and predicates in the provided schema to describe symbolic facts. If the schema does not
contain corresponding elements, generate the symbolic fact directly from its natural language form.

### Examples:
Context: Don’s father, Joshua, and grandfather, James, went hiking during the first weekend of spring.
Schema Objects: null
Schema Predicates: null
Facts:
- Joshua is the father of Don. [father_of(Joshua, Don)]
- Don is the son of Joshua. [son_of(Don, Joshua)]
- James is the grandfather of Don. [grandfather_of(James, Don)]
- Don is the grandson of James. [grandson_of(Don, James)]
——
Context: James took his daughter Lena out for dinner.
Schema Objects: Joshua, Don, James
Schema Predicates: father_of, son_of, grandfather_of, grandson_of
Facts:
- Lena is the daughter of James. [daughter_of(Lena, James)]
- James is the father of Lena. [father_of(James, Lena)]

Context: {context}
Schema Objects: {objects}
Schema Predicates: {predicates}
Facts:

Table 5: The prompt for fact initialization in CLUTRR.
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Prompt for Rule Initialization (CLUTRR)

Please convert the following inference rule into a symbolic representation in Prolog without changing its wordings.
Ensure the conclusion and the premises are separated by ":-".
The predicates for each atom should be represented as relationships in lowercase.
Please try to use the objects and predicates in the provided schema to describe the symbolic rule. If the schema does
not contain corresponding elements, generate the symbolic rule directly from its natural language form.

### Examples:
Rule: If B is the sister of A, and C is the brother of B, then C is the brother of A.
Schema Objects: Joshua, Don, James
Schema Predicates: sister_of, brother_of
Symbolic Rule: brother_of(C, A) :- sister_of(B, A), brother_of(C, B).

Rule: {rule}
Schema Objects: {objects}
Schema Predicates: {predicates}
Symbolic Rule:

Table 6: The prompt for rule initialization in CLUTRR.

Prompt for Rule Implementation (CLUTRR)

System: You are an expert in determining kinship relationships. You will receive a query about the kinship between
two individuals, and your task is to answer this query.

User: At each turn, you will be provided a list of identified supporting facts and a inference rule.
Please on a new line starting with "Rule Implementation:" to implement the rule based on the supporting facts to
analyze and deduce new potential fact.
Then on a new line starting with "New fact:" to outline the new inferred fact in both natural language form and its
corresponding symbolic format within "[" and "]".
Please try to use the objects and predicates in the provided schema to describe symbolic facts. If the schema does not
contain corresponding elements, generate the symbolic fact directly from its natural language form.
Finally predict "Yes" or "No" to judge whether the new inferred fact can solve the query, in a new line starting with
"Judgement:".

### Examples:
Query: How is Irvin related to Hugh?
Fact List: 3. Frances is the mother of Wesley. 6. Hugh is the son of Frances.
Rule: If B is the mother of A, and C is the son of B, then C is the brother of A.
Schema Objects: Frances, Wesley, Hugh
Schema Predicates: mother_of, son_of, brother_of
Rule Implementation: According to the rule, since Frances is the mother of Wesley, and Hugh is the son of Frances,
we can infer that Hugh is the brother of Wesley.
New fact: Hugh is the brother of Wesley. [brother_of(Hugh, Wesley)]
Judgement: No. Because the new fact does not state the relationship between Irvin and Hugh.

Query: {query}
Fact List: {facts}
Rule: {rule}
Schema Objects: {objects}
Schema Predicates: {predicates}
Rule Implementation:

Table 7: The prompt for LLM-based rule implementation in CLUTRR.
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Prompt for Fact Initialization (ProofWriter)

Please list the symbolic fact of the given context.
Format each symbolic fact in Prolog notation as "predicate(X, Y, ...)" where X, Y, ... are the arguments of the
predicate. Avoid predicate nesting such as not(smart(X)), but using not_smart(X) instead.
Please try to use the objects and predicates in the provided schema to describe symbolic facts. If the schema does not
contain corresponding elements, generate the symbolic fact directly from its natural language form.

### Examples:
Context: Context: Bob is big.
Schema Objects: null
Schema Predicates: null
Fact: big(Bob)
——
Context: The cow visits the bald eagle.
Schema Objects: bald eagle
Schema Predicates: visits, needs
Facts: visits(cow, bald eagle)
——
Context: The lion does not see the squirrel.
Schema Objects: lion, squirrel
Schema Predicates: sees
Fact: not_see(lion, squirrel)

Context: {context}
Schema Objects: {objects}
Schema Predicates: {predicates}
Fact:

Table 8: The prompt for fact initialization in ProofWriter.

Prompt for Rule Initialization (ProofWriter)

Please convert the explicitly provided rule into their symbolic forms in Prolog without changing its original wordings.
Format each symbolic rule in Prolog notation with the conclusion and premises separated by ":-", and format each
atom fact in the rule as "predicate(X, Y, ...)" where X, Y, ... are the arguments of the predicate. Avoid predicate
nesting such as not(smart(X)), but using not_smart(X) instead.
Please try to use the objects and predicates in the provided schema to describe the symbolic rule. If the schema does
not contain corresponding elements, generate the symbolic rule directly from its natural language form.

### Examples:
Rule: If something is kind and smart then it is nice.
Schema Objects: Bob
Schema Predicates: kind, smart
Symbolic Rule: nice(X) :- kind(X), smart(X)
——
Rule: If someone needs the tiger then the tiger sees the bald eagle. Schema Objects: bald eagle
Schema Predicates: needs, sees
Symbolic Rule: sees(tiger, bald eagle) :- needs(X, tiger)
——
Rule: Kind, big people are not furry.
Schema Objects: Bob
Schema Predicates: kind, big, furry
Symbolic Rule: not_furry(X) :- kind(X), big(X)

Rule: {rule}
Schema Objects: {objects}
Schema Predicates: {predicates}
Symbolic Rule:

Table 9: The prompt for rule initialization in ProofWriter.
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Prompt for Rule Implementation (ProofWriter)

System: You are an expert in logiacl reasoning. You will receive a context including a list of facts and inference
rules, and a specific query. Your task is to answer this query following the provided rule.

User: At each turn, you will be provided an inference rule and a list of identified supporting facts.
Please on a new line starting with "Rule Implementation:" to implement the rule based on the supporting facts to
analyze and deduce new potential fact.
Then on a new line starting with "New fact:" to outline the new inferred fact in both natural language form and its
corresponding symbolic format within "[" and "]".
Please try to use the objects and predicates in the provided schema to describe symbolic facts. If the schema does not
contain corresponding elements, generate the symbolic fact directly from its natural language form.
Finally predict "Yes" or "No" to judge whether the new inferred fact can solve the query, in a new line starting with
"Judgement:".

### Examples:
Query: Is it true that Gary is not red?
Fact List: 3. Gary is big.
Rule: All big things are not green.
Schema Objects: Gary
Schema Predicates: big, not_green
Rule Implementation: According to the rule, since Gary is big, we can infer that Gary is not green.
New fact: Gary is not green. [not_green(Gary)]
Judgement: No. Because the new fact does not state the relationship between Gary and red.

Query: {query}
Fact List: {facts}
Rule: {rule}
Schema Objects: {objects}
Schema Predicates: {predicates}
Rule Implementation:

Table 10: The prompt for LLM-based rule implementation in ProofWriter.

Prompt for Fact Initialization (AR-LSAT)

Please list the symbolic forms of all established facts in the given query and option.
Format each symbolic fact in Prolog notation as "predicate(X, Y, ...)" where X, Y, ... are the arguments of the
predicate.
Please try to use the objects and predicates in the provided schema to describe symbolic facts. If the schema does not
contain corresponding elements, generate the symbolic fact directly from its natural language form.

### Examples:
Context: Of the eight students-George, Helen, Irving, Kyle, Lenore, Nina, Olivia, and Robert-in a seminar, exactly
six will give individual oral reports during three consecutive days-Monday, Tuesday, and Wednesday. Exactly two
reports will be given each day-one in the morning and one in the afternoon-according to the following conditions.
Query: If Kyle and Lenore do not give reports, then the morning reports on Monday, Tuesday, and Wednesday,
respectively, could be given by
Option: A) Helen, George, and Nina
Schema Objects: Monday, Tuesday, Wednesday, morning
Schema Predicates: give_report
Facts:
- Kyle do not give report. [not_give_report(Kyle)]
- Lenore do not give report. [not_give_report(Lenore)]
- Helen gives report on Monday morning. [give_report(Helen, Monday, morning)]
- George gives report on Tuesday morning. [give_report(George, Tuesday, morning)]
- Nina gives report on Wednesday morning. [give_report(Nina, Wednesday, morning)]

Context: {context}
Query: {query}
Option: {option}
Schema Objects: {objects}
Schema Predicates: {predicates}
Facts:

Table 11: The prompt for fact initialization in AR-LSAT.
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Prompt for Rule Initialization (AR-LSAT)

Please list the symbolic forms of the given constraint rule.
Format each symbolic rule in Prolog notation, representing it either as a conclusion or as a combination of a
conclusion and premises, separated by ":-". Format each atom fact in the rule as "predicate(X, Y, ...)" where X, Y, ...
are the arguments of the predicate. Avoid predicate nesting such as not(smart(X)), but using not_smart(X) instead.
Avoid mathematic expression such as N =< 4, but using samller_than(N, 4).
Please try to use the objects and predicates in the provided schema to describe the symbolic rule. If the schema does
not contain corresponding elements, generate the symbolic rule directly from its natural language form.

### Examples:
Context: Of the eight students-George, Helen, Irving, Kyle, Lenore, Nina, Olivia, and Robert-in a seminar, exactly
six will give individual oral reports during three consecutive days-Monday, Tuesday, and Wednesday. Exactly two
reports will be given each day-one in the morning and one in the afternoon-according to the following conditions.
Constraint Rule: Tuesday is the only day on which George can give a report.
Schema Objects: Monday, Tuesday, Wednesday, morning, Kyle, Lenore, Helen, George, Nina
Schema Predicates: give_report
Symbolic Rule:
- give_report(George, Tuesday)
——
Context: Of the eight students-George, Helen, Irving, Kyle, Lenore, Nina, Olivia, and Robert-in a seminar, exactly
six will give individual oral reports during three consecutive days-Monday, Tuesday, and Wednesday. Exactly two
reports will be given each day-one in the morning and one in the afternoon-according to the following conditions.
Constraint Rule: If Nina gives a report, then on the next day Helen and Irving must both give reports, unless Nina’s
report is given on Wednesday.
Schema Objects: Monday, Tuesday, Wednesday, morning, Kyle, Lenore, Helen, George, Nina
Schema Predicates: give_report
Symbolic Rule:
- give_report(Helen, Tuesday), give_report(Irving, Tuesday) :- give_report(Nina, Monday)
- give_report(Helen, Wednesday), give_report(Irving, Wednesday) :- give_report(Nina, Tuesday)

Context: {context}
Constraint Rule: {rule}
Schema Objects: {objects}
Schema Predicates: {predicates}
Symbolic Rule:

Table 12: The prompt for rule initialization in AR-LSAT.
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Prompt for Rule Implementation (AR-LSAT)

System: You are an expert in logical reasoning. You will receive a context including background information
followed by a list of constraint rules, and a specific query with five candidate options (A, B, C, D, E). Your task is to
accurately select the answer that satisfies the provided rule.

User: At each turn, you will be provided a context background, a constraint rule and a list of relevant facts.
Please on a new line starting with "Rule Implementation:" to implement the rule based on the facts to analyze there is
a conflict between them. If no conflict, proceed to deduce new potential facts.
Then predict "Yes" or "No" to judge whether there is a conflict between the rule and facts, in a new line starting with
"Judgement:".
If the judgement is No, proceed on a new line starting with "New fact:" to outline the new inferred fact in both natural
language form and its corresponding symbolic format within "[" and "]".
Please try to use the objects and predicates in the provided schema to describe symbolic facts. If the schema does not
contain corresponding elements, generate the symbolic fact directly from its natural language form.

### Examples:
Context: Of the eight students-George, Helen, Irving, Kyle, Lenore, Nina, Olivia, and Robert-in a seminar, exactly
six will give individual oral reports during three consecutive days-Monday, Tuesday, and Wednesday. Exactly two
reports will be given each day-one in the morning and one in the afternoon-according to the following conditions.
Rule: Tuesday is the only day on which George can give a report.
Query: If Kyle and Lenore do not give reports, then the morning reports on Monday, Tuesday, and Wednesday,
respectively, could be given by
Fact List:
- B) Irving, Robert, and Helen
Schema Objects: Monday, Tuesday, Wednesday, morning, Kyle, Lenore, Helen, George, Nina, Irving, Robert
Schema Predicates: give_report
Rule Implementation: According to the rule and the fact Robert give report on Tuesday morning, there is no conflict
and we can infer George give a report on Tuesday afternoon.
Judgement: No.
New fact: George give a report on Tuesday afternoon. [give_report(George, Tuesday, afternoon)]
——
Context: Of the eight students-George, Helen, Irving, Kyle, Lenore, Nina, Olivia, and Robert-in a seminar, exactly
six will give individual oral reports during three consecutive days-Monday, Tuesday, and Wednesday. Exactly two
reports will be given each day-one in the morning and one in the afternoon-according to the following conditions.
Rule: Neither Olivia nor Robert can give an afternoon report.
Query: If Kyle and Lenore do not give reports, then the morning reports on Monday, Tuesday, and Wednesday,
respectively, could be given by
Fact List:
- B) Irving, Robert, and Helen
- George give a report on Tuesday afternoon.
Schema Objects: Monday, Tuesday, Wednesday, morning, afternoon, Kyle, Lenore, Helen, George, Nina, Irving,
Robert
Schema Predicates: give_report
Rule Implementation: According to the rule, and the facts Irving, Robert, and Helen all give report on morning, there
is a conflict that can not give a report on the morning.
Judgement: Yes.

Context: {context}
Rule: {rule}
Query: {query}
Fact List: {facts}
Schema Objects: {objects}
Schema Predicates: {predicates}
Rule Implementation:

Table 13: The prompt for LLM-based rule implementation in AR-LSAT.
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Prompt for Fact Initialization (Boxes)

Please list the symbolic form of the explicitly provided fact in the context.
Format the symbolic fact in Prolog notation as "predicate(X, Y, ...)" where X, Y, ... are the arguments of the predicate.
Please try to use the objects and predicates in the provided schema to describe symbolic facts. If the schema does not
contain corresponding elements, generate the symbolic fact directly from its natural language form.

### Examples:
Context: Box 0 contains the rose.
Schema Objects: null
Schema Predicates: contains, move_from_to, remove_from, put_into
Fact: contains(Box 0, the rose)
——
Context: Box 4 contains the bread and the radio and the tape.
Schema Objects: Box 0, the rose
Schema Predicates: contains, move_from_to, remove_from, put_into
Fact: contains(Box 4, the bread, the radio, the tape)
——
Context: Move the letter from Box 2 to Box 1.
Schema Objects: Box 0, the rose, the bread, the radio, the tape
Schema Predicates: contains, move_from_to, remove_from, put_into
Fact: move_from_to(the letter, Box 2, Box 1)

Context: {context}
Schema Objects: {objects}
Schema Predicates: {predicates}
Fact:

Table 14: The prompt for fact initialization in Boxes.
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Prompt for Rule Implementation (Boxes)

System: You are an expert in logical reasoning. You will receive a context including a list of state facts and
operational facts, a list of rules and a specific query. Your task is to answer this query following the provided rule.

User: At each turn, you will be provided a list of state facts and an operational fact, and a logical rule.
Please on a new line starting with "Rule Implementation:" to implement the rule based on the facts to infer new state
facts after the operation.
Then output "New facts:" in a new line, and each new inferred fact in both natural language form and its corresponding
symbolic format on separate lines under the header "New facts:".
Each line must cover all contents about a distinct Box. For example, the first is about Box 1, then the second line
should not describe Box 1.
Format each fact in natural language as "Box X contains Y." where X is the box number and Y are the specific items
instead of general "contents" in the box.
Format each symbolic fact in Prolog notation as "predicate(X, Y, ...)" where X, Y, ... are the arguments of the
predicate, and the predicate should be "contains".
Please try to use the objects and predicates in the provided schema to describe symbolic facts. If the schema does not
contain corresponding elements, generate the symbolic fact directly from its natural language form.

### Examples:
State Facts: Box 1 contains the rose. Box 2 contains the letter.
Operational Fact: Move the contents from Box 2 to Box 1.
Rule: If move the contents X from Box A to Box B, then X are not in Box A and X are in Box B.
Schema Objects: Box 0, the rose, the bread, the radio, the tape
Schema Predicates: contains, move_from_to, remove_from, put_into
Rule Implementation: Based on the rule, after the moving operation, we can infer that Box 1 contains the rose and
the letter, and Box 2 contains nothing.
New facts:
Box 1 contains the rose and the letter. [contains(Box 1, the rose, the letter)]
Box 2 contains nothing. [contains(Box 2, nothing)]
——
State Facts: Box 2 contains the letter and the book.
Operational Fact: Remove the letter from Box 2.
Rule: If remove the contents X from Box A, then X are not in Box A.
Schema Objects: Box 0, Box 1, Box 2, the rose, the bread, the radio, the tape, the letter, the book, nothing
Schema Predicates: contains, move_from_to, remove_from, put_into
Rule Implementation: Based on the rule, after the removing operation, we can infer that Box 2 contains the book.
New facts:
Box 2 contains the book. [contains(Box 2, the book)]

State Facts: {state facts}
Operational Fact: {op facts}
Rule: {rule}
Schema Objects: {objects}
Schema Predicates: {predicates}
Rule Implementation:

Table 15: The prompt for LLM-based rule implementation in Boxes.
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